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Section 07. Multilevel Iterative Methods Example 1. Two-level domain decomposition

Domain Decomposition Method
Revisiting two-level additive Schwarz method:

Bas,2 := I0A
→1
0 IT

0 +
n∑

i=1

IiA
→1
i

IT

i
and ω(Bas,2A) ↭ 1 + ε→1

Problem settings:
Let V = H1

0 (!), ! =
⋃

J

j=1 !j , and Vj := {v → V : supp v ↑ !̂j} ↑ V .

Define finite-dimensional space V0 ↑ V (coarse space) on a quasi-uniform mesh H := diam(!j).

This way, we have a two-level space decomposition V = V0 + V1 + · · · + VJ .

Solution method:
Applying the SSC method based on the above space decomposition

Using exact solvers on the coarse space as well as on each sub-domain

This defines an abstract multiplicative Schwarz method (two-level DDM)

Q: How fast does this abstract two-level domain decomposition method converge?
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Space Decomposition for DDM

A technical tool (partition of unity):
We define a partition of unity function using ϑj → C1(!) (j = 1, . . . , J) such that

(1) 0 ↓ ϑj ↓ 1 and
∑

J

j=1 ϑj = 1;

(2) supp ϑj ↑ !̂j ;

(3) max |↔ϑj | ↓ Cω/H , where Cω depends on the relative overlap size ε.

Space decomposition:

This way, for any function v → V , we can obtain its decomposition

v = v0 + v1 + · · · + vJ ,

where
v0 → V0 and vj := ϑj(v ↗ v0) → Vj , j = 1, . . . , J.
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Convergence Analysis of DDM

We can show the method converges uniformly by applying the XZ identity for SSC.

Based on the above decomposition, we have
∑

J

j=1 vj = v ↗ v0 and

J∑

j=0

∣∣∣!j

J∑

i=j+1

vi

∣∣∣
2

1
=

J∑

j=0

∣∣∣!j

J∑

i=j+1

ϑi(v ↗ v0)
∣∣∣
2

1
=

∣∣∣!0(v ↗ v0)
∣∣∣
2

1
+

J∑

j=1

∣∣∣!j

J∑

i=j+1

ϑi(v ↗ v0)
∣∣∣
2

1
.

Since !j’s : V ↘≃ Vj (j = 1, . . . , J) are A-projections, we have |!jw|1 ↓ |w|1. Hence it is easy to see that
∣∣∣∣!j

J∑

i=j+1

ϑi(v ↗ v0)

∣∣∣∣
2

1

=

∣∣∣∣!j

J∑

i=j+1

ϑi(v ↗ v0)

∣∣∣∣
2

1,!̂j

↓
∣∣∣∣

J∑

i=j+1

ϑi(v ↗ v0)

∣∣∣∣
2

1,!̂j

↓
∥∥∥∥
(∑

i>j

ϑi

)
↔(v ↗ v0)

∥∥∥∥
2

0,!̂j

+

∥∥∥∥↔
(∑

i>j

ϑi

)
(v ↗ v0)

∥∥∥∥
2

0,!̂j

↓
∣∣v ↗ v0

∣∣2
1,!̂j

+ C2
ω
H→2

∥∥v ↗ v0

∥∥2

0,!̂j
.
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Convergence Analysis of DDM, Continued

By summing up all the terms, we have

J∑

j=0

∣∣∣!j

J∑

i=j+1

vi

∣∣∣
2

1
↓

∣∣v ↗ v0

∣∣2
1

+
J∑

j=1

∣∣v ↗ v0

∣∣2
1,!̂j

+ C2
ω
H→2

J∑

j=1

∥∥v ↗ v0

∥∥2

0,!̂j

↭
∣∣v ↗ v0

∣∣2
1

+ C2
ω
H→2

∥∥v ↗ v0

∥∥2

0
,

where the hidden constant depends on the maximal number of overlaps in domain decomposition.

Because v0 could be any function in V0, in view of the simultaneous estimate, we obtain

J∑

j=0

∣∣∣!j

J∑

i=j+1

vi

∣∣∣
2

1
↭ |v|21.

