
Lecture 7. Fault resilience and reliability

Fast Solvers for
Large Algebraic Systems

Chensong Zhang, AMSS
http://lsec.cc.ac.cn/~zhangcs 容错方法与可靠性

Table of Contents

1

l Lecture 1: Large-scale numerical simulation

l Lecture 2: Fast solvers for sparse linear systems

l Lecture 3: Methods for non-symmetric problems

l Lecture 4: Methods for nonlinear problems

l Lecture 5: Mixed-precision methods

l Lecture 6: Communication hiding and avoiding

l Lecture 7: Fault resilience and reliability

l Lecture 8: Robustness and adaptivity

C.-S. Zhang, AMSS

Sources of Error in Simulation

2

Discretization Error Algebraic Error Floating-Point Error

Discretization
Methods Algebraic Solvers

Finite-Precision
Arithmetic

More refined mesh

Better discretizations

Approximation:

Better solvers

Better computers

C.-S. Zhang, AMSS

This
Lecture

Introduction
Reliability and resilience of algebraic solvers

Wake-Up Calls

C.-S. Zhang, AMSS 4

Can you trust what was produced by your code, or by anyone’s code?

Reproduce Baseline Results

C.-S. Zhang, AMSS 6

In many cases, you have a trust-worthy existing
code. Correctness of new code is determined by
comparing to baseline results.

For upgrading and portability

When debugging or optimizing a code, run-to-run
stability of the code is necessary in order to find
potential problems.

For debugging and optimization

End users from other teams or customers will be
puzzled by the inconsistent results produced from
your code.

To gain trust from users

01

02

03

Sim
ulatio

n

l Why we need reproducibility?

l How to enhance reproducibility?

Who Broke My Code

C.-S. Zhang, AMSS 7

l When?
ü From one run to other run
ü From one compiler to another
ü From one option to another
ü From one computer to another

Reproducibility

• Produce the same

result at any time

• Need deterministic

behaviors

• Give up possible

optimizations

Performance

• Produce a result as

fast as possible

• Do whatever best for

speed

• Usually the results

are close

l Who?
ü Compiler
ü Compiler options
ü Libraries linked
ü Multi-threading

Some Possibilities to Consider

C.-S. Zhang, AMSS 8

Floating-Point Calculations

l FP numbers (IEEE754) have
finite precisions

l Rounding happens for each
(intermediate) result

Numerical Algorithms

l Some algorithms are less
stable numerically

l Conditional computation with
different input data

Task/Thread Scheduling

l Asynchronous task/thread
scheduling may use different
threads in each run

l Ordering is not preserved

l Exact: 2-53 + 1 - 1 = 2-53, 2-52 + 1 - 1 = 2-52

l FP64: (2-53 + 1) - 1 = 0.0, 2-53 + (1 - 1) = 2-53

l FP64: (2-52 + 1) - 1 = 2-52, 2-52 + (1 - 1) = 2-52

A simple FP64 example with arithmetic ordering:

If you think the difference is small, think again!

Effects of Floating-Point Arithmetic

C.-S. Zhang, AMSS 9

l We are doing floating-point calculations è Nothing is “exact”

Reassociation: (a + b) + c è a + (b + c)

Division to multiplication: a / b è a * (1 / b)

Zero folding: a + 0 è a, a * 0 è 0 (But “a” might be INF or NaN)

Math functions: sin(a), log(a), … (No international standard on these functions)

Subnormal FP numbers and underflow (flush to zero or not)

Use fused multiply-add (FMA) units or not

Different code paths (SIMD or non-SIMD, AVX2 v.s. SSE)

l Compilers might be doing something for you, under the hood!

l Review Lecture 5 for the FP precisions (e.g. Book by N. Higham 2002)

FP Model for Intel® Compilers

C.-S. Zhang, AMSS 10

FP model Description

precise • Allow value-safe optimizations only

source • Specify the intermediate precision used for FP expression evaluation

except • Enable strict floating point exception semantics

strict • Enable access to the FPU environment
• Disable floating point contractions such as fused multiply-add instructions
• Imply “precise” and “except”

fast[=1] (default) • Allow value-unsafe optimizations compiler chooses precision for expression evaluation
• Floating-point exception semantics not enforced
• Access to the FPU environment not allowed
• Floating-point contractions are allowed

fast=2 • Additional approximations allowed

Source: Georg
Zitzlsberge, Intel,
2014

An Example in Reservoir Simulation

C.-S. Zhang, AMSS 11

FP Model Year = 0 Year = 1 Year = 5 Year = 10

Precise 3525.136841724400 3445.016272216141 3034.082337708471 2608.065832970213

Strict 3525.136841724400 3445.016272216141 3034.082337708471 2608.065832970213

Fast 3525.136841724400 3445.050433013021 3034.789033440240 2609.016046486710

Pressure (psia) at one grid cell for SPE3 benchmark (compiled using Intel® oneAPI 2022)

l Although FP error is small, but not zero (review Lecture 5)

l Iterations might make it worse

l Time marching might make it even worse:

