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Sources of Error in Simulation
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Discretization Error Algebraic Error Floating-Point Error

Discretization 
Methods Algebraic Solvers

Finite-Precision 
Arithmetic

More refined mesh 

Better discretizations

Approximation:

Better solvers

Better computers
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Introduction
Robustness is the Achilles’ heel of iterative solvers



Robustness Is Crucial
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l In some (many) real applications, we need to solve thousands or more of linear systems from a PDE 

with a set of physical/discretization parameters

l Physical parameters could be nonlinear, heterogenous, anisotropic, degenerating

l Classical iterative methods (Weighted Jacobi, SOR, ...) introduce parameters 

Source: W. Leng, C.-S. Zhang, P. Sun, et al., “Numerical simulation of an immersed rotating structure in 
fluid for hemodynamic applications”, Journal of Computational Science, 30, 79–89 (01/2019)

Shape Optimization for Artificial Heart Pumps



Robustness of Solvers

C.-S. Zhang, AMSS 6

l Robustness of a system can be viewed as the property of being strong and healthy in constitution

l For solvers of linear algebraic systems, robustness has two meanings: 

n Breakdown-free and reliable for providing a solution; e.g.: GMRES, Robust ILU

n Performance is resistant to perturbations of parameters

Q: What does “robustness” mean?

Parameters can affect convergence performance in a large extent è Iterative methods are not robust



Algebraic Systems of Discretizations 
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l Different discretization methods lead to systems with different properties

n Preserve positive-definiteness and symmetry at discrete level

n Preserve maximum principle at discrete level

n Sparsity pattern



SUPG and EAFE Methods
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Solve the advection-diffusion problem using finite element:



AMG Performance, mu=1
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AMG Performance, mu=1e-2
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AMG Performance , mu=1e-4
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AMG Performance , mu=1e-6
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Solver Performance for SUPG
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Direct Solver Preconditioning



Solvers Performance for EAFE
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Direct Solver Preconditioning



Robustness of Iterative Methods
Standard techniques for improving robustness of iterative methods



Practical Request on Robustness
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l The easy way is, of course, to use solvers based on the direct methods; see Lectures 2 and 5

l We mainly discuss how to improve iterative methods:

1. Improve theoretical understanding for simple model problems and construct preconditioners 

that are not sensitive to given parameters

2. Combine appropriate iteration, precondition, and decoupling

3. Provide an automatic / adaptive procedure to select solver or its parameters to assist 

simulation software

The unfortunate fact is: There is no well established theory, yet! 



Combination of Iterative Methods 
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l Poly-iterative methods: apply multiple solvers simultaneously

l Composite methods: apply multiple solvers sequentially and 

adjust ordering dynamically

l Review Lecture 4: Newton + Fixed-Point iteration methods

l Adaptive solver selectors: pick a solver based on some criteria
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Extended Combined Preconditioners
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Source: Yue, X., Shu, S., Xu, X., & Zhou, Z. (2015). An Adaptive Combined Preconditioner with Applications in 
Radiation Diffusion Equations. Communications in Computational Physics, 18(5), 1313-1335

l Extended the combined preconditioners to nonsymmetric problems

l Combine drop tolerance technique with ILU(k)

l Applied to multi-group radiation diffusion problems



Matlab® Solver mldivide
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Dense or Sparse

Is it a square matrix?

Is it a triangular matrix?

Is it a permuted triangular matrix?

Is it a Hermitian matrix?

Is it an upper Hessenberg matrix?

Is the diagonal of the matrix positive?
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Intel® oneAPI MKL Advisor
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LAPACK Search Engine

Out of date, fo
r m

any years!



Lighthouse Project
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A Weaker Request on Robustness
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Question: How to find a “good” set of problem (easy-to-compute) features?



Problem Feature Parameters
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l Performance of ML models is largely affected by the choice of 

features

l A comprehensive feature set may include all entries of 𝐴 (however, 

it is too complicated)

l The choice of features is usually problem-dependent

l Obtaining features is usually costly and needed in both offline and 

online steps

l Training takes a lot of time if too many features are selected

l Analytical and/or empirical results should be used to select 

features

Feature learning (selection & extraction)



Free Parameters: Weight for Jacobi
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l Minimize smoothing factor by LFA (local mode analysis) [Brandt 1994] 

l Minimize spectral radius bound of iterative matrix [Yang 2004]

l It is complicated to determine ω for practical applications: Trial and error!

Question: How to 
find a good weight 
in practice?



