
Lecture 6. Communication hiding and avoiding

Fast Solvers for
Large Algebraic Systems

Chensong Zhang, AMSS
http://lsec.cc.ac.cn/~zhangcs 通信避免与隐藏

Table of Contents

1

l Lecture 1: Large-scale numerical simulation

l Lecture 2: Fast solvers for sparse linear systems

l Lecture 3: Methods for non-symmetric problems

l Lecture 4: Methods for nonlinear problems

l Lecture 5: Mixed-precision methods

l Lecture 6: Communication hiding and avoiding

l Lecture 7: Fault resilience and reliability

l Lecture 8: Robustness and adaptivity

C.-S. Zhang, AMSS

Sources of Error in Simulation

2

Discretization Error Algebraic Error Floating-Point Error

Discretization
Methods Algebraic Solvers

Finite-Precision
Arithmetic

More refined mesh

Better discretizations

Approximation:

Better solvers

Better computers

C.-S. Zhang, AMSS

This
Lecture

Introduction
Why it is important to reduce data movement?

Simplified Computer Architecture, Revisited

C.-S. Zhang, AMSS 4

Roofline
Model

Hardware
Architecture

Simplify the problem using
two model parameters:

l Machine Balance

l AI ∶= #"# FLOP
DataMove Byte

Ideal Model

l External Memory Model (computing is fast)

l Cache-Oblivious Model (not knowing cache size)

Maximize Performance

C.-S. Zhang, AMSS 6

Performance(Num of Flops ÷ FLOPS,

Num of Bytes Moved ÷ Bandwidth,

Num of Messages × Latency)
l Communication Wall

l Memory Wall

l Minimize volume of communication

l Minimize number of messages

l Complications: Multiple levels of memory and multiple types of parallelism

l Sometimes exchange memory/communication performance by redundant computation

l FP performance FLOPS (flops/sec) alone is misleading for modern computer’s actual performance

l It’s especially the case when we talk about large-scale simulation

l Review the roofline model; see Lecture 5 and Lecture by Prof. Wei Xue

Factor 1: Floating-Point Performance

C.-S. Zhang, AMSS 7

l CISC (complex instruction set computing) architecture; Examples: Server and desktop CPUs

l RISC (reduced instruction set computing) architecture; Examples: Smartphones and tablets ARM

CPUs. Less energy consumption!

How many floating-point calculations CPUs can do per sec at most? It becomes complicated.

FLOPS = Cores × Clock Speed × Num flops per cycle

= Cores × Clock Speed × Num SIMD Units × [(Num FMA units × 2) + Num Mul units]

Intel Core i9-9980HK (Coffee Lake)

l 2.3GHz 8-core, Turbo Boost up to 5.0GHz, AVX2 SIMD, FMA

l DP performance = 8 × 2.3 × 16 (AVX2 + FMA256) = 294GFLOPS (307)

l SP performance = 8 × 2.3 × 32 (AVX2 + FMA256) = 588GFLOPS

Factor 2: Communication Performance

C.-S. Zhang, AMSS 8

Upon making reading requests, such as visiting a website, using an application, making a call, or

downloading a file, users want to get quality responses as quickly as possible

Q: How to measure communication performance?

l Data transmission performance è Throughput is impacted by latency, so there may not be a linear

relationship between bandwidth and throughput

l A network with high bandwidth may have components that process their various tasks slowly, while a lower-

bandwidth network may have faster components, resulting in higher overall throughput

Bandwidth measures the amount of data

that is able to pass (read and write) through

a connection at a given time

Throughput refers to how much data can

actually pass through, on average, over a

specific period of time

CAS and True Latencies

C.-S. Zhang, AMSS 11

l Latency = Delay between when a “user” requires an action and when they get a “response”

l CAS (Column Access Strobe) latency is a measure of the clock cycles passing when the RAM module

accesses a particular dataset in its column and making that data available after being instructed by

a memory controller (source: Wiki)

l Example: RAM modules with a CAS latency of 17 will need (roughly) 17 clock cycles when a request

is sent by the CPU and when the data is output by the RAM

l CAS latencies are an inaccurate indicator of memory performance: CAS latency (CL) and true latency

True Latency (ns) ∶= (CAS Latency * Num of Data Trans / Clock Speed) *1000

Examples: DDR3-1600 CL11 vs DDR4-3200 CL22

èèè True = 11 *2 / 1600 * 1000 = 22 * 2 / 3200 * 1000 = 13.75ns

Sustainable Memory Bandwidth

C.-S. Zhang, AMSS 13

Source: Hennessy, John L., and David A.
Patterson. “Computer architecture: a
quantitative approach”. Elsevier, 2011Source: https://www.cs.virginia.edu/stream/new.html