Number of nonlinear iterations, number of linear iterations, time step sizes, …

An Example of FP Option

C.-S. Zhang, AMSS 12

l A loop can be auto-vectorized (requires partial sum – reordering is done under the hood)

for (int i = 0; i < n; i++) sum = sum + x[i]*x[i];

l If compile with –fp-model precise or –fp-model consistent, the loop is not auto-vectorized

l But you can do it by hand: adding OpenMP directives

#pragma omp simd reduction(+:sum)

for (int i = 0; i < n; i++) sum = sum + x[i]*x[i];

HPC Top500 List, Revisited

13C.-S. Zhang, AMSS

Supercomputers are getting very complicated!

Bit Error Happens

C.-S. Zhang, AMSS 14

Research based on large-scale data collected from the Google's servers

(SIGMETRICS/Performance Conference 2009):

l The error rate is several orders of magnitude higher than the previous

small-scale or laboratory studies

l Between 2.5 × 10-11 error/bit·h and 7 × 10-11 error/bit·h

èèè How many bit errors per GB per hour?

l How much memory does a supercomputer have?

èèè Millions of GB!

l Wow! A lot of errors!

Can we trust what was produced by any computer code?

Reliability of Computation
Standard techniques used in practice for better reliability

Reliability of Numerical Simulation

C.-S. Zhang, AMSS 16

Model Reliability

Mathematical model and its data

describe the real physics with

sufficient accuracy

Algorithm Reliability

Underlying numerical algorithms

should be stable, consistent, and

convergent

Software Reliability

The ability to perform its required

functions under static conditions

for a specific period

Sir Arthur Stanley Eddington

Never believe an experimental result until it has been confirmed by theory

Why Results Might Not Be Reliable

C.-S. Zhang, AMSS 17

Edward N. Lorenz
Source: https://digital-me.nl/

In 1961, E. Lorenz was using a Royal McBee LGP-30 computer with 6-digit precision, to simulate
weather. The printout rounded variables off to a 3-digit number, so a value like 0.506127 printed as
0.506. So he tried to input a rounded number, but …

Margaret Hamilton

https://en.wikipedia.org/wiki/Royal_McBee

Mean Time To Failure

C.-S. Zhang, AMSS 18

MTTF (MTBF):

measures the average

time a non-repairable

asset operates before it

fails

Run without problems

Researchers have predicted that

large jobs may fail once every 30

minutes on exascale platforms

30 mins

CPU failures per week

ASCI Q at LANL has 26.1 CPU

failures per week [Michalak et al.

2005]

26.1
Ancient but stable

The mean time to failure of ENIAC

(1946) [Alexander Randall 2006]

2 days

Requires repair actions

Lessons learned from the analysis

of system failures at petascale;

see DSN 2014

4.2 hours
Soft error in L1 cache

BlueGene/L has one soft error

in L1 cache every 4 to 6 hours

[Bronevetsky, Supinski 2008]

4-6 hours

A Long Term Case Study

C.-S. Zhang, AMSS 19

l K-computer: June 2019, Rmax = 10.510 PFLOPS

l 06/11--08/19 Peak: 864 cabinets, 88128 nodes,

705024 cores, 12.6 MW

Measuring Reliability of HPC:

l MFR = Monthly Failure Rate

l AFR = Annualized Failure Rate = 1 − exp(!"
#$%&

),

Mean Time Between Failures measured in years

l FIT = Failure-In-Time = the amount of expected

failures per one billion hours of operation

l Various studies have been carried out on Blue

Waters, K-computer, Titan, Sunway, … Parts Number
Parts AFR MTBF FIT

CPU 82,944 0.06% 7.33 days 72.0

Memory 663,552 0.0016% 34.4 days 18.0

Analysis based on data from 2011.4 to 2015.4

Ref: Fumiyoshi Shoji, Shuji Matsui, Mitsuo Okamoto,
Fumichika Sueyasu, Toshiyuki Tsukamoto, Atsuya Uno
and Keiji Yamamoto. “Long term failure analysis of 10
petascale supercomputer”. ISC’15

Modeling Erroneous States

C.-S. Zhang, AMSS 20

Abnormal System State

Fault Failure

Soft Hard

Transient

Sticky

Persistent

Consistent System State

Could be fixed by actions

Interrupt the
program

Do not interrupt
the program
running

Bridges et al. Fault-tolerant
linear solvers via selective
reliability. arXiv 1206.1390,
2012

System Process

Storage Comm.

