Flﬂlilﬂﬁ'ﬂlﬁjcﬁé Fast Solvers for
ERFRE Large Algebraic Systems

Lecture 7. Fault resilience and reliability

Chensong Zhang, AMSS

http://Isec.cc.ac.cn/~zhangcs

Table of Contents

2,

NCMIS

® Lecture 1: Large-scale numerical simulation

® |ecture 2: Fast solvers for sparse linear systems
® Lecture 3: Methods for non-symmetric problems
® |ecture 4: Methods for nonlinear problems

® |ecture 5: Mixed-precision methods

® Lecture 6: Communication hiding and avoiding
@ Lecture 7: Fault resilience and reliability

® Lecture 8: Robustness and adaptivity

C.-S. Zhang, AMSS

=5

Sources of Error in Simulation NCMIS

Approximation: ’U,(CE) — Uh (SIS‘) + gdis + galg + gfp

More refined mesh

Discretization Error Algebraic Error Floating-Point Error

Better discretizations

=

Better solvers
Discretization e el Finite-Precision
Methods Arithmetic
This
Lecture

Better computers

C.-S. Zhang, AMSS 2

Introduction

Reliability and resilience of algebraic solvers

Wake-Up Calls

Intel® Xeon® Processor E5540 - Intel® Xeon® Processor E3-1275

C:\Users\me>test.exe
4.012345678901111

C:\Users\me>test.exe

4.012345678901111

L GALl/”

Free Software
Free as in Freedom

C:\Users\me>test.exe
4.012345678902222

C:\Users\me>test.exe

4.012345678902222

License

(intel Look Inside

FP Accuracy & Reproducibility

Intel® C++/Fortran Compiler, Intel® Math Kernel Library and
Intel® Threading Building Blocks

Presenter: Georg Zitzlsberger

Date: 17-09-2014

This software is free software distributed under the Lesser General Public License or LGPL,
version 3.0 or any later versions. This software distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with FASP. If

not, see http://www.gnu.org/licenses/.

Can you trust what was produced by your code, or by anyone’s code?

C.-S. Zhang, AMSS

Reproduce Baseline Results

_7&' 7 = 4

NCMIS

%

® Why we need reproducibility?

® How to enhance reproducibility?

¢

¢

¢

For upgrading and portability

In many cases, you have a trust-worthy existing
code. Correctness of new code is determined by
comparing to baseline results.

For debugging and optimization

When debugging or optimizing a code, run-to-run
stability of the code is necessary in order to find
potential problems.

To gain trust from users

End users from other teams or customers will be
puzzled by the inconsistent results produced from
your code.

C.-S. Zhang, AMSS

Who Broke My Code

® When? ® \Who?

From one run to other run
From one compiler to another

v' Compiler
v' Compiler options
From one option to another v’ Libraries linked

From one computer to another v' Multi-threading

Reproducibility Performance

* Produce the same * Produce a result as

result at any time fast as possible

* Need deterministic * Do whatever best for

behaviors speed
* Give up possible e Usually the results
optimizations are close

C.-S. Zhang, AMSS 7

25

Some Possibilities to Consider NCMIS

*)

Floating-Point Calculations Numerical Algorithms Task/Thread Scheduling

® FP numbers (IEEE754) have ® Some algorithms are less ® Asynchronous task/thread
finite precisions stable numerically scheduling may use different

® Rounding happens for each ® Conditional computation with threads in each run
(intermediate) result different input data ® Ordering is not preserved

A simple FP64 example with arithmetic ordering: ® Exact: 253 +1-1=253252+1-1 =252
® FP64:(2°3+1)-1=0.0,2"3+(1-1)=2"3

If you think the difference is small, think again!

® FP64: (252+1)-1=252 252+ (1-1) =252

C.-S. Zhang, AMSS 8

Effects of Floating-Point Arithmetic oMz

® We are doing floating-point calculations =» Nothing is “exact”
fi(z op y) = (z op y)(1+9), [0]<w

® Review Lecture 5 for the FP precisions (e.g. Book by N. Higham 2002)

® Compilers might be doing something for you, under the hood!

