Introduction to Per
Analysis and Modeling

(Viewpoint from Computer Engineering

E¥88 (Wei XUE)
iR RFITRIEZSHRAR

xuewei@tsinghua.edu.cn

¢ About me

T S ey
Employer BETEIZS T EM AR
Phone 13910010177
Email xuewei@tsinghua.edu.cn

High Performance Computing,
Research Interests Scientific Computing,
HPC+AI

m

1. Motivation
2. Performance Analysis of Parallel Programs

3. Performance Modeling of Parallel Programs

¢ Motivation

 Parallel computing is general purpose technology now

Power4 (2001)

PowerS (2004) Xenon (2005) o CBE (2006) Power Powert+
e e 1.51.9 GHz 3.2 GHz 3.2 GHz 3.54.7GHz 5GHz
(1)(2)12) (1H2)4) (1)z)8)

(1)(s)(20) (L)2)4) (1)(2)2)

Ultra SPARC IV
1-1.356 GHz
(1)212)
I 1

Ultra SPARC T2
1-1.66 GHz
(1)(8)(64)

Ultra SPARC Villfx
2.4-2.56 GHz
(1)(8)(16)

From Prof. Guang R. Gao’s talk

N
@]
o
it

2002 2003

2004 20

- JASOMND

3l SUN / ORACLE

Ultra SPARC IV Ultra SPARC T1 Ultra SPARC VI
1.5-2.16 GHz 1-1.46 GHz 2.4-2.56 GHz
(1)2)(2} (1)(a)(32) (1)(4)(16)

Name
Hertz
(Processor J(Cores){Threads)

Powerds (2003) PowerS+ (2005) PowerXCell8i (2003]
1.9 GHz 1.5-2.26 GHz 3.2GHz 5 GHz

(1)(2)(2) (1)(2)(4) (1)(9)(10) (1)2)8)

Question: how well do we use parallel computing systems and how can we do better?

¢ Motivation

Processors become more
and more complicated

[onaw —) ==

Intel® Core Processor

Intel® Processor Graphics Gen9
Command Streamer
. Global Thread Dispatcher

Slice: 24 EUs
| sueanen]
i:n YT Ev:wm iU i!:u Y-

w!

Display (=
Controlret =

Memory
' 8 P (opt) EDRA
Controller

@@~ clock domain

Figure 2: An Intef® Core™ i7 processor 6700K SoC and its ring interconnect architecture

Branch
Prediction
1$ Tag

insructon Ell

\

W

HTTTT

FES)

zllEc||Ec||Ec||EE
i ' '

¢ Motivation

- -
Summit Node,Overview —— —
J— !"~ =3 5 |su DRAM DRAM =2 I
j > %5‘3‘8'%}; < | 508 568 1M1 %‘,‘2‘ V%r’: <t
g §
L |], o L L |
[+2] (Y o
50 GBIs o| & a G 50GBSs
A\ 3 0 0 3 Y
— —— 2 Q — p—
- o 55 \i 64) A i @ &
2 [29] 23] =
o) GB/s o)
o %g <g>§»’f <«—»| PO |@»| P9 |[@—> §8 <g>2& 5]
3 - 3 L g v - 3 o~ 2
—— S —
2 o) 9} 2
50 GB/s) < © @ 50GBIs
\d 3 = b \d
—— — 8 8 —— —
2 2
[29] 23]
[+1] 23]
Lol |20 |4Sp || |« Lol 30 |«Zp|2 | |«
Ie|l g (o~ Ioe| g |6~
/ — [} (=]
> « 200VAC, 277VAC, 400VDC input +3 otRE) L (S LI [
i gl e
PCle slot (4x) ~— e [} NVM 6.0 GB/s Read
+ Gend PCle N R 8 2.2 GB/s Write
- Memory DIMM's (16x) N
— « BDDR4 IS DIH’.Y‘: per sock
Y SA vAA0AMINGBOMN: e 42 TF (6x7 TF) <—» HBM/DRAM Bus (aggregate B/W)
; HBM 96 GB (6x16 GB) <> NVLINK
DRAM 512 GB (2x16x16 GB) <«—» X-Bus (SMP)
NET 25 GB/s (2x12.5 GBI/s) PCle Gen4
MMsg/s 83 <—» EDRIB

HBM & DRAM speeds are aggregate (Read+Write).
All other speeds (X-Bus, NVLink, PCle, IB) are bi-directional.

Power 9 Processor (2x)
. 18,2 oled

;O/\K RIDGE | LEARersHie

National Laboratory | FACILITY

More about Node architecture: https://queue.acm.org/detail.cfm?id=2513149&ref=gnh
More about PCIE: https://arstechnica.com/features/2004/07/pcie/

https://queue.acm.org/detail.cfm?id=2513149&ref=qnh
https://arstechnica.com/features/2004/07/pcie/

\ 4

[Uy R YU R R ————

Motivation

[U U

Communications Latencies
of 30-40us

N e e ——————————

Communications Latencies
of 3-4us

bisection BW
latency
scalability
cost

¢ Challenge of Performance E

istﬁcky

| not Mmodular

From Torsten Heofler, 2019

¢ Motivation

The Top

Technology 01010011 01100011

01101001 01100101 ‘:’
01101110 01100011

01100101 00000000

Software Algorithms Hardware architecture
Opportunity Software performance New algorithms Hardware streamlining
engineering
Examples Removing software bloat New problem domains Processor simplification
Tailoring software to New machine models Domain specialization
hardware features

The Bottom

for example, semiconductor technology

There’s plenty of room at the Top: What will drive computer performance after Moore’s law?
Science, 2020.6

m

1. Motivation
2. Performance Analysis of Parallel Programs

3. Performance Modeling of Parallel Programs

¢ Questions for Performance ;

« How can we tell if a program
1s performing well? Or 1sn’t?
What 1s “good”?

| * If performance 1s not “good,”
can we identify the causes?

« What can we do for
optimizations? (Not for Today)

¢ Is Your Code Performing We

* No single answer, but
— Does it scale well?
— Is MPI time <20% of total run time?
— 1s 1/0O time <10% of total run time?
— Is it load balanced?
— If GPU code, does GPU+Processor perform better than 2 Processors?

* “Theoretical” CPU performance vs. “Real World”
performance in a highly parallel environment
— Cache-based x86 processors: >10% of theoretical is pretty good

— GPUs, Xeon Phi: >few% in today’s real full HPC applications pretty
good?

— Time-to-solution vs. sustained flops

_

Topic 1: Principles of Parallel Computing

Parallel Machines and Programming

Proc| |[Proc Proc Mem| |Mem| [Mem
| | I Proc| |Proc| |Proc
Mem Network
-~ 1
| Mem| [Mem Mem
Proc| |Proc| |Proc Proc| |Proc| |Proc Mem

Shared Memory Distributed Memory Single Instruction

Multiple Data (SIMD)
Processors execute own Processors execute own One instruction stream (all

instruction stream Instruction stream run same instruction)
Communicate by Communicate by sending Communicate through
reading/writing memory messages memory

Cost of a read/write is Message time depends on Assume unbounded # of
constant size, but not location arithmetic units

* These are the natural “abstract’” machine models

Abstraction of Parallel Programs

BN (418, BA
EFIIT

IEA VIR HHE

Sha it E

i b SR

HERITE, HEHE
(32)

BEhZiHE (KFE) , BAEFNT

| SiHIE (12) IEKIEEHA

SifiE (%iD)

Stz (%12) BIESEL

[S IS H R

HRITE, HNDTHE (i)

Principles of Parallel Computing

* All of these machines and implementations rely on
dividing up work into parts that are:
» Mostly independent (little synchronization)
« About same size (load balanced)
» Have good locality (little communication)

Writing (fast) parallel programs is not easy

- All about performance
(speed, efficiency, scale ...)