Error System State

ECC-Enabled Devices

C.-S. Zhang, AMSS 22

Various ECC technologies available:

l SECDED ECC: single error correction, double error detection; corrects single-bit faults and detects

double-bit faults

l Chipkill ECC:

n Chipkill-detect ECC detects any error from a single DRAM device

n Chipkill-correct ECC corrects any error from a single DRAM device

n Apparently, chipkill-detect and chipkill-correct ECC’s exhibit much lower undetected error rates than if

using SEC-DED ECCs

n Also cost more

Questions:

l Why does ECC work? How does ECC work? What’s the cost?

Simple Error Correction Code

C.-S. Zhang, AMSS 23

If we have
unlimited
resources

Cost!

Reliability

Examples of ECC

C.-S. Zhang, AMSS 24

Ref: R. W. Hamming, "Error detecting and error correcting codes," in The Bell System Technical Journal,
vol. 29, no. 2, pp. 147-160, April 1950, doi: 10.1002/j.1538-7305.1950.tb00463.x.

l Hamming codes have a minimum distance of 3 -- the decoder can detect and correct a single error,

but it cannot distinguish a double bit error from a single bit error -- SECDED

l Extended Hamming code is popular in computer memory systems (need an extra bit)

Source: https://en.wikipedia.org/wiki/Linear_code#Examples

Some linear error correction codes:

Hamming Code Encoder

C.-S. Zhang, AMSS 25

1

1011

0

1010

0

1001 1000

1

0111

1

0110

0

0101 0100

1

0011 0010 0001

1

1011

0

1010

0

1001 1000

1

0111

1

0110

0

0101 0100

1

0011 0010

1

0001

1

1011

0

1010

0

1001 1000

1

0111

1

0110

0

0101 0100

1

0011

0

0010

1

0001

1

1011

0

1010

0

1001 1000

1

0111

1

0110

0

0101

0

0100

1

0011

0

0010

1

0001

1

1011

0

1010

0

1001

1

1000

1

0111

1

0110

0

0101

0

0100

1

0011

0

0010

1

0001

Input:
1001101

Output:
10011100101

Ha
m

m
in

g
En

co
de

r

l Suppose we have 𝑛 bits for

coding

l Step 1 − Calculating the

number of redundant bits 𝑟:

2' ≥ 𝑛 + 𝑟 + 1

l Step 2 − Positioning the

redundant bits at locations

2(, 𝑖 = 0,1,2, …

l Step 3 − Calculating the

values of each redundant bit

by even (or odd) parity

1

0

0

1

Hamming Code Decoder

C.-S. Zhang, AMSS 26

1

1011

0

1010

1

1001

1

1000

1

0111

1

0110

0

0101

0

0100

1

0011

0

0010

1

0001

1

1011

0

1010

1

1001

1

1000

1

0111

1

0110

0

0101

0

0100

1

0011

0

0010

1

0001

1

1011

0

1010

1

1001

1

1000

1

0111

1

0110

0

0101

0

0100

1

0011

0

0010

1

0001

1

1011

0

1010

1

1001

1

1000

1

0111

1

0110

0

0101

0

0100

1

0011

0

0010

1

0001

1

1011

0

1010

1

1001

1

1000

1

0111

1

0110

0

0101

0

0100

1

0011

0

0010

1

0001

Input:
10111100101

Output:
1001101

Ha
m

m
in

g
De

co
de

r
l Step 1 − Calculating the

number of redundant bits 𝑟:

2' ≥ 𝑛 + 𝑟 + 1

l Step 2 − Positioning the

redundant bits at locations

2(, 𝑖 = 0,1, …

l Step 3 − Checking parity and

give an index of wrong bit

l Step 4 − Error detection and

correction: if the index is 0

then correct, otherwise it is

the wrong bit

1

0

0

1

Checkpointing

C.-S. Zhang, AMSS 28

l Checkpointing (CP) is the action of saving

the state of a running process to a

checkpoint image

l The simulation can later be restarted

(rollback or R) from the checkpoint,

continuing from where it left off from any

computer

l CP/R can be done in application-level or

in system-level

l CP/R has been widely used in commercial

and open-source software

A Simple CP/R Algorithm

C.-S. Zhang, AMSS 29

l Creating a transparent-to-users CP/R tool for HPC applications (system-level checkpointing) is very

challenging, requiring extensive development and maintenance effort
p Coordinated checkpointing: Processes coordinate checkpoints to form a system-wide consistent state

p Independent or uncoordinated checkpointing: Each process has autonomy in deciding when to take checkpoints

l In distributed systems, rolling back one process can cause the roll back of others (Domino effect)

l The User-Level Failure Mitigation (ULFM) proposal to support the continued operation of MPI

programs after crash (node failures)

