Multilevel Iterative Methods

Chen-Song Zhang

Version 0.9, May 18, 2023

Copyright© Chen-Song Zhang, 2016-2023.

This work is licensed under a Creative Commons “Attribution- @@@@

NonCommercial-NoDerivs 3.0 Unported” license.

You can use this book free of charge for non-commercial purposes, in particular for studying and/or teaching.
You can print paper copies of the book or its parts using either personal printer or professional printing services.
Instructors teaching a class (or their institutions) can provide students with printed copies of the book and charge
the fee to cover the cost of printing; however the students should have an option to use the free electronic version.

See https://creativecommons.org/licenses/by-nc-nd/3.0/.

https://creativecommons.org/licenses/by-nc-nd/3.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/3.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/3.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/3.0/

Abstract

Over the last few decades, significant progress has been made in developing efficient
iterative solvers for large-scale linear systems generated from partial differential equations
(PDEs). Of particular interest is the class of multilevel iterative solvers/preconditioners,
which has gained widespread attention for its practical and theoretical effectiveness. In this
lecture note, we focus on the analysis and algorithms of multilevel iterative methods, in-
cluding geometric and algebraic multigrid methods for discrete problems arising from PDEs.
While the primary focus is on the simple Poisson’s equation, we also discuss a few more
complicated applications of multilevel iterative methods.

This lecture note was originally developed for one semester-long course at the Academy
of Mathematics and Systems Science, Beijing. It draws heavily on Prof. Jinchao Xu’s short
courses at Peking University in 2013 and at the Academy of Mathematics and Systems
Science in 2016, as well as Prof. Ludmil Zikatanov’s summer school lectures at the Academy of
Mathematics and Systems Science in 2015. Special thanks go to Dr. Xuefeng Xu, Ms. Huilan
Zeng, Ms. Wenjuan Liu, Mr. Bin Dai, ChatGPT, and Claude for proofreading this note.

- Version 0.1: March 18, 2016 — May 10, 2016
- Version 0.2: May 12, 2016 — May 26, 2016

- Version 0.3: June 08, 2016 — Aug 22, 2016

- Version 0.4: Aug 26, 2016 — Dec 31, 2016

- Version 0.5: Feb 01, 2017 — Jan 10, 2018

- Version 0.6: Sep 10, 2018 — Dec 20, 2018

- Version 0.7: May 28, 2019 — July 24, 2019

- Version 0.8: Jan 24, 2020 — June 20, 2022

- Version 0.9: Dec 30, 2022 — May 18, 2023

Contents

Contents 1
I General Theory of Multilevel Iterative Methods 8
1 Introduction 9
1.1 The model equation 11
1.1.1 Derivation and classical solution * 11

1.1.2 Sobolev spaces * 13

1.1.3 Weak formulation 15

1.1.4 Well-posedness of the weak problem 16

1.1.5 A simple model problem 19

1.2 Discretization methods Lo 20
1.2.1 Finite difference method 21

1.2.2 Finite element method o oL 24

1.2.3 High-frequency and locality 25

1.2.4 Adaptive approximation * 26

1.3 Simple iterative solvers L 27
1.3.1 Some examples e 27

1.3.2 An observation on smoothing effect L. 29

1.3.3 Smoothing effect of Jacobi method * 31

1.4 Multigrid method in 1Do 32
1.4.1 Nested grids. 33

1.4.2 Smoothers 33

1.4.3 Prolongation and restriction oo 33

1.4.4 Multigrid algorithm 34

1.5 Tutorial of FASP % 36
1.6 Homework problems 37

CONTENTS

2 Iterative Solvers and Preconditioners

2.1

2.2

2.3

2.4

2.5

3.1

3.2

Stationary linear iterative methods
2.1.1 Preliminaries and notation L.
2.1.2 Convergence of stationary iterative methods
2.1.3 Symmetrization Lo
2.1.4 Convergence rate of stationary iterative methods
2.1.5 Gradient descent method * oL
Krylov subspace methods L o oL
2.2.1 Arnoldi method
2.2.2 Lanczos method
2.2.3 Conjugate gradient method
2.2.4 Some variants of CG method » o 0L
2.2.5 Minimal residual methods oL
2.2.6 Biconjugate gradient methodso
2.2.7 Generalizing KSM to Hilbert spaces »
Preconditioning techniques L oL
2.3.1 Construction of preconditioners L oL
2.3.2 Preconditioned conjugate gradient method
2.3.3 Precondition v.s. iteration L oo
2.3.4 Stopping criteria L
Domain decomposition methods
2.4.1 Divide and conquer e e
2.4.2 Overlapping DD methods
2.4.3 Convergence of overlapping DDMs »
Homework problems

Twogrid Methods

Finite element methods o o oo
3.1.1 Galerkin approximation L L o o
3.1.2 Finiteelement xo
3.1.3 Properties of finite element methods
3.1.4 Error analysis *o
Algebraic representations o
3.2.1 Vector and matrix representations L Lo
3.2.2 Finite element matrices Lo Lo

3.2.3 Algebraic forms of simple iterative methods

38
39
40
42
44
46
47
50
50
93
95
99
60
64
68
70
70
71
72
73
75
75
76
7
78

CONTENTS 3

3.3 Smoothers and smoothing effecto oo oo 93
3.3.1 A numerical example Lo 93
3.3.2 Local Fourier analysis * L oo 95
3.3.3 Smoothing effect 97
3.3.4 Smoother as preconditioner * 99

3.4 Twogrid methods L 100
3.4.1 General twogrid methods 101
3.4.2 Convergence analysis of twogrid method 102
3.4.3 Optimal coarse space oo e e 106

3.5 Algebraic representation of twogrid methods 0oL 107
3.5.1 Grid transfer operators in matrix form, 108
3.5.2 Coarse problem in matrix form 00000 109
3.5.3 Twogrid iterator in matrix form, 109

3.6 Homework problems 110

4 Subspace Correction Methods 112

4.1 Successive and parallel subspace corrections 112
4.1.1 Abstract framework for subspace corrections 113
4.1.2 SSCand PSC methods. 115

4.2 Expanded systems and block solvers 0oL L. 116
4.2.1 Generalized G-S method oL 117
4.2.2 Expansion of the original problem 118
4.2.3 Block solvers for expanded systemso L 119
4.2.4 Convergence of block solvers L. 122

4.3 Convergence analysis of SSC L oL 123
4.3.1 A technical lemma 123
4.3.2 The XZ identity 125

4.4 Convergence analysis of PSC o oo 128
4.4.1 Relating PSC to SSC 128
4.4.2 Condition number of PSC oo o 129
443 Estimatesof Ky and Ko * 130

4.5 Auxiliary space method » L 132

4.6 Homework problems 132

CONTENTS 4

11 Examples of Multilevel Iterative Methods 133
5 Subspace Correction Preconditioners 134
5.1 Two-level overlapping DDM o 134
5.1.1 Two-level space decomposition L. 134
5.1.2 Convergence analysisof DDM00, 135

5.2 HB preconditioner L 136
5.2.1 Nested space decomposition 0. 136
5.2.2 Telescope expansionso e e e e 138
5.2.3 Hierarchical basis preconditioner L. 138
5.2.4 Strengthened Cauchy-Schwarz inequality 139
5.2.5 Convergence analysis of HB preconditioner 141

5.3 BPX preconditioner 142
5.3.1 Norm equivalence. 143
5.3.2 Convergence analysis for BPX preconditioner 145
5.3.3 Matrix representation of BPXo oL 146

5.4 Homework problems 146
6 Geometric Multigrid Methods 148
6.1 Geometric multigrid methodo o 148
6.1.1 V-cycle multigrid method 149
6.1.2 Matrix representation of GMG 151
6.1.3 Anisotropic problems * 151

6.2 Convergence analysis of multigrid methods 153
6.2.1 Convergence analysis of GMG method 154
6.2.2 Some historical remarks » L Lo 155

6.3 Nested iterations L 157
6.3.1 V-cycle and its generalizations 0L, 158
6.3.2 Complexity of multigrid iterations 160
6.3.3 Full multigrid method oo 161

6.4 Two-grid estimates for multigrid analysis 162
6.4.1 From two-grid to multigrid oo oo 162
6.4.2 Limitations of two-grid theory for GMG = 163
6.4.3 LFAladder 164

6.5 Implementation of multigrid methods 165
6.5.1 A sparse matrix data structure 165

6.5.2 Assembling finite element matrix 167

CONTENTS

6.5.3

Matrix form of transfer operators

6.6 Homework problems

7 Algebraic Multigrid Methods
7.1 From GMG to AMG e

7.1.1
7.1.2
7.1.3
7.14

General procedure of multigrid methods 0oL
Sparse matrices and graphs * o
M-matrix and Delaunay triangulation »

Tarjan’s algorithm *,

7.2 Motivations of algebraic multigrid methods

7.2.1
7.2.2
7.2.3
7.2.4

Algebraic convergence theory
Interpolation operators oo
Algebraic smooth error L Lo

Construction of coarse spaces oo

7.3 Classical algebraic multigrid methods 0.

7.3.1
7.3.2
7.3.3
7.3.4

General AMG setup phase
Strength of connections,
C/F splittingo

Construction of prolongation L.

7.4 Aggregation-based algebraic multigrid methods

7.4.1
7.4.2

Unsmoothed aggregation AMG
Smoothed aggregation AMG L.

IITApplications of Multilevel Iterative Methods

8 Fluid Problems

8.1.1
8.1.2
8.1.3
8.1.4

8.2 The Stokes-type equations Lo L L

8.2.1
8.2.2
8.2.3
8.2.4

The time-dependent Stokes equation
The Brezzi theory
Well-posedness of the Stokes equation
Penalty method for the Stokes equation »

169
171

172
172
172
174
175
177
180
180
183
185
187
188
189
190
191
195
198
198
200

202

CONTENTS

8.3 Mixed finite element methods

8.3.1 Well-posedness and convergence

8.3.2 Some stable finite element pairs * L.

8.3.3 Mixed methods for the Poisson’s equation x

8.4 Canonical preconditioners . .

8.4.1 Preconditioning the Stokes equation

8.4.2 Preconditioning the time-dependent Stokes equation »

8.4.3 Preconditioning the heat equation »

8.5 Block preconditioners

8.5.1 Block diagonal and lower triangular method

8.5.2 Augmented Lagrangian

method

8.6 Multigrid methods for the Stokes equation

8.6.1 Braess—Sarazin smoother

8.6.2 Vanka smoother . . .

8.7 Homework problems

9 Optimization Problems
9.1 Model problems

9.1.1 A model variational inequality

9.1.2 Finite element discretization for VIs

9.1.3 Error and residual . .

9.2 Nonlinear equation and unconstrained minimization

9.2.1 Nonlinear solvers . . .

9.2.2 Newton-Raphson method

9.2.3 Full approximation scheme

9.2.4 Subspace correction methods for convex minimization

9.3 Constrained minimization . .

9.3.1 Projected full approximation method

9.3.2 Interior point method

9.3.3 Monotone multigrid method o000

9.4 Constraint decomposition method

10 Robustness and Adaptivity

10.1 Robustness of linear solvers .

10.1.1 Why robustness is important oo

10.1.2 Robustness of linear solvers

10.2 Robustness of Iterative Solvers

213
213
214
216
217
217
218
220
221
222
223
225
225
225
226

228
228
228
230
230
231
231
232
233
234
234
234
235
236
237

CONTENTS

10.2.1 Constructing preconditioners not sensitive to parameters.

10.2.2 Combining iteration, precondition, and decoupling strategies

10.2.3 Empolying an automated solver-selection procedure
10.3 Robustness of ILU Preconditioners
10.3.1 LU factorization
10.3.2 Incomplete LU factorization
10.3.3 Robustness of ILU factorization
10.4 Workflow for Selecting Solvers

10.4.1 Automatic classifiers for linear solvers
10.4.2 General methodology L L
10.5 Robustness of Multilevel Iterative Methods

10.5.1 Adaptive multilevel iterative solvers

10.5.2 Constructing multigrid based on machine learning

10.6 Homework problems
Bibliography

Index

241
242
242
244
244
245
246
247
248
248
250
251
251
252

253

270

Part 1

General Theory of Multilevel
Iterative Methods

Chapter 1

Introduction

Computer simulations have become an indispensable tool in modern engineering and sci-

ence. Many complex problems in these fields can be formulated as partial differential equa-

tions (PDEs), which require extensive numerical simulations. Solving the discretized systems

underlying these equations can be quite costly, occupying a significant portion of the overall

computational time. Several fast-solution techniques have been developed to address this issue,

such as adaptive mesh refinement (AMR), domain decomposition (DD) methods, and multigrid

(MG) methods — all of which involve multilevel ideas.

A Physical Problem

Mathematical Model

/

Analysis

-~

(&

Existence,
uniqueness,
stability,
regularity,
conservation,

~

)

J

—

\/’

Computation

/ Linearization, \

mesh generation,
discretization,
solution,
parallelization,

t

—

Computer System

Computer Program

™~

Software

-~

(&

User interface,

code optimization,

input/output,

customer service,

~

)

Figure 1.1: Numerical simulation of a physical problem.

The above diagram provides a straightforward representation of how physical problems are

resolved through numerical simulation, necessitating a comprehensive model, mathematical and

CHAPTER 1. INTRODUCTION 10

numerical analyses, scientific computing, and software engineering. Successfully simulating com-
plex physical phenomena requires expertise in numerous scientific areas, making it difficult for a
single individual to manage all aspects effectively. Therefore, close collaborations among various
experts from different areas are crucial in today’s era.

Effective linear solvers play a key role in many application areas in scientific computing. Var-
ious algorithms for solving linear systems exist, but this lecture concentrates on understanding
the algorithmic and theoretical aspects of multilevel iterative techniques - specifically, the geo-
metric multigrid (GMG) and algebraic multigrid (AMG) methods. The basic problem setting
for our discussion is: Given an invertible matrix A : RV*Y and a vector f e RV, find @ e RN
such that Ad = f There are many design goals of linear solver that we desire in practice,

including:

e Applicability — The method can be applied to the problem of interest.

e Convergence — The method should converge to the solution for any initial guess.

e Robustness — The method should behave similarly in different scenarios.

e Optimality — The method can give a solution with O(N) computational cost.

e Efficiency — The method can give a solution in “reasonably short” wall time.

e Scalability — The method can scale well on modern parallel architectures.

e Reliability — The method should converge to a solution with limited amount of time.

e User-friendliness — The method can be implemented or used easily.