- Hardware and software co-design

Principles of Parallel Computing (detalls)

 Finding enough parallelism (Amdahl’s Law)
« Locality — moving data costs more than arithmetic

 Load balance — don’t want 1K processors to wait for one slow
one

 Coordination and synchronization — sharing data safely
 Granularity — how big should each parallel task be

 Performance modeling/debugging/tuning

“Automatic” Parallelism in Modern Machines

* Bit level parallelism
» within floating point operations, etc.

* Instruction level parallelism (ILP)
« multiple instructions execute per clock cycle

* Memory system parallelism
» overlap of memory operations with computation

» OS parallelism
« multiple jobs run in parallel on commodity SMPs

Limits to all of these -- for very high performance, need
user to identify, schedule and coordinate parallel tasks

Finding Enough Parallelism

 Suppose only part of an application seems parallel
« Amdahl’s law

* let s be the fraction of work done sequentially, so
(1-s) is fraction parallelizable

P = number of processors

Speedup(P) = Time(1)/Time(P)
<=1/(s + (1-9)/P)

<=1/s

 Even if the parallel part speeds up perfectly performance
IS limited by the sequential part

Locality and Parallelism

Conventional

Storage S
- roc
Hierarchy Cachd
L2 Cache
L3 Cache
Memory

NS

Praoc Praoc
Cache Cache
L2 Cache L2 Cache
L3 Cache L3 Cache
Memory Memory
I I
S

Large memories are slow, fast memories are small
Storage hierarchies are large and fast on average

Parallel processors, collectively, have large, fast cache

NUMA architecture

Algorithm should do most work on local data

S109UuU0JlJalul

renuajod

Processor-DRAM Gap (latency)

Goal: find algorithms that minimize communication, not
necessarily arithmetic

1000 “ uProc
60%l/yr.

O
o .
< 100 Processor-Memory
= Performance Gap:
O 10 (grows 50% / year)
) | ~—— DRAM
A I (VY

1980
1981
1982
10983
1984
1985
1986
1087
1088
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000

Load Imbalance

 Load imbalance Is the time that some processors in the system
are idle due to
« insufficient parallelism (during that phase)
 unequal size tasks

« Examples of the latter
« adapting to “interesting parts of a domam” o
e tree-structured computations)
 fundamentally unstructured problems

« Algorithm needs to balance load
« Sometimes can determine work load, divide up evenly, before starting
« “Static Load Balancing”
« Sometimes work load changes dynamically, need to rebalance
dynamically
« “Dynamic Load Balancing”

E Busy

uTy

Overhead of Parallelism

 Given enough parallel work, this is the biggest barrier
to get desired performance

» Parallelism overheads include:
» cost of starting threads or processes
» cost of communicating shared data
e cost of synchronization
e extra (redundant) computation

Overhead of Parallelism

A list of numbers every programmer should know (Jeff Dean, google)

L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns
Mutex lock/unlock 25 ns
Main memory reference 100 ns
Compress 1K bytes with Zippy 3,000 ns
Send 2K bytes over 1 Gbps network 20,000 ns
Read 1 MB sequentially from memory 250,000 ns
Round trip within same datacenter 500,000 ns
Disk seek 10,000,000 ns
Read 1 MB sequentially from disk 20,000,000 ns

Send packet CA->Netherlands->CA 150,000,000 ns

https://gist.github.com/2843375

Lock overhead

Ticket Lock vs. Queued Lock (16-240 Threads, No Load)

7

6

Locking Rate (millions/s)

2
1
0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240

—Ticket Lock =—Queued Lock A
r

* Ticket spinlock is the spinlock implementation used in the Linux kernel prior to 4.2. A lock waiter gets a ticket
number and spin on the lock cacheline until it sees its ticket number. By then, it becomes the lock owner and enters
the critical section.

* Queued spinlock is the new spinlock implementation used in 4.2 Linux kernel and beyond. A lock waiter goes into a
queue and spins in its own cacheline until it becomes the queue head. By then, it can spin on the lock cacheline and
attempt to get the lock.

Redundant computation

ProcO | Procl DDJ;ET‘;' .
‘ O I ‘ ‘ B(LN=0.25%*(A(L-1.THAI+1 H+ALI+1)+A(LI-1)
END DO
I END DO
DO J=1.N
0e0e®
ALN=B(LI)
IS - - I S S . END DO

END DO
® OI‘ ®
0000

Proc2 | Proc3

Baly eje(

Granularity

 Each of these overhead mentioned can be in the range of
milliseconds (=millions of flops) on some systems

 Tradeoff: Algorithm needs sufficiently large units of work to
run fast in parallel (i.e. large granularity), but not so large that
there is not enough parallel work

Principles of Parallel Computing

 Finding enough parallelism (Amdahl’s Law)
« Locality — moving data costs more than arithmetic

 Load balance — don’t want 1K processors to wait for one slow
one

 Coordination and synchronization — sharing data safely
 Granularity — how big should each parallel task be

 Performance modeling/debugging/tuning

All of these things makes parallel programming even
harder than sequential programming.

__

Topic 2: Method and Tools of performance analysis

how to benchmarking?
How to collect performance data?
How to analyze the data?

Performance Analysis of Parallel Programs

* Correctly and comprehensively diagnose
performance behaviors of parallel programs, to
support effective optimizations

Experiment design and implementation, have to care
* Representative of samples

« External constrains on the viewpoint of system level

« Correctness check

« Scientific benchmarking of Parallel Computing Systems

Methods for Performance analysis

* Speedup, efficiency

Amdahl and Gustafson laws, critical path

Performance data collection

« Profiling: statistics of program performance behaviors, such as
time of functions
« Subroutine profiling vs. PMU sampling

« Tracing: records of most of the events happened, such as
sequence of memory access and instructions

« Performance tools

Mostly used profiling: Timing of Parallel Program

= [imers

= Linux: rdtsc (cycle precision) /gettimeofday(us) / clock_getres,
clock_gettime(ns)

= Windows: _ rdtsc (cycle precision) / QueryPerformanceFrequency /
QueryPerformanceCounter

= Intel Timer Utility: https://software.intel.com/en-us/code-
samples/intel-c-compiler/utilities/Timer-Utility

= MPI_Wtime/MPI_Wtick

= Timing of Parallel Programs
1. Barrier
2. Start Timer
5. Run Program
+ End Timer
5. Max(EndTime[i]-StartTime[i])

https://software.intel.com/en-us/code-samples/intel-c-compiler/utilities/Timer-Utility

Hardware performance monitoring unit (PMU)

Most processors nowadays have special, on-chip hardware that

monitors micro architectural events

 Core: instructions retired, elapsed core clock ticks, core frequency
including Intel® Turbo boost technology, L2 cache hits and misses, L3
cache misses and hits (including or excluding snoops).