Reassociation: (a+b)+c=>»a+(b+c)

Division to multiplication: a/b=»a* (1/b)

Zero folding: a+0=> a,a* 0= 0 (But “a” might be INF or NaN)

Math functions: sin(a), log(a), ... (No international standard on these functions)
Subnormal FP numbers and underflow (flush to zero or not)

Use fused multiply-add (FMA) units or not

Different code paths (SIMD or non-SIMD, AVX2 v.s. SSE)

C.-S. Zhang, AMSS 9

25

FP Model for Intel® Compilers NCMIS

FP model

precise .
source .
except .
strict .

fast[=1] (default) -

Allow value-safe optimizations only
Specify the intermediate precision used for FP expression evaluation
Enable strict floating point exception semantics

Enable access to the FPU environment
Disable floating point contractions such as fused multiply-add instructions
Imply “precise” and “except”

Allow value-unsafe optimizations compiler chooses precision for expression evaluation
Floating-point exception semantics not enforced

Access to the FPU environment not allowed

Floating-point contractions are allowed

Additional approximations allowed

strict | Source: Georg

) Zitzlsberge, Intel,
FP_precision & repr ibili 2014

C.-S. Zhang, AMSS

10

An Example in Reservoir Simulation NECMIS/

FP Model

Precise 3525.136841724400 3445.016272216141 3034.082337708471 2608.065832970213
Strict 3525.136841724400 3445.016272216141 3034.082337708471 2608.065832970213

Fast 3525.136841724400 3445.050433013021 3034.789033440240 2609.016046486710

Pressure (psia) at one grid cell for SPE3 benchmark (compiled using Intel® oneAPI 2022)

® Although FP error is small, but not zero (review Lecture 5)
® |terations might make it worse
® Time marching might make it even worse:

Number of nonlinear iterations, number of linear iterations, time step sizes, ...

C.-S. Zhang, AMSS 1 1

An Example of FP Option <

® A loop can be auto-vectorized (requires partial sum — reordering is done under the hood)
for (inti=0;i<n;i++) sum = sum + x[i]*x[i];
® If compile with —fp-model precise or —fp-model consistent, the loop is not auto-vectorized

remark #1533 1: loop was not vectorized: precise FP model implied by the
command line or a directive prevents vectorization.

® But you can do it by hand: adding OpenMP directives
#pragma omp simd reduction(+:sum)
for (inti=0;i<n;i++) sum = sum + x[i]*x[i];

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED

C.-S. Zhang, AMSS 12

HPC Top500 List, Revisited

NCMIS

Rmax
Rank System Cores (PFlop/s)
1 Frontier - HPE Cray EX235a, AMD Optimized 3rd 8,730,112 1,102.00
Generation EPYC 64C 2GHz, AMD Instinct MI250X,
Slingshot-11, HPE
DOE/SC/0Oak Ridge National Laboratory
United States
2 Supercomputer Fugaku - Supercomputer Fugaku, 7,630,848 442.01
Ab64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu
RIKEN Center for Computational Science
Japan
3 LUMI - HPE Cray EX235a, AMD Optimized 3rd 1,110,144 151.90

Generation EPYC 64C 2GHz, AMD Instinct MI250X,
Slingshot-11, HPE

Supercomputers are getting very complicated!

Rpeak
(PFlop/s)

1,685.65

537.21

214.35

Power
(kW)

21,100

29,899

2,942

SUPERCOMPUTER FUGAKU - SUPERCOMPUTER
FUGAKU, A64FX 48C 2.2GHZ, TOFU INTERCONNECT D

Site:

System URL:

Manufacturer:

Cores:

Memory:

Processor:

RIKEN Center for Computational Science

https://www.r-ccs.riken.jp/en/fugaku/project

Fujitsu

7,630,848

5,087,232 GB

AGLFX 48C 2.2GHz

4 Summit - IBM Power System AC922, IBM POWER9 22C 2,414,592 148.60
3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR
Infiniband, IBM

