Flﬂlﬂﬂﬁﬂlﬁjcﬁé Fast Solvers for
Exe(iRE Large Algebraic Systems

. Lecture 6. Communication hiding and avoiding

Chensong Zhang, AMSS

http://Isec.cc.ac.cn/~zhangcs

Table of Contents

2,

NCMIS

® Lecture 1: Large-scale numerical simulation

® |ecture 2: Fast solvers for sparse linear systems
® Lecture 3: Methods for non-symmetric problems
® |ecture 4: Methods for nonlinear problems

® |ecture 5: Mixed-precision methods

@ Lecture 6: Communication hiding and avoiding
® Lecture 7: Fault resilience and reliability

® Lecture 8: Robustness and adaptivity

C.-S. Zhang, AMSS

=5

Sources of Error in Simulation NCMIS

Approximation: ’U,(CE) — Uh (SIS‘) + gdis + galg + gfp

More refined mesh

Discretization Error Algebraic Error Floating-Point Error

Better discretizations

=

Better solvers
Discretization Finite-Precision
Methods Arithmetic

Better computers

C.-S. Zhang, AMSS 2

Introduction

Why it is important to reduce data movement?

Simplified Computer Architecture, Revisited

5

NCMIS
s ideal Model
—\=— T = :
| '/ Computation _ _ GFLOP/s @
</) Computing Unit g
L//@;L (\ <
== Fast Memory ,
A Arithlmetic Intensity (FLOP:Byte)
Bandwidth GB/s .
Hardware c c ; » Roofline
Architecture Model
Slow Memory Simplify the problem using
two model parameters:

® External Memory Model (computing is fast)

® Cache-Oblivious Model (not knowing cache size)

® Machine Balance
#FP FLOP
- = DataMove Byte

C.-S. Zhang, AMSS

5

Maximize Performance NCMIS

FP performance FLOPS (flops/sec) alone is misleading for modern computer’s actual performance

It’s especially the case when we talk about large-scale simulation

Review the roofline model; see Lecture 5 and Lecture by Prof. Wei Xue

Performance(Num of Flops - FLOPS,

® Memory Wall
Num of Bytes Moved + Bandwidth, =

® Communication Wall

Num of Messages X Latency)

Minimize volume of communication
Minimize number of messages

Complications: Multiple levels of memory and multiple types of parallelism

Sometimes exchange memory/communication performance by redundant computation

C.-S. Zhang, AMSS 6

5

Factor 1: Floating-Point Performance NCMIS

® CISC (complex instruction set computing) architecture; Examples: Server and desktop CPUs

® RISC (reduced instruction set computing) architecture; Examples: Smartphones and tablets ARM

CPUs. Less energy consumption!

How many floating-point calculations CPUs can do per sec at most? It becomes complicated.
FLOPS = Cores x Clock Speed x Num flops per cycle
= Cores x Clock Speed x Num SIMD Units x [(Num FMA units x 2) + Num Mul units]

¥ Intel Core i9-9980HK (Coffee Lake)
ntel) ® 2.3GHz 8-core, Turbo Boost up to 5.0GHz, AVX2 SIMD, FMA
i | ® DP performance = 8 x 2.3 x 16 (AVX2 + FMA256) = 294GFLOPS (307)

-

C.-S. Zhang, AMSS 7

® SP performance =8 x 2.3 x 32 (AVX2 + FMA256) = 588GFLOPS

5

Factor 2: Communication Performance NCMIS

Upon making reading requests, such as visiting a website, using an application, making a call, or

downloading a file, users want to get quality responses as quickly as possible

Q: How to measure communication performance?