 Uncore: read bytes from memory controller(s), bytes written to memory
controller(s), data traffic transferred by the Intel® QuickPath
Interconnect links.
* It Is a subsystem on the processor
which helps in analyzing how an application
or operating systems are performing on the processor.

 The Performance Monitoring Events can be broadly categorized

In two types

« Hardware: CPU-Cycles, Instructions, SIMD Instructions,
Cache References, Memory Access, Stalls, TLB miss

 Software: Page Fault, Context Switch, etc

Hardware performance monitoring unit (PMU)

« PMU consists of two components:

Performance Event Select Registers

Configuration registers to control what events to be monitored
and how to monitor.

Event Counters (both configurable and fix ones)
The registers which actually count the number of events based on

the event select register’s configuration.

« For monitoring an event a counter iIs paired with an event select
register.

Sampling of PMU

 Periodically interrupt the processor to obtain
execution status and context
 Periodic sampling
« OS Timer Services (RTC), Every N Processor Clockticks

« Event Based Sampling (EBS).

« Specific processor events, such as L2 Cache Misses, Branch
Mispredictions, Floating-point instructions retired.

« Manual sampling

PCM * m = PCM::getInstance();
// program counters, and on a failure just exit
if (m->program() != PCM::Success) return;
SystemCounterState before_sstate = getSystemCounterState();
[run your code here]
SystemCounterState after_sstate = getSystemCounterState();
cout << “"Instructions per clock:" << getIPC(before_sstate,after_sstate)

"L3 cache hit ratio:" << getl3CacheHitRatio(before sstate,after sstate)
"Bytes read:" << getBytesReadFromMC(before_sstate,after_sstate)

[and so on]...

Advantages of PMU sampling

 No code modification and no libraries to link

» May need to add compiler option (-g) to get the program
call-stack information

 System level Sampling

 Not only your program is sampled, but all the programs are
scheduled to run on the same processor/core are sampled

 Low overhead and high accuracy (when your
program/function takes long time enough)

Hotspot Analysis (& 543 #7) with PMU

« Where in an application/system where there IS

a significant amount of activity

* Where = Memory Address => OS Process => OS Thread
=> Executable or module => Function => Lines of code

y Significant— IMRERENFNINELE, HAEXNR
Gt REPN RIE R K RSN
e Activity = £ ZRRIBTE)Z E HEAIERZNEREH

 Cache misses, Branch mispredictions, Floating-point instructions
retired, Partial register stalls, etc.

* From hotspots to bottleneck

Performance Analysis of Parallel Programs

« Correctly and comprehensively diagnose
performance behaviors of parallel programs, to
support effective optimizations

Experiment design and implementation, have to care
* Representative of samples

« External constrains on the viewpoint of system level

« Correctness check

« Scientific benchmarking of Parallel Computing Systems

Methods for Performance analysis

* Speedup, efficiency

« Amdahl law, Gustafson laws, and critical path analysis

Performance data collection

« Profiling: statistics of program performance behaviors, such as
time of functions
« Subroutine profiling vs. PMU sampling

« Tracing: records of most of the events happened, such as
sequence of memory access and instructions

« Performance tools

Speedup

e The speedup of a parallel application is
Speedup(p) = Time(1)/Time(p)
e Where
e Time(1) = execution time for a single processor and

e Time(p) = execution time using p parallel processors

e [f Speedup(p) = p we have perfect speedup (also called
linear scaling)

e As defined, speedup compares an application with itself on
one and on p processors, but it is more useful to compare
e The execution time of the best serial application on 1 processor
Versus
e The execution time of best parallel algorithm on p processors

Superlinear Speedup

Question: can we find “superi/inear” speedup, that is
Speedup(p) >p ?

e Choosing a bad “baseline” for T(1)

e Old serial code has not been updated with
optimizations
e Avoid this, and always specify what your baseline is
e Shrinking the problem size per processor
e May allow it to fit in small fast memory (cache)

e Application is not deterministic
e Amount of work varies depending on execution order
e Search algorithms have this characteristic

Efficiency

e The parallel efficiency of an application is defined as

Efficiency(p) = Speedup(p)/p
e Efficiency(p) <=1
e For perfect speedup Efficiency (p) =1
e We will rarely have perfect speedup.
e Lack of perfect parallelism in the application or algorithm
e Imperfect load balancing (some processors have more work)
e Cost of communication
e Cost of contention for resources, e.g.,, memory bus, [/0
e Synchronization time

e Understanding why an application is not scaling linearly
will help finding ways improving the applications
performance on parallel computers.

Amdahl law

 Describes the upper bound of parallel execution speedup

0.5 + I

. P/2 parallel b {(1'P) i P/n} Tserial
n = number of processors
P/oo
Speedup serlal / Tparallel 1-0’055“21]33

Serial code limits speedup

T1EGEW

Amdahl law

A A A
— 1024x
A
wWwwww W]
k< T,
e N
i% T ¥ | 10771024/ (1+1023f)
& |7 r 2
W ww, Wy, & | T R
T T,
p T,
7,
L r
> Pl 5
1 2 3 4 5 6 1 2 3 4 5 6 0% 1% 2% 3% 4% 100%
ALIEIFHP AbIEZHLP EFPINFERTE B e

(@) (b) (©

Gustafson law

« Use more computing resources (processors/nodes) to solve
larger problem

o Ws+pWp _We+pWp
Ws+p-Wpap Ws+Wp

S'=1+p(@t)=p+11p)=p-T(d)

If parallel overhead W,

g_ WetpW _ f+p(l-f)
W, +Wo +W, 1+W, /W

BK(Svit= a4

Gustafson Law

"
" A
A
W 1024x
v AR EEEIE 1014x 1004x 993x gg3x
4 o k&)
y = rlrlrlrlrly @ S 100102410231
4 ; pl p| | P | | P foms
Ly 5 R
Wy
i -
. 2 3 1 ¢ o 123456'0%1%2%3%4%
ST REEREALP PP B s
(a) (b) (c)

44

Critical Path

 Parallel applications contain multiple execution flows

« A new flow is created when a thread/process is created or
resumes

 Flow ends when a thread/process terminates or blocks on a
synchronization primitive

Thread 3
Acquire lock L Release L WaitforL Acquirel terminates

Thread 3

Thread 2
Wait for L Acquire L terminates

Thread 2

Release L
| Thread 1

Wait for Threads terminates

2&3 Thread s

ﬁ) ‘ ‘ 2 & 3Done’
| \ \

TO Tl T2 T3 T4 T5 TG T7 T8 T9 TlO Tll T12 T13 T14 T15

The critical path is the longest execution flow

Performance Analysis of Parallel Programs

« Correctly and comprehensively diagnose
performance behaviors of parallel programs, to

support effective optimizations
Experiment design and implementation, have to care

Representative of samples

External constrains on the viewpoint of system level
Correctness check

Scientific benchmarking of Parallel Computing Systems

Methods for Performance analysis

Speedup, efficiency
Amdahl law, Gustafson laws, and critical path analysis

Performance data collection

Profiling: statistics of program performance behaviors, such as
time of functions

« Subroutine profiling vs. PMU sampling

Tracing: records of most of the events happened, such as
sequence of memory access and instructions

Performance tools

Performance may be changing

What is the real
performance of point-to-
point communication on
this supercomputer?