Proposition (Uniform convergence of two-level DDM)

The abstract two-level DDM with finite-dimensional coarse space correction converges uniformly.
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Nested Space Decomposition
Nested meshes:

Consider a sequence of nested meshes Ml (l = 0, . . . , L) generated from an initial mesh M0 by
uniform regular refinements.

Meshsize hl of Ml is proportional to ϖl with ϖ → (0, 1). Clearly,

h0 > h1 > h2 > · · · > hL =: h.

For example, usually we have hl = (1/2)l+1 (l = 0, 1, . . . , L).

Nested spaces:

Define continuous piecewise linear finite element spaces

Vl :=
{
v → V : v|ε → P1(ϱ), ⇐ ϱ → Ml

}
.

This way, we build a nested subspaces

V0 ↑ V1 ↑ · · · ↑ VL =: V ↑ V = H1
0 (!).
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HB Space Decomposition
Basis functions on nested spaces:

The set of interior grid points on the l-th level is denoted as

xl,i → G̊(Ml), i = 1, . . . , nl.

The subspace Vl is assigned with a nodal basis {ςl,i}nl
i=1, where nl :=

∣∣G̊(Ml)
∣∣.

The space Vl can be further decomposed as the sum of the one-dimensional subspaces spanned with
the nodal basis Vl,i := span{ςl,i} (i = 1, . . . , nl).

Hierarchical spaces:

We define
Wl :=

{
v → Vl : v(x) = 0, ⇐x → G̊(Ml→1)

}
. (51)

We obtain a multilevel space decomposition

V = W0 ⇒ W1 ⇒ · · ·⇒ WL. (52)

The decomposition (52) is a direct sum and there is no redundancy in this decomposition.
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Hierarchical Basis
A natural telescope expansion:

Let Jl : V ↘≃ Vl be the canonical interpolation operator and define J→1 := 0.

It is easy to check that

Wl = (Jl ↗ Jl→1)V = (I ↗ Jl→1)Vl, l = 0, . . . , L.

A telescope sum can be written as

v =
∑

L

l=0(Jl ↗ Jl→1)v, v → V.

Hierarchical basis functions on nested spaces:
For level l = 0, . . . , L, we define a nodal basis function

φl,i(x) = ςl,i(x), for xl,i → G̊(Ml)\G̊(Ml→1) and i = 1, . . . , ml := nl ↗ nl→1.

Apparently,
∑

L

l=0 ml = nL = N .

This gives the so-called hierarchical basis:

{φl,i(x) : i = 1, . . . , ml, l = 0, . . . , L}.
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Regular and Hierarchical Bases in 1D

Notations:

l: Index of levels

Ml: Mesh on level l

Vl: Finite element space on level l

ςl,i: Finite element basis functions on level l

φl,i: Hierarchical basis functions

Wl: span{φl,i, i = 1, . . . , ml}

V = W0 ⇒ W1 ⇒ · · ·⇒ WL
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Telescope Expansions

Reminder: We have introduced a telescope sum for v → V such that v =
L∑

l=0

(Jl ↗ Jl→1)v.

We have defined that





Al : Vl ↘≃ Vl (Alul, vl) = a[ul, vl], ⇐ul, vl → Vl;

Ql : L2 ↘≃ Vl (Qlu, vl) = (u, vl), ⇐ vl → Vl;

!l : V ↘≃ Vl (!lu, vl) = a[u, vl], ⇐ vl → Vl.

We introduce notation i ⇑ j := min(i, j) and notice that

QiQj = Qi↑j , !i!j = !i↑j , (53)

and
(Qi ↗Qi→1)(Qj ↗Qj→1) = (!i ↗ !i→1)(!j ↗ !j→1) = 0, ⇐ i ⇓= j. (54)

If we define Q→1 = !→1 = 0, we have the following possible decompositions

v =
L∑

l=0

(Ql ↗Ql→1)v =
L∑

l=0

(!l ↗ !l→1)v. (55)
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Hierarchical Basis Preconditioner

HB Preconditioner:

Apply the Richardson iteration as the subspace solvers, i.e.,

Sl,iQl,iv = h2→d

l

(
Ql,iv, φl,i

)
φl,i = h2→d

l

(
v, φl,i

)
φl,i.