_) Throughput refers to how much data can

actually pass through, on average, over a

a connection at a given time specific period of time

® Data transmission performance = Throughput is impacted by latency, so there may not be a linear

relationship between bandwidth and throughput

® A network with high bandwidth may have components that process their various tasks slowly, while a lower-

bandwidth network may have faster components, resulting in higher overall throughput

C.-S. Zhang, AMSS 8

55

CAS and True Latencies NCMIS

® Latency = Delay between when a “user” requires an action and when they get a “response”

® CAS (Column Access Strobe) latency is a measure of the clock cycles passing when the RAM module
accesses a particular dataset in its column and making that data available after being instructed by
a memory controller (source: Wiki)

® Example: RAM modules with a CAS latency of 17 will need (roughly) 17 clock cycles when a request
is sent by the CPU and when the data is output by the RAM

® CAS latencies are an inaccurate indicator of memory performance: CAS latency (CL) and true latency

True Latency (ns) := (CAS Latency * Num of Data Trans / Clock Speed) *1000

Examples: DDR3-1600 CL11 vs DDR4-3200 CL22

=>=>=> True=11*2 /1600 * 1000 =22 * 2 /3200 * 1000 = 13.75ns

C.-S. Zhang, AMSS 1 1

Sustainable Memory Bandwidth NCMIS

. 100,000
STREAM: Memory Bandwidth Benchmark Test
Microprocessor
STREAM Memory Bandwidth --- John D. McCalpin, mccalpin€cs.virginia.edu 10.000 R
Revised to Mon Apr 3 19:18:55 CDT 2017 = ’
()
All results are in MB/s --- 1 MB=10"6 B, *not* 2"20 B E,
(]
__ g_ OO0 e B A
Sub. Date Machine ID ncpus COPY SCALE ADD TRIAD =
__ =
2015.07.10 SGI_UV_3000 3072 12799304.0 12815808.0 13838195.0 13826185.0 data 2
2012.08.14 SGI_Altix UV_2000 2048 6591669.0 6592082.0 7128484.0 7139690.0 data 5 1004 /DI ISk .
2016.01.13 ScaleMP_Xeon E5-2680v3_64B 1534 5741247.0 5775190.0 6318785.0 6367015.0 data =
2011.04.05 SGI_Altix UV_1000 2048 5321074.0 5346667.0 5823380.0 5859367.0 data 2
2006.07.10 SGI_Altix 4700 1024 3661963.0 3677482.0 4385585.0 4350166.0 data -
2013.03.26 Fujitsu SPARC_M10-4S 1024 3474998.0 3500800.0 3956102.0 4002703.0 data o)
10_ ... e N A N D OSSO B A RCARATAO0T
2011.06.06 Sc§1!.eMP_Xeon_X6560_64B 768 1493963.0 2112630.0 2252598.0 2259709.0 data (Latency improvement
2017.04.04 Fujitsu_SPARC_M12-2S 192 1322423.0 1299737.0 1479182.0 1530865.0 data = bandwidth improvement)
2004.12.22 SGI_Altix 3700_Bx2 512 906388.0 870211.0 1055179.0 1119913.0 data - P
2003.11.13 SGI_Altix_ 3000 512 854062.0 854338.0 1008594.0 1007828.0 data
2003.10.02 NEC_SX-7 32 876174.7 865144.1 869179.2 872259.1 data 1 & .
2008.04.07 IBM Power 595 64 679207.2 624707.8 777334.8 805804.6 data 1 10 100
2013.09.12 Oracle SPARC_T5-8 128 604648.0 611264.0 622572.0 642884.0 data S . "
1999.12.07 NEC_SX-5-16A 16 607492.0 590390.0 607412.0 583069.0 data v aloncy IMpIOYemon
2009.08.10 ScaleMP_XeonX5570_vSMP_16B 128 437571.0 431726.0 442722.0 445869.0 data .] .)
1997.06.10 NEC SX-4 32 434784.0 432886.0 437358.0 436954.0 data Figure 1.9 Log-log plot of bandwidth and latency milestones from Figure 1.10 rela-
2004.08.11 HP_AlphaServer GS1280-1300 64 407351.0 400142.0 437010.0 431450.0 data tive to the first milestone. Note that latency improved 6X to 80X while bandwidth
1996.11.21 Cray _T932_321024-3E 32 310721.0 302182.0 359841.0 359270.0 data improved about 300X to 25,000X. Updated from Patterson [2004].
2014.04.24 Oracle_Sun_Server X4-4 60 221370.0 221944.0 244588.0 245068.0 data
2007.04.17 Fujitsu/Sun_Enterprise M9000 128 224401.0 223113.0 224271.0 227059.0 data