Step 1. Look for a state file or image;

Step 2. If found, then restore the state (initialize all variables from the file or image);

else, create an initial state;

Step 3. Start and save state at suitable occasions

Fault Tolerant Iterative Solvers
Iterative methods and preconditioners with built-in resilience

Enhancing Fault-Tolerance

C.-S. Zhang, AMSS 31

Goal: Maximize performance while resilient to moderate soft faults

l Failure of a process or node in a distributed system causes inconsistencies in the state of the system

l There are many type of errors and failures

l How to detect errors and failures? How to correct errors? How to recover from failures?

l This is still mainly computer science? What about numerical methods?

l FT algorithm: The algorithm is able to survive a failure at one or more processes or nodes

Examples of fault-tolerance are everywhere in engineering

Algorithm-Based Fault Tolerance

C.-S. Zhang, AMSS 32

l Many simulation spent most of the CPU time in (iterative) solvers

l Maintain convergence when error occurs assuming it is detectable

l Introduce low computational overhead when no error occurs

l Require only small amount of point-to-point communication (locality) while maintain good load

balance (granularity)

Sandbox Model: The execution of untrusted “guest” code in a partition of the computer’s state that

protects the rest of the computer (or “host”) from the guest’s possibly bad behaviors.

l ABFT: Algorithm-based fault tolerance

l Q: Can a numerical simulator tell whether its result is correct or not?

l It is very unlikely! How can a simulator handle errors then? We must assume something …

Fault-Tolerant GMRES Method

C.-S. Zhang, AMSS 33

Ref: Patrick G. Bridges, Kurt B.
Ferreira, Michael A. Heroux, Mark
Hoemmen. Fault-tolerant linear
solvers via selective reliability. 2012
https://arxiv.org/abs/1206.1390

Only one line is running in a
sandbox, not reliable; and it
is the most time-consuming
part

But how?
Retry from Line 4 or just
return the last iteration

Does it look familiar?

We had lucky breakdown before!

Redundant Subspace Correction

C.-S. Zhang, AMSS 35

l Light overhead: non-global communication needed

l Resilient to temporary or permanent hardware failures

l Redundancy to maintain convergence when components fail

l Globally parallel and locally successive subspace correction Divide-and-Conquer

Detecting Runtime Failures

C.-S. Zhang, AMSS 36

PRSC for Poisson: Weak Scaling

C.-S. Zhang, AMSS 37

Source: Tao Cui, Jinchao Xu and Chen-song Zhang. “An error-resilient redundant subspace correction
method.” Computing and Visualization in Science 18 (2017): 65-77.

PRSC for Poisson: Error Effect

C.-S. Zhang, AMSS 38

Source: Tao Cui, Jinchao Xu and Chen-song Zhang. “An error-resilient redundant subspace correction
method.” Computing and Visualization in Science 18 (2017): 65-77.

PRSC for More Problems

C.-S. Zhang, AMSS 39

Source: Tao Cui, Jinchao Xu and Chen-song Zhang. “An error-resilient redundant subspace correction
method.” Computing and Visualization in Science 18 (2017): 65-77.

More Failures

C.-S. Zhang, AMSS 40

Source: Tao Cui, Jinchao Xu and Chen-song Zhang. “An error-resilient redundant subspace correction
method.” Computing and Visualization in Science 18 (2017): 65-77.

ABFT Papers

C.-S. Zhang, AMSS 43

Source: https://www.connectedpapers.com/

Stopping Criteria and Reliability

C.-S. Zhang, AMSS 44

Ref: Hestenes and Stiefel. "Methods of Conjugate Gradients for Solving Linear Systems". Journal of Research of the
National Bureau of Standards 49, 1952

Iterative updating

ü In some (maybe most) code for

iterative methods, we check L2-

norm of residual

ü To save time, we update the

residual using iteration instead

of computing it

ü 𝑟 !!"= 𝑒 !

Reading and Thinking

C.-S. Zhang, AMSS 45

l Have you experienced errors when

you program? Of course, you did.

l What types of errors you have made?

l Any of the errors not made by

yourselves? What are they?

l How can you make your code more

reliable?

l How can you make your algorithms

more fault-tolerant? Any plans?

Contact Me

46

l Office hours: Mon 14:00—15:00

l Walk-in or online with appointment

l zhangcs@lsec.cc.ac.cn

l http://lsec.cc.ac.cn/~zhangcs

C.-S. Zhang, AMSS

My sincere gratitude to:

Tao Cui, Shizhe Li, Bin Dai, Yan Xie

mailto:zhangcs@lsec.cc.ac.cn

Fast Solvers for
Large Algebraic Systems

Chensong Zhang, AMSS
http://lsec.cc.ac.cn/~zhangcs Release version 2022.07.10

