¡¡
Ëæ»úƫ΢·Ö·½³Ì±£½á¹¹Ëã·¨
ÇàÄêÑÐÌÖ»á
¡¡
¡¡
4ÔÂ9ÈÕ£¨ÖÜÎ壩 ÌÚѶ»áÒé»áÒéºÅ£º569 222 639£¬ ÃÜÂ룺210409
ʱ¼ä |
±¨¸æÌâÄ¿ |
±¨¸æÈË |
Ö÷³ÖÈË |
09:00-09:10 |
¿ªÄ»Ê½ |
³Â³þ³þ |
|
09:10-09:45 |
On spectral-expansion-based approximation for solving stochastic elliptic equations and second-order SDEs |
²ÜÍñÈÝ |
|
09:45-10:20 |
Energy regularization approximation for the stochastic logarithmic Schrödinger equation |
´Þ½¨²¨ |
|
10:20-10:30 |
ÐÝÏ¢ |
||
10:30-11:05 |
Strong approximations of semilinear monotone SPDEs |
ÁõÖÇ»Û |
|
11:05-11:40 |
Weak convergence rates of an explicit time-stepping scheme for SPDEs with non-globally Lipschitz coefficients |
²Ì ÃÍ |
|
ÐÝÏ¢ |
|||
14:00-14:35 |
Accelerated exponential Euler scheme for stochastic heat equation: convergence rate of densities |
³Â³þ³þ |
¼§Àûº£ |
14:35-15:10 |
Finite element methods for nonlinear backward stochastic partial differential equations and their error estimates |
Ñî Ðñ |
|
15:10-15:20 |
ÐÝÏ¢ |
||
15:20-15:55 |
Spectral Galerkin method for stochastic Cahn¨CHilliard equation |
ËïÀöÓ¨ |
|
15:55-16:30 |
Large deviations principles of sample paths and invariant measures of numerical methods for parabolic SPDEs |
³Â×Óºã |
|
16:30-17:05 |
Probabilistic superiority of stochastic symplectic methods via large deviations principles |
½ðµä´Ï |
¡¡
4ÔÂ10ÈÕ£¨ÖÜÁù£© ÌÚѶ»áÒé»áÒéºÅ£º604 166 912£¬ ÃÜÂ룺210410
ʱ¼ä |
±¨¸æÌâÄ¿ |
±¨¸æÈË |
Ö÷³ÖÈË |
09:00-09:35 |
Uncertainty quantification for PDEs with high dimensional random parameters |
ÖÜ ÌÎ |
³Â³þ³þ |
09:35-10:10 |
Penalty finite element approximation of the double-diffusive convection in a stochastic climate model |
×޹㰲 |
|
10:10-10:20 |
ÐÝÏ¢ |
||
10:20-10:55 |
Convergence analysis of parareal algorithms for SPDEs |
ÕÅÀûÓ¢ |
|
10:55-11:30 |
Hitting probabilities of numerical discretizations for linear stochastic parabolic system |
Ê¢µÂÈð |
|
ÐÝÏ¢ |
|||
14:00-14:35 |
Finite time blowup of solutions to SPDEs with Bernstein functions of the Laplacian |
Áõ •¥ |
ÕÅÀûÓ¢ |
14:35-15:10 |
Numerical simulation and analysis for the stochastic Navier¨CStokes equations |
ÕÔÎľ٠|
|
15:10-15:20 |
ÐÝÏ¢ |
||
15:20-15:55 |
A splitting-up method for nonlinear filtering problem with correlated noise |
²ñÊÀÃñ |
|
15:55-16:30 |
Efficient full discretization for nonlinear stochastic wave equations |
||
16:30-17:05 |
A temporal semi-discretization for 2D stochastic incompressible Euler equations |
ÖÜ ÌÏ |
4ÔÂ11ÈÕ£¨ÖÜÈÕ£© ÌÚѶ»áÒé»áÒéºÅ£º445 670 955£¬ ÃÜÂ룺210411
ʱ¼ä |
±¨¸æÌâÄ¿ |
±¨¸æÈË |
Ö÷³ÖÈË |
09:00-09:35 |
A linear implicit time-stepping scheme for the finite element approximation of SPDEs with polynomial nonlinearity |
ÍõС½Ý |
¼§Àûº£ |
09:35-10:10 |
Inverse elastic scattering for a random potential |
Íõ Ðñ |
|
10:10-10:20 |
ÐÝÏ¢ |
||
10:20-10:55 |
Super-convergence analysis on exponential integrator for stochastic heat equation driven by additive fractional Brownian motion |
»Æ³þÓ« |
|
10:55-11:30 |
Weak intermittency of a fully discrete scheme for stochastic heat equation |
µ³Í¬ºØ |
|
ÐÝÏ¢ |
|||
14:00-14:35 |
Stochastic symplectic methods for stochastic Maxwell equations |
¼§Àûº£ |
ËïÀöÓ¨ |
14:35-15:10 |
Structure preserving methods for the stochastic fractional nonlinear Schrödinger equation |
Áõ×ÓÔ´ |
¡¡
¡¡
¡¡ |
¡¡ |
¡¡ |