« 1.77us?

o
o =
9_] /O
(@]
B
o
~1.2ms
o
= o
o 8
(o]
o
S o o) 5 8
o 3
8— lo) 0 o (o]
3 0 s
.. ¢ oo
o o
o) o
28 & o go
0B 3 & Q ©
2 &
a O B |
o © = 0

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

~1.77us

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

Performance may be changing

1 ~1.2ms
g - g
e
g - o o 5 8
* How to report performance g | . -, o E 5
results of point-to-point 8, . 8 . : ° m
.. 08 & °

communication 8 3 o
« Normal distribution? $ &

» confidence interval?

~1.77us

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

2e+05 4e+05 6e+05 8e+05 1e+06

400 600 800 1000 1200

200

Performance analysis in contended system

Image credit: nersc.gov

15-
o =
e o
S $10-
5 2 ®
PR F | O 5-
TR FER Y
: B i
T T - ‘A - ! T 0 = ! : ! :
2e+05 4e+05 6e+05 8e+05 1e+06 (L (b u b @
. , Piz Dora ,
Min: 1.57 Median Arithmetic Mean
6- Max:7.2 = gy
99% Cl (Mean)
-2
4- \ | |
| | L
5. 99% Cl\(Median) ,
15 1.6 1.7 1.8 1.9 2.0

S. Di Girolamo, TH: http://spcl.inf.ethz.ch/Research/Performance/LibLSB/

http://spcl.inf.ethz.ch/Research/Performance/LibLSB/

Scientific benchmarking of parallel computing systems

Rule 12
experim
the

ACM/IEEE Supercomputing 2015 (SC15) + talk online on youtube!

Scientific Benchmarking of Parallel Computing Systems

Twelve ways to tell the masses when reporting performance results

Torsten Hoefler
Dept. of Computer Science
ETH Zurich
Zurich, Switzerland

htor@inf.ethz.ch

ABSTRACT

Measuring and reporting performance of parallel computers con-
stitutes the basis for scientific advancement of high-performance
computing (HPC). Most scientific reports show performance im-
provements of new techniques and are thus obliged to ensure repro-
ducibility or at least interpretability. Our investigation of a strati-
fied sample of 120 papers across three top conferences in the field
shows that the state of the practice is lacking. For example, itis of-
ten unclear if reported improvements are deterministic or observed
by chance. In addition to distilling best practices from existing
work, we propose statistically sound analysis and reporting tech-
niques and simple guidelines for experimental design in parallel
computing and codify them in a portable benchmarking library. We
aim to improve the standards of reporting research results and initi-
ate a discussion in the HPC field. A wide adoption of our minimal
set of rules will lead to better interpretability of performance resulis
and improve the scientific culture in HPC.

Categories and Subject Descriptors

D.2.8 [Software Engineering): Metrics—complexity measures, per-
formance measures

Keywords

Benchmarking, parallel computing, statistics, data analysis

1. INTRODUCTION

Fal) ieclaliiil : oy 1 "

Roberto Belli
Dept. of Computer Science
ETH Zurich
Zurich, Switzerland

bellir@inf.ethz.ch

Reproducing experiments is one of the main principles of the sci-
entific method. It is well known that the performance of a computer
program depends on the application, the input, the compiler, the
runtime environment, the machine, and the measurement method-
ology [20,43]. If a single one of these aspects of experimental de-
sign is not appropriately motivated and described, presented results
can hardly be reproduced and may even be misleading or incorrect.

The complexity and uniqueness of many supercomputers makes
reproducibility a hard task. For example, it 1s practically impossi-
ble to recreate most hero-runs that utilize the world’s largest ma-
chines because these machines are often unique and their software
configurations changes regularly. We introduce the notion of in-
terpretability, which is weaker than reproducibility. We call an ex-
periment interpretable if it provides enough information to allow
scientists to understand the experiment, draw ewn conclusions, as-
sess their certainty, and possibly generalize results. In other words,
interpretable experiments support sound conclusions and convey
precise information among scientists. Obviously, every scientific
paper should be interpretable: unfortunately, many are not.

For example, reporting that an High-Performance Linpack
(HPL) run on 64 nodes (N=314k) of the Piz Daint system during
normal operation (cf. Section 4.1.2) achieved 77.38 Tflop/s is hard
to interpret. If we add that the theoretical peak is 94.5 Tflop/s, it
becomes clearer, the benchmark achieves 81.8% of peak perfor-
mance. But is this true for every run or a typical run? Figure |

'M_m[

Median. _rithmetic Mean 95% Quantile
: - .

he
Bif

||
zation

HPC Performance Tools

roblem domain)~

. ser-level abstractions
Instrumentlng

— Insert hooks into program to ‘

record and time events

L, source code -

[]

[preprocessort
i

« Sampling

source code

— Regularly interrupt the
program and record where it is

— Build up a statistical profile

— Use Hardware Event Counters

|
l
l
I
l
(PMUs) \

—

compilerf------------ tinstrumentation

Y

----------- rinstrumentation

---------- -instrumentation

object code

libraries { -tinstrumentation

executable 1----+instrumentation

————— tinstrumentation
runtime imageq---tinstrumentation
______ | S
1 i . z
performancet——_ VM r----- sinstrumentation
data run

51

Tools are Hierarchical

—
Intel Vtune
Perf
Tau
IPM
valgrind L Scalasca
HPC toolkit
Intel ITAC Intel Application
Vampir Performance Snapshot
mpiP
GPTL
Extrae

printf is the most used and easy-use tool

il Intel® VTune™ Amplifier XE
@S2 Performance Profiler

Where is my application...

4 . . Y4 . ; N\ (e A
Spending Time? Wasting Time? Waiting Too Long?
Function , . Wait Timew
. CtaIIStack |'| CPU Timew Line MEJ:E‘&;E Wait
algorithm_2 3.560: 475 floav rx, ry, rz - I:|I-:|Ie lF’cur UGI{ lldeal Count
% do_form «| 3560 (EENENENNNNN 176.504 < (ERERN 13,277
Halgorithm 1 1.412: D 477 float parsm? = (A3 84681 D 5,499
+BaseThreadlnitThi| 0.000s| 478 bool neg = (rz < C 84.612s D 5,489
* Focus tuning on * See cache misses on * See |ocks by wait time
functions taking time your source « Red/Green for CPU
* See c.aII stacks *See functlons_ sorted by (| tilization during wait
* See time on source # of cache misses
\. J \ J J
« Windows & Linux = We improved the performance of the
latest run 3 fold. We wouldn't have
. | ow averhead v FITE S L s

https://software.intel.com/en-us/viune
https://software.intel.com/en- us/vtune/features/smgle -threaded

TOL D D et] e e W e 1% o e | e Ut el Dt e e e e J.IICI

Find Hotspots

* |[dentifying code that uses a lot of processor time Is often
the first step in single-threaded optimization. Hotspot
analysis gives you a list of functions sorted by the
amount of time they consume. Optimizing the longest
running functions provide you with the biggest
performance gain.