—— Source: Hennessy, John L., and David A.
Patterson. “Computer architecture: a
guantitative approach”. Elsevier, 2011

Source: https://www.cs.virginia.edu/stream/new.html

C.-S. Zhang, AMSS 13

Some Test Results from BSCC S

20125 2018% 20204
SCPEGRIHNTA L4 EED B NESTLRE 3 MAEHRIRL0PFlops
P EABRZRSNEEH PENRE -BRTR® §£2020 HPC TOP1008% “ﬂ'ﬁl'!:“:_
| | ALEETFERD [WABNR NS
O O O O
20114 2014 | 20194
R ‘7 EESHANES PR B B
itf}”" HIPHP --.*t.?'i‘ A% KMPEBAMNBHIZR M FAX861T I A RM400058 5588+
7 "FENTE" & l‘.f}._L FRIZREE RitHRs55E 20000+

et ""u, W
e I'i I'hj

| ARSSEET]

LERBRETEPORRON27HZ, BSAF MWMBP) Bl
30000 X, ZEFEY BITHABNER, LRiTHEEASPFlopsE
: T BESBAE, BEAMEHTHEER, TREFFNITEE. NARFR

QD 10101010 59 : WESHR, REMBHE. THA. SOERNBREVIPITERS,

C.-S. Zhang, AMSS 14

Reducing Communication Cost

Fundamental tools for analyzing/reducing communication cost

Communication Performance Model

NCMIS

‘ Single Communication Time = Latency + Num of Bytes Moved -+ Bandwidth ‘

Not big enough to store
the whole problem Serial Case Distributed Case

Communication Network access

Memory access

Sufficiently large but

slow memory (assume
it can’t be used for FP
arithmetic)

I
©
o
=
-
o
£
]
=
3
O
<D
2 DRAM or HBM
i

Ref: CS267 lecture notes on J. Demmel’s webpage: https://people.eecs.berkeley.edu/~demmel/

C.-S. Zhang, AMSS 16

Basic Ideas on Reducing Communication

So communication could be more costly compared to computation. How can we get around?

Num of messages Size of messages Comm. hiding Better network

Use better inter-

Reduce amount of Hide communication
data that need to be

moved by better

Reduce total number

of messages needed behind computation connecting network

by better organizing by aligning them in a with high throughput,

algorithms, iterative algorithms, smartway, || ...

combining messages, better partitioning, B ...

C.-S. Zhang, AMSS 17

Matrix Multiplication Algorithms

Algorithm 16: Naive matrix multiplication

%% Given two matrices A,BeR™*";
for t=1:n
for 3=1:n
for k=1:n
C(i,) — C(,5) + A, k) * B(k, §);
end

end

co N O Ot ks W N =

end

® Naive matrix-multiplication cost O(n®) operations. Strassen 1969 0(n%8°7%), Williams 2011

0(n?3728642) 'Allan & Williams 2020 0 (n?3728596) . Efforts to reduce this bound to O (n?*¢)

® Forward error of matrix-multiplications (depends on size of the inner loop)
nu

Compute C = AB, A € R™*", B € R"** — |C — C| < .| A||B| Tn = 1T

C.-S. Zhang, AMSS 18

Take Memory into Account

=9

NCMIS

© 00 N O ook W N -

_ =
- O

12

® Floating Point Arithmetic = 2n3, Data Movement = n3 + 3n?, Al or Cl = 2!

® Floating Point with FMA =n3, Data Movement =n3 + 3n?, AlorCl = 1!