The PSC method based on the space decomposition (52) can then be written

BHBr =
N∑

j=1

SjQjr =
L∑

l=0

(
h2→d

l

ml∑

i=1

(r, φl,i)φl,i

)
. (56)

This is the well-known hierarchical basis (HB) preconditioner [Yserentant 1986].

The HB preconditioner is easy to implement. And it is very e”cient in 1D and 2D; however, it is not
optimal in general, particularly in 3D.
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Stability of Interpolation Operators

Lemma (H1-stability of interpolation)

We have ∥∥(Jl ↗ Jl→1)v
∥∥2

0
+ h2

l

∣∣Jlv
∣∣2
1
↭ cd(l) h2

l
|v|21 ⇐v → V,

where c1(l) ⇔ 1, c2(l) = L ↗ l, and c3(l) = ϖl→L.

Sketch of the proof:
Using the interpolation error estimate, we have

↖(Jl ↗ Jl→1)v↖0 = ↖Jlv ↗ Jl→1Jlv↖0 ↭ hl|Jlv|1.

Let ϱ → Ml and vε := |ϱ |→1


ε
v dx be the average of v on ϱ . Using the standard scaling argument for

| · |1,ε , the discrete Sobolev inequality, and the Poincaré inequality, we can obtain that

|Jlv|1,ε = |Jlv ↗ vε |1,ε ↭ h
d
2→1↖Jlv ↗ vε↖↓,ε

↓ h
d
2→1↖v ↗ vε↖↓,ε ↭ Cd↖v ↗ vε↖1,ε ↭ Cd|v|1,ε .

The desired result follows by summing up terms on all elements in Ml.
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HB Finite Element Method
We can also employ HB as a FE basis ...

The above stability lemma suggests that, if w → Wl for any 0 ↓ l ↓ L, we have

c→1
d

(l)h→2
l

(w, w) ↭ a[w, w].

Compare this with the general Poincaré inequality:

↖w↖2
0 ↭ ↖↔w↖2

0 = a[w, w].

Furthermore, from the inverse inequality, we always have

a[w, w] = |w|21 ↭ h→2
l

↖w↖2
0 = h→2

l
(w, w).

The operator AHB
l

(using HB basis) is “well-conditioned” up to a constant cd(l).

However, the basis is not completely local! Not popular as a discretization method.

Compared with the regular finite element method, the HB method is more solver-friendly.
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Convergence Analysis of HB Method

The HB method is a PSC preconditioner and can be analyzed in the framework of MSC.

Lemma (Inner product between two levels)

If i ↓ j, we have
a[u, v] ↭ ϖ

j→i
2 h→1

j
|u|1↖v↖0, ⇐u → Vi, v → Vj .

Lemma (Strengthened Cauchy–Schwarz inequality for interpolations)

If u, v → V , let ui := (Ji ↗ Ji→1)u, and vj := (Jj ↗ Jj→1)v, then we have

a[ui, vj ] ↭ ϖ
|i→j|

2

∥∥ui

∥∥
A

∥∥vj

∥∥
A.

Theorem (Convergence of HB preconditioner)

The multilevel PSC preconditioner BHB defined in (56) satisfies ω(BHBA) ↭ Cd(h), where

C1(h) ⇔ 1, C2(h) = | log h|2, C3(h) = h→1.
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Sketch of the Convergence Proof

Part 1: K1 ↭ Cd(h)

Apply a decomposition

v =
L∑

l=0

vl :=
L∑

l=0

(Jl ↗ Jl→1)v,

where (Jl ↗ Jl→1)v → Wl and J→1 = 0.