Erouping: [Funcﬁnnfﬂall Stack T] E]
CPU Timew w -
: |
Function / Call Stack Effective Time by Utilization Spin Overhead
Dide @Poor 0Ok @ideal Over ''ME TIME
[FireObject:checkCollision 'Sy 0 B 0s
= FireObject:ProcessFireCollisionsRange 34445 | 0s 0s
~. FireDbject:FireCollisionCallback< Parallel| 3.025: (. [0s 0s
. FireObject:EmitterCollisionCheck< FireCt 0.419: I8 Os Os
[+ stdu:basic_ifstrearm«< char,struct std:ichar_traits«< 3.3595:_ 0= Os

[+ ZBaseDevice:Present 2.3355-:-

0.671s s

View Profiling Results on Your Source Code

* Once you find the time-consuming functions, the next
step is to figure out what part of each function needs
Improvement. Double-clicking the hotspot list takes you
directly to the source, showing the hottest spot in the
function.

* Intel® VTune™ Amplifier supports most native compilers
that follow industry standards, such as C, C++, and
Fortran.

[Source][Assembly @ Assembly grouping: [.ﬁ.ddress v]
CPU Time: Total

Source
Line Source Effective Tirme by Utilization Spin Overhead

@ Idle @ Poor [Ok @ Ideal @ Over ''Mme Time

145 | for({ u32 j = rangeBegin: j < rang¢ D.S‘?r’.:.[l 0.0% 0.0%
1457 | 0.0% 0.0% 0.0%
1,458 FireCbject *pfoc = m pFireObijs 0.4% l] 0.0% 0.0%
: if{ checkCollision(ttp, ttpp, 54%] 0.0% 0.0%

0.0% 0.0% 0.0%

1,461 ff if it passes this test 0.0% 0.0% 0.0%

Analyze Faster with Highlighted Tuning Opportunities

« Event-based sampling uses the hardware performance
monitoring unit (PMU) built into Intel® processors. PMU
events can find specific tuning opportunities fast—Iike
backend stalls or cache misses—nhighlighting them to
facilitate easier analysis and optimization.

Grouping: |Function Jf Call Stadk v| EI EI @
w Unfilled Pipeline Slots (Stalls) =
.
.,) Instructions CPI
Function / Call Stack Clockticks+ Retired Rate Back-end Front-end

Bound Bound

+ FireObject:checkCollision 16,639,342,359 9528342771 1746 D |
=|FireObject::ProcessFireCollisionsRange | 7,789,603,182 6,154,123,581 1.266 (N N |

= T FireObject::FireCollisionCallback 5,696,103, 36] A significant proportion of pipeline slots are remaining empty.
+ . ParallelForBody:operator()< [TBB| 5,692,521 630 containing useful work to be retired per cyde than the machin
51~ [TBE parallel_for on class ParallelF 3.581 731 operations can cause this, as can too many operations being

T T = support).
Selected 1 rowis): | 16,639,342,359
= [e

Threshold: (({ 1-{ (IDQ_UOPS_NOT_DELIVERED.CORE +L
F

Linux Perf

Brendan D. Gregg

FROABSIH:

Linux Performance Observability Tools

strace ss Operatmg System _ Hardware S
1sof \ltrace netstat sysdlg Various:
pcstat /1] of sar /proc
& pidstat \ \Appllca'aons //// / / pe dstat dmesg
17 / turbostat
perf \ System leran# / / / mpstat rdmsr
ftrace Systen\ Call Interface [/ | / CcPU }
1stt::> E’ VES Sockets ¥ l Scheduler/ Interconnect ==t
g - 4 o 1
bpftrace é \Volumo Manager P Virtual 4 Pidstat ory | tiptop
3 | Block Device Interface Ethernet Memory w_ Bus perf
. - ~~_ vmstat
L 4 / Device Drivers slabtop [p
iostat perf tiptop — | /OBus \ \ free f
iotop Expander Interconnect | /O Bridge I iptraf tcpdump numastat
blktrace l \]
/O Controller | Network Controller nicstat
I Interface Transports I I netstat
| pisk || Disk | [swap | Port | [Port 1P
swapon ” ethtool” snmpget l lldptool

GPTL with PAPI
« F P {&E A GPTL#:

&

- GPTLfH AP

« —XGPTLstart5¢(
» Usage of GPTL
« FafffRAIEE

REEIAHGPT

* YmIFRS R R

GCCiEIn -fin
— B
S
-g5-rdynamic
~ SiFGPT
- BNGPT
— static inli

®

@

- GPTLE S EAAP,

events (PA and)
enabled (i L 1 red for ts):
1.65e-06
.4e-07
’
for
for t 0.
3
for X
for 'Multiple parent info'
for 0:
1 2.000 2.000 2.000 2.81e-01
1 2.000 2.000 2.000 2.61e-01
it 1.000 1.000 1.000 3.01e-01
2 2.000 1.000 1.000 1.09e-01
1 0.000 0.000 0.000 7.77e-01
6
0
info (if) for 0:
and for
Al
di

18060
12547
4958
2812
488

0.01
0.01
0.00
0.00
244,00

mpiP

* mpiP Is a lightweight profiling library for MPI applications
* Low ovehead

« Only collects statistical information about MPI functions
« All the information captured by mpiP is task-local. It only
uses communication during report generation, typically at
the end of the experiment, to merge results from all of the
tasks into one output file
« Scalability
« Avariety of C/C++/Fortran applications from 2 to 262144
processes
* Easy to use
* Introduce mpiP and related libraries during Link stage
« Work well with dispatcher

59

Intel Trace Analyzer and Collector

View Charts MNavigate Advanced Layout

= Al _Processes P MPI expanded in (Major Function Groups)

P Hl
| A ||ll..;||ulu|Iu-.-.Inlu.u...-..h]lllllu.|J|I|J
P v MPI_Se M

] E “I'IIIIIIIIIIIIII 0 N R0 0000 0 A IIIIIlllu'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII|

- — _‘I'IIIIIIIIIIII'IIIIIIIIIIIIIHIIIIlIIlIIlIIIIIIIIIIIIIIIIIIIII [AR A IIII1IIIIIIIIIIIIIIIIIII1II|'III'IIIIIIIIlIIIlIIIIIIIIIIIIIIIII|

- —1IIIIIIIIII|IIIIIIIIII BRI 00)PSO 0 0 0 4 A I O IIIIIIIIIIIIIIIIII

" i {_ﬂl IIuIluIlIIIIIIl'IIlII B3 A D001 0 AT 0 1 R IIIIIIIIIIIIIIIIIIIII
2 V. WiPl_Se
-Jlllull.'lllllllllllll IO A HC O A D4 000 0 R0 0 T (O

6 -~ ..f_.g-llllllh'llllllllﬂ IO OO DO T - OO - A I
: VE - hiPl_Se
_l'llllllu'llll B-HIRYEEREE RN P r B0 OO O T - T O A S P Y -

2 MIIIII.'IIIIII LU L (S0 bl L0 ol il PO TR EER LT ol ot L TR Ih'lIIlIII. L I]
. MF. " HIPI_Sen
_I'IIIIII.'II.'IIIIIII IIII.'II CLIE LIt LRt R (T (L IIIIfl.IIlIII. LIt L]

10 _.-IIIIIIII'lnIIII IIIIIIIIIIIII.'III B RERROIRER R Enn R e l.IIlII Kmin IIIIIII.'IIIIIIIII
F Mo IPI SEN
_I F'P II.'II IR L IRRE A LIE g0 gt L LT RN LN Rl ol b0 gL LR II|I.'IIIIIIII IIIIII.IIIII | IIIIIIIIIIII.'III.'IIIIIII

..-l.l'.""-llll | ieee: II'II.'IIIIIIIIIIII.'III LT (8 (00T AR l.'IIIIIIIIIIIIIIIII.'IIIIIIIIIII.I AR LG el

5 WPl Senc

F

0.037258 s, Function MPI_5endrecy

https://software.intel.com/en-us/trace-analyzer
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-analysis-
tools-on-clusters-with-slurm-srun

https://software.intel.com/en-us/trace-analyzer
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-analysis-tools-on-clusters-with-slurm-srun

Intel Trace Analyzer and Collector

Summary: monte_carlo_openmp.single.stf

Total time: 1.41 sec. Resources: 4 processes, 1 node.