Here, our intention is not to provide rigorous definitions of these characteristics as they will
be discussed in further detail later on. Sometimes, these features can be conflicting, necessitating
a careful balance in practice. Various solution methods are available, ranging from direct solvers
to iterative solvers. Throughout this lecture, we will examine several popular multilevel iterative
techniques, including overlapping domain decomposition methods with coarse space corrections,
two-grid methods, geometric multigrid methods, and algebraic multigrid methods. Our primary
focus will be on studying the convergence theories of these methods utilizing the subspace

correction framework.

CHAPTER 1. INTRODUCTION 11

1.1 The model equation
Let Q = R? be an open and bounded domain with Lipschitz boundary and f € L?(Q). We
consider solving the Poisson’s equation with the Dirichlet boundary condition
—Au=f in Q,
u=20 on 0f).

(1.1)

You will see this equation repeatedly throughout this lecture, as it is the first in a series of model

equations. It will serve as the basis for many of the subsequent model equations in this lecture.

Remark 1.1 (Diffusion equation in various applications). Due to their universal applicability,
the Poisson’s equation, and its extension the diffusion equation, play a fundamental role in
physics, governing phenomena such as Fick’s law for chemical concentration, Fourier’s law for

temperature, Ohm’s law for electrostatic potential, and Darcy’s law for porous media flow. [

1.1.1 Derivation and classical solution x

The concept of diffusion, a fundamental process underlying the movement of particles, is key
to understanding a wide range of phenomena in physics, chemistry, biology, sociology, economics,
and finance. Diffusion occurs as a result of the random movement of particles, which leads to the
net flow of particles from regions of high concentration (or high chemical potential) to regions
of low concentration (or low chemical potential). This is also referred to as the movement of a
substance down a concentration gradient. By understanding diffusion, we can better understand
how particles move and interact with one another, enabling us to predict and control a broad
range of phenomena in numerous fields of study.

Let u(x) be some diffusive quantity, like pressure, temperature, or concentration of a bio-
logical species. We define the operator V := (d1,...,04)". So the gradient of a scalar function
u : 2 — R can be denoted by Vu. The Laplace operator can be written as Au = V - Vu. A

diffusive flux F is usually proportional to the gradient of u, i.e.,
F = —kVu. (1.2)

where & is referred to as the diffusivity coefficient (e.g., heat conductivity or permeability). Note
that —Vu is the so-called steepest descent direction. If a flow is controlled solely by diffusion,

then the mass conservation in any volume w with unit outer normal vectors ¥ can be written,

afudmz—j F.i7dS
at w Ow

—u=-V-F. (1.3)

in the integral form, as

or, in the strong form, as

CHAPTER 1. INTRODUCTION 12

This can be easily seen by applying the Divergence Theorem, i.e.

fv'ﬁdxzf F - 7dsS. (1.4)
w Ow
Now, by plugging (1.2) into (1.3), we obtain an equation

0

U= V- (kVu). (1.5)

If we assume k = 1 or just a constant and there is a source/sink term f on 2, then we arrive at

the heat equation

%U—Au =f. (1.6)

The steady-state solution of equation (1.6) satisfies the well-known Poisson’s equation
—Au = f. (1.7)

Remark 1.2 (Laplace equation). In case of the body force or source/sink term is zero, the

equation is usually referred to as the Laplace equation
—Au = 0. (1.8)
If ue C%(Q) and —Au = 0, u is called a harmonic function. O

We have the fundamental solution of the Laplace equation

—i log |z|, d=2
d(x) = (1.9)
1 —d
aaamlol T d>3
where 7,4 is the volume of the unit ball in R?. It is well-known that
u(w) = f i | Bla-y)f)dy

Rd

satisfies —Au = f in R? and u € C%(R%); see Evans [86].
Theorem 1.3 (Strong Maximum Principle). If u € C?(Q) () C(Q) is harmonic in €2, then

max u(z) = max u(z).
Q) €02
If the domain 2 is connected, then u = C if there exists xg € 2 such that
u(zp) = maxu(x).
zel

Using the maximum principle, we can obtain uniqueness of the solution to the Poisson’s

equation:

Theorem 1.4 (Uniqueness of solution). If f € C(2), then there exists at most one solution

ue C2(Q) N C@).

CHAPTER 1. INTRODUCTION 13

1.1.2 Sobolev spaces

The standard L®-norm and L%mnorm will be denoted by || - | and | - |o, respectively. The
symbol L3() denotes a subspace of L?(f2) consisting of functions that have a zero average.
The bilinear forms (-,-) and {-,-) denote the classical L?-inner product and the duality pair,
respectively.

Given a natural number k € N and 1 < p < o0, we define the Sobolev spaces

W;(Q) ={v: QR : Ve LP(Q), for all |a| <k}, (1.10)
where a = [y, ..., qq] is a multi-index, a1,...,aq € N, and |o| := a1 + -+ + ag.

The notation Vv := 0g! - - - dgdv is the weak derivative of order a.. The corresponding norm

and semi-norm are then defined as follows: for 1 < p < 0,

1 1
b = (X 19°00e) " [ohgr = (3 I9%000)’ (111)
la|<k la|=k
and, for p = o0,
lvllwe @) == sap [V*0|Le@), [vlws o) = sup [V*[re@q (1.12)

lal<k |laf=Fk

Definition 1.5 (Sobolev number). Let Q = R? be Lipschitz and bounded, k € N, and 1 < p < co.
The Sobolev number is defined by

Sob(WIf(Q)) =k - Z (1.13)

Remark 1.6 (Natural scaling). There is a natural scaling for the semi-norm | - |W§(Q). For

h > 0, we apply the change of variable & = z/h : Q — Q). Then the following scaling result holds

k——

= 15 gy = O o

‘Wg(g)-

This property is useful in scaling argument (or homogeneity argument) for finite element error

estimates. O]

If p = 2, the spaces W () are Hilbert spaces and we denote them by H*(Q) for short. The

inner product is given by

(U, V)0 = (U, V) gr(q) = J V& V% dz.

la|<k

The induced norm of this scalar product is the WJ(Q)-norm. We denote the completion of
CE(Q) in H*(Q) by HE(Q).

CHAPTER 1. INTRODUCTION 14

We will also use the fractional Sobolev space Hy () where 0 < o < 1. Tt is defined as the

completion of C§°(£2) in the fraction norm:

[NIE

[olesiay = (10lpeqy + [0Broey)

| Dv(“v(y)? 2
0| o () 1= (HZl JJ |:1:—y|d+2U dedy | .
al=k

Before we discuss the Poisson’s equation in weak formulation, we introduce a few important

where

N

properties of the Sobolev spaces, which will become important in our later analysis for multigrid

methods.

Proposition 1.7 (Sobolev embedding). Let 0 < k& < m. If sob(W;*(2)) > sob(Wq]’“(Q)), then
the embedding W, () — WF(Q) is compact.

Proposition 1.8 (Sobolev embedding to Holder continuous spaces). Let 0 < m and € is Lips-
chitz. If 0 < p < sob(W;*(£2)), then W)™ (Q) < CO#(2) < C°(€).

A function f is in C%#(Q) if and only if there exists a nonnegative constants C, such that
[f(z) = f(y)l < Cllz —y|*
for all and y in €.

Example 1.9 (Embedding to C°(Q2)). An example of particular interests is the relation be-

tween H'(Q) and continuous functions C°(Q) for 2 = R¢. From Proposition 1.8, we have
HY(Q) < C°(Q), ifd =1; and H(Q) ¢ C°(Q), if d > 1.

For example, if is the unit disk on R?, then u(z,y) = (—log(z2 + y?))¥/3 is not continuous but
in H'(Q).

Proposition 1.10 (Poincaré-Wirtinger inequality). For any v € H'(£2), we have

Hv — Q! LUCZ:L‘HQQ <C@Q)fv

Lo
Proposition 1.11 (Poincaré inequality). For any v € HZ(Q), we have

“UHO,Q < Cd|Q|1/d|U|1,Q'

The above inequality is a special case of the more general Friedrichs’ inequality on Wf(Q) with

zero trace and it is sometimes referred to as the Friedrichs—Poincaré inequality.

CHAPTER 1. INTRODUCTION 15

Proposition 1.12 (Trace theorem). There exists a unique linear operator
trace : H'(Q) — L*(0Q),
such that trace(v) = v on 0, if v € C(Q) () H'(2), and
I trace(v)“mm <O, Yve HY(Q).
Moreover, if g € H%((?Q), there exists ¢ € H'(Q2) such that ¢|sq = g and

I8l1.0 < Clgls s0-

1.1.3 Weak formulation

Now we consider the Poisson’s equation in a weaker sense. A simple motivation is to convert

from a point-wise view to an average view:
u(xz) =0, ae. < J wdzr =0, YveCP Q).
Q

Similarly, we can write the Poisson’s equation in the weak form (i.e., the integral form). In the

one-dimensional case, it is easy to see that
" " 0
—u" =f, ae < —J (" + flvde =0, Yve Cy ().
Q

Let % be a Hilbert space with an inner product (-,-)4 and its induced norm | - |4. Let ¥
be a Hilbert space with another inner product (-,)y and its induced norm | - |». Denote by ¥’

the dual space of ¥ equipped with the norm

,'U
£y i=sup 2 vpey,
S Jolly

Definition 1.13 (Continuity). A bilinear form a[-,] : Z x ¥ — R is called continuous if and

only if there exists a constant C, such that
alu,v] < Cyllul|l# |v||y, YueZ,veV¥. (1.14)

Consider a continuous bilinear form a[-,-]: Z x ¥ — R and f € ¥’. We formulate a model
problem: Find u € % such that Au = f in ¥”. Or in the weak form, find u € % such that

alu,v] = (f,v), Yve¥. (1.15)

Example 1.14 (The Poisson equation). The Poisson problem with homogenous Dirichlet bound-
ary was given in (1.1). In this case, we have Au := —Au and af[u,v] := (Vu,Vv). Ap-
parently, the bilinear form a[-,-] is continuous due to the Cauchy—Schwarz inequality and
U =Y = HQ). O

CHAPTER 1. INTRODUCTION 16

1.1.4 Well-posedness of the weak problem x

We denote the space of all linear and continuous operators from % to ¥ as £ (% ;7). Here

we review a few results on the inf-sup condition due to Necas [144].

Theorem 1.15 (Banach—Necas Theorem). Let a[-,] : Z x ¥ — R be a continuous bilinear

form with a norm defined as

alu,v

|lal-,]| := sup sup g
ueY ve¥ HUH%HUHV

(i) Then there exists a unique linear operator A € £ (% ;¥) such that
(Au,v)y = alu,v], Yue U, veV,

with the operator norm
HA”z(%;w = |al, |-

(ii) Moreover, the bilinear form al-, -] satisfies the inf-sup condition:

Ja >0, such that afulz < sup alu, U], Vue %, (1.16)
ver ||vlly
for any 0 # v e ¥, there exists u € %, such that afu,v] # 0, (1.17)
if and only if A4 : % — ¥ is an isomorphism and
A ey < @ (1.18)

Proof. (i) For any fixed u € %, the mapping a[u, -] belongs to the dual space ¥”’. By the Riesz

representation theorem, there exists Au € ¥ such that
(Au,v)y = alu,v], Yve?.

Since a[-, -] is continuous, we obtain a bounded operator A € £ (% ;). Furthermore,

— sup MUl _ (Auv)y _ _afuv]
|lAll.2@ vy = sup = sup sup = sup sup -
uEU HUH”Z/ UEU vEY HUHOZZHUHV UEU vEY |U||02/||UH4V

Jal-,-1]-
(ii) = The inf-sup condition (1.16) guarantees that there exists aw > 0 such that

v < sup a[“)”] — su (Auafu)“ﬂ

= ——= = ||Au|y, Yue. (1.19)
ver |v]y vey |y

alu

This implies that A is injective. Let {uk}zozo c % and vy := Auy be a sequence such that
vy — v € Y. In order to show the range of A is closed, we need to show v € A(%). From the

inequality (1.19), we have

alur — ujllz < |Alug —uj)|y = llvg —vi|y — 0.

CHAPTER 1. INTRODUCTION 17

Hence, {uy}y._, is a Cauchy sequence and u, — u € % . Moreover,
v=lim vy = lim Aug = Aue A(%).
k—00 k—0
Now we assume that A(%) # #. Since A(%) is closed, we can decompose ¥ as
V= A%)®AX)*

and A(%)* is non-trivial. That is to say, there exists 0 # v, € A(%)*, which contradicts the
condition (1.17). Hence the assumption A(%) # ¥ cannot hold, i.e., A is surjective. This, in

turn, shows that A is an isomorphism from % onto ¥". Moreover, (1.19) shows
aA™ |y < oly, Yve.

