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Sources of Error in Simulation
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Discretization Error Algebraic Error Floating-Point Error

Discretization 
Methods Algebraic Solvers

Finite-Precision 
Arithmetic

More refined mesh 

Better discretizations

Approximation:

Better solvers

Better computers
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Introduction
Reliability and resilience of algebraic solvers



Wake-Up Calls
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Can you trust what was produced by your code, or by anyone’s code?



Reproduce Baseline Results
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In many cases, you have a trust-worthy existing
code. Correctness of new code is determined by
comparing to baseline results.

For upgrading and portability

When debugging or optimizing a code, run-to-run
stability of the code is necessary in order to find
potential problems.

For debugging and optimization

End users from other teams or customers will be 
puzzled by the inconsistent results produced from 
your code.

To gain trust from users
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l Why we need reproducibility?

l How to enhance reproducibility?



Who Broke My Code
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l When?
ü From one run to other run
ü From one compiler to another
ü From one option to another
ü From one computer to another

Reproducibility

• Produce the same 

result at any time

• Need deterministic 

behaviors

• Give up possible  

optimizations

Performance

• Produce a result as 

fast as possible

• Do whatever best for 

speed

• Usually the results 

are close

l Who?
ü Compiler
ü Compiler options
ü Libraries linked
ü Multi-threading



Some Possibilities to Consider
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Floating-Point Calculations

l FP numbers (IEEE754) have 
finite precisions

l Rounding happens for each 
(intermediate) result

Numerical Algorithms

l Some algorithms are less 
stable numerically

l Conditional computation with 
different input data

Task/Thread Scheduling

l Asynchronous task/thread 
scheduling may use different 
threads in each run

l Ordering is not preserved

l Exact: 2-53 + 1 - 1 = 2-53, 2-52 + 1 - 1 = 2-52

l FP64: (2-53 + 1) - 1 = 0.0, 2-53 + (1 - 1) = 2-53

l FP64: (2-52 + 1) - 1 = 2-52, 2-52 + (1 - 1) = 2-52

A simple FP64 example with arithmetic ordering:

If you think the difference is small, think again!



Effects of Floating-Point Arithmetic
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l We are doing floating-point calculations è Nothing is “exact”

Reassociation:    (a + b) + c è a + (b + c)

Division to multiplication:    a / b è a * (1 / b)

Zero folding:    a + 0 è a, a * 0 è 0 (But “a” might be INF or NaN)

Math functions:    sin(a), log(a), … (No international standard on these functions)

Subnormal FP numbers and underflow (flush to zero or not)

Use fused multiply-add (FMA) units or not

Different code paths (SIMD or non-SIMD, AVX2 v.s. SSE)

l Compilers might be doing something for you, under the hood!

l Review Lecture 5 for the FP precisions (e.g. Book by N. Higham 2002)



FP Model for Intel® Compilers
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FP model Description

precise • Allow value-safe optimizations only

source • Specify the intermediate precision used for FP expression evaluation

except • Enable strict floating point exception semantics

strict • Enable access to the FPU environment 
• Disable floating point contractions such as fused multiply-add instructions 
• Imply “precise” and “except”

fast[=1] (default) • Allow value-unsafe optimizations compiler chooses precision for expression evaluation
• Floating-point exception semantics not enforced
• Access to the FPU environment not allowed
• Floating-point contractions are allowed

fast=2 • Additional approximations allowed

Source: Georg 
Zitzlsberge, Intel, 
2014



An Example in Reservoir Simulation
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FP Model Year = 0 Year = 1 Year = 5 Year = 10

Precise 3525.136841724400 3445.016272216141 3034.082337708471 2608.065832970213

Strict 3525.136841724400 3445.016272216141 3034.082337708471 2608.065832970213

Fast 3525.136841724400 3445.050433013021 3034.789033440240 2609.016046486710

Pressure (psia) at one grid cell for SPE3 benchmark (compiled using Intel® oneAPI 2022) 

l Although FP error is small, but not zero (review Lecture 5)

l Iterations might make it worse

l Time marching might make it even worse:

Number of nonlinear iterations, number of linear iterations, time step sizes, …



An Example of FP Option
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l A loop can be auto-vectorized (requires partial sum – reordering is done under the hood)

for (int i = 0; i < n; i++ ) sum = sum + x[i]*x[i];

l If compile with –fp-model precise or –fp-model consistent, the loop is not auto-vectorized

l But you can do it by hand: adding OpenMP directives

#pragma omp simd reduction(+:sum)

for (int i = 0; i < n; i++ ) sum = sum + x[i]*x[i];



HPC Top500 List, Revisited
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Supercomputers are getting very complicated!



Bit Error Happens
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Research based on large-scale data collected from the Google's servers 

(SIGMETRICS/Performance Conference 2009): 

l The error rate is several orders of magnitude higher than the previous 

small-scale or laboratory studies

l Between 2.5 × 10-11 error/bit·h and 7 × 10-11 error/bit·h

èèè How many bit errors per GB per hour?

l How much memory does a supercomputer have? 

èèè Millions of GB!

l Wow! A lot of errors!