STREAM: Memory Bandwidth Benchmark Test

Network latency between nodes is much longer, like 1 𝜇s or more; bandwidth 5—10 GB/second (BSCC tests)

Some Test Results from BSCC

C.-S. Zhang, AMSS 14

Reducing Communication Cost
Fundamental tools for analyzing/reducing communication cost

Communication Performance Model

C.-S. Zhang, AMSS 16

Single Communication Time = Latency + Num of Bytes Moved ÷ Bandwidth

Fast Memory

Sufficiently large but
slow memory (assume
it can’t be used for FP

arithmetic)

Cache

DRAM or HBM

Local

Remote

Serial Case Distributed Case
Not big enough to store
the whole problem

Ref: CS267 lecture notes on J. Demmel’s webpage: https://people.eecs.berkeley.edu/~demmel/

Communication Memory access Network access

Fa
st

-S
lo

w
 M

em
or

y
M

od
el

Basic Ideas on Reducing Communication

C.-S. Zhang, AMSS 17

Num of messages

Reduce total number
of messages needed
by better organizing
algorithms,
combining messages,
……

Size of messages

Reduce amount of
data that need to be
moved by better
iterative algorithms,
better partitioning,
…….

Comm. hiding

Hide communication
behind computation
by aligning them in a
smart way,
……

Better network

Use better inter-
connecting network
with high throughput,
……

So communication could be more costly compared to computation. How can we get around?

Matrix Multiplication Algorithms

C.-S. Zhang, AMSS 18

l Forward error of matrix-multiplications (depends on size of the inner loop)

l Naïve matrix-multiplication cost 𝑂(𝑛$) operations. Strassen 1969 𝑂(𝑛%.'()*), Williams 2011

𝑂(𝑛%.$)%'+*%), Allan & Williams 2020 𝑂 𝑛%.$)%',-+ … Efforts to reduce this bound to 𝑂(𝑛%./)

Take Memory into Account

C.-S. Zhang, AMSS 19

l Floating Point Arithmetic = 2𝑛$, Data Movement = 𝑛$ + 3𝑛% , AI or CI ≈ 2!

l Floating Point with FMA = 𝑛$, Data Movement = 𝑛$ + 3𝑛% , AI or CI ≈ 1! Memory bound!

Blocked (Tiled) GEMM Algorithm

C.-S. Zhang, AMSS 20

l Floating Point Arithmetic = 2𝑛$, Data Movement = 2 0
!

1
+ 2𝑛% , AI or CI ≈ 𝑏!

Divide-and-Conquer

CPU bound!

Arithmetic Intensity of Blocked GEMM

C.-S. Zhang, AMSS 21

𝐴!"

𝐵"#

𝐶!#
×=

𝑏×𝑏 𝐶!#
+

l So we want to make block size as large as possible! But there is a constraint …

l Assume that 3 𝑏×𝑏 blocks can fit into the fast memory (of size 𝑀) è Hence 𝑏 ≤ 𝑀/3

l Total data movement ≈ 2 0
!

1
= Ω(𝑛$/ 𝑀)

l Q: Can we make this cache-oblivious?

l Q: Can this be further improved? Make less data movement?

Lower Bounds on Communication

C.-S. Zhang, AMSS 22

Number of Words Moved ≥ Ω Num of operations/ Size of fast memory = Ω(𝑛$/ 𝑀)

l Serial MatMul problem [Hong and Kung 1981]

l Parallel MatMul (load balanced version) problem [Irony, Toledo, and Tiskin 2004]

Number of Words Moved ≥ Ω Num of operations per proc/ Size of fast memory per proc

= Ω(0
!/3
4/3

) … = Ω(𝑛%/ 𝑃) if 𝑛%/𝑃 for each processor

l Attainable by using blocked implementation, like in BLAS

l Attainable by using the Cannon’s algorithm, 2.5D SUMMA, Parallel Strassen, …

l How about the SUMMA algorithm? Almost there! For each 𝑘 = 1: 𝑛/𝑏, we get

Number of messages = 2𝑙𝑜𝑔(𝑃) 𝑃, Number of entries moved = 2𝑙𝑜𝑔(𝑃)𝑛%/ 𝑃

Strassen’s Algorithm

C.-S. Zhang, AMSS 23

l Naïve matrix-multiplication (8 mul + 4 add)

l Strassen’s matrix-multiplication (7 mul + 18 add)

l Strassen’s algorithm has an asymptotic complexity 𝑂(𝑛567"))!