Continue >

Ratio Top MPI functions

This section represents a ratic of all MPI calls to the rest of your code in
the application.

MPI_Allreduce
MPI_Finalize
MPI_Comm_size

MPI_Comm_rank

[serial Code-00257sec 18%
B opentiP- 116 sec 825%
B MPicalls- 0219 sec 15.6 %

Where to start with analysis

For deep analysis of the MPI-bound application click "Continue >" to open the tracefile
View and leverage the Intel® Trace Analyzer functionality:

- Performance Assistant - to identify possible performance problems
- Imbalance Diagram - for detailed imbalance overview
- Togging,/Filtering - for tharough customizable analysis

This section lists the most active MPI functions from all MPI calls in the application.

A 0.218sec(15.5 %)

| 0.00138 sec (0.098 %)
3e-06 sec (0.000213 %)

Osec(0%)

To optimize node-level performance use:

Intel® VTune™ Amplifier XE for:

- algorithmic level tuning with hotspots and threading efficiency analysis

- microarchitecture level tuning with general exploration and bandwidth analysis

Intel® Advisor XE for:
-vectorization optimization and thread prototyping.

Use the following command lines to run these tools for the maost CPU-bound rank.
Intel® WTune™ Amplifier XE:

mpiexec.hydra -gtool "amplie-cl -collect hotspots -r result:3" -n 4
./monte_carlo openmp
Intel® Advisor XE:

mpiexec.hydra —-gtool "advixe-cl -collect survey:3" -n 4
./monte_carlo openmp

Show Summary Page when apening 3 fracefile

61

TAU

TAU Performance System Architecture

Instrumentation

Source
Code

Pre-

Instrumented
Source

processor Code Compiler

Object
Code

libraries

Linker

Executable Binary Rewrite

Code

Dynamic

Virtual
Machine

PROFILE

<< 2

Run-Time Library Modules

P @ TRACE

-
- 1 1 T
% @ Profile Function Statistics @

& . Groups Database ‘)

= Profiling Event Traces
= Function Hardware User-Level

Callstack Counters Timers

'; Racy ASCII Trace TCTEC 2
§ i = REpDL Logs convert e
¢

Intel Application Performance Snapshot

AR SR

« SRR 1 T b4
L Your application is MPI bound
= o e Thusi ey’ e £ vy aggh Bty winl vl ngichi Wha Blbrary mBalancs], fde-Optanal (o uradilon
e P) Proviibds CRd Apmadd Loy schisma or MP1 Boeary settings. Use WP peofiling tools Bee [ntel ® Trace dnabaer and Collecion fo-eqplone

i e I petfior o Esttieneri.
Bermt bmied crambeng Prrver

120.61s 50.97 e e

Elspiad Tame 5P GRLOPS Wemany Stals I3ASEHN 200
P Lhilipagin LN G

W0 Bound 00 <10

2.33R —

L
WU 234, MIN 237)

BAPI Time OpenbP Imbalance Memory Stalls FPU Utilization
dii SRR of H (W]
AN Thy 2155%A

Lache Znalls S FLOPS per Cyzle
PR Il 14 f 1E4
Meamary Footpnnt
#mary Fo L DRAM Saally WeeTed Capaity L
Rignichint e AN ' e
451506 M LA S0ET Averags DRAM Bandwadth FiP Intnucmaon M

e
TOR 5 BP Functiors

4w 1 1
KLk
irtual 5T LA
24 L M 20 M i " ¢ T AR

FP Anit M R edfi, Rass
IR

Iritie] - Pty Fabric Usage

FIP AnthlAsm \Wr Ingte. Ran

Interosnngcl Badahindth Y

rvlssrocenineecl. Pascinet
Rane k

sintel)
Jinkel.

https://software.intel.com/en-us/node/836966 63

https://software.intel.com/en-us/node/836966

m

1. Motivation
2. Performance Analysis of Parallel Programs

3. Performance Modeling of Parallel Programs

¢ Simple definition

A

» Performance modelling is the process of
simulating various user and system loads
against varying system configurations by using
a mathematical approximation of how the
model works. This is typically much cheaper
than performance testing and can produce very
accurate results.

http://www.testingperformance.org/definitions/what-is-performance-
modelling

-
* Evaluate effectiveness of a computing platform to solve a
particular problem

— Predict resources and costs to solve a particular problem instance
* Runtime prediction for different input-size
 Predict time when scaling a problem

— Help identify bottlenecks for hardware
« Makes programmers think about the structured performance
profile of an application or platform

— Find performance bugs and assess upper and lower bounds of code
optimizations
« Scalability bug detection

« Build a surrogate model in automated performance tuning

— Performance modeling as part of a software engineering discipline in
HPC

Performance Modeling is Performance analysis v2.0

¢ Limitations

Burnham, Anderson: “A model is a simplification or
approximation of reality and hence will not reflect all
of reality. ... Box noted that “all models are wrong, but
some are useful.” While a model can never be “truth,” a
model might be ranked from very useful, to useful,
to somewhat useful to, finally, essentially useless.”

¢ Classification of performang

« Capability Model
— Roofline model (Prof. Zhang chensong)
— Parallel performance model (communication side)
— Architecture-oriented model

* Application performance model
— Analytical Model

— Empirical model
— Automated performance modelling

¢ Parallel Performance Modelk
' 4

Latency/Bandwidth model for
Parallelism

« Transfer time T(s)=a+bs
— a = startup time (latency)
— b = cost per byte
(bandwidth=1/b)
» AS s increases, bandwidth
approaches 1/b

« Often assuming no pipeline
(new messages can only be
Issued from a process after all
arrived)

¢ Parallel Performance Model

LogP Model to model pipeline, computation/communication overlap and endpoint

congestion/overhead
« Four parameters of model

— L: an upper bound on the latency or delay

— 0: the overhead defined as the length of time that a processor is engaged in the

transmission or reception of each message

— ¢: the gap defined as the minimum time interval between consecutive message

transmissions or consecutive message receptions at a processor (1/b in L/B model)

— P: the number of
processors/memory modules
« Transmitting n messages
T(n)=L+(n-1)*max(g,0)+20
« Concerns

— Bulk message? -> LogGP
— Complex to use

level

A

CPU

Network

Sender

Receiver

|] [] 1 1

1 | 1 1

. » 4 :

e i t——>
s ol r

¢ Architecture-oriented model

23 // CPE
SW26010 Many-core Processor | 01 /
PC
- 4 core groups (CG) in socket — S — ||y
and each CG consists of Threads Eggg%%gg Decoder
a MPE and 64 CPEs % g%%g%%gg{(Insctru(]:]tion
- Each CPE has 64KB % mmmmmmmmi
LDM (local data mem.) = 00000000 i Scratchpad
A\ Memor
- Shared memory for socket %EEEEE%EL i
- 128b Register communication Main MC MPE \ = =
among same column or same Memory L = =
Core Group H A a a
row I \ 2 i