The inverse estimate and stability of interpolation (Jl = !l in 1D) yield

L∑

l=0

↖vl↖2
A ↭

L∑

l=0

h→2
l

↖vl↖2
0 ↭ Cd(h)↖v↖2

A. (57)

On the other hand, from the smoothing e#ect, we know

↼̂0 = min
l

↽l⇀min(Sl) ↙= 1.
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Sketch of the Convergence Proof, Continued
Part 2: K2 ↭ 1

Let Tj = SjAj!j and the subspace smoother Sj : Vj ↘≃ Vj satisfies
∥∥SjAjv

∥∥2

0
↭ ↽(Aj)

→1
(
Ajv, v

)
, ⇐ v → Vj .

The inner product between two levels reads

(ui, Tjv)A = a[ui, Tjv] ↭ ϖ
j→i
2 h→1

j
↖ui↖A↖Tjv↖0.

We also notice ↖Tjv↖0 = ↖SjAj!jv↖0 ↭ hj↖A1/2
j

!jv↖0 ↓ hj↖!jv↖A ↓ hj↖v↖A.

If i < j, we have
(ui, Tjv)A ↭ ϖ

j→i
2 ↖ui↖A↖v↖A, ⇐ui → Vi, v → V. (58)

For 0 ↓ i, j ↓ L, we have the following strengthened Cauchy–Schwarz inequality

(Tiu, Tjv)A ↭ ϖ
|j→i|

4 (Tiu, u)
1
2
A (Tjv, v)

1
2
A, ⇐u, v → V. (59)
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Some Remarks on HB Preconditioner
If v → V , Lemma 57 yields

|v|21 =
∑

l,m

(
↔(Jl ↗ Jl→1)v,↔(Jm ↗ Jm→1)v

)

↭
∑

l,m

ϖ
|l→m|

2

∥∥(Jl ↗ Jl→1)v
∥∥

1

∥∥(Jm ↗ Jm→1)v
∥∥

1
↭

∑

l

∥∥(Jl ↗ Jl→1)v
∥∥2

1
.

Define an operator H : V ↘≃ V such that

(Hv, w) :=
L∑

l=0

∑

xi↔G̊(Ml)\G̊(Ml→1)

hd→2
l

(
Jlv ↗ Jl→1v

)
(xi),

(
Jlw ↗ Jl→1w

)
(xi)


.

=∝ (Hv, v) =
L∑

l=0

∑

xi↔G̊(Ml)\G̊(Ml→1)

hd→2
l

∣∣∣
(
Jlv ↗ Jl→1v

)
(xi)

∣∣∣
2
, ⇐ v → V.

The operator H is the inverse of the HB preconditioner, i.e., H = B→1
HB and (57) reads

↖v↖2
A ↭ (Hv, v) =

L∑

l=0

h→2
l

↖(Jl ↗ Jl→1)v↖2
0 ↭ Cd(h)↖v↖2

A.
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BPX Preconditioner
An alternative space decomposition
Along with the hierarchical basis decomposition, we obtained another space decomposition

V =
L∑

l=0

Vl =
L∑

l=0

nl∑

i=1

Vl,i, (60)

which contains a lot of “redundancy”. Heuristically, one might want to avoid such redundancy.

In order to obtain optimal convergence rate, these extra subspaces are not redundant at all.

The BPX method
Using the decomposition (60), we can construct multilevel subspace correction methods. Among them, the
most prominent (multilevel) example of PSC methods is the BPX preconditioner:

B =
J∑

j=1

SjQj , with J =
L∑

l=0

nl, (61)

which is computationally more appealing and converges uniformly.
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Convergence of BPX Method

HB and BPX preconditioners belong to the class of multilevel nodal basis preconditioners.

Lemma (Di#erence between two levels of L2-projections)

For any v → V , we have ∣∣(Ql ↗Ql→1)v
∣∣
1
↙= h→1

l

∥∥(Ql ↗Ql→1)v
∥∥

0
.

Lemma (Strengthened Cauchy–Schwarz inequality for L2-projections)

If u, v → V , let ui := (Qi ↗Qi→1)u, and vj := (Qj ↗Qj→1)v, then we have

a[ui, vj ] ↭ ϖ
|i→j|

2 ↖ui↖A↖vj↖A.