Can we trust what was produced by any computer code?



Reliability of Computation
Standard techniques used in practice for better reliability



Reliability of Numerical Simulation
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Model Reliability

Mathematical model and its data 

describe the real physics with 

sufficient accuracy

Algorithm Reliability

Underlying numerical algorithms 

should be stable, consistent, and 

convergent

Software Reliability

The ability to perform its required 

functions under static conditions 

for a specific period

Sir Arthur Stanley Eddington

Never believe an experimental result until it has been confirmed by theory



Why Results Might Not Be Reliable
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Edward N. Lorenz
Source: https://digital-me.nl/

In 1961, E. Lorenz was using a Royal McBee LGP-30 computer with 6-digit precision, to simulate 
weather. The printout rounded variables off to a 3-digit number, so a value like 0.506127 printed as 
0.506. So he tried to input a rounded number, but …

Margaret Hamilton

https://en.wikipedia.org/wiki/Royal_McBee


Mean Time To Failure
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MTTF (MTBF): 

measures the average 

time a non-repairable 

asset operates before it 

fails

Run without problems

Researchers have predicted that 

large jobs may fail once every 30 

minutes on exascale platforms

30 mins

CPU failures per week

ASCI Q at LANL has 26.1 CPU 

failures per week [Michalak et al. 

2005]

26.1
Ancient but stable

The mean time to failure of ENIAC 

(1946) [Alexander Randall 2006]

2 days

Requires repair actions

Lessons learned from the analysis 

of system failures at petascale; 

see DSN 2014

4.2 hours
Soft error in L1 cache

BlueGene/L has one soft error 

in L1 cache every 4 to 6 hours 

[Bronevetsky, Supinski 2008]

4-6 hours



A Long Term Case Study
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l K-computer: June 2019, Rmax = 10.510 PFLOPS

l 06/11--08/19 Peak: 864 cabinets, 88128 nodes,

705024 cores, 12.6 MW

Measuring Reliability of HPC:

l MFR = Monthly Failure Rate

l AFR = Annualized Failure Rate = 1 − exp( !"
#$%&

), 

Mean Time Between Failures measured in years

l FIT = Failure-In-Time = the amount of expected 

failures per one billion hours of operation

l Various studies have been carried out on Blue 

Waters, K-computer, Titan, Sunway, … Parts Number 
Parts AFR MTBF FIT

CPU 82,944 0.06% 7.33 days 72.0

Memory 663,552 0.0016% 34.4 days 18.0

Analysis based on data from 2011.4 to 2015.4

Ref: Fumiyoshi Shoji, Shuji Matsui, Mitsuo Okamoto, 
Fumichika Sueyasu, Toshiyuki Tsukamoto, Atsuya Uno 
and Keiji Yamamoto. “Long term failure analysis of 10 
petascale supercomputer”. ISC’15



Modeling Erroneous States
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Abnormal System State

Fault Failure

Soft Hard

Transient

Sticky

Persistent

Consistent System State

Could be fixed by actions

Interrupt the 
program

Do not interrupt 
the program 
running

Bridges et al. Fault-tolerant 
linear solvers via selective 
reliability. arXiv 1206.1390, 
2012

System Process

Storage Comm.

Error System State



ECC-Enabled Devices
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Various ECC technologies available:

l SECDED ECC: single error correction, double error detection; corrects single-bit faults and detects 

double-bit faults

l Chipkill ECC:

n Chipkill-detect ECC detects any error from a single DRAM device

n Chipkill-correct ECC corrects any error from a single DRAM device

n Apparently, chipkill-detect and chipkill-correct ECC’s exhibit much lower undetected error rates than if 

using SEC-DED ECCs

n Also cost more

Questions:

l Why does ECC work? How does ECC work? What’s the cost?



Simple Error Correction Code
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If we have 
unlimited 
resources

Cost!

Reliability



Examples of ECC
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Ref: R. W. Hamming, "Error detecting and error correcting codes," in The Bell System Technical Journal, 
vol. 29, no. 2, pp. 147-160, April 1950, doi: 10.1002/j.1538-7305.1950.tb00463.x.

l Hamming codes have a minimum distance of 3 -- the decoder can detect and correct a single error, 

but it cannot distinguish a double bit error from a single bit error -- SECDED

l Extended Hamming code is popular in computer memory systems (need an extra bit)

Source: https://en.wikipedia.org/wiki/Linear_code#Examples

Some linear error correction codes:



Hamming Code Encoder
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l Suppose we have 𝑛 bits for 

coding

l Step 1 − Calculating the 

number of redundant bits 𝑟:

2' ≥ 𝑛 + 𝑟 + 1

l Step 2 − Positioning the 

redundant bits at locations 

2( , 𝑖 = 0,1,2, …

l Step 3 − Calculating the 

values of each redundant bit 

by even (or odd) parity

1

0

0

1



Hamming Code Decoder
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l Step 1 − Calculating the 

number of redundant bits 𝑟:

2' ≥ 𝑛 + 𝑟 + 1

l Step 2 − Positioning the 

redundant bits at locations 

2( , 𝑖 = 0,1, …

l Step 3 − Checking parity and 

give an index of wrong bit

l Step 4 − Error detection and 

correction: if the index is 0 

then correct, otherwise it is 

the wrong bit

1

0

0

1



Checkpointing

C.-S. Zhang, AMSS 28

l Checkpointing (CP) is the action of saving 

the state of a running process to a 

checkpoint image

l The simulation can later be restarted 

(rollback or R) from the checkpoint, 

continuing from where it left off from any 

computer

l CP/R can be done in application-level or 

in system-level

l CP/R has been widely used in commercial 

and open-source software



A Simple CP/R Algorithm
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l Creating a transparent-to-users CP/R tool for HPC applications (system-level checkpointing) is very 

challenging, requiring extensive development and maintenance effort
p Coordinated checkpointing: Processes coordinate checkpoints to form a system-wide consistent state 

p Independent or uncoordinated checkpointing: Each process has autonomy in deciding when to take checkpoints

l In distributed systems, rolling back one process can cause the roll back of others (Domino effect)

l The User-Level Failure Mitigation (ULFM) proposal to support the continued operation of MPI 

programs after crash (node failures)

Step 1. Look for a state file or image;

Step 2. If found, then restore the state (initialize all variables from the file or image);

else, create an initial state;

Step 3. Start and save state at suitable occasions 



Fault Tolerant Iterative Solvers
Iterative methods and preconditioners with built-in resilience



Enhancing Fault-Tolerance
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Goal: Maximize performance while resilient to moderate soft faults

l Failure of a process or node in a distributed system causes inconsistencies in the state of the system

l There are many type of errors and failures

l How to detect errors and failures? How to correct errors? How to recover from failures?

l This is still mainly computer science? What about numerical methods?

l FT algorithm: The algorithm is able to survive a failure at one or more processes or nodes

Examples of fault-tolerance are everywhere in engineering



Algorithm-Based Fault Tolerance 
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l Many simulation spent most of the CPU time in (iterative) solvers

l Maintain convergence when error occurs assuming it is detectable 

l Introduce low computational overhead when no error occurs

l Require only small amount of point-to-point communication (locality) while maintain good load 

balance (granularity)

Sandbox Model: The execution of untrusted “guest” code in a partition of the computer’s state that 

protects the rest of the computer (or “host”) from the guest’s possibly bad behaviors. 

l ABFT: Algorithm-based fault tolerance 

l Q: Can a numerical simulator tell whether its result is correct or not?

l It is very unlikely! How can a simulator handle errors then? We must assume something … 



Fault-Tolerant GMRES Method
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Ref: Patrick G. Bridges, Kurt B. 
Ferreira, Michael A. Heroux, Mark 
Hoemmen. Fault-tolerant linear 
solvers via selective reliability. 2012 
https://arxiv.org/abs/1206.1390

Only one line is running in a 
sandbox, not reliable; and it 
is the most time-consuming 
part

But how?
Retry from Line 4 or just
return the last iteration

Does it look familiar?

We had lucky breakdown before!



Redundant Subspace Correction
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l Light overhead: non-global communication needed 

l Resilient to temporary or permanent hardware failures 

l Redundancy to maintain convergence when components fail 

l Globally parallel and locally successive subspace correction Divide-and-Conquer



Detecting Runtime Failures 
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PRSC for Poisson: Weak Scaling
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Source: Tao Cui, Jinchao Xu and Chen-song Zhang. “An error-resilient redundant subspace correction 
method.” Computing and Visualization in Science 18 (2017): 65-77.



PRSC for Poisson: Error Effect
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Source: Tao Cui, Jinchao Xu and Chen-song Zhang. “An error-resilient redundant subspace correction 
method.” Computing and Visualization in Science 18 (2017): 65-77.



PRSC for More Problems
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Source: Tao Cui, Jinchao Xu and Chen-song Zhang. “An error-resilient redundant subspace correction 
method.” Computing and Visualization in Science 18 (2017): 65-77.



More Failures
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Source: Tao Cui, Jinchao Xu and Chen-song Zhang. “An error-resilient redundant subspace correction 
method.” Computing and Visualization in Science 18 (2017): 65-77.



ABFT Papers
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Source: https://www.connectedpapers.com/



Stopping Criteria and Reliability
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Ref: Hestenes and Stiefel. "Methods of Conjugate Gradients for Solving Linear Systems". Journal of Research of the 
National Bureau of Standards 49, 1952

Iterative updating

ü In some (maybe most) code for

iterative methods, we check L2-

norm of residual

ü To save time, we update the

residual using iteration instead

of computing it

ü 𝑟 !!"= 𝑒 !



Reading and Thinking
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l Have you experienced errors when 

you program? Of course, you did.

l What types of errors you have made?

l Any of the errors not made by 

yourselves? What are they?

l How can you make your code more 

reliable?

l How can you make your algorithms 

more fault-tolerant? Any plans?



Contact Me
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l Office hours: Mon 14:00—15:00

l Walk-in or online with appointment

l zhangcs@lsec.cc.ac.cn

l http://lsec.cc.ac.cn/~zhangcs

C.-S. Zhang, AMSS
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