Algorithm 17: Naive matrix multiplication with data movement

$% Given two matrices A,BeR™";

Fortt = 1mnm

%% Read A(i,:) into fast memory, mXn times in total
For J=1:n

end

end

%% Read B(:,]J) into fast memory, n®xn times in total
%% Read C(i,j) into fast memory, m? x1 times in total
EaxNlc —Nliin

C(i,j) <« C(i,5) + A(i, k) = B(k,7);
end

%% Write C(i, j) back to slow memory, n®x1 times in total

C.-S. Zhang, AMSS

Blocked (Tiled) GEMM Algorithm

NCMIS

© 00 N O Ot bk W N

e
= O

12

Algorithm 18: Blocked matrix multiplication

$% Given two matrices A,BeR™*"%;
for i =1:n/b
for j=1:n/b

end

end

%% Read C(i,Jj) into fast memory, (n/b)® xb*=n? times in total

for k=1:n/b
%% Read A(i,k) into fast memory, (n/b)® xb*=n?/b times in total
%% Read B(k,Jj) into fast memory, (n/b)® xb*=n?/b times in total
C(i,j) < C(i,5) + A(5, k) * B(k, j);

end

2

%% Write C(i,j) back to slow memory, (n/b)®x b*>=n? times in total

3 %
® Floating Point Arithmetic = 2n3, Data Movement = 2 % + 2n?,Alor Cl = b! W

C.-S. Zhang, AMSS

20

Arithmetic Intensity of Blocked GEMM <

bxb

e

® So we want to make block size as large as possible! But there is a constraint ...

® Assume that 3 bxb blocks can fit into the fast memory (of size M) =» Hence b < /M /3

3
® Total data movement = 2 % = Q(n3/VM)

® (Q: Can we make this cache-oblivious?

® Q: Can this be further improved? Make less data movement?

C.-S. Zhang, AMSS 2 1

Lower Bounds on Communication

® Serial MatMul problem [Hong and Kung 1981]

Number of Words Moved > Q(Num of operations/\/Size of fast memory) = Q(n3/VM)

® Attainable by using blocked implementation, like in BLAS

® Parallel MatMul (load balanced version) problem [Irony, Toledo, and Tiskin 2004]

Number of Words Moved > Q(Num of operations per proc/\/Size of fast memory per proc)

n3/pP

ZQ(\/M_/P)

® How about the SUMMA algorithm? Almost there! For each k = 1:n/b, we get

... = Q(n?/+/P) if n?/P for each processor

Number of messages = 2log(~/P) VP, Number of entries moved = 2log(~/P)n?/+/P

® Attainable by using the Cannon’s algorithm, 2.5D SUMMA, Parallel Strassen, ...

C.-S. Zhang, AMSS 22

55

Strassen’s Algorithm NCMIS

® Naive matrix-multiplication (8 mul + 4 add)

Ajr Ar Bi1 Bio Aj1 xByg + Ajox Byy Ajg % Big + Ao * Bag
*k pm
Asr Ao By1 Bao Aoy * Big + Agg % Byy Aoy % Big + Agg % Bog
® Strassen’s matrix-multiplication (7 mul + 18 add)
Ajr Ap Bi1 Bia My + My — Ms + M- M3 + M5
b 3 —
Asr Ao Bo1 Bao Moy + My My, — My + M3 + Mg
M; = (A11 + Ags) * (B11 + Ba2) M5 = (A11 + Aj2) * Bao
My = (A2 + Agz) * By Mg = (A21 — Aq1) * (B11 + Bi2)
M3 = Aq1 % (B2 — Baso) M7 = (A12 — Agg) x (Bay + Basg)

My = Ags % (B — B11)

® Strassen’s algorithm has an asymptotic complexity O(nlogﬂ)!

C.-S. Zhang, AMSS 23

25

’ * _
Cannon’s Algorithm for MatMul NEMIS
A A Sub-block MatMul
AOOBOO AOlBll
X X
A11B10 A10301
VP x /P processor layout Initial alighment

¢

Number of entries moved:
+Ag1B10 +Ap0Bo1

Mz _ 2
VP x2(5)? =

v

o tA10Bo0 tA11B11
Lower bound on communication!

¢

Lynn Cannon 1969 After first shift

C.-S. Zhang, AMSS 25

5

Optimizing Communication NCMIS

In the fast matrix-multiplication example, we not only reduced communication ...

We can actually minimized data movement in some cases!

Q: Can this be done in general?