Interconnect Network

¢ Architecture-oriented model

1. Memory access transaction analysis:

Wg EL{E MR = 128 Bytes, MRT = 1
| 0] | MR=64Bytes, MRT=1
0 128 256

V0000000000000 | MR =160 Bytes, MRT =2

0 128 256

|:| Memory Request Transaction m Memory Request

- Two Kinds Memory Requests: DMA, Gload
- DMA Requests’ MR from 1Byte to LDM
- Gload Requests’ MR from 1Byte to 32Bytes
- Gload Requests and small granularity DMA access waste more Bandwidth

¢ Architecture-oriented model

CPE Mesh
1 13 81 < - 8§ ————- >|
R RIRJAImmRIAng
JO000000
N R AL
RTINS . S
e | [e
32 255 267 00000000
AJLILDILILIL T
64 27.2 27.1 EEEEEEEEM

» 16 CPEs are connected to a memory bus

» Four buses are merged into one bus and to the MC

» Designed BW is 32GB/s, designed sub bus BW is 25.6GB/s

« Default layout use one sub bus until all the CPEs on this bus is active

¢ Architecture-oriented model

2. Overlap analysis

Ttotal N Ttota_l
T com Memory Twmp
L > / Idle cycle -~
Tm-'erlap Jo =] A Tm-'e:rlap
- -
""")
@ 0 &) {3
") T" mem Tnem e T" spern ’
(a) (b)

- Copy-in Phase (:) Computation Phase ': _____ :' Copy-out Phase

MRT Latency refers to memory access time for CPE
MRP is usually 4.

¢ Architecture-oriented modes >

: Which Bigger?
HRSEEEIoS Data Size (Active CPE

Average Active CPE
instraction Transaction MRP
Size Computation Time

— 1) * DMA

parallelism

Transaction Casel:MAT * (1 — (;ylcze)

O Case2: CT * (1 — -)

Bandwidth

Computatlon + Memory L Overl_applng I
Time Access Time Time —

Cycle

¢ Architecture-oriented mode

Intel Xeon Phi KNL
NVIDIA GPGPU
Intel x86-64

2015 IEEE International Symposium on Workload Characterization

Quantifying the Performance Impact of Memory
Latency and Bandwidth for Big Data Workloads

Russell Clapp Martin Dimitrov Karthik Kumar Vish Viswanathan Thomas Willhalm
Intel Corporation Intel Corporation Intel Corporation Intel Corporation Intel Gmbh
Hillsboro, Oregon Chandler, Arizona Chandler, Arizona Hillsboro, Oregon Walldorf, Germany

{Russell.M.Clapp, Martin.P.Dimitrov, Karthik. Kumar, Vish.Viswanathan, Thomas.Willhalm}@intel.com

Abstract— In recent years, DRAM technology improvements can be determined using performance counter data from real
have scaled at a much slower pace than processors. While server systems. Further, we use these components and the measured
processor core counts grow from 33% to 50% on a yearly cadence, data to classify about a dozen workloads based on their inherent
DDR 3/4 memory channel bandwidth has grown at a slower rate, bandwidth demand and latency sensitivity, including big data

and memory latency has remained relatively flat for some time. workloads that utilize both structured and unstructured data.
Combined with new computing paradigms such as big data

! it r C ! 4 This classification enables us to create synthetic compor T IFTERT
analytics, which involves analyzing massive volumes of data in real values for the performance equations for each workload clu S

timo thora ic a ftrand af inecrscacing nracenras an tha moamarw

¢ Classification of performang

» Capability Model
— Roofline model (Prof. Zhang chensong)
— Parallel performance model (communication side)
— Architecture-oriented model

* Application performance model
— Analytical Model
— Empirical model
— Automated performance modelling

§> % & &! TPOP(P’ N’ G) = ﬂ?(#r()('fllri(‘(P’ N’ G)

+T, (P,N, G)

barotropic

52 5 4 ok 4k 3 \ ‘ Tare @ NG =Ty (PN, G
ﬂ ik W N XA S

+ Nyound tropic” Tround_ex Py N G)

A e o L Y N T)

global_sums

_'7 25126 33
HHH B mowi e Tyui P N.G)=T,, 8-N,-G,P-P,C)
» HPCA’16 LRU cache B . o : v

» COMMU’14 Cache-aware Roofline model S H B B T8N, (G+ 1P, P, C)
» CCGrid’12 su3_rmd @ Npoand et = ((151€ps = 1) x 2% N, and Nyt o

) y y_scans 1
> SC,12 ASpen = (n.sfep.sx(4+A_. X[l+ncheck)))

Q JHPCA’10 Sweep3D / ks 8,0 . (226 (K226

Py P,

& ol 5 47 %42 4POP
% AAERAAEORI L4

(g AT T HAGBH £ 4%

Fr¥: AitEn. Tods. MABYAK

¢ Application Performance

Extra-P

- Performance measurements (profiles)
main() {

e . foo()
ﬂ & Y2 PR A& 4T At 15]\ bar()
° #ﬂa%? B , compute() Instrumentation
« All functions
» SC’17 Transfer learning
» IPDPS’16 NPB Input
» SC'15 Extra-P Output
» PACT14 NPB HPCCG w
’ . T00
i ?58}885W§§p3[), HOMME/ Ranking: J' 2. compute
N + Target scale p, 3. main o
¢, Xog(p)+c, xp

¢, dog(p)+c, xpog(p)

¢, dog(p)+c, p’

T & 3 44

¢ +e, xp ,
¢, dog(p)+¢, p” Hog(p)

o e, xp’
¢ Xp +c, xpxog(p)

f(p)=2 ¢, p" Hogk(p)

N . 6 +¢: Xog(p) CXPTe sz
% \2/ ﬁ ﬁé im ’;] ﬂ — GtGp Hog(p) ¢, xp+c, xp” xlog(p) \
<[74 % 4 9] AL e 10UP) ¢ gy dog(p) e, 7

¢, xpxlog(p) +¢, p’ xlog(p)
¢ xp” +¢, p* Xog(p) |
\

——

TAHA. @A

8+ & B A7

SC'17 4% % 9 ch

EAEAE L£4RAE

CLUSTER'16 %
A LR

5 HEF&REL

N N main_loop_1 [a,] ;
" s SC15 4 A B L L, h
B i REXRLRTOEDE
8 my_func_‘lnnp_] [by]
Ps=(py ps, Pal

— PACT'14 4 8 45§ B4 KR |

ICS'08 & V2 s A T & 4 & A &5 KA A B @i+

A A S, A ivsist A2 AEEL, WA

¢ HFESMEIYEEEIR

A

/Atop-down F|bottom-up &) 1) H 46 #£ 42

a 4% : — R BT, THURAHREEAGHKIE. EAHITEFE R L2,
mxm%mﬁﬁa$ 1&% # A

T Emis i R \
IBM Power 3 4 > Intel Vtune
LERE T8N » HPCToolkit
At it B > TAU
A RPA4 5] > LIKWID
12 B18/4N 4% 44 it > PAPI
B > Scalasca
b 22 Hh € 2k > Perf
B EMETT > Score-P
ANEE 1 B _ -

rer)\
> & iratia £ at4d Al
> RAEEAE RITHRARF
> Bk E ML BBYEA 6T
#. AéFHas
> RKKE: BARKEEANY