Cannon’s Algorithm for MatMul

C.-S. Zhang, AMSS 25

00 01

10 11

00 01

10 11
×

𝐴 𝐵

𝑃× 𝑃 processor layout

00 01

11 10

00 11

10 01
×

𝐴 𝐵

𝐴$$𝐵$$

𝐴%%𝐵%$

𝐴$%𝐵%%

𝐴%$𝐵$%

Sub-block MatMul

Initial alignment

01 00

10 11

10 01

00 11

After first shift

+𝐴$%𝐵%$

+𝐴%$𝐵$$

+𝐴$$𝐵$%

+𝐴%%𝐵%%

𝑃 ×2(&
'
)(= (&#

'

Lower bound on communication!

Number of entries moved:

Lynn Cannon 1969

Optimizing Communication

C.-S. Zhang, AMSS 26

Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz, Minimizing Communication in Numerical
Linear Algebra, SIAM Journal on Matrix Analysis and Applications 2011 32:3, 866-901

l In the fast matrix-multiplication example, we not only reduced communication …

l We can actually minimized data movement in some cases!

l Q: Can this be done in general?

l Algorithms involving three embedded loops can be optimized in a similar way

l BLAS3 (GEMM, triangular solve)

l Cholesky, LDLT , LU, QR (Regular LU with partial pivoting does not attain the bound)

l Eigenvalue and SVD

l Graph algorithms (shortest paths between all pairs)

l The lower bound can also be applied to sparse matrices

A More Challenging Case: SpMV

C.-S. Zhang, AMSS 27

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8𝑥
𝑦

𝐴

1,1 1,2 1,3 2,2

1 2 3 4

1 2 3 4

Fast Memory

𝐴

𝑥

𝑦

2,3 2,4 3,2

1 2 3 4

1 2 3 4

2,7

2,3 2,4

5 6 7 8

1 2 3 4

2,7 3,2 2,3 2,4

1 2 3 4

2,7 3,2

1 2 3 4

Read X 3 Read X 1

Read X 1 Read X 1

𝐴

𝑥

𝑦

𝑦 = 𝑦 + 𝐴𝑥

Reordering Sparse Matrices

C.-S. Zhang, AMSS 28

𝐴
1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

𝑛

𝑚

Bandwidth = 𝑛

𝑛

Locality? è Cache performance

1 2 4 7

3 5 8 11

6 9 12 14

10 13 15 16

𝐴

BFS è Cuthill-McKee

è Reduce bandwidth?

è Q: When does this work?Stencil computation is better

l Sparse matrices are a lot more difficult to deal with and to analyze

l Use different data structures and optimized lib (Review Lecture by Weifeng Liu)

l Use different ordering to improve efficiency (depends on what solver you will use)

Considerations on Iterative Solvers
Reducing communication cost of iterative solvers

Parallel Iterative Solvers, Revisited

30

1 3 5 7

2 4 6 8

1 3 5

2 4 6

进程1

局部网格

Ghost区
需要进行
数据传递

3 5 7

4 6 8

局部网格

进程2

网格划分

数据分发

初始网格处理 空间填充曲线 负载平衡剖分

多目标优化问题：

每个部分的工作

量的变化极小，

界面面积极小，

裂缝和井等特征

不跨区域……局部计算

子区域求解

C.-S. Zhang, AMSS

GMRES Method, Revisited

C.-S. Zhang, AMSS 32

in the Krylov subspace

l The generalized minimum residual (GMRES) method finds:

l By applying the modified Gram-Schmidt (MGS) algorithm, we form 𝐻 and then solve the least

squares (LSQ) problem with 𝐻

Q: Remember why we use this implementation? We tried to: (1) avoid numerical instability; (2) use

iterative procedure to stop at any iteration. But communication was not concerned!

l We form an orthonormal basis of the Krylov subspace

Data Movement in GMRES

C.-S. Zhang, AMSS 33

l SpMV

n Words moved ~ 𝑂(𝑚 2 𝑛𝑛𝑧)

n Number of messages ~ 𝑂(𝑚)

Solve LSQ Problem

l MGS

n Words moved ~ 𝑂(𝑚(2 𝑛)

n Number of messages ~ 𝑂(𝑚(2 log 𝑃)

l Analyzing data movement is difficult

n Parallel architectures

n Parallel data layout

n Parallel algorithm

No chance for data reuse

Iterative

Communication-Avoiding GMRES

C.-S. Zhang, AMSS 34

Solve LSQ Problem

l Matrix Powers

n Words moved ~ 𝑂(𝑛𝑛𝑧)

n Number of messages ~ 𝑂(1)

l TSQR

n Words moved ~ 𝑂(𝑚 2 𝑛)

n Number of messages ~ 𝑂(log 𝑃)

l Reorganize the algorithm

n Identical mathematical method (with exact FP)

n Use the matrix powers kernel

n Use QR factorization instead of MGS

Performance of CA-GMRES

C.-S. Zhang, AMSS 35

Source: Marghoob Mohiyuddin, Mark Hoemmen, James Demmel, and Katherine Yelick. 2009.
Minimizing communication in sparse matrix solvers. In Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis (SC '09).