This proves the inequality (1.18).
(i) <= We have

| due] (Awo) - [Auly
inf sup———— = inf sup——— =
we? vey |ula|vly we? vey |ula]y ue? |ulle
: o] < A=)4\ 1 “1y-1
= inf —— = sup7> = |4 o = o
By ~ U2 TR A e =

This is exactly (1.16). Since A is an isomorphism, for any 0 # v € ¥, there exists 0 # u € %,
such that Au = v and
alu,v] = (Au,v) = [[v]j # 0,

which is (1.17). O
Theorem 1.16 (Necas Theorem). Let a[-,-] : Z x ¥ — R be a continuous bilinear form. Then

the equation (1.15) admits a unique solution u € % for all f € ¥’ if and only if the bilinear

form a[-, -] satisfies one of the equivalent inf-sup conditions:

(1) There exists o > 0 such that

alw,v]

sup > o|w|y, Ywe U, (1.20)

ver vl
and for every 0 # v € ¥, there exists w € % such that a[w,v] # 0.
(2) There holds

afw, v] alw, v]

inf sup ———— >0 and inf sup ————— > 0. (1.21)
we? vey |w]la |v]» ve¥ wew |wla|v]y
(3) There exists a positive constant o > 0 such that
inf supM = inf sup _alw.v] . (1.22)

vly e wew |wla vy

we vey |wa

CHAPTER 1. INTRODUCTION 18

Furthermore, the solution u satisfies the stability condition

1
v < —|f|y-
(0]

[u

Proof. Let J : ¥ — ¥ be the isometric Reisz isomorphism. According to Theorem 1.15, we
have Ae Z(%; V'), which is the linear operator corresponding to a[-,-]. In this sense, (1.15) is
equivalent to
ueE U : .Au:j_lf in V7.

Assume the condition (1) holds. Then, A is invertible by Theorem 1.15. The other direction is
also easy to see.

Now the interesting part is to show the equivalence of the three conditions, (1), (2), and (3).
From the proof of Theorem 1.15, we have seen that

alw, v]

inf sup ———— = |A7Y L, ..
225 Tl oy, ~ A o
Similarly,
, fu),
imf sup — 2 g A g (A
ve? e |wla|v]» ve? e |wla|v]y ve? e |wla|v]»
—tn—=1 —1)—-1
= ”-’4 THy(%ﬂ/) = ”-A Hy(y/;a//)y
where AT denotes the adjoint operator. Furthermore, if the condition
inf sup aw, o] >0
veY wey Hqu/Hv 14
holds, then for any v € ¥, we have
sap Ay
wew |[wla|v]y
Hence there exists w € %, such that a[w,v] # 0. This completes the equivalence proof.]

From the proof of the last two theorems, we have the following observations:

Remark 1.17 (Existence and uniqueness). Suppose that a[-,-] : Z x ¥ — R is a continuous
bilinear form. Solution of the equation (1.15) exists (i.e., A is surjective or onto) if and only if

inf sup A

> 0. existence or surjective
ve? wey wllalv

v
Solution of (1.15) is unique (i.e., A is injective or one-to-one) if and only if
alw, v]

inf sup ———— > 0. uniqueness or injective

we? yey |wle |v]y

That is to say, A is bijective if and only if the inf-sup conditions (1.21) or any of the above
equivalent conditions hold. In finite dimensional spaces, any linear surjective or injective map is

also bijective. So we only need one of the above inf-sup conditions to show well-posedness. [J

CHAPTER 1. INTRODUCTION 19

Remark 1.18 (Optimal constant). The constant « in (1.22) is the largest possible constant
in (1.20). In general, the first condition in Theorem 1.16 is easier to verify than the third

condition. n

Corollary 1.19 (Well-posedness and inf-sup condition). If the weak formulation (1.15) has a

unique solution u € % for any f € ¥’ so that
lulz < Clfll»,
then the bilinear form a[-, -] satisfies the inf-sup condition (1.22) with a > C 1.

Proof. Since (1.15) has a unique solution for all f € ¥’ the operator A : Z(%; V) is invertible
and A™' . Z(¥;%) is bounded. Due to the fact |ully < C|f|lyr, we have |A™| »(y,4) < C.
From the proof of the Necas theorem, we can immediately see the optimal inf-sup constant

a =AY Gy, = O O

1.1.5 A simple model problem
Now we consider the simplest case where 2 = ¥ and A is coercive.

Definition 1.20 (Coercivity). A bilinear form a[-,-] : ¥ x ¥ +— R is called coercive if there
exists o > 0 such that
afv,v] = alv|?, VYve¥. (1.23)

alv,w] alv,v]
Twly = Tolv
in Theorem 1.16. Hence, for any f € ¥/, the coercive variational problem (1.15) has a unique

The coercivity implies that sup,,cy > vy, which is the first inf-sup condition

solution and the solution w is continuously depends on f, i.e., [u|y < a™!|f|y/. In this case,

Theorem 1.16 is reduced to the well-known Laz—Milgram theorem.

Corollary 1.21 (Lax-Milgram theorem). Let a[-,-] : ¥ x ¥ +— R be a continuous bilinear form
which satisfies the coercivity condition (1.23). Then (1.15) has a unique solution u € ¥ for any
fe?" and July < a7l f]y.

Remark 1.22 (Energy norm). If the bilinear form a[-,:] : ¥ x ¥ — R is symmetric, then,

apparently, it defines an inner product on #. Its induced norm is also called the energy norm
1/2
ol := afv, v]">.

Coercivity and continuity of the bilinear form a[-, -] imply that

alelly < Iel < Jal | el = 4] g0 015

namely, the energy norm [|-|| is equivalent to the | - |y-norm. We will denote the dual energy

norm by ||-[|,.. O

CHAPTER 1. INTRODUCTION 20

Remark 1.23 (Condition of Poisson’s equation). We notice that the Poisson’s equation is well-
posed in the sense that —A : ¥ — ¥ is an isomorphism with ¥ = H}(Q) and ¥’ = H-}(Q).

There exist constants « (coercivity constant) and C, (continuity constant), such that

aH’uHi/ < a[v,v] = (—Av,v) < CQHUH?,/, Yoe V.
We define the “condition number” of the Laplace operator
1 Cq
R(=8) =] -4 L) [(=4) 2y S o’
which is bounded. O

Despite the observation (Remark 1.23) that —A is “well-conditioned”, our experience in
numerical solution of the Poisson’s equation may result in ill-conditioned problems, contradicting
it. In practice, numerous challenges can arise while utilizing numerical methods to solve the
equation, including the selection of appropriate numerical algorithms. The problem arises due

to the fact that we are working with two different spaces, ¥ and #’. If we consider
—A:L*(Q) — L*(Q)

instead, then we lost boundedness and the condition number will blow up. More general theory

has been developed in the seminar work by Babuska [9].

1.2 Discretization methods

The process of discretization involves transforming continuous functions, models or equations
into their discrete equivalents. Such a conversion is typically carried out as a preliminary step
towards achieving computational efficiency, allowing for numerical assessment, and enabling
implementation on modern computer systems.

Let Q = R? be an open domain and f € L%(Q). We consider the following model problem

—Au=f in Q,
u=0 on 0f2.

Many discretization methods have been developed, such as finite difference (FD) and the finite
element (FE) methods, each with specific approaches to discretization. After discretization, we

usually end up with a linear algebraic system of equations

—

A =T (1.24)

CHAPTER 1. INTRODUCTION 21

1.2.1 Finite difference method

In one-dimensional case, without loss of generality, we can assume 2 = (0, 1) and the domain
is sub-divided into N +1 equally spaced pieces. So we get a uniform mesh with meshsize h = 7 5;

see the following figure for illustration.

To T1 X2 Ty LNt

0 h 1

Figure 1.2: Uniform mesh in 1D.

Using the Taylor’s expansion, we can easily obtain that

o (zi) = %[u'(:ﬁH%) —ul(z_y)] + O)
=) — 2u(e) + uwin)| + 02)

Let u; ~ u(z;) be an approximate solution. Then the FD discretization of the Poisson’s equation

is

2 -1 uy f(z1)
-1 2 -1 U9 f(xQ)
1
72 Tl T, : = : . (1.25)
-1 UN-1 flen—1)
—-1 2 uN f(zN)

That is to say,

1 . N N
A := — tridiag(—1,2,—1) and f= (fl) = (f(q:l)) .
h? i=1 i=1
We need to solve the linear system A# = f in order to obtain an approximate solution to the

Poisson’s equation. It is worth noticing that the coefficient matrix A is symmetric positive

definite (SPD), sparse, as well as Toeplitz.

Remark 1.24 (An alternative form of the linear system). Sometimes, it is convenient (for

implementation) to also include the boundary values in @ and write the linear system as

1 Uuo 0
-1 2 -1 uy fi
1 . .
3 -
-1 2 -1 UN N
1 UN+1 0

Apparently this form is equivalent to the discrete problem above. O

CHAPTER 1. INTRODUCTION 22

Remark 1.25 (Eigenvalues of Laplace operator). Let us consider the eigenvalue problem for
the one-dimensional Laplace operator with homogeneous Dirichlet boundary conditions, i.e.,
—u”(x) = Mu(z) for x € (0,1) and u(0) = u(1) = 0. It is well-known that the eigenvalues and

the corresponding eigenfunctions of the above equation are
e = (kmr)? and ug(z) = sin(krz), k=1,2,---
We notice that larger eigenvalues (larger k) correspond to eigenfunctions of higher frequency. [

Similar results can be expected for discrete problems. In fact, if A is symmetric, then all

eigenvalues of A are real and there exists an orthonormal basis of RV consisting of eigenvectors.

Remark 1.26 (Eigenvalues of 1D FD problem). For simplicity we now assume h = 1. It is
well-known (see HW 1.3) that the eigenvalues of A := tridiag(—1,2, —1) are

km . 9 km
)\k(A)—Q—2COS<M)—4SHl (2(]\]4—1))’ k—1,2,...,N

and the corresponding eigenvectors are

ik)

N N
&k — <5f)i:1 eRY, with ¢F ::sin(N+1

We note that the set of eigenvectors of A, 5 k= ({f)fil, forms an orthogonal basis of RY.

Therefore, any 5 e RN can be expanded in terms of these eigenvectors:
N
= -
£= > "
k=1

This type of expansion is often called the discrete Fourier expansion. From Figure 1.3, we can
easily see that the eigenvectors are “smooth” with small £ and are “oscillatory” with large k.

Hence the smoothness of E has a lot to do with the relative size of the coefficients ay. O

We immediately notice that Ay is close to 4 but A; is close to 0. That is to say, the discrete
operator could be ill-conditioned for large N.
For two-dimensional problems, we can partition the domain uniformly in both z and y-

J) and the Poisson’s

directions into n + 1 pieces (N = n?). We denote (z;,y;) = (n%rl,m

equation is discretize using the five-point stencil

1 .
ﬁ[‘lui,j — (wim1j + i1 + Uij—1 + Ui,jJrl)] = f(zs,y5), 4,j=1,...,n.
Then we need to assign an order to the grid points in order to write the unknowns as a vector.

There are many ways to order the unknowns for practical purposes. For simplicity, we use the

CHAPTER 1. INTRODUCTION 23

Figure 1.3: Eigenvectors of 1D finite difference system for the Poisson’s equation.

Lexicographic ordering, i.e., p(j_1)n4; := (%i,y;). Then we have

A I uy bil
I Ay -1 U f2
72 = :
—I A1 -1
oA, UN_1 fn-1
un IN

where the block diagonal matrices A4; := tridiag(—1,4,—1), (¢ = 1,...,n) are tridiagonal. Define
C' := tridiag(—1,0,—1). Then it is clear that

1 .. 1 1
A= ﬁtrldlag(—I,Al,—I) = ﬁl@)Al —I—ﬁC@I.

Remark 1.27 (Eigenvalues of the 2D FD problem). Again we assume h = 1. Similar to the

1D problem, we can get the eigenvalues
o 2 cos T _ 4 sin® o + 4 sin? L,
n+1 n+1 2(n+1) 2(n+1)

é? . kim . Ujm
;= | sin sin .
I n+1 n+1

kl=1,...n

=1y

Aij(A) =4 —2cos

with eigenvectors

CHAPTER 1. INTRODUCTION 24

Remark 1.28 (Discrete Poisson’s equation is ill-conditioned). Remark 1.23 demonstrates that
Poisson’s equation has a bounded condition number. Nonetheless, in the event that the mesh
size h used in the finite difference (FD) discrete problems is small, the coefficient matrices A
turn out to be ill-conditioned; see Remarks 1.26 and 1.27. Consequently, this can lead to issues
with several iterative methods where the convergence rates rely on the spectrum of A. Similar

behavior also happens in the finite element (FE) setting. O

Remark 1.29 (Ordering). The structure of coefficient matrix A depends on how the degrees
of freedom (DOFSs) are arranged. The ordering of DOFs not only influences the efficiency
of smoothers and parallelization techniques but also impacts their smoothing properties. In
certain linear solvers, such as LU factorization methods, determining the minimum bandwidth
ordering is imperative. However, this process is NP-hard, making it particularly challenging to

achieve. O

1.2.2 Finite element method

The Finite Element Method (FEM) is a type of Galerkin method that leverages piecewise
polynomial spaces for the approximate test and trial function spaces. For more information on
the standard FEM, readers are encouraged to refer to [68, 112, 37, 58]. These sources provide a
detailed discussion of FEM construction and error analysis.

The weak formulation of the model equation can be written as (see Example 1.14): Find

u € H}(Q), such that
f Vu - Vodxr = J fude, Yve Hi(Q).
Q Q

In 1D, it is easy to explain the main idea of finite element method. Let Pk(7) be the space of
all polynomials of degree less than or equal to k on 7. Let
V = Vh = {’U € C(ﬁ) MM 'Pl(l‘i_l,l‘i), U(O) = ’U(l) = 0}.

Now we can write the discrete variational problem as: Find uj € V3, such that

alup,vp] = (f,vn), Yoy € V.

Furthermore, we use nodal basis functions ¢; € V,, i.e. ¢;(x;) = 6; ;. In this way, we can express
a given function uy, € V3 as up(z) = Z;\le uj¢j(z). Hence we arrive at the following equation:
Foranyi=1,..., N,
N
lalg, diluj = (f,¢1) or > Aijuy = fi
J

7j=1

CHAPTER 1. INTRODUCTION 25

This is a system of algebraic linear equations

At = f, (1.26)

N
i=1

With (A)i,j = ai,j = a[(ﬁi, ¢j], ’17: = (ui)i]\il’ and fz (f’)z]\il = <<f, ¢z>)

If we use the uniform mesh in Figure 1.2, then we have (see HW 1.4) that
1 . > N
A= 7 tridiag(—1,2,—1) and f= (hf(a:l))lz1

Upon solving this finite-dimensional problem, we obtain a discrete approximation uy. The finite
element method has several appealing properties and it will be the main underlying discretization

used in this lecture; see §3.1 for more details.