Lemma (Norm equivalence)

For any v → V , we have ∑
L

l=0

∥∥(Ql ↗Ql→1)v
∥∥2

1
↙= ↖v↖2

1.
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Proof of Norm Equivalence
(1) Since Ql is a L2-projection, we have

↖Qlv↖0 ↓ ↖v↖0, ⇐ v → L2(!).

According to the weighted estimate for L2-projection, we obtain

↖Qlv↖1 ↓ ↖v↖1, ⇐ v → V.

By space interpolation, we have, for any ⇁ → (0, 1
2 ), that

↖Qlv↖ϑ ↓ ↖v↖ϑ, ⇐ v → V.

(2) Let α → ( 1
2 , 1). If !l : V ↘≃ Vl is H1-projection, the finite element theory gives

∥∥v ↗ !lv
∥∥

1→ϖ
↭ hϖ

l

∥∥v
∥∥

1
, ⇐ v → V.

Let vi := (!i ↗ !i→1)v. Note that ↽l = ↽(Al) ↙= h→2
l

. With the inverse inequality, we have
∥∥(Ql ↗Ql→1)vi

∥∥2

1
↭ h→2ϖ

l

∥∥(Ql ↗Ql→1)vi

∥∥2

1→ϖ
↭ h→2ϖ

l

∥∥vi

∥∥2

1→ϖ

↭ h→2ϖ

l
h2ϖ

i

∥∥vi

∥∥2

1
↙= ↽ϖ

l
h2ϖ

i

∥∥vi

∥∥2

1
.

! 145 !



Section 07. Multilevel Iterative Methods Example 3. BPX preconditioner

Proof of Norm Equivalence, Continued
(3) Using the above inequality and the Cauchy–Schwarz inequality, we can derive that

∑

l

∑

i,j

(
↔(Ql ↗Ql→1)vi,↔(Ql ↗Ql→1)vj

)
=

∑

i,j

i↑j∑

l=1

(
↔(Ql ↗Ql→1)vi,↔(Ql ↗Ql→1)vj

)

↭
∑

i,j

i↑j∑

l=1

↽ϖ

l
hϖ

i
hϖ

j
↖vi↖1↖vj↖1 ↭

∑

i,j

↽ϖ

i↑j
hϖ

i
hϖ

j
↖vi↖1↖vj↖1 ↭

∑

i,j

ϖϖ|i→j|↖vi↖1↖vj↖1.

We can show that
∑

i,j
ϖϖ|i→j|↖vi↖1↖vj↖1 ↭ ∑

i
↖vi↖2

1 ↭ ↖v↖2
1, which gives

∑

l

∥∥(Ql ↗Ql→1)v
∥∥2

1
↭ ↖v↖2

1.

(4) On the other hand, using the SCS inequality, we obtain

|v|21 =
∑

l,m

(
↔(Ql ↗Ql→1)v,↔(Qm ↗Qm→1)v

)

↭
∑

l,m

ϖ|l→m|∥∥(Ql ↗Ql→1)v
∥∥

1

∥∥(Qm ↗Qm→1)v
∥∥

1
↭

∑

l

∥∥(Ql ↗Ql→1)v
∥∥2

1
.
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PSC and BPX

Apply exact subspace solver on each one-dimensional subspace:

S0
l
v :=

nl∑

i=1

(Aςl,i, ςl,i)
→1 (v, ςl,i) ςl,i =

nl∑

i=1

(↔ςl,i,↔ςl,i)
→1 (v, ςl,i) ςl,i.

Consider a uniform refinement, we can use an approximation of S0
l
:

Slv :=
nl∑

i=1

h2→d

l
(v, ςl,i) ςl,i (′ S0

l
v).

Note that it is just the Richardson method with ↼ = h2→d

l
on level l.

Apparently, we have
(Slv, v) = h2→d

l
(-v,-v) = h2

l
(v, v).