l The “easy” implementation of CA-GMRES is not

always stable because the matrix powers kernel

may produce linearly dependent vectors

l Use the Newton basis (shifted polynomials

based on the eigenvalues of the upper

Hessenberg matrix) proposed by Bai, Hu, and

Reichel, 1994

Source: Erin
Carson, PP18

Conjugate Gradient Method, Revisited

C.-S. Zhang, AMSS 36

SpMV is the most expensive part: more floating-point calculations required and

not cache-friendly (memory-bound)

Inner products are expensive for communication: not much computation cost

but global all-reduce is necessary (communication-bound)

Three-Term Recurrence CG

C.-S. Zhang, AMSS 37

Ref: Y. Saad, “Iterative Methods for Sparse Linear Systems”, SIAM, Philadelphia, Second Ed., 2003

l Based on the three-term recurrence formulation for residuals

and the residuals are orthogonal to each other, we have

l We can derive a new recurrence relation

M. Hoemmen 2010

This formulation (usually

named as CG3) does not

involve the conjugate

directions. This is desirable

for deriving 𝑠-step CG

algorithms.

𝑠-Step CG3 Method

C.-S. Zhang, AMSS 38

Source: Erin
Carson, PP18

Ref: Mark F. Hoemmen, Communication-avoiding Krylov subspace methods, Ph.D. thesis, 2010

Goal: CA-CG

Communication-Avoiding CG

C.-S. Zhang, AMSS 39

M. Hoemmen 2010l We have the recurrence relation for residual

l Rearrange the terms as follows:

l Write the recurrence in terms of matrix form:

where is a (𝑠 + 1)×𝑠 tridiagonal matrix in terms of

l The matrix powers kernel needs to load the

coefficient matrix once

l In exact arithmetic, the algorithm produces the

same results as the standard CG

l Further improvement by using a inner product

coalescing kernel

From 𝑠-Step CG To CA-CG

C.-S. Zhang, AMSS 40

Sec 5.4.4, M. Hoemmen 2010

Use Matrix Powers Kernel to form 8𝑉"

Compute a vector of 2𝑠 + 1 entries 𝑑)"*#

Compute 𝜇)"*#, 𝜈)"*#, 𝛾)"*# , and 𝜌)"*#

Update 𝑥)"*#*% and 𝑟)"*#*%

Outer loop

Inner loop (𝑠 steps)

is a basis of the Krylov subspace

Pipelined Conjugate Gradient Method

C.-S. Zhang, AMSS 41

Source: Erin
Carson, PP18

Ref: Ghysels, Pieter and Wim Vanroose. “Hiding global synchronization latency in the preconditioned
Conjugate Gradient algorithm.” Parallel Comput. 40 (2014): 224-238.

Taking Preconditioning Into Account

C.-S. Zhang, AMSS 42

Source: A stable and scalable hybrid solver for rate-type non-Newtonian fluid models, Y.-J. Lee, W. Leng,
and C.-S. Zhang, Journal of Computational and Applied Mathematics, 300, 103–118 (07/2016).

Multigrid Methods, Revisited

C.-S. Zhang, AMSS 43

Optimizing Parallel Multigrid

C.-S. Zhang, AMSS 44

l Scalable

l Low complexity

l Fast convergence

Permutation

Injection

Aggregation

SpGEMM

SpMV

P’APRAP

Prolongation

Restriction

Smoother

Coarsest solver

Inner Product

Avoid branching

Fusing operations

Predicting number of nnz

Autotuning data structures

Software prefetching

Transpose

Comm. avoiding / hiding

Mixed precisions

Better
algorithms

Reading and Thinking

C.-S. Zhang, AMSS 45

l Do you do extremely large simulation

now? In the future?

l How do you analyze the performance

of your parallel code?

l Is the code communication-bound?

l Have you applied any communication

avoiding or hiding algorithms?

l Do you think CA and CH algorithms

will help? Why?

Contact Me

46

l Office hours: Mon 14:00—15:00

l Walk-in or online with appointment

l zhangcs@lsec.cc.ac.cn

l http://lsec.cc.ac.cn/~zhangcs

C.-S. Zhang, AMSS

My sincere gratitude to:

Wei Xue, Bin Dai

mailto:zhangcs@lsec.cc.ac.cn

Fast Solvers for
Large Algebraic Systems

Chensong Zhang, AMSS
http://lsec.cc.ac.cn/~zhangcs Release version 2022.07.02