1.2.3 High-frequency and locality

Figenvalues and eigenfunctions, which are fundamental concepts in mathematical analysis,
are typically associated with the fundamental modes of vibration or oscillation. As the frequency
increases, the amplitude of the oscillation decreases asymptotically. Additionally, the smoother
the function, the faster the decay rate. Weyl’s law demonstrates that the asymptotic behavior
of the eigenvalues in relation to the domain is highly dependent on it.

An important observation comes from the analysis to the local problem
—uf(z) = f(z), € Bs:= (xg— 9,20 +9) and us(xo — 6) = us(zo +0) = 0.
Using Remark 1.25, we can obtain the eigenfunctions of this localized problem:
U5k(:c)=sin(k—7r(x—xo+6)) kE=1,2,---
s 25 9)y

Suppose that u is the solution to the corresponding Poisson’s equation on the whole domain §2.
Define the error e := u — ug in By (difference between the solutions to the Poisson problem on
the original domain and the localized ball). Apparently, e is harmonic in Bs.

A commonly-used trick is to construct a cut-off function 6 € Ci°(Bs), such that it satisfies

the following conditions:
(i) 0<6(z) <1, Vo e By; (i) 0(x) =1, Vo e By (iii) 0/(z)] < §-

Then we have

me ‘e’(a:)f o< JB(; 0*() |e’(x)‘2 dr = — fBg <(92)/€/ + 026”>edm

20) 2C N2 o \3 5, \2
<T 5 |966|d$<5(f35 |o¢’| dac) <JB le] dm) .

)

CHAPTER 1. INTRODUCTION 26

The first and last inequalities immediately imply that

<J35/2 ‘eI(w)lzdmf < <de Hz(x)’e/(x)‘de)é < 250<st Ielzda:f. (1.27)

You may compare the above inequality (1.27) with the Poincaré inequality given in Proposi-
tion 1.11.
Now we plug in the eigenfunctions us; (K = 1,2,...) to the above inequality. We observe

that only some of the error components with

krw 2C 4C
— < — or k< —,

20 4 0
can be allowed. This suggests that the error function e primarily consists of low-frequency

elements, with the oscillating components in the distance ¢ captured precisely.

Remark 1.30 (Geometric high-frequencies). This simple observation suggests that the local
solution ug for the model problems provides an accurate approximation of the high-frequency

part of u. Inspired by this idea and building on (1.27), we can define geometric high-frequency

functions uy as those with a high ratio of |Vugllo.o to |uklo,q. It is important to note that
singularities, which are a special form of high-frequency behavior, can also be resolved using
local mesh refinement techniques. This method is effective precisely because high-frequency
behavior is typically localized, and can be approximated accurately using finer meshes in the
relevant areas. In subsequent chapters, we will delve into this issue in more detail, exploring its

geometric and algebraic implications. O

1.2.4 Adaptive approximation *

We explain the idea of adaptivity with a simple 1D example. Let u : [0,1] — R be a
continuous function. Assume that 0 =29 <21 <---<ay =1and h; := x; —x;_1. Let uny be a
piecewise constant function defined on this partition, i.e., uy(x) = u(xz;—1) for all ;1 < z < ;.

Then we have, for x € (z;_1,;), that

lu—un| = u(z) —u(zi1)| =

f u’(t)dt’<fl W (8)] dt < hild|poge 2. (128)
Ti—1

Ti—1
If the partition is quasi-uniform, then we have the approximation estimate

1
|u—un| o) < NHU,HLW(OJ)
if u is in W1 (0,1).
The question now is what happens if the function w is less regular (rough, nonsmooth, or

singular)? We now assume that v is in W (0, 1). In view of the first inequality in (1.28), we notice

CHAPTER 1. INTRODUCTION 27

that we actually need to bound |u/| This motivates to give a special (non-uniform)

(zi—1,24)"

partition such that
5 1, ‘

f (O] dt = x|y, fori=12,.N.

On this partition, we can still obtain a desirable approximation estimate
1 !/
lu —un Lo,y < NHU Iz (0,1)-

Remark 1.31 (Equidistribution of error). When solving differential equations, evenly distributed
mesh spacing across the computational domain may not be the most effective method if the so-
lution is not smooth. In such cases, it’s better to pursue a mesh that distributes error evenly.
This adaptive mesh approach is dependent on the solution itself and can dynamically adjust
based on its changes to optimize the accuracy. This idea is called equidistribution of error,
where mesh points are concentrated in areas with large errors and spread out in regions of lesser
error. Developing an equidistributed error mesh is challenging and requires a nonlinear approx-
imation procedure, which involves solving the differential equation numerically and then using
the solution output to improve the mesh. This process of refinement continues until the error is

uniformly distributed across the mesh. O

For more comprehensive information on this subject, refer to the work of DeVore [74], which
explores equidistributed error meshes within the context of finite element methods. The paper
provides a broader framework for establishing equidistributed error meshes and suggests multiple
examples that demonstrate their potential effectiveness. In conclusion, equidistribution of error
presents a favorable alternative to the typical mesh spacing approach when dealing with problems
where the solution is not smooth. Though obtaining this mesh requires greater computational
efforts, its benefits are substantial enough to warrant further investigation by researchers and

analysts seeking to improve differential equation solving.

1.3 Simple iterative solvers

Numerous methods exist for tackling the linear algebraic equations derived from finite dif-
ference, finite element, and other discretizations applied to Poisson’s equation, including sparse
direct solvers, fast Fourier transform techniques, and iterative solutions. However, for the pur-

poses of this lecture, we will solely focus on discussing iterative solvers.

1.3.1 Some examples

Now we give a few well-known examples of simple iterative methods. Consider the linear

RNXN

system Au = f Assume the coefficient matrix A € can be partitioned as A = L +

CHAPTER 1. INTRODUCTION 28

D + U, where the three matrices L, D,U € RV*¥ are the lower triangular, diagonal, and upper

triangular parts of A, respectively (the rest is set to be zero).

Example 1.32 (Richardson method). The simplest iterative method for solving Ad = f might
be the Richardson method
gnev = gold 4 w(f— Aﬁold). (1.29)

We can choose an optimal weight w to improve performance of this method. O

Example 1.33 (Weighted Jacobi method). The weighted or damped Jacobi method can be
written as
" = @ wDTV(f — Az°9). (1.30)

This method solves one equation for one variable at a time, simultaneously. Apparently, it is a
generalization of the above Richardson method. If w = 1, then we arrive at the standard Jacobi
method. O

Example 1.34 (Gauss—Seidel method). The Gauss—Seidel (G-S) method can be written as
" = 4 (D + L) (f - Aa©l).
We rewrite this method as
(D + L)a"™™ = (D + L)ya* + (f — Aa°) = f — Ua°.

Thus we have
grew — gold . p-1 (f— La™ — (D + U)ﬁold). (1.31)
Compared with the Jacobi method (1.30) (w = 1), the G-S method uses the most updated

solution in each iteration instead of the previous iteration.]

Example 1.35 (Successive over-relaxation method). The successive over-relaxation (SOR)

method can be written as

(D +wL)@™ = wf — (wU +(w— 1)D> 7o, (1.32)

The weight w is usually in (1,2). This is in fact the extrapolation of @°¢ and 7"V

the G-S method. If w = 1, then it reduces to the G-S method. O

obtained in

These fundamental iterative methods have been addressed in common textbooks on numer-
ical analysis and can be formulated via the classical splitting approach. In the following, we

utilize a modified version to achieve a better perspective.

CHAPTER 1. INTRODUCTION 29

Let a = 0 be a real parameter and
A:=A1 + Ay = (A1 +aI) + (AQ —ozI).
This way we can split the original equation Au = f as
(A1 +al)i = f— (A2 — al)i.
This immediately motivates the standard splitting iterative method
@ = (A1 +al) (= (42 - an)a®?). (1.33)
The method is equivalent to an alternative form, which is the notation we use in this note, as
grew — gold + B(f— Aﬁdd),

with B := (A1 + al)71. Apparently, we can choose the splitting to obtain the above simple
iterative methods. For example, by setting A; = 0, (1.33) yields the Richardson method (1.29);
by setting a = 0 and A; = %D, (1.33) yields the weighted Jacobi method (1.30).

In this setting, the matrix
E:=—(Ai+al) (A3 —al) =1 — BA (1.34)

is oftentimes called an iteration matriz for the iterative method (1.33). It is well-known that

the iterative method converges for any initial guess if and only the spectral radius p(F) < 1.

1.3.2 An observation on smoothing effect

Numerous basic iterative methods display diverse convergence rates for short and long wave-
length error components, which suggests that these distinct scales require varying treatment. To
delve deeper into this phenomena, we consider Apax and A, which stand for the largest and
smallest eigenvalues of A, and 5 max and { min - their corresponding eigenvectors. One intriguing
observation made by several experts is that when we employ the weighted Jacobi method (1.30)
with a weight w of 2/3 to solve the equation Ad = 0, initialized with E max " the convergence
occurs rapidly. Conversely, if the same equation is solved using the weighted Jacobi iteration,
but with a distinct initial guess of E min - the convergence rate is much slower. See Figure 1.4 for

a demonstration.

It’s worth noting that the difference in results between the first problem (with E max) and the
second problem (with E min) s mainly due to the nature of the errors involved. Specifically, the

error in the first problem is oscillatory and high-frequency, while that in the second problem is

CHAPTER 1. INTRODUCTION 30

0.9
0.8
0.7
0.6
0.5
0.4
0.3

0.2

0.1

0 1 1 1 1 1 1
0 20 40 60 80 100 120

Figure 1.4: Error decay in | - |s-norm for weighted Jacobi method with initial guess E k.

smooth and low-frequency. This observation leads one to speculate that the weighted Jacobi
method might be effective at quickly dampening the high-frequency component of the error but

more slowly addressing the low-frequency component. For more details, see Remark 1.30.

In Remark 1.26, we have seen that the eigenvalues of the simple finite difference matrix in
1D are

km
)\k(A)=2—2cos<N+1>.

Then it is easy to obtain the eigenvalues of the iteration matrix for the weighted Jacobi method

km 1 2 km
Me(E) =1—w+wcos (N—i—l) :§+§cos (N—i—l)'

By examining the above equation, it becomes apparent that the eigenvalues |\;(E)| are less than

or equal to % for larger values of k (% < k < N), implying that the weighted Jacobi method is

likely to converge quickly for these larger values of k.

Now we can make this simple observation more formal by considering the simple iterative
method (1.29), i.e. the Richardson method (it is equivalent to the weighted Jacobi for simple

finite difference equations with a constant diagonal), and assume that

AR = 2\EF, k=1,...,N,

CHAPTER 1. INTRODUCTION 31

where 0 < A1 < -+ < Ay and we choose w = ﬁ for example. Since {fk},ivzl forms a basis of

RN we can write

N
i—am = Z a’(qm)gk
k=1
as an expansion. In the Richardson method, we have
G—a™ = (I —wA)(@—ad™) =... = (I —wA)™(@—a).

Hence it is easy to see that

N B N N .
Z a,(gm)ﬁk = —wA)™ Z oz,(C)fk = Z oz,(C)(1 —whp)™ER.
k=1 k=1 k

=1
That is to say, we have
m Ak \™
o™ = (1 - wrp)mal? = (1 - Tk> o k=1,... N (1.35)
N

We can observe from (1.35) that the rate of convergence is fast for high-frequency error compo-
nents, indicated by larger values of k, and sluggish for low-frequency components, represented

by smaller values of k.

1.3.3 Smoothing effect of Jacobi method *

In view of Remark 1.26, based on the understanding of the relation between the smoothness
and the size of Fourier coefficients, we can analyze the smoothing property using the discrete
Fourier expansion. Let @ be the exact solution of the 1D FD problem on uniform grids and @ (™
the result of m-th iteration from the damped Jacobi method (or equivalently in this case, the

Richardson method). Then

—a™ = (I —wA)(G—a™ V) =... = (I —wA)™(@—a).

]

It is straightforward to see that
Me(T —wA) =1 —wA(A) = 1 — 4wsin? _ km
F - M 2(N +1))°

Notice that A\ (I —wA) can be viewed as the damping factor for error components corresponding
to Fourier mode k; see Remark 1.26. We would like to choose w such that A\;’s are small.

Consider the Fourier expansion of the initial error:

N
i— i =Y ad”
k=1

CHAPTER 1. INTRODUCTION 32

Then
N —
i — i =3 (I - wA)mE.

Note that, for any polynomial p, we have p(A)gk = p()\k)gk. By choosing

we obtain that

where

The above equation implies

2m
(m) _ . om N—k‘-l—lz < N—k-&-lz
@ T kS <N+1 2) S\ N¥T 2)

which approaches to 0 very rapidly as m — oo, if k is close to N (high-frequencies). This
means that high frequency error can be damped very quickly. This simple analysis justifies the
smoothing property we observed in the beginning of this section.

We can also apply the same analysis to the Jacobi method as well and the Fourier coefficient

in front of the highest frequency becomes:

(m) N m N 72 m
m—(1—-92sin? ——— = cos™ ~(=1"(1=- ")
N (o E) v s ()~ (Y 2N+ 1)2) W

This suggests that the regular Jacobi method might not have a smoothing property and should

not be used as a smoother in general.

1.4 Multigrid method in 1D

In this section, we present a straightforward motive and a preview of the widely used multi-
grid method, an example of multilevel iterative methods. The insights obtained herein will be
advantageous for our subsequent discussions. For a brief introduction to the multigrid methods,
the tutorial by Briggs et al. [64] is a well-known resource.

Consider solving the linear system arising from the finite difference scheme (1.25) for the

Poisson’s equation in 1D, namely

A= with A= %tridiag(—l,Q,—l), i = f(z).

CHAPTER 1. INTRODUCTION 33

1.4.1 Nested grids

Multigrid (MG) methods are a group of algorithms for solving partial differential equations
using a hierarchy of discretizations. They are very useful in problems exhibiting multiple scales
of behavior. In this section, we introduce the simplest multigrid method in 1D.