Algorithms involving three embedded loops can be optimized in a similar way
BLAS3 (GEMM, triangular solve)

Cholesky, LDL™, LU, QR (Regular LU with partial pivoting does not attain the bound)
Eigenvalue and SVD

Graph algorithms (shortest paths between all pairs)

The lower bound can also be applied to sparse matrices

Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz, Minimizing Communication in Numerical
Linear Algebra, SIAM Journal on Matrix Analysis and Applications 2011 32:3, 866-901

C.-S. Zhang, AMSS 26

A More Challenging Case: SpMV ' NS¢M1§

y=y+Ax Fast Memory

A

A

1,1 1,2 1,3 2,2 23 2,4 2,7 3,2
1 2 3 4 1 2 3 4
1 2 3 4 1 2 3 4

Read X 3 Read X 1

23 2,4 2,7 3,2 23 2,4 2,7 3,2
5 6 7 8 1 2 3 4
1 2 3 4 1 2 3 4

Read X 1 Read X 1

C.-S. Zhang, AMSS

27

5

Reordering Sparse Matrices NCMIS

® Sparse matrices are a lot more difficult to deal with and to analyze

® Use different data structures and optimized lib (Review Lecture by Weifeng Liu)

® Use different ordering to improve efficiency (depends on what solver you will use)

6 9 121 14

9 10| 11| 12

10| 13| 15| 16

13| 14| 15(16

BFS =» Cuthill-McKee
=» Reduce bandwidth?
=» Q: When does this work?

Bandwidth = n

Locality? =» Cache performance

Stencil computation is better

C.-S. Zhang, AMSS 28

Considerations on lterative Solvers

Reducing communication cost of iterative solvers

Parallel Iterative Solvers, Revisited

AR T F XK

| 2 BtRLILIEER
Elizsdlea) AN (=

.‘
| B

Tates

AN
SRR

‘!‘V

v

SIED R BRI
SREERRR/AN
FEMFFIFE

s

.

MMM.
=
& "“;e,:xf{?;’:“:'?\
VASVAY AV
m A
NSy
37
S
XY A

AT AT
2%

Ghost[X
EEHIT ISEap=I ASEE DXl
HIE(EEE

C.-S. Zhang, AMSS 30

5

GMRES Method, Revisited NCMIS

® The generalized minimum residual (GMRES) method finds:

min || — Ael|o
eel(A,r)

in the Krylov subspace
Km(A,r) :=span{r, Ar, A*r,..., A™ 1r}
® We form an orthonormal basis of the Krylov subspace
Km :=span{qi,q2,...,qm}
® By applying the modified Gram-Schmidt (MGS) algorithm, we form H and then solve the least

squares (LSQ) problem with H

Q: Remember why we use this implementation? We tried to: (1) avoid numerical instability; (2) use

iterative procedure to stop at any iteration. But communication was not concerned!

C.-S. Zhang, AMSS 32

Data Movement in GMRES

w=Ag1

A\ 4

MGS(w, qo,q1,- - -, qi—1)

A\ 4

Update ¢q; and H

A

1 =1+ 1

A\ 4

Solve LSQ Problem

1< m

® Analyzing data movement is difficult
B Parallel architectures
B Parallel data layout

B Parallel algorithm

® SpMV No chance for data reuse

B Words moved ~ O(m - nnz)

B Number of messages ~ 0(m)

® MGS lterative
B Words moved ~ O(m? - n)

B Number of messages ~ 0(m? - log P)

C.-S. Zhang, AMSS

33

Communication-Avoiding GMRES

W = [Aqo, A%qo, - .., A™qo]

\ 4

Q, R] = TSQR(W)

A 4

Build H

\ 4

Solve LSQ Problem

® Reorganize the algorithm
B Identical mathematical method (with exact FP)
B Use the matrix powers kernel

B Use QR factorization instead of MGS

® Matrix Powers
B Words moved ~ 0(nnz)

B Number of messages ~ 0(1)

® TSQR
B Words moved ~ O(m - n)

B Number of messages ~ O(log P)

C.-S. Zhang, AMSS

34

b -
n.".‘:;;';b\%('\ \

LK y 4

Performance of CA-GMRES " NCMIS

0Matrix cant (FEM cantilever): Relative 2-norm residual (log scale)

10 o VA H 1
— GVRES(E0) ® The “easy” implementation of CA-GMRES is not
e e Monomial-GMRES(15,4) .