DOE/SC/Oak Ridge National Laboratory
United States

5 Sierra - IBM Power System AC922, IBM POWERY 22C 1,572,480 94.64
3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR
Infiniband, IBM / NVIDIA / Mellanox
DOE/NNSA/LLNL
United States

6 Sunway TaihuLight - Sunway MPP, Sunway SW26010 10,649,600 93.01
260C 1.45GHz, Sunway, NRCPC
National Supercomputing Center in Wuxi
China

200.79

125.71

125.44

10,096

7,438

15,371

Performance

Linpack Performance (Rmax)

Theoretical Peak (Rpeak)

Nmax

HPCG [TFlop/s]

Power Consumption

Power:

Power Measurement Level:

442,010 TFlop/s

537,212 TFlop/s

21,288,960

16,004.5

29,899.23 kW (Optimized: 26248.36 kW)

C.-S. Zhang, AMSS

13

Bit Error Happens

Research based on large-scale data collected from the Google's servers

(SIGMETRICS/Performance Conference 2009):

® The error rate is several orders of magnitude higher than the previous
small-scale or laboratory studies

® Between 2.5 x 10! error/bit-h and 7 x 101! error/bit-h

= =>=> How many bit errors per GB per hour?

® How much memory does a supercomputer have?
= =>=> Millions of GB!

® \Wow! A lot of errors!

Can we trust what was produced by any computer code?

e

Tl e T S SN S S S S g = 2

o,

C.-S. Zhang, AMSS

Reliability of Computation

Standard techniques used in practice for better reliability

5

Reliability of Numerical Simulation NCMIS

Never believe an experimental result until it has been confirmed by theory

Sir Arthur Stanley Eddington

Model Reliability Algorithm Reliability Software Reliability
Mathematical model and its data Underlying numerical algorithms The ability to perform its required
describe the real physics with should be stable, consistent, and functions under static conditions
sufficient accuracy convergent for a specific period

C.-S. Zhang, AMSS 16

Why Results Might Not Be Reliable SN

N8 g N NI Margaret Hamilton

l i
)

Edward N. Lorenz LA AT =
=5 \‘5;6urce: h(tp\s_:ﬁd{gitalime.nl/ ‘,

In 1961, E. Lorenz was using a Royal McBee LGP-30 computer with 6-digit precision, to simulate

weather. The printout rounded variables off to a 3-digit number, so a value like 0.506127 printed as

0.506. So he tried to input a rounded number, but ...

17

C.-S. Zhang, AMSS

https://en.wikipedia.org/wiki/Royal_McBee

Mean Time To Failure

25

NCMIS

MTTF (MTBF):
measures the average
time a non-repairable
asset operates before it

fails

4-6 hours

Soft error in L1 cache

BlueGene/L has one soft error

in L1 cache every 4 to 6 hours

[Bronevetsky, Supinski 2008]

2 days

Ancient but stable

The mean time to failure of ENIAC

(1946) [Alexander Randall 2006]

4.2 hours

Requires repair actions

Lessons learned from the analysis

of system failures at petascale;

see DSN 2014

26.1

CPU failures per week

ASCI Q at LANL has 26.1 CPU

failures per week [Michalak et al.

2005]

30 mins

Run without problems

Researchers have predicted that

large jobs may fail once every 30

minutes on exascale platforms

C.-S. Zhang, AMSS

18

A Long Term Case Study ‘éiz

Measuring Reliability of HPC:
® MFR = Monthly Failure Rate

-1

® AFR = Annualized Failure Rate=1 — exp(MTBF),

Mean Time Between Failures measured in years

K computer

FIT = Failure-In-Time = the amount of expected Ref: Fumiyoshi Shoji, Shuji Matsui, Mitsuo Okamoto,
Fumichika Sueyasu, Toshiyuki Tsukamoto, Atsuya Uno

and Keiji Yamamoto. “Long term failure analysis of 10
Various studies have been carried out on Blue petascale supercomputer”. ISC'15

failures per one billion hours of operation

Waters, K-computer, Titan, Sunway, ... Parts Number AFR MTBE FIT
Parts

® K-computer: June 2019, Rmax = 10.510 PFLOPS CPU 82 944 0.06% 7.33 days 72.0

® 06/11--08/19 Peak: 864 cabinets, 88128 nodes,
705024 cores, 12.6 MW

Memory 663,552 0.0016% 34.4 days 18.0
Analysis based on data from 2011.4 to 2015.4