Suppose there are a hierarchy of L + 1 grids with mesh sizes h; = (%)”1 (l=0,1,...,L);
see Figure 1.5. It is clear that

ho>hy>hyg>--->hp=:h

and N = 2511 — 1. We call level L the finest level and level 0 the coarsest level.

1=92 1 1 1 1 1 1 1 1 1 hy = (%)3
1=1 1 1 1 1 1 hl — (%)2
1=0 1 1 1 hO — (%)1

Figure 1.5: Hierarchical grids for 1D multigrid method.

1.4.2 Smoothers

We consider how to approximate the solution on each level using some local relaxation
method. Assume the 1D Poisson’s equation is discretized using the finite difference scheme

discussed in the previous section. Then, on each level, we have a linear system of equations
Ay = fi with A; = b2 tridiag(—1,2, —1).

For each of these equations, we can apply the damped Jacobi method (with the damping factor
equals to 1/2)
1 -
g™ = @™+ o7t (- Ad™) (1.36)
to obtain an approximate solution. This method is usually referred as a local relaxation or

smoother, which will be discussed later in this lecture note.

1.4.3 Prolongation and restriction

Another important component of a multigrid method is to define the transfer operators
between different levels. In the 1D case, the transfer operators can be easily given; see Figure 1.6.

In another word, we can also write the transfer operators in the matrix form, i.e.,

CHAPTER 1. INTRODUCTION 34

-0 >¢ >¢ Om -0 >¢ >¢ Om
n VAN N
/ \ / \ 7\ /7 \
/ \ / \ / \ / \
A N LA N s oo L)
R 35 & /3 4\ |5 Pt g 51 3
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \|/ \ / v/ \
¥ \W \ / \7 \
-0 O =0 O

Figure 1.6: Transfer operators between two consecutive levels (Left: restriction operator; right:
prolongation operator).

—_ N =

1
and P_j;:=

1
= - — 1.37
: 1 Lo 5 (1.37)

— N

We notice that R = %PT. It is straight-forward to check that the coefficient matrices of two
consecutive levels satisfy

A1 =Ry 1 AP
1.4.4 Multigrid algorithm

Let ﬁ be the right-hand side vector and #; be an initial guess or previous iteration on level

. Now we are ready to give one iteration step of the multigrid algorithm (V-cycle).
Algorithm 1.1 (One iteration of multigrid method). @ = MG(1, f;, @)

(i) Pre-smoothing: @ <« 4 + %D;l(ﬁ — Al{[l)

(ii) Restriction: 7_; « Ry (ﬁ — Alﬁl)
(iii) Coarse-grid correction: Ifl = 1,¢é;_ 1 « Alillﬁ,l; otherwise, €;_1 «— MG(l-1,7]_1, 6171)
(iv) Prolongation: @ « u; + Pj_1,€1

(v) Post-smoothing: i) <« u; + %D;l (ﬁ — Alﬁl)

Remark 1.36 (Coarse-grid correction). Suppose that there is an approximate solution @ (m)
Then we have
A(@—a™) =7 .= f— Ag(m

CHAPTER 1. INTRODUCTION 35

and the error equation can be written

Aetm) — z(m), (1.38)

If we get €™ or its approximation, we can just update the iterative solution by @™+ =

@™ + &™) to obtain a better approximation of %. This explains the steps (iii) and (iv) in the

above algorithm. 0

Remark 1.37 (Coarsest-grid solver). It is clear that, in our setting, the solution on level [= 0
is trivial to obtain. In general, we can apply a direct or iterative solver to solve the coarsest-level
problem, which is relatively cheap. Sometimes, we have singular problems on the coarsest level,
which need to be handled carefully. O

#Levels #DOF #Iter Contract factor

5 31 4 0.0257
6 63 4 0.0259
7 127 4 0.0260
8 255 4 0.0260
9 511 4 0.0261
10 1023 4 0.0262

Table 1.1: Convergence behavior of 1D geometric multigrid method.

Algorithm 1.1 represents one iteration of the multigrid method, and we can use it to iterate
until our approximation is deemed ”satisfactory”. We often use the relative residual |7o/|f]o as
a stopping criterion, typically set to be less than 1076, This algorithm can be easily implemented
(see HW 1.6). Table 1.1 shows the numerical results of Algorithm 1.1 applied to the 1D Poisson’s
equation with three G-S iterations as smoother. Unlike classical Jacobi and G-S methods, this
multigrid method converges uniformly with respect to h. This is a highly desirable feature of
multilevel iterative methods, which we will explore further in this lecture.

Now it is natural to ask a few questions on such multilevel methods:

How fast the method converges?

When does the multigrid method converge?

How to generalize the method to other problems?

How to find a good smoother when solving more complicate problems?

Why the matrices R and P are given as (1.37)? Are there other choices?

And we will mainly focus on these questions in this lecture.

CHAPTER 1. INTRODUCTION 36

1.5 Tutorial of FASP *

All the numerical examples presented in this lecture were computed using the Fast Aux-
iliary Space Preconditioning (FASP) package. This package offers C source files that can be
used to build a library of efficient iterative solvers and preconditioners for solving large-scale
linear systems of equations. The FASP basic library consists of various modern and effective
iterative solvers that are commonly used in a wide range of applications, from simple exam-
ples of discretized scalar partial differential equations (PDEs) to complex numerical simulations
of multicomponent physical systems. The FASP package provides C99 (ISO/IEC 9899:1999)-
compatible code, making it highly versatile and accessible to users across multiple platforms.

The main components of the FASP basic library are:

e Basic linear iterative methods;
e Standard Krylov subspace methods;
e Geometric and algebraic multigrid methods;

e Incomplete factorization methods.

The FASP distribution also includes several examples for solving simple benchmark problems.
The fundamental (kernel) distribution of FASP is open-source and is licensed under the GNU

Lesser General Public License or LGPL. However, other distributions of the software may have

different licensing arrangements (for more information, you can reach out to the development

team). The latest version of FASP can be directly downloaded from:
https://github.com/FaspDevTeam/faspsolver

To compile, you need a C99 compiler (and a F90 compiler if you need to compile Fortran
examples). By default, we use GNU gcc/gfortan, respectively. Configuring and building the
FASP library and test suite requires CMake 2.8.12 or higher http://wuw.cmake.org/.

The command to configure is:

> mkdir Build; cd Build; cmake ..

After successfully configing the environment, just run:

> make # to compile the FASP 1lib only; do not install

To install the FASP library and executables, run:

> make install # to compile and install the FASP 1lib

Note: The default prefix is the FASP source directory.

https://github.com/FaspDevTeam/faspsolver
http://www.cmake.org/

CHAPTER 1. INTRODUCTION 37

For further details on the usage and implementation of FASP, we recommend consulting
the user’s guide and reference manual of the package'. However, keep in mind that FASP is
undergoing heavy development, and the code may have changed since the guide’s last update.

As such, we advise users to exercise caution when employing this guide.

1.6 Homework problems

HW 1.1. Prove the uniqueness of the Poisson’s equation. Hint: You can argue by the maximum

principle or the energy method.

HW 1.2. Let xg and § > 0 are fixed scales. Find eigenvalues and eigenfunctions of the following

local problem
—uj§(z) = Asus, € (w9 — 5,70+) and us(xzo — 6) = us(zo +0) = 0.

HW 1.3. Prove the eigenvalues and eigenvectors of tridiag(b, a,b) € RV*Y are

i . ' k ., Nk T
)\k:a—2bcos<N7:1) and fk:<Sm(NIl),...,sm(N+7rl)> ’

respectively. Apply this result to give eigenvalues of the 1D FD matrix A. What are the

eigenvalues of tridiag(b, a,c) € RV*N?

HW 1.4. Derive the finite element stiffness matrix for 1D Poisson’s equation with homogenous

Dirichlet boundary condition using a uniform mesh.

HW 1.5. Derive 1D FD and FE discretizations for the heat equation (1.6) using the backward

Euler method for time discretization.

HW 1.6. Implement the geometric multigrid method for the Poisson’s equation in 1D using

Matlab, C, Fortran, or Python. Try to study the efficiency of your implementation.

HW 1.7. Suppose we need to solve the finite difference equation with coefficient matrix A :=

tridiag(—1,2, —1) € R¥*N_ Plot the eigenvalues of the weighted Jacobi iteration matrix E for

2

w=1,35,and % You can use different problem size N'’s to get a better view.

!The guide is available online at http://www.multigrid.org/fasp and can also be found in the ”faspsolver /-
doc/” directory.

http://www.multigrid.org/fasp

Chapter 2
Iterative Solvers and Preconditioners

The term iterative method encompasses various numerical techniques that involve successive
approximations, denoted by {u(m)}, to find the exact solution u to a given problem. This chapter
examines two types of iterative methods: (1) stationary, which involves the same operations for

each iteration, and (2) nonstationary, which includes iteration-dependent operations. Stationary

Local Approximation

Adaptive Mesh
Refinement

High Frequencies

Relaxation Methods
— Gauss-Seidel
\ 4
Multigrid
Multilevel lterative
Methods ;
—_— Block Jacobi
Domain
Decomposition
-

Block G-S

CcG
inRes
@itioning Kryl:;;::::sp o
GMRES
BiCGstab

Figure 2.1: Iterative and preconditioning methods in Chapter 2.

methods are generally easy to understand and implement, but they tend to be less effective than

38

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 39

nonstationary methods. Conversely, nonstationary methods are a more recent development and
tend to have more complex analyses associated with them. In Figure 2.1, we give a bird’s eye

view of the methods that will be discussed.

2.1 Stationary linear iterative methods

This section focuses on stationary iterative methods, two typical examples being the Ja-
cobi and Gauss-Seidel methods. We will explore why these methods are generally considered
inefficient, despite still being widely used. Let V be a finite-dimensional linear vector space,
A :V — V be a non-singular linear operator, and f € V. We would like to find a u € V, such
that

Au = f. (2.1)

For example, in the finite difference context discussed in §1.2, V = R and the linear operator
A becomes a matrix A. We just need to solve a system of linear equations: Find @ € RY, such

that

—

Ad = f. (2.2)
We will discuss the linear systems in both operator and matrix representations.

Remark 2.1 (More general setting). In fact, iterative methods can be approached in a broader
setting. For instance, consider a finite-dimensional Hilbert space, V, its dual, V', and a linear
operator A : V — V' as well as f € V'. It’s worth noting that a significant portion of this

lecture can be easily extended to such a context. O

A linear stationary iterative method (one iteration) to solve (2.1) can be expressed in the

following general form:
Algorithm 2.1 (Stationary iterative method). u™®% = ITER(u°)

(i) Form the residual: r = f — Au°d

(ii) Solve or approximate the error equation: Ae =r by é = Br
(iii) Correct the previous iterative solution: 1"V = ¢4 4 ¢

That is to say, the new iteration is obtained by computing
u" = w4 B(f — Aul), (2.3)

where B is called an iterator. Apparently, B = A~! for nonsingular operator A also defines an

iterator, which yields a direct method.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 40

2.1.1 Preliminaries and notation

The most-used inner product in this lecture is the Euclidian inner product (u,v) := SQ uv dx;
and (u,v) := sz\i L uv; if V= RY. Once we have the inner product, we can define the concept
of transpose and symmetry on the Hilbert space V. Define the adjoint operator (transpose) of

the linear operator A as AT : V — V, such that
(ATu,v) := (u, Av), Yu,veV.
A linear operator A on V is symmetric if and only if
(Au,v) = (u, Av), Yu,v € domain(A) < V.
If A is densely defined and AT = A, then A is called self-adjoint.

Remark 2.2 (Symmetric and self-adjoint operators). A symmetric operator A is self-adjoint
if domain(A) = V. The difference between symmetric and self-adjoint operators is technical;
see [205] for details. O

We denote the null space and the range of A as

null(A4) = {veV : Av =0}, (2.4)
range(A) = {u=Av :veV}. (2.5)

Very often, the null space is also called the kernel space and the range is called the image space.

The subspaces null(.A) and range(A”) are fundamental subspaces of V. We have
null(AT)* = range(A) and null(AT) = range(A)*.

Remark 2.3 (Non-singularity). If null(A) = {0}, then A is injective or one-to-one. Apparently,
A : V s range(A) is surjective or onto. If we consider a symmetric operator A : null(A)+

range(A), then A is always non-singular. O

The set of eigenvalues of A is called the spectrum, denoted as o(A). The spectrum of any
bounded symmetric linear operator is real, i.e., all eigenvalues are real, although a symmetric
operator may have no eigenvalues'. We define the spectral radius p(A) := sup {|A| : A € o(A)}.
Furthermore,

(Av,v)

min ——=%
veV\{o} [[v]?

(Av,v)

Amin(A) = and Amax(A) = max —==%
4 4 veV\(0} o2

! A bounded linear operator on an infinite-dimensional Hilbert space might not have any eigenvalues.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 41

An important class of operators for this lecture is symmetric positive definite (SPD) oper-
ators. An operator A is called SPD if and only if A is symmetric and (Av,v) > 0, for any
v e V\{0}. Since A is SPD, all of its eigenvalues are positive. We define the spectral condition
number or, simply, condition number k(A) := %, which is more convenient, compared with
spectrum, to characterize convergence rate of iterative methods. For the indefinite case, we can

use
SUPAea(4) [A]

~(A) = infyeq(ay Al
More generally, for an isomorphic mapping A € Z(V;V), we can define (have been used in
Chapter 1):
K(A) == Al g A 201
And all these definitions are consistent for symmetric positive definite problems.
If A is an SPD operator, it induces a new inner product, which will be used heavily in our

later discussions
(u,v)4 := (Au,v) Vu,v e V. (2.6)

It is easy to check (-,)4 is an inner product on V. For any bounded linear operator B : V +— V|
we can define two transposes with respect to the inner products (-,-) and (-,-)4, respectively;

namely,

(BTu,v) = (u, Bv),
(B*u,v) 4 = (u, Bv) 4.

