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Multilevel Iterative Methods 5«3’

NCMIS

Examples of multilevel algorithms
@ Quick Sort, FFT, FMM, GMG, AMG, H-Matrix, H2-Matrix, ...
Multigrid V-cycle
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Key ingredients for multilevel iterative methods
@& Construct multilevel hierarchy in an efficient way (setup)
@ Find effective (yet cheap) smoothers for each level
@ Find good coarse-grid correction (CGC) algorithms

Need complementary smoothing and CGC steps to get better convergence.
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Finite Difference Methods A:m'

NCMIS

In one-dimensional case, we can assume 2 = (0, 1) and it is divided into N + 1 equally spaced pieces. So

we get a uniform mesh with meshsize h = ﬁ; see the following figure for illustration.
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Figure: Uniform mesh in 1D.
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For the right-hand side, we can use an approximation: f := ( fi) = ( f (ml)> . For the left-hand side,
i=1 i=1
using the Taylor’s expansion, we can easily obtain that

1
h?
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w2 |:ui71 — 2u; + Uz‘+1} ;

' (2;) (o) = 2u(@) + ul@i) | + O(?)

Q

where u; &~ u(x;) is an approximate solution (finite difference solution).
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Nested Grids 5

NCMIS

Solve the 1D Poisson’s equation:
Lz . 1, ..
Ad=f with A = ﬁtrldlag(—l,l =1), fi = f(z).
Suppose there are a hierarchy of L + 1 grids with by = (3)"* (1 =0,1,..., L). Itis clear that

hg>hy>hy>--->hp =:h

and N = 2L+1 — 1. We call level L the finest level and level 0 the coarsest level.

1=2 R W W T T | I T hgi(%)3
1=1 1 1 1 1 1 }Ll:(%)Q
1=0 1 1 1 hO:(l)l

Figure: Hierarchical grids for 1D multigrid method.
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Transfer Operators 5

NCMIS

In the 1D case, the transfer operators can be easily given:
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It is straight-forward to check that: 4;_; = R;;_1A;P_1,;. SO Rj ;1 = ?PEU.
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Multigrid Algorithm 5

NCMIS

Error correction for linear problems: Suppose that @ ™) is an approximate solution. Then we have
A —am) =7 .= f— Ag™

and the error equation can be written
Aem) = g(m),

We then update the iterative solution by @ " +1) = (™) 4 &(™) to obtain a new approximation of .
Then we have the following recursively-defined algorithm:
Algorithm (One iteration of multigrid method u; = M G(l, fl ,Ur))

@ Pre-smoothing: @; + @; + %Dfl(ﬁ — Aiiy).

@ Restriction: 71 + Ry ;-1 (ﬁ - Alﬁl).

@ Coarse-grid correction: If | = 1, &;_1 + Al__llﬁ_l; €—1 <+ MG — 1,71, 61_1), otherwise.

© Prolongation: @, < 4 + P—1,€1—1.

@ Post-smoothing: i} + i) + %Dl_l(ﬁ — Aiiy).
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A Simple Numerical Experiment N

NCMIS

In the following table, we give the numerical results of the above algorithm for the 1D Poisson’s equation
(using three G-S iterations as smoother). From the table, we find that, unlike the classical Jacobi and G-S
methods, this multigrid method converges uniformly with respect to the meshsize k. This is, of course, a
very desirable feature of the multilevel iterative methods, which will be investigated in this course.

#Levels #DOF #Iter Contract factor

5 31 4 0.0257
6 63 4 0.0259
7 127 4 0.0260
8 255 4 0.0260
9 511 4 0.0261
10 1023 4 0.0262

Table: Convergence behavior of 1D geometric multigrid method.

Textbook multigrid efficiency: “TME means solving a discrete PDE problem in a computational work
which is only a small (less than 10) multiple of the operation count in the discretized system of equations
itself.”
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Computational Cost P

NCMIS
Assumptions:
@ Denote the work needed by B; is W.

@ Assume the each smoothing sweep costs O(XV;) operations and N; ~ hfd ~ 7! Then it requires
2m O(NN,) operations for the pre- and post-smoothing (m-steps) on level /.

@ The prolongation and restriction also requires O(N;) operations.

Work of multilevel cycles:

Wit1 = O(Niy1) + Wy
E+1 k+1
= 0 ZN]' :O(Nk-&-l)Z'YJ
j=0 3=0

Let N = Ny, be the number of unknowns on the finest grid. The V-cycle costs O (V) operations in each
cycle. Apparently, this analysis also yields computational complexity of the W-cycle, if we choose an
appropriate ;1 such that ji1y? < 1.

[ One question remains: How many iterations (cycles) needed to reach certain accuracy? )
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General Multilevel Iterative Methods é:i’
[ Generally speaking, multilevel iterations: ~ Setup Phase (fixed) == Solve Phase (variable) J

Setup phase
@ Constructing transfer operators, coarse problems, etc
@ Using geometric information or algebraic information or both
@ Needed only once in each solution procedure
@ Sometimes even shared by multiple solution procedures
Solve phase
@ Applying relaxation (simple iterative methods) on different levels and putting components together
@ Needed many times as iteration or precondition step, but hopeful not too many
@ Main concern: How to approximate coarse solution accurately without costing too much
Two-level method
@ Simplest case: Two-level method (solve the coarse level exactly or approximately)

@ Easier to implement and analyze, provide insight for design multilevel methods



Section 03. Basic Ideas of Multigrid Methods Multigrid methods

Examples of Multilevel Cycles 5,:,2’

Finest . Relaxation
\ j \ O Exact solving
\ Restriction
Coarsest X{ / Prolongation
Finest
o Relaxation
O Exact solving
\ Restriction
\ / Prolongation
4 FMG prolongation
4
Coarsest

V,VV, VW, W, AMLI, K, N, H, ... , Nested Iterations
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A General Workflow ‘6@'

NCMIS
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