C.-S. Zhang, AMSS 19

NCMIS

Modeling Erroneous States

_ Bridges et al. Fault-tolerant
Consistent System State g Abnormal System State linear solvers via selective

reliability. arXiv 1206.1390,
2012

Failure

Interrupt the
program

Do not interrupt
the program
running

Process

Persistent

Transient

Storage
Sticky

Error System State
Could be fixed by actions

C.-S. Zhang, AMSS 20

ECC-Enabled Devices

Various ECC technologies available:

® SECDED ECC: single error correction, double error detection; corrects single-bit faults and detects
double-bit faults

® Chipkill ECC:

B Chipkill-detect ECC detects any error from a single DRAM device
B Chipkill-correct ECC corrects any error from a single DRAM device

B Apparently, chipkill-detect and chipkill-correct ECC’s exhibit much lower undetected error rates than if

using SEC-DED ECCs

B Also cost more

Questions:

® \Why does ECC work? How does ECC work? What’s the cost?

C.-S. Zhang, AMSS 22

25

Simple Error Correction Code NCMIS

phonetlc A B C Received Message | Interpreted bit
a I p h a bet alpha bravo charlie
000 0
If we have
D E F G H unlimited 001 0
delta echo foxtrot golf hotel
resources
| J K L M ” i
india juliett kilo lima mike 100 0
N 0 P Q R o on 1
november oscar papa quebec romeo
S T UV W Cot |
sierra tango uniform victor whiskey 110 1
With this NATO alphabet chart you
will no longer use “M as in Mancy” o oo
X Y Z during ast?pport call with your mo:1, Re | | a b | I Ity m 1
xray yankee zulu or while defusing a bomb.

C.-S. Zhang, AMSS 23

Examples of ECC

Some linear error correction codes:

¢ Repetition codes e Reed—Muller codes

¢ Parity codes e Goppa codes

¢ Cyclic codes ¢ Low-density parity-check codes

e Hamming codes e Expander codes

e Golay code, both the binary and ternary versions e Multidimensional parity-check codes
¢ Polynomial codes, of which BCH codes are an example e Toric codes

¢ Reed—Solomon codes e Turbo codes

Source: https://en.wikipedia.org/wiki/Linear_code#fExamples

® Hamming codes have a minimum distance of 3 -- the decoder can detect and correct a single error,
but it cannot distinguish a double bit error from a single bit error -- SECDED
® Extended Hamming code is popular in computer memory systems (need an extra bit)

Ref: R. W. Hamming, "Error detecting and error correcting codes," in The Bell System Technical Journal,
vol. 29, no. 2, pp. 147-160, April 1950, doi: 10.1002/j.1538-7305.1950.tb00463.x.

C.-S. Zhang, AMSS 24

Hamming Code Encoder

25

NCMIS

Input:
1001101

Hamming Encoder

1011

1010

1001

1000

0111

0110

0101

0100

0011

0010

0001

1

0

0

1

1

0

1

1011

1 4=

1011

-

1010

1010

1001

1001

1000

1000

0111

0111

0110

0110

N

0101

0101

0100

0100

0011

0011

0010

M -

0010

0001

0001

B

1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001
1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001
10011100101

Suppose we have n bits for

coding

Step 1 - Calculating the

number of redundant bits 7:
2'z2n+r+1

Step 2 - Positioning the

redundant bits at locations

25i=10,1,2, ...