Adaptive Solvers
Adaptive iterative methods via machine learning



A Short Summary on Classical Methods
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l 迭代法中有很多可调参数，这些

参数对求解效率有很大影响

• 同一个方程，选择不同的参数，会

对求解效率有很大影响

• 不同的方程，往往需要不同的参数，

固定的参数无法达到最优效果

l 在实际应用场景中，如油藏数值

模拟、计算流体、形状优化

• 往往需要求解成千上万次不同的线

性代数方程组

• 这些问题有类似的性质，但不完全

相同，需要使用不同的可调参数

• 需要有一个自适应的策略，自动地

选择合适的可调参数

技术有一定
的通用性，
利于推广应
用，但非常
不成熟



Constructing Adaptive Solvers
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Keys to success:

l Look at 

preconditioners, 

instead of simple 

Krylov subspace 

methods

l Look at the powerful 

preconditioners, like 

ILU, DDM, Multigrid, 

or combination of 

these methods …

Need to find 
influential 
solver 
parameters! 
Need experts.



Free Parameters: Coupling Threshold
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Numerical Results Matches Theory
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Smoother Cycle Type Convergence Rate

Gauss-Seidel
V-cycle 0.876

W-cycle 0.556

Weighted Jacobi (0.5)
V-cycle 0.905

W-cycle 0.639

Y. Notay 2007

N/A

0.859

N/A

Fail

Xu & Zhang 2022

0.955

0.812

0.993

0.979

Convergence Analysis (X. Xu and C.S. Zhang, 2022)



Adaptive Iterative Methods

Chensong Zhang, AMSS 36

Number of Nodes Average Number of Iterations

Graph Subgraph 𝜃 = 0.25 𝜃 = 0.5 Optimal AutoAMG

6.29M 4.91M 51.3 466.6 23.1 27.7

l 迭代法稳健性

l 自适应迭代法
l 分析影响稳健性的主要因素

l 构建更准确的性能预测模型

l 提出自适应和参数调整策略



Designing GNN Networks
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Thomas N Kipf and Max 
Welling. Semi-supervised 
classification with graph 
convolutional networks. 
arXiv:1609.02907, 2016.

Source: Jie Zhou et al. “Graph neural networks: A review of methods and applications”, AI Open, 2020, AI Open, 57-81 



From Matrices to Graphs
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l Using GNN to classify graph structures 

(learn features)

l Numerical test: 320 (8x40) training graphs, 

80 (8x10) testing graphs

l Classification accuracy: about 71.25%

Source: https://www.dgl.ai/blog/2019/01/25/batch.html

Graph Structure Classification

Source: https://people.engr.tamu.edu/davis/matrices.html



Learning Solver Components
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There are many examples on learning solver components by machine learning (deep learning)

“Learned” restriction “Learned” prolongation

“Learned” smoothing

“Learned” coarsening “Learned” cycling

“Learned” subdomain solver

Yuyan Chen, Bin Dong, and Jinchao Xu. “Meta-MgNet: Meta multigrid networks for solving parameterized partial 
differential equations”. In: Journal of Computational Physics 455 (2022) 

“Learned” preconditioner



Learning Proxy Models
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l 裂缝性油气藏储集层

• 裂缝分布随机性强，非均质性差别大

• 孔隙率高低不一

• 非裂缝处渗透率低，但在裂缝处的渗透率极高

l 在裂缝性油气藏模拟中，有如下难点

• 没有准确的裂缝模型：裂缝的渗透率、孔隙度、密度等难确定

• 裂缝处的网格处理复杂，计算量大

l 目标：建立代理模型，对于不同裂缝的位置与渗透率，快速求解油藏压力分布

考虑如下带裂缝的多孔介质流问题

l 裂缝位置随机分布
l 渗透率κ的取值分基质和裂缝两部分，基质相对渗透率

远小于裂缝处。如：
Ø 裂缝处：1000
Ø 基质处：（0，10）的随机数

裂
缝

基
质

输入：渗透率分布图（含裂缝位置）

深度学习代理模型

结果 : 上下两个
例子裂缝位置不
同、渗透率不同

有限体积数值解
(左图 )；深度学
习代理模型解(中
图 )；两者误差
(右图)



Reading and Thinking
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l Are the algebraic solvers robust in 

your application?

l What solvers do you use? Do you 

think they are good enough?

l What strategies for improving 

robustness will fit your application 

the best? Why?

l How do you want to improve 

robustness? https://arxiv.org/pdf/1908.05792.pdf



Contact Me
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l Office hours: Mon 14:00—15:00

l Walk-in or online with appointment

l zhangcs@lsec.cc.ac.cn

l http://lsec.cc.ac.cn/~zhangcs

C.-S. Zhang, AMSS
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