By the above definitions, it is easy to show (see HW 2.1) that
B* = A'BT A. (2.7)

Symmetry is a concept that is relative to the inner product that underlies it. In this chapter,
we consistently refer to the (-,-)-inner product when discussing symmetry. It is worth noting
that, by definition, (BA)* = BT A; see HW 2.2 for verification of this equation.

If BT = B, it does not necessarily follow that (B.A)7 = B.A. However, there is a key identity
that holds:

(BA)* = BT A = BA. (2.8)
Remark 2.4 (Induced norms). The inner products defined above also induce norms on V' by
1
|v| := (v,v)% and |v|4 := (v,v)%. These, in turn, define the operator norms for B : V — V,
i.e.,
Bv Bv A
Bl:= sip B g = s 1A
venoy V] venfoy [v]a

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 42

It is well-known that, for any consistent norm || - |, we have p(B) < |B|. Furthermore, we

have the following results:

Proposition 2.5 (Spectral radius and norm). Suppose V is a Hilbert space with an inner prod-

uct (+,-) and induced norm | - |. If A:V — V is a bounded linear operator, then
: my L
o) = Tim A"
Moreover, if A is self-adjoint, then p(A) = |A]|.

From this general functional analysis result, we can immediately obtain the following rela-

tions:

Lemma 2.6 (Spectral radius of self-adjoint operators). If BT = B, then p(B) = |B|. Similarly,
if B* = B, then p(B) = |B| 4.

2.1.2 Convergence of stationary iterative methods

Next, we examine the convergence analysis of the stationary iterative method (2.3). A
method is only considered to be convergent if u(™) converges to u for every initial guess u(%).
It is worth emphasizing that each iteration (2.3) depends only on the previous approximation
uM, without utilizing any data from previous iterations. Essentially, each iteration performs
the same operations repeatedly.

It is easy to see that
u—u™ = (T —BA) (u— u(m_l)) = =T -BA™(u— u(o)) =& (u— u(o)),

where Z : V + V is the identity operator and the operator £ := Z — BA is called the error
propagation operator (or, sometimes, error reduction operator)?. Hence we can get the following

simple convergence theorem.

Theorem 2.7 (Convergence of Algorithm 2.1). The Algorithm 2.1 converges for any initial guess
if the spectral radius p(Z — B.A) < 1, which is equivalent to limy,—, 4+ (Z — B.A)™ = 0. The con-

verse direction is also true.

Lemma 2.6 and (2.8) imply the following fact: If A is SPD and B is symmetric, then

p(I —BA) = |T - BA|a. (2.9)

2Tt coincides with the iteration matrix (1.34) or the iterative reduction matrix appeared in the literature on
iterative linear solvers.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 43

If both A and B are SPD, the eigenvalues of BA are real and the spectral radius satisfies that
p(T — BA) = max (AmaX(BA) 11—)\min(BA)>. (2.10)

So we can expect that the speed of the stationary linear iterative method is related to the span

of spectrum of BA.

Although the convergence result is straightforward, applying it can be challenging. Furthermore,
it doesn’t provide any direct insight into how quickly the algorithm converges, assuming it does

at all. The subsequent example will further elaborate on this point.

Remark 2.8 (Asymptotic convergence behavior). An iterative method converges for any initial
guess if and only if the spectral radius of the iteration matrix p(E) is less than one. However, it is
crucial to understand that the spectral radius of £ only determines the asymptotic convergence
behavior of the iterative method. That is to say, we have

e+
~ p(E
ey~)

only for very large k. However, it is not clear how quickly the error diminishes during the initial
stages of iteration. For instance, consider the following example where it takes all iterations

up to the last one for the error to finally decrease, highlighting the uncertainty regarding how

swiftly the error diminishes in the early stages of the iteration process. O

Example 2.9 (Spectral radius and convergence speed). Suppose we have an iterative method

with an error propagation matrix

0 1 0
B | eryy
. .
0 -« .. 0

and the initial error is €(©) := 7 —7(©) = (0,...,0,1)” € RN. Notice that p(E) = 0 in this exam-
ple. However, if applying this error propagation matrix to form a sequence of approximations,

we will find the convergence is actually very slow for a large N. In fact,
e = [eWfp = = 6™ Djp =1 and ™y =0,

Hence, analyzing the spectral radius of the iterative matrix alone will not provide much useful

information about the speed of an iterative method. O

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 44

An alternative measure for convergence speed is to find out whether there is a constant
6 € [0,1) and a convenient norm | - | on RY, such that [¢("*+D| < §|¢™)| for any € e RV,
However, this approach has its own problems because it usually yields pessimistic convergence

bound for iterative methods.

Remark 2.10 (Convergence rate of the Richardson method). The simplest iterative method for
solving Au = f might be B = wl, which is the well-known Richardson method in Example 1.32.
In this case, the iteration converges if and only if p(—wA) < 1, i.e., all eigenvalues of matrix A
are in (0, 2). Since A is SPD, the iteration converges if w < 2A;L, (4). If we take w = AL (A),

max
then

_ Amin(A4) 1
T—XA L (A)A)=1—- 22 — 1 —
p(max()))\maX(A) /‘i(A)
. . . _ 2
In fact, the optimal weight is wepy = pY 07 e w7y and
2Amin(A) /ﬁ;(A) -1

I —woptA) = I —wopt Al =1 — B .
10(Wopt) H Wopt “ Amax(A)—i_/\min(A) /1<A)+1

We can see that the convergence could be very slow if A is ill-conditioned. O

2.1.3 Symmetrization

In general, the iterator B might not be symmetric and it is more convenient to work with

symmetric problems. We can apply a simple symmetrization algorithm:

Algorithm 2.2 (Symmetrized iterative method). u™®V = SITER(u°'d)
wmta) = m) B(f - Au(m)), (2.11)
wm D = g mt3) BT<f - Au<m+%>). (2.12)
In turn, we obtain a new iterative method
uw—u™) = (T — BT A)(Z — BA)(u — u™) = (T — BA)*(T — BA)(u —u'™).
If this new method satisfies the relation
uw—u™H) = (T = BA)(u — u™),
then it has a symmetric iteration operator

B:=B+B"—B'AB=B"(B" + B — A)B = B'KB. (213)

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 45

Lemma 2.11 (Error decay property). We have, for any v € V, that
ol = I(Z = BAY[, = (BAv,v) .

or equivalently,

—= 2
(- B.A)U,U)A = |(Z- BA)UHA.
Proof. Notice that, by the definition of symmetrization,
BA=BT"(BT+B' - ABA.
This immediately gives

(BAv,v)4 = (BT +B ' —A)BAv,BAv) = (BAv, Av) + (Av, BAv) — (ABAv, BAv)
= ((27 - B.A)U,BAU)A

and the first equality follows immediately. The second equality is trivial. O

Remark 2.12 (Effects of symmetrization). We notice that B" =B and (Z —BA)* =7 —BA.
Furthermore, Lemma 2.11 shows that ((Z — BA)v, ’U)A = |(Z — BA)v|?, Yve V. Since T — BA
is self-adjoint w.r.t. (-,-)4, we have |Z — BA|4 = p(Z — BA). And as a consequence,

|7 — BAJa = Sup (Z-BA)v,v), = Sup |(Z - BAYW|% = |T - BAI (2.14)
v|a=1 v|a=1

Furthermore, we have obtained the following identity:

_ _ T - BA)w,
T —BA) = |T—BAla = sup EZBA),

5 (2.15)
veV\{0} HUHA

The above two equations immediately give
p(T —BA) = |T— BAl4 = |T— BAJ, > p(T — BA).

Hence, if the symmetrized method (2.11)—(2.12) converges, then the original method (2.3) also
converges; the opposite direction might not be true though (see Example 2.14). O

We can also easily obtain a contraction property of the symmetrized iteration. In Lemma 2.11,

we have already seen that
I - BAYL = [off, — (Bbo.).
Hence, HZ — BAH 4 < 1if and only if B is SPD. Hence we have the following theorem.

Theorem 2.13 (Convergence of Symmetrized Algorithm). The symmetrized iteration in Algo-

rithm 2.2 is convergent if and only if B is SPD.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 46

Proof. First of all, we notice that
T —BA=(T—-BTA(T - BA) = A 3T — A3 BTA3)(T — AFBA2)AS,

which has the same spectrum as the operator (Z —A%BT.A%)(I —.A%B.A%). Hence, all eigenvalues
of T — BA are non-negative, i.e., A < 1 for all A € 0(BA).

The convergence of Algorithm 2.2 is equivalent to p(Z—B.A) < 1. Since 0(Z—BA) = {1\ :
A € 0(BA)}, it follows that Algorithm 2.2 converges if and only if o(BA) < (0,2). Therefore,
the convergence of (2.11)—(2.12) is equivalent to o(BA) < (0,1], i.e., BA is SPD w.r.t. (-,-)4.
Hence the result. O

Example 2.14 (Convergence of B and B iterators). Note that even if B is not SPD, i.e., B does

not give a convergent method, the method defined by B could still converge. For example, if

10 1 -2 0 2
A= , B= , and I — BA= ,
01 0 1 0 0
then we have
— 1 0 — 00
B = and [—BA= .
0 -3 0 4
Hence p(I — BA) = 0 < 4 = p(I — BA). Apparently, the iterator B converges but B does
not. O

2.1.4 Convergence rate of stationary iterative methods

The stationary iterative method defined by B is a contraction if |Z — BA|4 < d < 1.
Apparently, it is equivalent to say

lel’, = @ — B[, = (1 - 6)e?, >0, ve=o.

Lemma 2.11 indicates that 6 := | Z — BA| 4 < 1 if and only if B is SPD. The constant § is known

as the contraction factor of the iterative method.

From now on, we will consider only symmetric positive definite (SPD) iterates . Nevertheless,

even for non-symmetric iterates, one could examine their symmetrized counterpart.

Based on the identity (2.15), we can prove the convergence rate estimate:

Theorem 2.15 (Convergence rate). If B is SPD, the convergence rate of the stationary iterative

method (or its symmetrization) is

— 1
IZ-BA|% =|T—-BA|la=1-—, with ¢;:= sup (B v,v).

1 lv].a=1

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 47

Proof. The first equality is directly from (2.14). Since ((Z — BA)v,v)4 = |v]|%} — (BAv,v) 4, the
identity (2.15) yields

— — 1
1T -BAP% =1— inf (BAv,v)4=1- Apn(BA) =1— —,
[v].a=1 c1
where
1 = Amax((BA)™) = sup ((BA)_lv,v)A = sup (Eilv,v).
lv].a=1 [v].a=1
Consequently, the second equality of the theorem is proved.]

Example 2.16 (Convergence of weighted Jacobi methods). If A € RV*" is SPD and it can be
partitioned as A = L + D + U, where L,D,U € RVN*¥ are lower triangular, diagonal, upper
triangular parts of A, respectively. We can immediately see that B = D! yields the Jacobi

method. In this case, we have
B=B"BT+B'-AB=D"D-L-UD"

If Kjacobi :=D—L—U = 2D — A is SPD, the Jacobi method converges. In general, it might not
converge, but we can apply an appropriate scaling (i.e., the damped Jacobi method) B, = wD ™.
We then derive

BT+ B! —A=20"'D - A

The damping factor should satisfy that w < ﬁ in order to guarantee convergence. For the
1D finite difference problem arising from discretizing the Poisson’s equation, we should use a

damping factor 0 < w < 1. O

2.1.5 Gradient descent method *

Let A:V — V be an SPD operator. Consider the following convex minimization problem:
1
min F(u) := i(Au,u) — (f,u). (2.16)

Suppose we have an initial approximation u°'d and construct a new approximation

new

u = ap

with a fixed search direction p € V' and a stepsize «. In order to find the “best possible” stepsize,

we can solve an one-dimensional problem (i.e., the exact line-search method):

. 1
Iol?elﬂlgf(a) = i(u‘)ld + ap, u®d + ozp)“4 — (f,u” + ap).

By simple calculation (HW 2.3), we obtain
1

1
F(a) = 5@2(./4]),])) - a(f - AUOIdap) + i(AuOIdJUOId) - (f? uOId)7

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 48

and the optimal stepsize is

_ old old
(f Au ap) _ (7" 7p) with r°d — f—,AuOld. (217)

Gort = T (A, p) (Ap,p)’

In the previous chapter, we have discussed the Richardson method. A nonstationary version

of the Richardson method can be given as:
w™H) — (M o, (f - Au(m)),

which can be viewed as the gradient descent or steepest descent (SD) method with exact line-

search for the above convex minimization problem.

Remark 2.17 (Richardson and steepest descent method). If A is a SPD matrix, then Ad = f
is equivalent to the unconstrained quadratic minimization problem

1 .
argmin ! A7 — f14.
deRN 2
We immediately notice that the search direction in the Richardson method is exactly the same

as the steepest decent method for the above minimization problem. O

The SD method is both straightforward to implement and computationally inexpensive, with
each step only necessitating one matrix-vector multiplication and two inner products. Unfortu-
nately, this method typically converges rather slowly. The subsequent algorithm description of
the SD method illustrates this point:

Listing 2.1: Steepest descent method

1 [%% Given an initial guess u and a tolerance g;
r«— f— Au;
while |r|>¢€

a«— (r,r)/(Ar,r);

5 U<—u-+ar;

[\v]

B~ W

6 r <1 —aAr;

7 |end

Example 2.18 (Line-search and the G-S method). Let V = RY A = (a; ;) e RV*N. Suppose
we choose the natural basis as the search directions, i.e., p' = & := (0,...,0,1,0,...,0)T € V.