Step 3 - Calculating the

values of each redundant bit

by even (or odd) parity

C.-S. Zhang, AMSS

25

Hamming Code Decoder

5

NCMIS

Input:
10111100101

Hamming Decoder

Output:
1001101

1011 1010 1001 1000 0111

0110

0101

1 0 11

1

1011 1010 1001 1000 0111

O B

1011 1010 1001 1000 0111

14

T

1011 1010 1001 1000 0111

1011 1010 1001 1000 0111

0110

0110

0110

0110

0101

0101

0100

0100

0100

0101

0101

0100

o[ToT T N

0100

0011

0011

0011

0011

0010

0010

K -

0010

0010

0001

0001

0001

1 -0

0001

0

1

0011

0010

0001

~H W

1

0

0

1

0

1

Step 1 - Calculating the
number of redundant bits 7:
2'>2n+r+1
Step 2 - Positioning the
redundant bits at locations
2Li=10,1, ...
Step 3 - Checking parity and
give an index of wrong bit
Step 4 - Error detection and
correction: if the index is O
then correct, otherwise it is

the wrong bit

C.-S. Zhang, AMSS

26

Checkpointing

5

NCMIS

November 2017

Without checkpointing:

$./count
1

2

3AC

$./count
1

CISM/CECI training session

An introduction to

checkpointing

for scientific applications

C.|CE.CI

With checkpointing:

$./count
1

2

3AC

$./count
4

Checkpointing (CP) is the action of saving
the state of a running process to a
checkpoint image

The simulation can later be restarted
(rollback or R) from the checkpoint,
continuing from where it left off from any

computer

CP/R can be done in application-level or

in system-level
CP/R has been widely used in commercial

and open-source software

C.-S. Zhang, AMSS

A Simple CP/R Algorithm “ ENCML;

Step 1. Look for a state file or image;

Step 2. If found, then restore the state (initialize all variables from the file or image);

else, create an initial state;

Step 3. Start and save state at suitable occasions

® C(Creating a transparent-to-users CP/R tool for HPC applications (system-level checkpointing) is very

challenging, requiring extensive development and maintenance effort

O Coordinated checkpointing: Processes coordinate checkpoints to form a system-wide consistent state

O Independent or uncoordinated checkpointing: Each process has autonomy in deciding when to take checkpoints
® In distributed systems, rolling back one process can cause the roll back of others (Domino effect)
® The User-Level Failure Mitigation (ULFM) proposal to support the continued operation of MPI

programs after crash (node failures)

C.-S. Zhang, AMSS 29

Fault Tolerant Iterative Solvers

Iterative methods and preconditioners with built-in resilience

Enhancing Fault-Tolerance NCMIS

Goal: Maximize performance while resilient to moderate soft faults

Failure of a process or node in a distributed system causes inconsistencies in the state of the system

There are many type of errors and failures

How to detect errors and failures? How to correct errors? How to recover from failures?

This is still mainly computer science? What about numerical methods?

FT algorithm: The algorithm is able to survive a failure at one or more processes or nodes

sl A
& B T

Examples of fault-tolerance are everywhere in engineering

C.-S. Zhang, AMSS 3 1

25

Algorithm-Based Fault Tolerance NCMIS

® ABFT: Algorithm-based fault tolerance
® Q: Can a numerical simulator tell whether its result is correct or not?

® |t is very unlikely! How can a simulator handle errors then? We must assume something ...

Sandbox Model: The execution of untrusted “guest” code in a partition of the computer’s state that

protects the rest of the computer (or “host”) from the guest’s possibly bad behaviors.

® Many simulation spent most of the CPU time in (iterative) solvers

® Maintain convergence when error occurs assuming it is detectable

® Introduce low computational overhead when no error occurs

® Require only small amount of point-to-point communication (locality) while maintain good load

balance (granularity)

C.-S. Zhang, AMSS 32

Fault-Tolerant GMRES Method

55

NCMIS

Algorithm 21: FT-GMRES method

%% Given a nonsingular matrix AeR"™™, beR™, and an initial guess z € R";
rb—Az, f—|rll, ¢ < 1/B;
for 3=1,2,...,m

Solve Az; =q; in a sandbox; <

Only one line is running in a
sandbox, not reliable; and it

w; «— Az;;

hij «— (wj,q:), wj «— w; —hijqs, 1=1,2,...,5;

hjv1,5 < |wsl;

if hj+15<e We had lucky breakdown before!
if H(1:5,1:5) is full rank

© 00 N O ook~ W N

=
(=]

Done at this iteration;

But how?