Q&}iﬁm%: %aa}immy

¢ HFESMEIYEEEIR

&

(ks anary |

Tapp = Tcomp + BF comm * Tcomm + Tothers

A 4

it % ik

v v 4 Y v
o a

[i‘f—'ﬁ-#i:epo i A% el] . 5ot & A P

Rt [AR v"r#ﬂfiﬂ] [% 4 4t 1] [i'fﬁ-ﬂsh‘il] % 4 4t 1

K
Tcomp Z (Tcomp Kkt Tnonoverlap k)

K
#lnstk * CPI k
comp Z BFmemk A Tmemk

W XEEES

https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php ?media=quantifying the p
erformance _impact_of memory latency and bandwidth for big data workloads.pdf

https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=quantifying_the_performance_impact_of_memory_latency_and_bandwidth_for_big_data_workloads.pdf

¢ TESFIEEEEER /

AT Iy @4 B A
Intel(R) Xeon(R) CPU E5-2680 v3 SW26010

penv_slave_ipc
MEM_LOAD_UOPS_RETIRED.L1_HIT_PS CPE penv_slave2_gld_count
MEM_LOAD_UOPS_RETIRED.L2_HIT_PS ST e ol fhme
#uops MEM_LOAD_UOPS_RETIRED.L3_HIT_PS #stall penv slave cycle access ratio count
MEM_UOPS_RETIRED.ALL_LOADS_PS #inst penv retire inst count
MEM_UOPS_RETIRED.ALL_STORES_PS MPE penv_memory_access_count
penv_dcache_miss ratio_count
#stall RESOURCE_STALLS.LB uops penv_scache_miss_count
s RESOURCE_STALLS.ST penv_scache_access_count
Type Intel Skylakex(x86) Huawei Kunpeng920(ARMvS.2)

ZfifE2E CPU_CLK UNHALTED.THREAD P CPU_CYCLES

FHUTH542 INST RETIRED.ANY P INST RETIRED
RESOURCE_STALLS.ANY MEM_STALL ANYLOAD
RESOURCE_STALLSSB MEM_STALL ANYSTORE

Hikek#¥ RESOURCE STALLS.SB MEM_STALL ANYSTORE

CYCLE ACTIVITY.STALLS L1D MISS MEM STALL LI1MISS
CYCLE ACTIVITY.STALLS 12 MISS MEM STALL L2MISS

1 iR R

¢ TESFIEEEEER

CET Y

~

I 1) 5 LB (%

16%

14%

12%

10%

8%

6%

4%

2%

FHAA RS TIUF LA R

T,pp>500ms A HBBEHLREAARGGEAL
\ \ | | |
NRMSE = 4 + 10-* [E3E [T
|||‘H|“HH|H||||||||“"l|||||||||||I|I|IIIII|||||||||hnunuu......J...................... i L 1
10 20 30 40 50 60 70 80 90 100
it SEH

x86 % &, CICE# #1

\/ZzK:1 tix(t;—1p)?

al ‘ ‘ : = = -3
ya— 4L3) F &% £: NRMSE max Gor)—min Gory < =10
1<i<K 1<i<K

¢ TESFIEEEEER /

[ﬁfﬂﬁﬂ V@"%‘hf ﬁ&’fﬁ’ﬁ] i"‘{—]‘ m%égv_l_ﬂé_#;‘&\?

ﬁ\‘] N 'EH- "EJ & kbkffl \Zlﬁ LOCs size
CICE 75.000 116 100
£ 9. gb & 384 - 320
£2: A i b A E HOMME 113.095 32.32.6 128
, —_— 256 - 256 - 6 - 128
#£3: £IUA2 EP 359 228
230

MG 256 - 256 - 256 - 4
512 -512 - 512 - 20
256 - 256 - 128 - 6
512 - 256 - 256 - 20
64 - 64 - 64 - 400
102 -102 - 102 - 400
64 - 64 - 64 - 250
102 -102 - 102 - 250

(wasma—snn | |7

T, "eF@a#thH SP
Etat B (HAE) LU
#Z ok, T

BT 64 - 64 - 64 - 200
\ AR 22 42 FF 44 o) 102 - 102 - 102 - 200
CG 14,000 - 15

75,000 - 75

¢ Summary

&

« Performance analysis is critical to efficient and effective

computing (know knows and unknowns, unknown unknowns)
— Complexities of computing systems and parallel programs
— Performance interference makes things harder
— Fundamental of performance engineering

— Focus on experiment design, performance data collection, and analysis
methods

« Performance modeling is performance analysis v2.0

— Increasingly important

— Necessary to algorithm/program design, performance portability and
hardware design

— Hybrid analytical and empirical models for parallel applications based on
capability models

Recommended paper

Demmel, 2008

Michaud, 2013
Crolotte, 2009 _7\
John, 2018 X

b I Crape, 2020
Iq0al, 2006 pyg, 201

John, 2004 N\ — g

Citron, 2006

Chen, 2015 Zhang, 2017
\ Li/2015 Chen,2012 6
Mashey, 2004 . - =~
'“’"‘if zief Hing 2018

sblooueira, 2015

Hoefler:201 5 Hunold, 2014
Oliveira, 2013 .
Kalibera,2Q}8.1. o011 A ".‘ Funold,
~Witek/2012 \
Kalibera, 2012 " T Nogu IEI a, 2014 Hungld, 2015

Oliveira, 2014

Oliveira, 2015
. \ Oling‘ 2013

Petkovich, 2016

Ma’ichZCIB

Sousa, 2019

Scientific benchmarking of parallel computing
systems: twelve ways to tell the masses when
reporting performance results

T. Hoefler, Roberto Belli

2015, SC15: International Conference for High Performance von
Computing, Networking, Storage and Analysis

184 Citations [] save

T
Openin: g* ¥ @ ‘ff

Measuring and reporting performance of parallel computers
constitutes the basis for scientific advancement of high-
performance computing (HPC). Most scientific reports show
performance improvements of new techniques and are thus
obliged to ensure reproducibility or at least interpretability.
QOur investigation of a stratified sample of 120 papers across
Hoefler, 2008 three top conferences in the field shows that the state of the
Hoefler, 2010 practice is lacking. For example, it is often unclear if reported
improvements are deterministic or observed by chance. In
addition to distilling best practices from existing work, we
propose statistically sound analysis and reporting techniques

BhatelEypz013

Traff, 2012 and simple guidelines for experimental design in parallel

computing and codify them in a portable benchmarking

Hunold, 2016 library. We aim to improve the standards of reporting research
results and initiate a discussion in the HPC field. A wide
adoption of our minimal set of rules will lead to better
interpretability of performance results and improve the

Hunold, 2018 scientific culture in HPC.

Video: Scientific Benchmarking of Parallel
Computing Systems - insideHPC

https://insidehpc.com/2018/12/video-scientific-benchmarking-parallel-computing-systems/#:~:text=Measuring%20and%20reporting%20performance%20of%20parallel%20computers%20constitutes,obliged%20to%20ensure%20reproducibility%20or%20at%20least%20interpretability.

Thanks!

G2

B EXFTRINER

xuewei@tsinghua.edu.cn