10" }|a 4 Newton-GMRES(15,4)] always stable because the matrix powers kernel
x % Monomial-GMRES(20,3)
v v Newton-GMRES(20,3) | may produce linearly dependent vectors

107 <

® Use the Newton basis (shifted polynomials
based on the eigenvalues of the upper

Hessenberg matrix) proposed by Bai, Hu, and

Relative 2-norm residual (log scale)

Reichel, 1994
W = [(A— MI)qo, ..., I (A — A;T)qo]

200 400 600 800 1000
Iteration count

Source: Marghoob Mohiyuddin, Mark Hoemmen, James Demmel, and Katherine Yelick. 20009.
Minimizing communication in sparse matrix solvers. In Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis (SC '09).

C.-S. Zhang, AMSS 35

Conjugate Gradient Method, Revisited | NSCMIS/

Source: Erin
Iteration Loop SEeEIRIIM:IIE

SpMV is the most expensive part: more floating-point calculations required and

not cache-friendly (memory-bound)

Sparse Matrix
X Vector

Algorithm 2: Conjugate gradient method

%% Given an initial guess uw and a tolerance g;
ref-Au per; Inner Products
while || >e€

o« (r,r)/(Ap,p);

U <«—u—+ap;

7« r— oAp;

B — (7,7)/(r,7);
P 7+pp; Inner Products
Update: u<«u, r« 7, p« p;

© 00 N O ook~ W -

end

[y
(=)

Inner products are expensive for communication: not much computation cost

End Loop

but global all-reduce is necessary (communication-bound)

C.-S. Zhang, AMSS 36

¥,

AKX) 4

Three-Term Recurrence CG T NEMIS

® Based on the three-term recurrence formulation for residuals M. Hoemmen 2010

ree1 = pe(Tk — YeATE) + (1 — pr)Tr—1

and the residuals are orthogonal to each other, we have This formulation (usually

(T, Tk) named as CG3) does not
A?‘k, Tk)

7k=(

involve the conjugate

—1
(1 Yk (’rk, Tk) 1) directions. This is desirable
Pk = —
Yk—1 (Tk—la Tk—l) Pk—1 for deriving s-step CG

® We can derive a new recurrence relation algorithms.
Tk+1 = Pr(Tk +YeTk) + (1 — pr)Tr—1

Ref: Y. Saad, “Iterative Methods for Sparse Linear Systems”, SIAM, Philadelphia, Second Ed., 2003

C.-S. Zhang, AMSS 37

s-Step CG3 Method

NCMIS

4

Algorithm 19: s-Step conjugate gradient method Outer Loop Source: Erin
1 |%% Given an initial guess w1 and a tolerance €; Carson, PP18
2 |71 «— f — .Aul; ;
3 |for k = 0:MaxIter Compute basis
. for § = 1:s O(s) SPMVs
5 Wsk+j — ATskt+j; %% P2P communication
2
6 Wsk+j — (Psk+j,Tsk+j);i %% Test for convergence; All_reduce O(S) Inner
7 Vsk+j < (Wsk+j,Tsk+5) 7 Pro:ua_s (O_ne
5 e < e Goal: CA-CG synchronization)
9 if sk+j ==
10 i—1;
Paleeg Inner Loop

11 else
12 €1 — Vshtj/Vsk+i—1i
13 £2 — Hotti/tabrit; Local Vector
14 psk+j — (1 — E1éa/pskrj—1)""; Updates (no
16 Tskrj+1 < Pskts(Tshts + VsktjTsk+j) + (L — Psktj)Tok+j—1;
17 Tsk+j+1 < Psk+j(Tsk+j — Yok+iWsk+j) + (1 = Pokts)Tok+j—17 End Inner Loop
18 end
19 d