=
=

else

[
w N

end

[y
[’

else

-
ot

gj+1 < wi/hjt1,5;

end

e
(o)

end

= =
o

Hp < {hij}lsism+1,1<jsm;

—_
©

Ym < argmin, |Ber — Hny|;

N
o

Update: T «— T+ ZmYm;

Recover from error; < Retry from Line 4 or just
return the last iteration

is the most time-consuming
part

Does it look familiar?

Ref: Patrick G. Bridges, Kurt B.
Ferreira, Michael A. Heroux, Mark
Hoemmen. Fault-tolerant linear

solvers via selective reliability. 2012
https://arxiv.org/abs/1206.1390

C.-S. Zhang, AMSS

33

Redundant Subspace Correction

NCMIS
V1 U17U2
i Do D§ D pi Do i Do
P 4 ees———— \\/\)\| —tms————\]\]\]\| ——— e
: D? D} D}
vy Vs UUr P, - o T ww e [pilure
Di DS Di DS pi DS pi D
y oy P; 4 ess— VVVV — — WVV I —— WW — ——
Di D Di D Di D p§ D
Py < ee—— \\\)\ ——————\\]\\ ————— \]\]\]\| ———
Vi Us,Us
l >
Iter 1 Iter 2 Iter 3 Iter 4 time
® Light overhead: non-global communication needed
® Resilient to temporary or permanent hardware failures
® Redundancy to maintain convergence when components fail

® Globally parallel and locally successive subspace correction

C.-S. Zhang, AMSS

Detecting Runtime Failures

Runtime Level Failure Detection and Propagation in HPC

Systems
Dong Zhong Aurelien Bouteiller
The University of Tennessee The University of Tennessee
Knoxville, TN, USA Knoxville, TN, USA
Xi Luo George Bosilca
The University of Tennessee The University of Tennessee
Knoxville, TN, USA Knoxville, TN, USA

Daemon

Figure 1: Hierarchical notification of hosted processes
through PMIx notification routines. The PRRTE daemon
is in charge of observing, and forward notifications to the
node-local managed application processes. The detection
and reliable broadcast topology operates at the node level
between daemons.

C.-S. Zhang, AMSS

36

PRSC for Poisson: Weak Scaling

DOEs #Cores Error-Free With Error
#lter Time Efficiency #lter Time Efficiency

1,335,489 16 12 8.09 — 13 8.13 —

2,146,689 32 13 8.64 75.25% 15 8.99 72.68%

4,243,841 64 14 8.91 72.13% 16 9.37 68.93%
10,584,449 128 19 12.87 62.27% 20 13.95 57.73%
16,974,593 256 23 18.01 35.68% 29 19.13 33.76%
33,751,809 512 25 20.90 30.57% 27 26.11 24.59%

Table: Weak-scaling of the PRSC preconditioner for the Poisson equation

Source: Tao Cui, Jinchao Xu and Chen-song Zhang. “An error-resilient redundant subspace correction

method.” Computing and Visualization in Science 18 (2017): 65-77.

C.-S. Zhang, AMSS

37

R ~ N
«,i \
A
A 7

PRSC for Poisson: Error Effect T NEMIS
4Cores Standard Bpsc Bprsc Error-Free Bprsc With Error
#lter Time Speedup #Iter Time Speedup #Iter Time Speedup
16 42 162.9 — 21 163.4 - 24 165.3 —

32 48 82.71 1.97 25 82.79 1.97 27 83.35 1.98

64 48 41.14 3.96 26 42.13 3.88 28 43.62 3.79

128 50 20.95 7.78 27 22.66 7.21 29 23.95 691

256 51 11.84 13.8 27 13.46 12.1 29 14.03 11.8

512 52 6.91 23.6 28 7.43 21.9 29 7.79 21.2

Table: Strong-scaling of the PRSC for the Poisson equation (16,974,593 DOFs)

Source: Tao Cui, Jinchao Xu and Chen-song Zhang. “An error-resilient redundant subspace correction
method.” Computing and Visualization in Science 18 (2017): 65-77.