Let @°4 = 7(© be an initial guess. Then the above method yields the iteration:

P10 5)
20 =) 4 g gD 4 (T P) o
u’ =y +ap = + = p=1u

(Ap,p)

S(i—1) 2.
gie) |, (T €
T g

So we get
N i—1
fi— 2 ai “j(l : S

Qi

@ = g1 4

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 49

This means that only one entry is updated in each iteration:

N (i—1)

1y fi— 2o iy g 1

urew = {7 4 : L = —(fi= Y™ = Y aiu™). (2.18)
Bii Gisi j<i J>i

After N steps (1 = 1,2,...,N), we obtain a new iteration @™V, which is exactly the G-S

iteration. 0

Remark 2.19 (The G-S method and Schwarz method). Based on (2.18), we can write the G-S

error propagation matrix in a different form
I —BA=(I—Iyay'yINA) -+ (I — Ly ITA) = (I —Ty) -+ (I — L), (2.19)

where I; is the natural embedding from span{é;} to R and II; = I; A; 'IF A. This form of G-S
will be further discussed later in the framework of Schwarz method and subspace correction
method. O

Theorem 2.20 (Convergence rate of steepest descent method). If we apply the exact line-search

with the stepsize
(r(m), r(m))
Q=
(r(m),r(m))A
then the convergence rate of the SD method satisfies that
m K('A) —1\"
=™l < (S50 51) vl (2.20)

Proof. The exact line-search stepsize is easy to obtain by 1D quadratic programming. At the

m-th iteration, the energy functional satisfies that

1
iafn(/lr(m), rm),
By plugging the expression of «,,, into the right-hand side of the above equality, we obtain that

Fum™Dy = Fu™ + ap,r™) = Fu™) — ay, (7™ (™)) 4

. . 1 (r(m) p(m)y2
Fumt)y = Fum) — 2M_

This implies that

Flum) (r(m) p(m)y2 Fu)
Fmy - Fy 9(Ar(™))y — Y
F(ulm) — F(u) F(ulm) — F(u)
(m) p(m))2
1 _ (T 7T) =: 1 _ l
(Ar(m)jr(m))(/l_lr(m)’r(m)) I}
By the Kantorovich inequality [146], we know /5 < % So it follows
Fumy — Fu) ol Mmedmin e = Amin)® _ (6(A) — 1 2
Fum)—Fu) B (Amax+Amin)? Amax + Amin)? \s(A) +1/

Hence the result. O

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 50

The Kantorovich inequality is a fundamental tool that is used in the study of the convergence
properties of descent methods. It provides an upper bound on the difference between two
functions that are close to each other, in terms of their derivatives. This inequality is often
used in the analysis of gradient descent methods, which are commonly used in optimization to
find the minimum of a function. By providing a bound on the difference between the objective
function and its approximation, the Kantorovich inequality helps to establish the rate at which

the algorithm converges to the optimum.

2.2 Krylov subspace methods

Nonstationary iterative methods are generally favored as standalone solvers in practical
applications. One prominent class of nonstationary methods is the Krylov subspace method
(KSM) [99]. This section mainly follows the discussions in [197]. Suppose A : V — V is an
invertible operator. According to the Cayley—Hamilton theorem (HW 2.4), there exists a Pn_1
polynomial q,_,()) of degree not exceeding N — 1 such that A~! = ¢,,_,(A). As a result, the
solution u of the linear system can be expressed as u = ¢,_,(A)f. Krylov subspace methods

formulate iterative approximations to u in
Km = K (A, f) := span{f, Af, Af,..., A" f}, m=1,2,...

The Krylov subspace method is particularly useful for solving systems of equations where the
coefficient matrix is too large to be stored explicitly and must be applied to vectors using matrix-
vector multiplication. This method can be used for both nonsymmetric and symmetric matrices.
The most commonly used Krylov subspace method is the Conjugate Gradient (CG) method,

which is particularly effective for symmetric and positive definite matrices.

Finding a suitable approximation for u in KC,, (A, f) efficiently is essential for practical appli-
cations. However, the definition of a “good” approximation varies depending on the specific
problem and desired properties of the solution. Therefore, various approaches have been pro-
posed to define the optimal approximation. The selection of criterion and method involves a

trade-off between accuracy, efficiency, stability, and so on.

2.2.1 Arnoldi method

We now assume that the linear operator A is applied to a vector v € V over and over again:

0)

v =y, oW = 4O = Ay, ... ™D = g2 = gLy

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS ol

and the sequence {v(o),v(l), RGO .} is the so-called Krylov sequence. As we mentioned

earlier, the Krylov subspace is defined
Km (A, v) := span{v, Av, A%v, ... A" 1y} = span{v(o), oM @ U(m_l)}.

Apparently, we have K,,,(A,v) = {p(A)v : p € Pp_1}; see HW 2.5. The corresponding matrix
form

K (A) = [’U,.A’U,.AQ’U, ... ,Am_lv] = [v(o),v(l),v@), ... ,v(m_l)] .
is referred to as the Krylov matrix.

Remark 2.21 (Instability of the Krylov matrix). It is easy to see that, if we normalize each vec-
tor v(™)_ then the Krylov sequence is just the Power iteration, which converges to the eigenvector
corresponding to the maximal eigenvalue of A. However, this can result in linear dependence
among the vectors in the Krylov sequence, leading to numerical instability during iteration. We

also note that, if (A, v) is an eigen-pair of A, then
Km(Av) =Ki(Awv), m=2.3,...

The Krylov subspace will not expand any longer.]

Special care must be taken to address numerical instabilities for constructing the Krylov subspace

and ensure the reliability and accuracy of the results.

Remark 2.22 (Characteristic polynomial). The characteristic polynomial of A can be written
as
N — Al =2\ +ay AV 4+ ao.

From the Cayley—Hamilton theorem, we can obtain that
.ANJrOéNfl.AN_l +--+aA+ag=0

and, hence,

(N—

o™ pan ™Y 4 ae® 4 age® = 0. O

Suppose that the Krylov matrix has full column-rank. We apply the QR factorization to the

Krylov matrix such that
K (A, v) = QmBm,
where Q,, € RV*™ and QL Q,,, = I, R,, € R™*™ is a nonsingular upper triangular matrix. We
notice that
K (A, v) = range(Q,) = span{qi,q2, - - -, Gm}-

That is to say, the columns of @, forms an orthonormal basis of ., (A, v).

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 52

Theorem 2.23 (Arnoldi decomposition). Given A € RV*N and 0 # v € RN, If K,,41(A,v) has
full column rank and @,+1 is the Q-factor of the QR-factorization of K,,+1(A,v), then there

exists an irreducible upper Hessenberg matrix H,, € RO"TD*™ guch that
AQr = Qa1 Hpp. (2.21)
Proof. Since K,,(A,v) = Q Ry, we have
[AU,A21), e ,Amv] = AK, (A v) = AQm R,

On the other hand,
[U7AKm(A7U)] = Kerl(Av U) = QerlRerl-

By comparing the last m columns of the above two matrices, we obtain that
AQmRm = Qm-}-lﬁ[ma

where H,, := Rypi1(:,2:m+1) € R+1D)xm g the last m columns of Ry,.1. Apparently, H,,
is irreducible and upper Hessenberg since R,,11 is nonsingular and upper triangular. Hence we

can obtain (2.21) with H,, := H,,R;," which is also irreducible and upper Hessenberg. O

Remark 2.24 (Practical form of the Arnoldi decomposition). The irreducible upper Hessenberg

matrix H,, € RMTDXM can he rewritten as

_ H,,
H, = .
[/Bmegz]

This gives us a more useful form of the Arnoldi decomposition (2.21), i.e.,

AQm = QmHm + ﬁQOJrle%; (2.22)

which provides an iterative scheme to construct Q,,+1. By multiplying Q% on both sides, we
can obtain that
H,, = QI AQ,,. O (2.23)

Using the Arnoldi decomposition (2.22), we find that the last columns on both sides are
Agm = Qmhm + BmGma1-

And by looking at the right-hand side of (2.23), we get h,, = QF Ag,,. With the help of this

relation, we can obtain the next iteration

BQO+1 = AQm - thnm

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 93

where

Bm = HAQm - thmHO

and
gm+1 ‘= (AQm - thm)/ﬁm

This is actually the Gram-Schmidt (GS) orthogonalization. To improve stability, people usually
employ a modified procedure (MGS) in practice, which gives the well-known Arnoldi method?.

Listing 2.2: Arnoldi method with MGS

1|%% Given a normalized vector ¢ with |gifo =1 and the iteration number m;

(v}
h
O
=
<.
|
i—‘
™

L,m

> W

hij — (w,q:), w < w—hijq, i=1,2,...,5;

ot

hjt1,5 = [wllo;
if hjy1,;, =0
m < j, break;

end

© o N o

gj+1 < w/hjy1,j;

10 | end

2.2.2 Lanczos method

The Lanczos method is an iterative numerical method for solving large symmetric matrices.
The Lanczos method works by finding an orthonormal basis for the Krylov subspace generated
by successive multiplication of a starting vector with the given matrix. To do this, the method
repeatedly computes the matrix-vector product of the matrix and the current Krylov basis
vector, and then orthogonalizes the resulting vector with respect to the previous vectors in the
Krylov subspace using the Gram-Schmidt process.

If Ae RV*N is symmetric, the left-hand side of (2.23) simplifies to a tridiagonal matrix

ar B

Hp = Q0 AQm =Ty = | 7

Bmfl

Bm—l Am

Correspondingly, we have the so-called Lanczos decomposition

AQm = QT + ﬁQOJrlegq,- (2.24)

3 Another approach is to use the Householder transformation to further improve stability, but it usually comes
with larger computational cost.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS o4

Hence we have

Aqr = a1q1 + Bige
Agj = Bj-1qj-1 + ;g5 + Bigj+1, J=2,3,...,m

According to the orthogonality of the columns of @,,, this procedure can be written as the

following Lanczos method.

Listing 2.3: Lanczos method

1[%% Given a normalized vector ¢ with |gifo =1 and the iteration number m;
2 |Bo<0, go< 0;

3 |for 5=1,2,....m

4 w < Agj;

5 o < (w,q5);

6 w—w—oq; — Bi-1q5-1;
7 B = |wllo;

8 if B8;=0

9 m < j, break;

10 end

11 @G+1 < w/Byi

12 | end

For non-symmetric matrices, the Lanczos method can provide a pair of biorthogonal bases

for two subspaces:

Km(A,v) := span{v, Av, ..., A" 1}

and
K (AT w) := span{w, Aw, ..., A" w}.

In this case,

a; B
(51 a9

6771—1

Om—1 Qo

In this procedure, we will have to store two sets of basis instead of one set as in the Arnoldi’s
algorithm. A more serious issue of the Lanczos algorithm for non-symmetric matrices is the
potential risk of breakdown. When (v, w;) ~ 0, in which case the algorithm stops without

finding a good affine space that is close to contain the true solution.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 95

2.2.3 Conjugate gradient method

We first consider an SPD linear operator A. Now we apply a descent direction method with
search direction p(™, i.e.

In this case, the “optimal” stepsize from the exact line-search is

(m) p(m)
(0,) |

We notice that the residual after one iteration is

D)) o gm).

In order to keep the iteration going, we wish to construct a new search direction which is

orthogonal to the previous search directions. This motives us to define

p(m+1) — T(m+1) + 5mp(m)a such that (p(m),p(m+1)) = 0.

A

By simple calculations, we get the weight

(Arm+D)_plm)

. 2.27
(Ap(m), pm) (2:27)

Bm = —

This gives the so-called conjugate gradient (CG) method.

Lemma 2.25 (Properties of conjugate directions). For any conjugate gradient step i, we have

following identities:

1.

4, =0, j#i

This lemma is very simple but important; see HW 2.7. It guarantees we can apply a short

recurrence iteration procedure while keep all directions are orthogonal to each other.

Lemma 2.26 (Stepsizes for CG). For the conjugate gradient method, we have the following

identities:
(r(m) 7 r(m))

(Ap(m) ’ p(m))

(m+1) ,.(m+1)
(rt™ 0,)

and Bm = (T(m)’ T(m))

Ay, =

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 56

The previous lemma may look like some trivial transformations, but it is essential for CG

implementation, which is described as follows:

Listing 2.4: Conjugate gradient method

1 [%% Given an initial guess w and a tolerance g;
2 |re—f—Au, p<r;

3 |while |r|>e

a < (r,7)/(Ap,p);

U<—u+ap;

I

ot

6 7 — 1 —aAp;

7 B < (77)/(rr);

8 p—7T+pBp;

9 Update: u<1u, 1< 7, p<p;
10 [end

We can summarize the above CG iterative procedure as the following equations:

PO — A pO = 0 g (p0) (0],

Om = (p(m)’Ap(m)% Qm = pm/am;

(2.28)
T(m+1) = r(m) — amAp(m)’ > m = 07 17 2’ e

Pm+1 = (T(m+1)7 T(m+1))7 ﬁm-ﬁ-l = pm-&-l/ﬂm?

pmH) = pm+) 4 g p(m);

J

Remark 2.27 (Computational complexity of CG). We find that, in each iteration of the CG
method, the complexity is only 1 matrix-vector multiplication and 2 inner products, with a few

vector additions. O

Remark 2.28 (From Lanczos to CG). If we want to find the best approximation of u in the
Krylov subspace K, (A, f) with respect to the A-norm (assuming initial guess u(®) = 0), it is
equivalent to find u(™ € K,,(A, f) such that

UT(f _ .Au(m)) =0, Yven(A,f);

see HW 2.6. The Lanczos method starting from ¢ := f/|f]o is associated with the Q-factor
Q@ whose columns is an orthonormal basis of ICp, (A, f). That is equivalent to find y,, € R™

and u(™ = QmYm such that

QL(f — Au™) = QL (f — AQmym) = 0.

Notice that T}, = QL AQ,,. Tt is then equivalent to solve a symmetric tridiagonal linear system

T ym = | floer-

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS o7

Since T}, is SPD, there exists a LU decomposition, which can be computed without pivoting.

Then we can write the approximate solution

u™ = QU LY floer,

in which L,, has unit diagonal entries. In turn, we need to solve, using substitution, the

equations:
Ly ym = ”fHOeh PnUn = Qm, U(m) = Pn Ym-

This will give rise to the conjugate gradient method as well [166]. O
Remark 2.29 (Polynomial form of CG). It is straightforward to check that, for the CG method,
Kim+1(A, T‘(O)) = span {r(o),r(l), e ,r(m)} = span {p(o),p(l), .. ,p(m)}

and p(®) = (0 By examining the CG method (2.28), we find that there exist two polynomials
®m, Um € Pm, such that

) = fm(A)r O, =y (A) PO = i (A) .