The corresponding PSC method yields the well-known BPX preconditioner

B =
L∑

l=0

SlQl =
L∑

l=0

IlSlQl =
L∑

l=0

IlSlIT

l
, (Bv, v) =

L∑

l=0

h2
l
(Qlv, v).

! 147 !



Section 07. Multilevel Iterative Methods Example 3. BPX preconditioner

Uniform Convergence of BPX

Theorem (Uniform convergence of BPX)

The BPX preconditioner is uniformly convergent, i.e., ω(BA) ↭ 1.

Sketch of the proof:
Let v =

∑
L

l=0 vl :=
∑

L

l=0(Ql ↗Ql→1)v, where Q→1 = 0. Then we can obtain that

(Av, v) ↙=
L∑

l=0

∣∣(Ql ↗Ql→1)v
∣∣2
1
↙=

L∑

l=0

h→2
l

↖(Ql ↗Ql→1)v↖2
0 =

 L∑

l=0

h→2
l

(Ql ↗Ql→1)v, v

.

Define Ã :=
∑

L

l=0 h→2
l

(Ql ↗Ql→1). Apparently, (Av, v) ↙= (Ãv, v), ⇐v → V . We can verify that

Ã→1 =
L∑

l=0

h2
l
(Ql ↗Ql→1), (Ã→1v, v) = h2

L
(QLv, v) +

L→1∑

l=0

(1 ↗ ϖ2)h2
l
(Qlv, v).

Namely, (Ã→1v, v) ↙= (Bv, v). That is to say, (Av, v) ↙= (Ãv, v) ↙= (B→1v, v).
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Matrix Form of BPX

Revisit the matrix representation of transfer operators:

Il : Vl ↘≃ V =∝ Il = Pl.

We can obtain the matrix representation of the BPX preconditioner:

B u = Bu =
L∑

l=0

Il Sl Ql u =
L∑

l=0

Pl (h
2→d

l
Ml) (M→1

l
PT

l
M) u =

L∑

l=0

h2→d

l
Pl P

T

l
M u.

The matrix form of the BPX preconditioner

B := BM→1 =
L∑

l=0

h2→d

l
Pl P

T

l
.

To improve e”ciency, we often use prolongations between two consecutive levels to obtain Pl.

We can also use the Jacobi method for the corresponding expanded system to implement BPX.
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Some Numerical Results for PSC
Solving AFEM for Poisson’s equation with PCG:

More details of the methods and test examples can be found in [Chen and Zhang 2010].
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Geometric Multigrid Method

Algorithm (One iteration of MG V-cycle)

Assume that Bl→1 : Vl→1 ↘≃ Vl→1 is defined and the coarsest level solver B0 = A→1
0 is exact. Let vl be the

initial guess on each level, i.e., vL = u(0) and vl = 0 for 0 < l < L. Do the following steps:
1 Pre-smoothing: For k = 1, 2, . . . , m1, compute

vl ∞ vl + Sl

(
rl ↗Alvl

)
;

2 Coarse grid correction: Find an approximate solution el→1 → Vl→1 of the residual equation on level
l ↗ 1, i.e., Al→1el→1 = Ql,l→1

(
rl ↗Alvl

)
, by an iterative method:

el→1 ∞ Bl→1Ql,l→1(rl ↗Alvl), vl ∞ vl + Il→1,lel→1;

3 Post-smoothing: For k = 1, 2, . . . , m2, compute

vl ∞ vl + ST

l

(
rl ↗Alvl

)
.

This algorithm is the so-called V(m1,m2)-cycle.
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Space Decomposition for GMG
Another space decomposition

The V (1, 1)-GMG method (with one G-S iteration as pre-smoothing and one backward G-S as
post-smoothing) is actually SSC based on the following multilevel space decomposition

V =
J∑

j=1

Ṽj =
∑

l=L:→1:1

∑

i=1:nl

Vl,i + V0 +
∑

l=1:L

∑

i=nl:→1:1

Vl,i.