C.-S. Zhang, AMSS

38

PRSC for More Problems

Standard Bpsc Bprsc Error-Free Bprsc With Error

Example DOFs

#lter Time #lter Time #lter Time

Poisson 1,335,489 23 7.92 12 8.09 13 8.13

Maxwell 468,064 42 4.09 21 4.23 24 448
Elasticity 436,515 16 10.18 9 11.01 10 11.35

Table: Convergence of the PRSC preconditioner (16 cores)

Source: Tao Cui, Jinchao Xu and Chen-song Zhang. “An error-resilient redundant subspace correction
method.” Computing and Visualization in Science 18 (2017): 65-77.

C.-S. Zhang, AMSS 39

More Failures

1 failure 2 failures 4 failures 8 failures 16 failures
#Cores

#lter Time #Iter Time #lter Time #lter Time #lter Time
16 24 165.3 32 192.5 38 225.8 46 261.2 — —
32 27 83.35 37 107.1 42 119.5 45 122.1 50 129.8
64 28 43.62 35 50.4 36 52.1 42 57.9 49 65.5
128 29 23.95 31 24.2 36 27.1 41 30.3 47 34.6

Table: Convergence of the PRSC with failures for Poisson (16,974,593 DOFs)

Source: Tao Cui, Jinchao Xu and Chen-song Zhang. “An error-resilient redundant subspace correction
method.” Computing and Visualization in Science 18 (2017): 65-77.

C.-S. Zhang, AMSS 40

ABFT Papers

Jin, 2010

Bronevetsky, 2007

1\
| Bosileay2009
\

Dongarra, 2006 \

Chen,ZOOVI \\ ‘
~— X ~Chen, 2009 !

TSNS %C‘hen, 2008 \\ Shantharam, 2012
/ \ ‘

Langou, 2013

~~Chen; 2006~ Davies, 2010

Kabir, 2017

L AL

Oboril,,2011
S \vHak[’(érinén

————_ Dﬁ,zmz/ RN
Bland;2012 / /“&y
' / 1 g

Davies, 2011

\ Davies, 2015
w‘,IzoM
Hursey, 2011 Agullp,;2013
’ Tang,2017 ‘
en, 2014
Zhu, 2018

Liu, 2011

Tang} 2018 ‘
6 Wu, 2013 \
Kablr..2016

Liu, 2011

Algorithm-based fault tolerance for dense matrix
factorizations

Peng Du, Aurélien Bouteiller, G. Bosilca, T. Hérault, J. Dongarra

2012, PPoPP 12 .en

136 Citations [Q save

Open in: ..° \\‘; @ g

Dense matrix factorizations, such as LU, Cholesky and QR, are
widely used for scientific applications that require solving
systems of linear equations, eigenvalues and linear least
squares problems. Such computations are normally carried
out on supercomputers, whose ever-growing scale induces a
fast decline of the Mean Time To Failure (MTTF). This paper
proposes a new hybrid approach, based on Algorithm-Based
Fault Tolerance (ABFT), to help matrix factorizations
algorithms survive fail-stop failures. We consider extreme
conditions, such as the absence of any reliable component
and the possibility of loosing both data and checksum from a
single failure. We will present a generic solution for protecting
the right factor, where the updates are applied, of all above
mentioned factorizations. For the left factor, where the panel
has been applied, we propose a scalable checkpointing
algorithm. This algorithm features high degree of
checkpointing parallelism and cooperatively utilizes the
checksum storage leftover from the right factor protection.
The fault-tolerant algorithms derived from this hybrid solution
is applicable to a wide range of dense matrix factorizations,
with minor modifications. Theoretical analysis shows that the
fault tolerance overhead sharply decreases with the scaling in
the number of computing units and the problem size.