- End Outer Loop

Ref: Mark F. Hoemmen, Communication-avoiding Krylov subspace methods, Ph.D. thesis, 2010

C.-S. Zhang, AMSS

38

Communication-Avoiding CG ﬁ:?s’

® \We have the recurrence relation for residual M. Hoemmen 2010

Tsk+j4+1 = Psk+j ("“sk+j - %k+jA7“sk-+j) T (1 — Psk-+j)7“sk+j—1

® Rearrange the terms as follows:

J
Arsk+j — T'sk+5—1 + T'sk+5 — T'sk+j5+1
Psk+37sk+j Psk+j57sk+j Psk+j57sk+j

® \Write the recurrence in terms of matrix form:

A[Tsk—l—la o« o 7T8k+s:| — T'sk€1 + ['rsk+17 SR 7T8k+s+1]Tk

Ry Ry,

where Tk is a (s + 1)Xs tridiagonal matrix in terms of Psk+1s5: -+ Psk+ss Vsk+1s+ -y Vsk+s

C.-S. Zhang, AMSS 39

From s-Step CG To CA-CG

5,

NCMIS

Use Matrix Powers Kernel to form V,, s

Outer loop

Compute a vector of 2s + 1 entries dgy 4 j

Compute fisk+j, Vsic+jr Vsk+jr aNd Psie+

Inner loop (s steps)

Vk = [vSk-l-la JORN ’Usk:+s]

{’Usk+i}z.=1:s+1 = span{Tsg+1, ATsk41, -+, A°Tskt1}

is a basis of the Krylov subspace

Wsktj = ATskr1 = [Ri—1, Vi| dsk+;

Update Xgp4j+1 and T4 j+1

® The matrix powers kernel needs to load the
coefficient matrix once

® |n exact arithmetic, the algorithm produces the
same results as the standard CG

® Further improvement by using a inner product

coalescing kernel Sec 5.4.4, M. Hoemmen 2010

C.-S. Zhang, AMSS

40

5

Pipelined Conjugate Gradient Method NCMIS

Source: Erin
lteration Loop RRSENUAZSR

Algorithm 20: Pipelined conjugate gradient method

%% Given an initial guess u© and a tolerance ¢;
r—f—Au, pe—r;

s—Ap, w— Ar, z — Aw;

o (r,r)/(p,s);

while |r||>e¢

U «—u+ap;
T < T —Qs;
@ —w— az; Inner
Z— AWw; %% SpMV, asymc PrOdUCtS
B < (7,7)/(r,7);
PR) B

(w7"n)_(ﬁ/a)(F’F) !
p—T+pBp;
S—w+pPs;
Z<— Z+Bz; %% Results of SpMV needed here!

Precond

© 00 N O ot ok W N =

=
= o

=
N

—
w

=
[S1 SN

Update: u<« U, 7«7, p<— D, W W, S« 8§, 2« 2;

end

—
(o)

Ref: Ghysels, Pieter and Wim Vanroose. “Hiding global synchronization latency in the preconditioned
Conjugate Gradient algorithm.” Parallel Comput. 40 (2014): 224-238.

C.-S. Zhang, AMSS 41

Taking Preconditioning Into Account

—=— AMG —=— AMG
- —o— GAMG 320 - —o— GAMG
140 - .
- 280
120 - 1
240
o 100 w]
S | T 200 -
S g
o 804 Q
) © 160 4
£ £
= 601 i— 120 -
3 " 3
S 404 e = 80
20 - 40 -
o777 o1 T
0 128 256 384 512 640 768 896 1024 0 128 256 384 512 640 768 896 1024
Number of processing cores Number of processing cores

Source: A stable and scalable hybrid solver for rate-type non-Newtonian fluid models, Y.-J. Lee, W. Leng,
and C.-S. Zhang, Journal of Computational and Applied Mathematics, 300, 103-118 (07/2016).

C.-S. Zhang, AMSS 42

Multigrid Methods, Revisited

Algorithm (Setup step for multigrid methods)

For a given sparse matrix A € RY*" we apply the following steps:
1. Obtain a suitable matrix for coarsening A € RN *Ns (for example, A f = Agm);
2. Define a coarse space with IV, variables (C/F splitting or aggregation);

3. Construct a prolongation (usually an interpolation) P € R¥7s*Ne:

3.1. Give a sparsity pattern for the interpolation P;
3.2. Determine weights of the interpolation P;

4. Construct a restriction R € RV<*Ns (for example, R = PT);

5. Form a coarse-level coefficient matrix (for example, A. = RA;P);

6. Give a sparse approximation of A. whenever necessary.

C.-S. Zhang, AMSS 43

Optimizing Parallel Multigrid M

Permutation Autotuning data structures

Predicting number of nnz

Transpose RAP P’AP

-
- Software prefetching
N1 o

Prolongation Aggregation

Smoother Better
® Scalable algorithms

Inner Product Fusing operations

Avoid branching

Comm. avoiding / hiding

® [ow complexity

Mixed precisions

Coarsest solver ® Fast convergence

C.-S. Zhang, AMSS 44

Reading and Thinking

SIAM J. MATRIX ANAL. & APPL. (©) 2011 Society for Industrial and Applied Mathematics
Vol. 32, No. 3, pp. 866-901

MINIMIZING COMMUNICATION IN NUMERICAL _ ,
LINEAR ALGEBRA® Do you do extremely large simulation

GREY BALLARD', JAMES DEMMELY, OLGA HOLTZ}, axno ODED SCHWARTZ!

now? In the future?

Abstract. In 1981 Hong and Kung proved a lower bound on the amount of communication (amount of
data moved between a small, fast memory and large, slow memory) needed to perform dense, n-by-n matrix H oW d o) yo u ana Iyze th e pe rfo rmance
multiplication using the conventional O(n?) algorithm, where the input matrices were too large to fit in the
small, fast memory. In 2004 Irony, Toledo, and Tiskin gave a new proof of this result and extended it to

the parallel case (where communication means the amount of data moved between processors). In both cases Of yO ur pa ra I Iel COd e ?

the lower bound may be expressed as Q(#arithmetic_operations //M), where M is the size of the fast memory

(or local memory in the parallel case). Here we generalize these results to a much wider variety of algorithms, A : y

including LU factorization, Cholesky factorization, LDLT factorization, QR factorization, the Gram-Schmidt ® IS th e COd e communication bO un d ?
algorithm, and algorithms for eigenvalues and singular values, i.e., essentially all direct methods of linear al- . . .
gebra. The proof works for dense or sparse matrices and for sequential or parallel algorithms. In addition to o H ave yO Uua p pl |ed d ny communication
lower bounds on the amount of data moved (bandwidth cost), we get lower bounds on the number of messages

required to move it (latency cost). We extend our lower bound technique to compositions of linear algebra avo | d | n g or h | d | n g a I g o) r|th m S?

operations (like computing powers of a matrix) to decide whether it is enough to call a sequence of simpler
optimal algorithms (like matrix multiplication) to minimize communication, or whether we can do better.
We give examples of both. We also show how to extend our lower bounds to certain graph-theoretic problems. DO yO u t h | N k CA an d C H a I g (0] rlt h ms
We point out recently designed algorithms that attain many of these lower bounds.

Key words. linear algebra algorithms, bandwidth, latency, communication-avoiding, lower bound Wi ” he I p? Why?

AMS subject classifications. 68Q25, 68W10, 68W15, 68W40, 65Y05, 65Y10, 65Y20, 65F30

DOIL. 10.1137/090769156

C.-S. Zhang, AMSS 45

Contact Me

® Office hours: Mon 14:00—15:00
® Walk-in or online with appointment

® zhangcs@lsec.cc.ac.cn

® http://Isec.cc.ac.cn/~zhangcs

My sincere gratitude to:

Wei Xue, Bin Dai

C.-S. Zhang, AMSS

46

mailto:zhangcs@lsec.cc.ac.cn

HERZRAE Fast Solvers for
EZoa{y iR Large Algebraic Systems

Chensong Zhang, AMSS

http://Isec.cc.ac.cn/~zhangcs Release version 2022.078