Error transfer operator

The error transfer operator of V-cycle on the l-th level can be written as

El := I ↗ BlAl =
(
I ↗ ST

l
Al

)
(I ↗ Bl→1Al→1!l→1)

(
I ↗ SlAl

)
,

where !l→1 is the Ritz-projection from V to Vl→1.

By applying this recursively, we obtain the error transfer operator for the MG V-cycle:

EL = I ↗ BLAL!L =
(
I ↗ ST

L
AL

)
· · ·

(
I ↗ ST

1 A1

)(
I ↗ !0

)(
I ↗ S1A1

)
· · ·

(
I ↗ SLAL

)
.
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Matrix Representation of GMG

By definition, we have
(Alul, vl) = (Aul, vl), ⇐ul, vl → Vl.

Hence,
(Alul, vl) = (Aul, vl) = (AIlul, Ilvl) = (IT

l
AIlul, vl), ⇐ul, vl → Vl.

It is easy to see that
Al = IT

l
AIl =∝ Al = IT

l
AIl = IT

l
AIl.

This, in turn, give the inter-grid transformations:

Âl = Ml Al = Ml IT

l
AIl = Ml Ql M

→1Â Il = Il
T Â Il, 0 ↓ l < L.

Hence we get the matrix form (0 ↓ l < L) of the coarse level operator:

Âl = PT

l
ÂPl.

Remark: As before, we can also use relations between two consecutive levels to obtain coarse problems.
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Convergence Analysis of GMG

Denote the canonical interpolation operators from V to Vl as Jl. For any function v → V ,

(
Jlv

)
(x) =

nl∑

i=1

v(xl

i
) ςl

i
(x), l = 0, . . . , L.

Let J→1v := 0, v0 := J0v, and vl := (Jl ↗ Jl→1)v, l = 1, . . . , L. Using the interpolants in
multilevel spaces, we can write

v = JLv =
L∑

l=0

(
Jl ↗ Jl→1

)
v =

L∑

l=0

vl.

We also have

v =
L∑

l=0

vl =
L∑

l=0

nl∑

i=1

v(xl

i
) ςl

i
(x) =:

L∑

l=0

nl∑

i=1

vl,i.

It is easy to check that

(I ↗ Jl)v =
L∑

k=l+1

vk =
L∑

k=l+1

nk∑

j=1

vk,j .
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Convergence Analysis of GMG, Continued

To estimate the convergence rate of V-cycle (exact subspace solver), we need to estimate

c1 := sup
|v|1=1

inf∑
l,i vl,i=v

L∑

l=0

nl∑

i=1

∣∣∣!l,i

∑

(k,j)↗(l,i)

vk,j

∣∣∣
2

1
.

We now define and estimate

c1(v) :=
L∑

l=0

nl∑

i=1

∣∣∣!l,i

 nl∑

j=i

vl,j +
L∑

k=l+1

nk∑

j=1

vk,j

∣∣∣
2

1
.

Note that !l,i : V ↘≃ Vl,i is the (·, ·)A-projection. For 1D problems, it is easy to see that !l = Jl.

This leads to the following identity

!l,i(I ↗ Jl) = 0, ⇐ 1 ↓ i ↓ nl, 0 ↓ l ↓ L.

Furthermore, we also have !l,i(
∑

j↗i
vl,j) = !l,i

(
vl,i + vl,i+1

)
.
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Uniform Convergence of GMG
Using these properties, we have

c1(v) =
L∑

l=0

nl∑

i=1

∣∣!l,i

(
vl,i + vl,i+1

)
+ !l,i(I ↗ Jl)v

∣∣2
1

=
L∑

l=0

nl∑

i=1

∣∣!l,i

(
vl,i + vl,i+1

)∣∣2
1

↭
L∑

l=0

nl∑

i=1

|vl,i|21

↓
L∑

l=0

h→2
l

∥∥(Jl ↗ Jl→1)v
∥∥2

0

↭
L∑

l=0

|vl|21 = |v|21.

This estimate shows the convergence rate of GMG (in 1D) is uniformly bounded.
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