Source: https://www.connectedpapers.com/

C.-S. Zhang, AMSS

43

Stopping Criteria and Reliability

5

NCMIS

Algorithm 2: Conjugate gradient method

1 |%% Given an initial guess u and a tolerance ¢;
2 (r—f—Au, p—r;

3 |while |r|| >e¢

4 o — (r,r)/(Ap,p);

5 U U+ ap; Iterative updating

6 7 «—r — aAp; —

7 B < (7,7)/(r,7);

8 p—T+pPp;

9 Update: u<« U, 7« 7T, p < P;

10 | end

v In some (maybe most) code for
iterative methods, we check L2-
norm of residual

v To save time, we update the
residual using iteration instead

of computing it

Vo lrllg-2=llella

Ref: Hestenes and Stiefel. "Methods of Conjugate Gradients for Solving Linear Systems". Journal of Research of the

National Bureau of Standards 49, 1952

C.-S. Zhang, AMSS

44

Reading and Thinking

SIAM J. Sc1. COMPUT. @© 2017 Society for Industrial and Applied Mathematics
Vol. 39, No. 2, pp. C116-C143

Have you experienced errors when
IS THE MULTIGRID METHOD FAULT TOLERANT?

THE TWO-GRID CASE* 5 .
MARK AINSWORTH! AND CHRISTIAN GLUSA* you program: Of course, you dld

This paper is dedicated to Professor Ivo BabuSka on the occasion of his 90th birthday

What types of errors you have made?

Abstract. The predicted reduced resiliency of next-generation high performance computers
means that it will become necessary to take into account the effects of randomly occurring faults
on numerical methods. Further, in the event of a hard fault occurring, a decision has to be made Any Of the erro rs not made by
as to what remedial action should be taken in order to resume the execution of the algorithm. The
action that is chosen can have a dramatic effect on the performance and characteristics of the scheme.
Ideally, the resulting algorithm should be subjected to the same kind of mathematical analysis that
was applied to the original, deterministic variant. The purpose of this work is to provide the first yo rselveS? What a re they?
rigorous analysis of the behavior of the multigrid algorithm in the presence of faults. Specifically, we
prove estimates on the behavior of the Two Grid Method similar to the classical asymptotic results.
Multigrid is arguably the method of choice for the solution of large-scale linear algebra problems
arising from discretization of partial differential equations, and it is of considerable importance to H OW Ca n you ma ke you r COd e more
anticipate its behavior on an exascale machine. The analysis of resilience of algorithms is in its
infancy, and the current work is perhaps the first to provide a mathematical model for faults and .
analyze the behavior of a state-of-the-art algorithm under the model. It is shown that the Two Grid re I Ia ble?
Method fails to be resilient to faults. Attention is then turned to identifying the minimal necessary
remedial action required to restore the rate of convergence to that enjoyed by the ideal fault-free
method.

How can you make your algorithms

Key words. multigrid, fault tolerance, resilience, random matrices, convergence analysis

AMS subject classifications. 65F10, 65N22, 65N55, 68M15 more fault-tolerant? Any plans?

DOI. 10.1137/16M1100691

C.-S. Zhang, AMSS 45

Contact Me

® Office hours: Mon 14:00—15:00
® Walk-in or online with appointment

® zhangcs@lsec.cc.ac.cn

® http://Isec.cc.ac.cn/~zhangcs

My sincere gratitude to:

Tao Cui, Shizhe Li, Bin Dai, Yan Xie

C.-S. Zhang, AMSS 46

mailto:zhangcs@lsec.cc.ac.cn

HERZRAE Fast Solvers for
EZoa{y iR Large Algebraic Systems

Chensong Zhang, AMSS

http://Isec.cc.ac.cn/~zhangcs Release version 2022.07:

