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Introduction
Time to engage mixed-precision computing



Rounding errors exist and 

accumulate! This may 

prevent the computation 

from achieving sufficient 

accuracy.

Accuracy of Direct Solvers, Revisited

C.-S. Zhang, AMSS 4

l Backward perturbation analysis of the LU decomposition

l Accuracy of direct solution methods

l Forward error of matrix-multiplications (depends on num of inner multiplications)

l Floating-point computation (IEEE compatible) N. Higham, 2002



Direct Methods + Iterative Methods, Revisited
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Iain Duff. The SIAM Conference on Applied Linear Algebra. October 26-29, 2009. Monterey, California.

l Multigrid methods: Using direct method as coarse grid solver

l Domain decomposition methods: Using direct method on local subdomains and “direct” 

preconditioner on interfaces

l Partial factorization: Incomplete factorizations as preconditioners (like ILU methods)

l Direct method used in part of a preconditioner (like MSP for the well part)

l Block iterative methods: Using direct method on sub-blocks (like Schwarz preconditioners)

l Low-precision direct method as a preconditioner (like GMRES-IR)

l Iterative refinement: improve precision of direct solvers (like LU-IR)

l Factorization of nearby problem as a preconditioner



Some Historical Comments
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l Long long ago … computing machines are very different from now

• Fixed-point arithmetic è Floating-point: SP, DP, QP, …

• Floating-point arithmetic: Different standards for different machines

• IEEE 754 Standard, Intel 8087 coprocessor, …

l Multi-precision arithmetic simulators available for a long time

• Maple, Mathematica, …

• Julia, half, numpy, …

l Solving an algebraic system to certain accuracy on a computer:

• If the problem is ill-conditioned (sensitive to perturbation) …; see Lecture 2

• If the precision is low, quality of solution could be very bad

• The way to improve quality is using higher precision (too costly) or IR



l “Because it’s there…” George Mallory, 1923

l Fast hardware with mixed-precision capability is available

l Make less data movement (see Lecture 6)

l Fill more data in the cache

l Traditional algorithms need to be modified

l Traditional algorithms must take advantage

l The main driving force is DL and it will continue 

Why Mixed-Precision Now

C.-S. Zhang, AMSS 7

Tensor Cores 
introduced 
in Volta, 4X 
faster than 

regular FP16

Half precision, 
but not 2X faster



Driving Force: Deep Learning
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Ref: J. Dean, "The Deep Learning Revolution and Its Implications for Computer Architecture and Chip
Design," 2020 IEEE International Solid-State Circuits Conference (ISSCC), 2020, pp. 8-14.

l They are very tolerant of reduced-precision 

computations

l The computations performed by most models are 

compositions of a relatively small handful of dense 

linear algebra calculations . . .

l Many of the mechanisms developed over the past 

40 years to enable general-purpose programs to run 

with high performance on modern CPUs . . . are 

unnecessary for machine learning computations Fused multiply–add (FMA) used in Tensor Core



Range of FP Representation
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l For fp16, it is very likely to overflow / underflow; for bfloat16, low precision

l We can ignore the small numbers (underflow)

l But the real trouble is: how to handle the large numbers?

l Need to scale the problem first

Number of bits + 1



Taking A Detour 
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l Mixed-precision or multi-precision: More accurate result è Better performance

l How to measure performance? We can compare wall time (actual computing time)!

l But we might solve different problems with different solvers on different computers …

Source: https://www.geeksforgeeks.org/computer-organization-von-neumann-architecture/

Computer Hardware Model

Computer Performance Model

Consider the

performance of a

computer algorithm

Ø computer

Ø algorithm

Ø problem
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Memory Hierarchy
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l Associativity (mapping)
l Eviction (replacement) policy
l Multilevel caches (L1, L2, L3)
l Multiple cores (false sharing)
l Cache usage (code, data)
l Size of cache (performance vs price)
l Size of cache line (64B for Intel L1 cache)
l Byte or word addressing

A Simplified Cache Mechanism

C.-S. Zhang, AMSS 13

Cache line

DRAM
Request a data from memory

Check whether it is in the cache

Hit Miss

Check whether the line is dirty

Write back Overwrite

Direct-Mapped Cache

An overly 
simplified 
example

Y N

Y N

Good locality Large  latency (10+ cycles)



Cache and Locality
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l Program usually access a relatively small portion of the memory

n Temporal Locality: If an item is referenced, it might be referenced again soon

n Spatial Locality: If an item is referenced, “nearby” items tend to be referenced

l Misses at start up: cold start

l Hit time: 1 - 4 cycles çè Miss penalty: 8 - 32 cycles (extra work)

Valid Tag Data (Cache Block/Line)

An example:

l 1KB direct-mapped cache

l 32 bits memory (Byte) address

l Block offset: 5 bits è size: 32

l Set index: 5 bits è #Lines: 32

l Cache line size = 32 Bytes

0

31
......

Byte31 Byte0Byte30 … Byte31

Memory part Byte63 Byte32Byte62 … Byte33

1023 9921022 … 993

0931

Cache Tag Block OffsetSet Index

4

1

Hennessy, John L., and 
David A. Patterson. 
Computer architecture: 
a quantitative approach. 
Elsevier, 2011



A Sample CPU Specific
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Intel® Core i9-9980HK

l Total num of cores = 8, num of threads = 16 

l Maximum CPU clock speed = 5.00 GHz

l Intel Smart Cache: 

ü L1 = 512 KB (cache line: 64 Bytes)

ü L2 = 2 MB

ü L3 = 16 MB

l Maximum memory size = 128 GB

l Power consumption (TDP) = 45 Watt

l Maximum operating temperature = 100 °C 

l Manufacturing process technology = 14 nm

https://askgeek.io/en/cpus/Intel/Core-i9-9980HK

2019 Production



Memory Address Spaces
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User Process

Physical Memory

Virtual Page Num Offset

Translation 
Lookaside 

Buffer 

Page

Frame Num Offset

Frame 1 

Frame 2 

Frame 3 

...

Frame k 

Address 
Translation

Virtual Address Physical Address

Stack

…

Heap

Data

Code
Page Table

OS

MMU

Frame



Communication, Revisited
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Communication è Data Movement

l Physics: Longer the distance, higher 

the cost

l Technology: Increase speed with 

different methods

l Economy: Manufacturing cost is also 

important

l Combined: Computing ability (FLOPS) 

improves faster than communication 

ability



Machine Balance Over Time
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l Computing power is (relatively) cheap

l Data movement is slow

l Data movement will be slower

l Take-home message: 

Make less data movement!

The gap between the computing 

power and the memory bandwidth 

keeps increasing in the last 45 years

Source: A. Abdelfattah et al. “A survey of numerical linear algebra methods utilizing mixed-precision arithmetic”. 
The International Journal of High Performance Computing Applications. 2021;35(4):344-369. 



Measuring Performance
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WallTime = max( #"# GFLOP
Peak GFLOP/s , DataMove GB

Bandwidth GB/s )

#"#
WallTime = min(Peak GFLOP/s , #"# FLOP

DataMove Byte×Bandwidth GB/s) Arithmetic Intensity (AI or CI)

Source: Introduction to the Roofline Model, by Samuel Williams, Lawrence Berkeley National Lab

How much time SHOULD a program cost? Is my code fast
ENOUGH? Will my boss be happy to see this code?

Can we optimize them? How about now? And now?A Simpler Architecture
Roofline Model



CPU-Bound vs Memory-Bound
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a[i] = b[i] + scalar * c[i]: 2 FLOP, 2 Read, 1 Write, CI = 2/(3*8) = 0.083

7-point stencil: 7 Flop, 1 Read (cache-hit), 1 Write, CI= 7/(2*8) = 0.438

Source: Samuel Williams, LBNL
https://crd.lbl.gov/divisions/amcr/computer-
science-amcr/par/research/roofline/introduction/

Machine balance is typically 
5—10 FLOP/Byte

Why is my code slow? 

l Does it go anywhere 

near the roofline?

l Is it CPU or Memory or 

Comm bound?

Roofline Model



A Sample TRIAD Code
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Source: https://wiki.ncsa.illinois.edu/display/AAG/Copy+of+triad.c+and+vector+optimization



Roofline Model Papers
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Source: https://www.connectedpapers.com/



Iterative Refinement Techniques
Iteratively improve accuracy of linear solvers



Mixed-Precision Algorithms
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l Research on mixed-precision algorithms nowadays: 

Try to accelerate the applications by using lower-precision formats while maintaining high accuracy 

results

l Main goals:

• Efficient memory access (also better cache performance)

• Less data movement (also less energy consumption)

• Shift gears: Optimize number of flops in good old days

èèè Fast Computation + Fast Communication

l Your generation will face “slower” communication (relative to computation)!



Floating-Point Number Storage Format
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Ref: Higham, Nicholas J. and Mary, Theo. ”Mixed Precision Algorithms in Numerical Linear Algebra”,
Acta Numerica, to appear

l Fixed-size FP format

l Representation range

l Significand / Mantissa

l Unit round-off / precision

l Machine epsilon

l Little-endian or big-endian

l IEEE 754-1985 (fp32, fp64)

l IEEE 754-2008 (fp16, fp128)

IEEE single-precision floating-point number

With leading 
1, normalized

Norm
al

significand



IEEE754 Single-Precision Numbers

C.-S. Zhang, AMSS 26

Exponent Decimal Value Shift-127 Value

1111,1111 255 128

0111,1111 127 0

0000,0001 1 -126

0000,0000 0 ???
Reserved for 
0.0 (all bits 
are 0)

1.f * 2 0000,0000 ? 
No! Need special 
treatment …

1.0 * 2 0111,1111

Overflow
2^128 ≈
3.40E38

Min Normal
2^(-126) ≈
1.18E-38

Q: What do we 
do if a number 
falls out of the 

range?

Exponent Mantissa Purpose

0 zero 0.0

0 nonzero subnormal

1-254 anything normal

255 zero INF

255 nonzero NaN

Reserved INF/NAN

Max number
1.1……1 * 2 1111,1110



IEEE754 2008 Version
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Source: Dongarra J, Grigori L, Higham NJ. “Numerical algorithms for high-performance computational
science”. Phil. Trans. R. Soc. A 378: 20190066, 2020



Subnormal Floating-Point Numbers
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(–1)s × 20-127+1 × 0.f
l Subnormal numbers have all zero bits for the exponent

l Numbers that are smaller than the smallest normal positive number (consider positive only)

l Subnormal numbers are useful in filling gaps of floating point scale near zero

l Shift by -126 instead of -127! Why +1? Remember the exponent of the smallest normal number?

l Cannot add leading ONE any more: less bit è less accurate

l The largest possible subnormal number is 0.111…11 x 2-126 < 1.0…0 x 2-126

l The smallest possible subnormal number is 0.000…01 x 2-126 ≈ 1.40E-45

l Floating-point operations in the subnormal region can be very very slow

l Flush subnormals (denormals) to zero using compiler arguments



Simple Examples of FP Arithmetic
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Source: https://homepage.divms.uiowa.edu/~ghosh/

Unit round-off



Working With Mixed Precisions
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l Compute matrix-vector multiplications in finite precision (forward error):

l Compute residual in finite precision (forward error):

l How about working on two-precision computation?

First compute residual in precision 𝑢 and then store it in precision 𝑢

l Pessimistic bounds! Improvement using blocking, probabilistic error bounds, ...

N. Higham, 2002



Accuracy of Direct Solvers, Revisited

C.-S. Zhang, AMSS 31

l Backward perturbation analysis of the LU decomposition

l Accuracy of direct solution methods

l Forward error of matrix-multiplications (depends on num of inner multiplications)

l Floating-point computation (IEEE compatible) N. Higham, 2002



Iterative Refinement Methods
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l Sometimes, the condition number of a linear system could be very large

l Direct solvers might not be able to give a solution as accurate as we wanted (or thought)

l This has been noticed long ago (Wilkinson 1948), but using high-precision everywhere is costly

l We can improve precision iteratively using the iterative refinement

Higham, N. and Mary, T. “ Mixed Precision Algorithms in Numerical Linear Algebra”, Acta Numerica



Accuracy of IR Methods
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Error Estimate (Carson and Higham 2018)

Maximum nnz
in any row of 
the equation

Need to be
sufficiently small

The limiting accuracy depends on the
residual and work precisions, but does not
depend on the solve precision, the initial
guess, or how the system (Line 5) is solved.

Convergence factor Condition number



LU-IR

C.-S. Zhang, AMSS 34

l LU factorization only need to be computed once for each coefficient matrix 

l The Carson-Higham theorem can be applied to this method

l Less stable but faster factorization methods can be used to improve efficiency (e.g. in SuperLU and 

PARDISO) [Li and Demmel 1998; Arioli, Duff, Gratton, and Pralet 2007]



If                                                is small, GMRES-IR will converge till 

GMRES-IR
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Accuracy of IR Methods
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l GMRES-IR shows advantages 

compared with LU-IR in 

practice

l GMRES-IR is used in HPL-AI

l One can also use GMRES for 

the original equation instead of 

the error equation

l One can use low precision for 

GMRES iterations

l Carson and Higham, SISC, 2017; 

Haidar et al. 2020; …

Source: Erin Carson and Nicholas J. Higham. “A New Analysis of Iterative 
Refinement and Its Application to Accurate Solution of Ill-Conditioned 
Sparse Linear Systems”. SIAM Journal on Scientific Computing 2017 39:6, 
A2834-A2856



Different Versions of IR
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l Traditional IR methods for ancient hardware (some computers can compute residual using higher precision 

than working precision without extra work); since 1970s these methods die due to such hardware does not 

exist any more.

l Fixed-precision IR methods (improve stability)

l IR methods with low-precision solvers: emphasize on efficiency and energy consumption



Mixed-Precision Algorithms
A few selected topics on mixed-precision numerical linear algebra



Blocked Algorithms
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l Simple summation (forward error analysis)

l Blocked summation improves accuracy



Further Improvement on Summation
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Blanchard, Pierre, Nicholas John Higham and Théo Mary. “A Class of Fast and Accurate Summation
Algorithms.” SIAM J. Sci. Comput. 42 (2020): A1541-A1557.

l So the basic idea is to reduce the number of additions in the summation

l A more advanced algorithm (FABsum) can give error bound independent of 𝑛 to first order

l Using hardware: Fused Multiply-Add (FMA)

Not only faster in computation

No FMA:

With FMA:

But also more accurate (by a factor of 2)!



Considerations for Sparse Problems
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l Much harder to predict savings of MP iterative methods for sparse matrices

l LU factorization of a sparse matrix

§ Reordering and analysis phase of the algorithm does not involve floating-point arithmetic and so

does not benefit from reducing the precision

§ LU can generate cascading fill-ins (small multipliers combine to produce subnormal numbers)

l Even if matrix entries can be scaled from double to normalized single precision numbers, subnormal

numbers may still be generated during the factorization

l Floating-point operations on subnormal numbers can be very slow è This can cause significant

performance loss

Ref: Zounon M, Higham NJ, Lucas C, Tisseur F. “Performance impact of precision reduction in sparse
linear systems solvers”. Peer J Computer Science 2022, 8:e778



Mixed-Precision GMRES
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l If using same precision, then this is the restarted GMRES method (see Lecture 3)

l FGMRES as outer iteration and GMRES as inner solver (Buttari et al. 2008)

l FGMRES as outer iteration and low precision LU as inner solver is stable (Arioli and Duff 2009)

A. Abdelfattah et al., “Advances in Mixed Precision Algorithms: 2021 Edition”. doi:10.2172/1814677.

Inner-o
uter it

eratio
ns 



Performance of MP-GMRES
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l MP-GMRES has almost same convergence behavior as DP-GMRES, much better than SP-GMRES

l GEMV can be speed-up by 1.28 and 1.57 times

l SpMV can be speed-up by 2.48 times!!!

l But … such information is not enough! How about Preconditioned GMRES?
Source: A. Abdelfattah et al., “Advances in Mixed Precision Algorithms: 2021 Edition”. doi:10.2172/1814677.



Performance of Preconditioned MP-GMRES
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Source: Abdelfattah, A. et al, “Advances in Mixed Precision Algorithms: 2021 Edition”. doi:10.2172/1814677.



Robustness of Scaling Algorithms
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Source: Haidar A, et al., 
Mixed-precision iterative 
refinement using
tensor cores on GPUs to 
accelerate solution of
linear systems. Proc. R. 
Soc. 2020



Mixed-Precision Multigrid
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Ref: McCormick, Stephen F., Joseph Benzaken, and Rasmus Tamstorf. “Algebraic error analysis for
mixed-precision multigrid solvers”. SIAM Journal on Scientific Computing 43.5 (2021): S392-S419.



Sources of Error in Simulation, Revisited
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l Quantization error: The error caused by representing algebraic system in floating-point storage 

formats

l Rounding error: The error caused by storing an exact solution to the algebraic system in floating-

point storage formats

l Quantization error might be the dominating term!?

Ref: Rasmus Tamstorf, Joseph Benzaken, and Stephen F. McCormick. “Discretization-Error-Accurate
Mixed-Precision Multigrid Solvers”. SIAM Journal on Scientific Computing 2021 43:5, S420-S447

Floating-point error



Some Software with MP Support
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Software Description MP Support

GINKGO A modern linear algebra library engineered towards 

performance portability, and productivity

ü memory accessor that encapsulates on-the-fly compression for 

decoupling the memory precision from the arithmetic precision

ü mix & match precisions in the sense of combining linear operators 

and vectors stored in different precision formats without explicit 

conversion

ü mixed precision SAI preconditioning or CB-GMRES

Trilinos, Kokkos

An object-oriented software framework for the 

solution of large-scale, complex multi-physics 

engineering and scientific problems on new and 

emerging high-performance computing (HPC) 

architectures.

ü half precision capabilities in Kokkos Core

ü single precision MueLu (multigrid) and IfPack2 (factorization- based) 

preconditioners

ü GMRES-IR solvers

MAGMA
dense (BLAS and LAPACK), sparse, and batched linear 

algebra routines for single nodes with GPUs
ü mixed-precision iterative refinement solvers based on LU, Cholesky, 

and QR factorizations



Mix-Precision NLA Papers
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Source: https://www.connectedpapers.com/



Reading and Thinking
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l Did you have trouble with floating-

point precision related problems?

l Did you experience trouble to reach 

desired precision in computation?

l What was the reason? How did you 

handle them? 

l Is the solvers or other algorithms you 

use numerically stable? 

l Can you use mixed precision some 

where in your code?



Contact Me
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l Office hours: Mon 14:00—15:00

l Walk-in or online with appointment

l zhangcs@lsec.cc.ac.cn

l http://lsec.cc.ac.cn/~zhangcs

C.-S. Zhang, AMSS
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