From the above equation, we can see that, to get a convergent method, ¢,,(A) must be a

contraction in some sense. By setting ¢g = 1 and ¢_; = 0, we have the iterations

Om+1 = Om — AmtUm, Um = Om + Bm Ym—1.

Define a bilinear form [¢ - ¢] = (gb(,A)r(O), P(A) T(o)) — 0T

notation, we have a polynomial form of the CG method:
po=1, P_1=0, p1=1
pm = [&m - dmls Bm = pm/pPm-1;

Vm = Om + Bmm—1; (2'29)
> m=20,1,2,...

p(A)p(A) . Using these

Om = [wm : t¢m], Um = pm/am;
Om+1 = Om — QnlPm;

Based on Lemma 2.25, we notice that [¢; - ¢;] = pid;; and [v; - t;] = 040;5. d

The CG method has been proven to converge significantly faster than the steepest descent

method in practice, as demonstrated by the following theorem.

Theorem 2.30 (Convergence rate of CG). The convergence rate of the CG iteration satisfies

the following estimate:

Ju—ul™| <2 (~A) 1) Ju—ul . (2.30)

VE(A) +1

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS o8

Proof. We only give a sketch of proof here. From Lemma 2.25, the residual (™ is orthogonal

to
K = span{r(o),Ar(O), .. ,Amflr(o)},

namely

(A(w — u™), v) = (r™ 0) =0, Voe K.

This implies
((u— u®) — (um — u(o)),v) =0, Yvelk,.

The above A-orthogonality gives

o= fuma® =] = min g (40
A weKm A gm—1 A
= pin [0 ana (A= u) = i fan (A u®)]

The desired estimate can then be obtained by choosing appropriate Chebyshev polynomials; see

HW 2.8 as a guideline to complete the proof.]

If the eigenvalues of A are distributed uniformly in the range [Amin, Amax], the upper bound
stated in (2.30) is proven to be optimal. Notably, a few isolated poor eigenvalues barely affect
the asymptotic convergence of the CG method. However, in such cases, the bound (2.30) is
no longer sharp, and the rate of asymptotic convergence can instead be approximated by the

effective condition number [7, 8].

Remark 2.31 (Effective condition number). If the spectrum of A can be decomposed into two
parts, 0(A) = oeg(A) | giso(A), with mg isolated eigenvalues in 50 (.A). In this case, the above

convergence estimate for CG can be modified as

D 1\
[u=u"™ 4 _ o (V/bla=1 O msmo (2.31)
Ju —u©®]4 Vbla+1

where the constant

1=-2

’ < (k(A) = 1)™.
eO'iso(-A) M

C := max

|
Aeoes(A) u

In particular, C' < 1 if gj5, contains only isolated large eigenvalues. Therefore, we can define the
effective condition number as
b Max Oeff
/ieff(vA) == .76
a min oeg

and use the effective condition number to estimate the rate of convergence of the Krylov subspace

methods instead. O

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 99

Remark 2.32 (Nonlinear conjugate gradient). By considering minimization of a more general
functional F(-) over a quadratic functional, steepest descent directions based search directions
can still be used. The Flecther-Reeves formula and related methods can be utilized for

parameters, while a line search algorithm can be applied for « stepsizes. O

2.2.4 Some variants of CG method *

In large-scale parallel computation, we often need to minimize communication costs asso-
ciated with the inner products needed in the CG method. Here we introduce two variants of
the CG method, namely the pipelined CG method (communication-hiding) and the s-step CG
method (communication-avoiding). The general idea is to reduce cost of communications and
synchronisations by avoiding communications or overlapping communications with computation.

These kinds of techniques are very important for communication-bounded algorithms.

Listing 2.5: Pipelined conjugate gradient method

1 [%% Given an initial guess u and a tolerance g;

(V]

r—f—Au, p—r;

s —Ap, w— Ar, z — Aw;
a «— (r,71)/(p,s);

while |r|>¢€

B~ W

ar

U <—u+ap;
T «— 7T —Qs;

W — W — QZ;

© o N o

zZ— Aw; %% SpMV, asymc

10 B (7,7)/(r,7);

1 & — = G

12 DT+ Bp;

13 S—w+Bs;

14 Z<—Z+Pz; %% Results of SpMV needed here!
15 Update: u<« U, 1«7, p—D, W W, S« 5, 2« Z;

16 | end

Listing 2.6: s-Step conjugate gradient method

1|%% Given an initial guess w1 and a tolerance ¢;

2 (r — f—Aui;

3 |for k = 0:MaxIter

4 for j = 1l:s

5 Wsk+j <—A1“5k+j; %% P2P communication

6 M5k+j<—(7'5k+j,7"sk+j),' %% Test for convergence; All_reduce
7 Vsktj < (Wskt,Tsk+j) i

8 Vsk+j < ,usk+j/Vsk+j;

9 if sk+j ==

10 psktj — 1;

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 60

11 else

12 &1 < Ysk+i/Vsk+i—1;

13 &2 — sktj/Msk+j—17

14 pskis — (1 — &1&a/pshyj—1) i

15 end

16 Tsktjt1 — Psktj (Toktj + VoktjTsk+j) T (1 — Psktj)Tsktj—17
17 Tsktjt1 < Psktj(Psktj — VshtjWskts) + (1 — Pskts)Tski—17
18 end

19 [end

2.2.5 Minimal residual methods

We first examine the scenario where A : V — V is an indefinite symmetric isomorphism. In
this case, a technique akin to the previously discussed Lanczos method can be employed. This

Krylov subspace method is characterized by (%) = 0 % and

u™ = argmin |f — Avl2.
velm (A, f)

In this case, the Lanczos decomposition (2.24) reads
AQm = Qm+1Tma

where @,, € RV*™ is the Q-factor of the Krylov matrix and

ar B
B az P
Ty = e R(m+1)xm
Bm-2 m—1 Bm-1
Bm-1 Qm
B

Assume that 8y := || f[o ® and u™ = Qym with y,, € R™. We have

|f = Au™ g = | f — AQmumo = [BoQms1€1 — Qus1Timymlo = |Boer — Tty o-

Hence we need to find y,, € R™ such that

|80e1 — Tinymlo = min { ||Boer — Trnylo : y e R™ }.

4For simplicity, we assume a zero initial guess, but note that it is not a necessary condition.
5Note that we are using the zero initial guess.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 61

We can apply the Givens transforms on the upper Hessenberg matrix 7}, to obtain an upper

triangular matrix

M 0 e
R Y2 O2 :
GmGm-1-+ G2G1 Ty, = [Om] , and Ry, = - . Em—2 € R™H.
Ym—1 Om—1
i Tmo]
Here the Givens transform has the following form
L.y 0 0
Go=| 0 @ % 0| cRomxomiy (2.32)
0 —S; C; 0
0 0 Iy

and G := G,Gp—1 - - - G2G1. In the Lanczos method, B; # 0; this implies v; # 0 and hence R,,
is nonsingular.

By the above definition, we have

21
G
GBoer)=| " |, Cm=
Pm
Zm
Actually, it is easy to check that
z1 = Bocr,
Zi = (—l)i_1508182"'8i_1ci, 1= 2,3,...,m (2.33)

pm = (—1)"Bos152 - Sm-

Tl

u(m) = QmYm = QmR;zICm

We then have
2

= HRmy - Cm”i + p?n‘

[Tonim — Boea g = |GTomy — GBoer | = ‘
0

This means that y,, = R;,'(, and

gives the so-called minimum residual (MINRES) method. Apparently, this form of the MINRES
method is not efficient because it is expensive to store (),,. The practical implement of MINRES

is based on the following observations.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS

62

Suppose that @, is known. Let P, := QmR;Ll and hence P, R,, = @.;,. Then it is easy to

check

Y1 P1 = 41,
01 p1+Y2p2 = q2,

5j72pj72+5j71pj71 +7]pj:qja j:3747"'am
and it can be solved as
p1=q1/7,
p2 = (g2 — 61p1) /72,
pj = (¢j — 0j—1pj—1 —€j—2pj—2) /v J=3.4,....m
We can also easily see that
0
_ T 1 _
Tper = | ™ ™ e ROVDXED with £, = o
0 ﬁm-ﬁ-l
B
| Om+1 |
And using the Givens transformation, we wish to obtain
0
R, r
Rypi1 = m m+1 e R(m—i—l)x(m—i—l) with 7miq 1= 0
0 Tm+1
Em—1
Om

By some calculations, we get

Em—1 = Sm—lﬁma
Bm = cm—1Bm,
(Sm = Cm,Bm + SmQm+1,

Om+1 = —smBm + CcmQm+1,
[Ym+1] _ [Cm+1 Sm+1] [Qm+1]
0 —Sm+1 Cm+1 Bma1 '
Furthermore, from (2.33), we have

Zm+1 = PmCm+1; Pm+1 = —PmSm+1-

c Rm—i—l

e R™.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 63

And we have already showed that

Pm+1 = (Qm-i-l — Om Pm — Em—1 pm—l)/7m+1

and, in turn,

w™) = PGt = [B Pmia] [Cm

Zm

] = ul™ + Zp i1 Pt

This is the practical MINRES method which only requires to store five vectors «(™, p,, pm—1,

Gm+1, and g, in order to compute the new iteration ulmtl),

Remark 2.33 (Convergence of minimum residual method). We can derive analytically that
(see, for example, [99])

(m) i (0)
[< min max lgn ()]

In this case, the following crude convergence estimate holds
m m k(A) —1\™ k(A) —1\"
Il = =), < 2 (1) A=)l -2 (B55) e 23

If all the eigenvalues are positive, we can get sharp convergence estimate using Chebyshev
polynomials. Unfortunately, it is not easy to get a general yet sharp estimate for indefinite

problems.]

Now if the linear operator A : V +— V is not symmetric, then we need to apply the Arnoldi
method (2.21) instead:

AQm = QmHy + BQO+16%; = Qm+1Hm-

Here Qm+1 = [@Qm,Gm+1] € RNV *(m+1) gatisfies Q%HQmH = Ippyr1. The upper Hessenberg
matrix
_FIm = Hm € R(erl)Xm'
Bmeh

Like before, we assume that Sy := | f|lo and u™) = Q,ym with 3, € R™. We have

If = Au™] = | f — AQmumo = [BoQm+1€1 — Q1 Hmymlo = |Boer — Humym|o-

Then we apply the Givens transformation to H,, to solve this least square problem. This gives
rise to the well-known GMRES method.

It is readily seen that the residual norms are monotonically nonincreasing and the GMRES
method terminates with the exact solution in at most NV iterations. Unlike the MINRES method,

there is no clever way to avoid saving O(mN) vectors. Hence we cannot allow very large m.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 64

In practice, we choose to restart the iterative procedure with a relative small m and this is
the so-called GMRES(m) method. Note that the complexity of the GMRES method is about
O(m?2N). This means the memory and computational costs of this iterative method will become
prohibitively high as iteration number m increases. In practice, we have to terminate and restart

the iteration process, which is the so-called restarted GMRES method.

Remark 2.34 (Generalized minimum residual method). For general linear system, we can apply
the Krylov subspace method: Find u(™ € u(©) + K., (r(?), such that f — Au(™ L L,,, where the
m-dimension subspace £, < V is given. In GMRES method [166], for example, L, = AK,,, in
which IC;, is the m-th Krylov subspace. In each iteration of GMRES, we minimize the residual

norm over all vectors in u(©® + K,,. O

Listing 2.7: Generalized minimum residual method

1 (%% Given an initial guess u and the maximal iteration number m;

2 |r—f—Au, B—|r|, vi <r/8;

3 |for 7=12,...,m

4 w; — Avj;

5 hij<—(wj,vi)7 wjewj—hijvi, 1=1,2,...,7;
6 hjv1s = |wilo;

7 if hj+1,]' =0

8 m <« j, break;

9 end

10 Vi1 — wj/hji15i

11 |end

12 | Hp — {hij}1<ism+1,1<j<mi
13 | Ym < argmin, |Ber — Hnyllo;

14 | Update: u<—u+v(m)ym;

2.2.6 Biconjugate gradient methods

We have written the CG method in a polynomial iteration form in Remark 2.29. If A is not

symmetric, we can revise the bilinear form as

(@) 1= (AT, () r®)

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 65

where (9 and #(©) are two initial vectors. Similar to the CG method, we can employ an iterative
scheme (the BiConjugate Gradient or BCG method):

¢0 = 17 ¢—1 = 07 pP-1 =]-7
= {Dm - bdm), Bm = pm/Pm-1;
Um = Om + Bm¥m-1; (235)
m=20,1,2,...
Om = <'¢m : t¢m>7 Qm = Pm/O'mQ

Om+1 = Gm — amthy;

This will then give
(@i~ by = pidij, (i~ ty) = 04045.

Furthermore, the BCG method results in

_ gbm(A)r(O), Flm) _ ¢m(AT)f(O), q(m) _ ¢m(A)r(0), q~(m) _ ¢m(AT)f(O)

and

w™t) =) 4™ m=0,1,2,...

We notice that
™) 1K (AT, 7O,

We also notice that (see HW 2.9):
rhog = om(Ar® L Kn(AT, 7). gl = on(A)r® L AT, (AT, 7). (2.36)

In the BCG method, we must compute the adjoint operator A”. To avoid this, the Conjugate
Gradient Square (CGS) method was proposed. It is based on the following observations on the

iterative procedure (2.35):
Pm = <¢m : ¢m> = <¢0 ’ ¢12n>7
Om = <¢m : t¢m> = <w0 : t¢12n>
So we can define
= o (A)r @, g™ =7, (A) O, (2.37)
In order to compute these vectors, we can utilize (2.35) to obtain that

V2 = (m + Bnt¥m—1)> = ¢ + 2Bmbm¥m—1 + Baton_1,
G2i1 = (Bm — amthm)? = 62, — 20t dmtm + a2 292,

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 66

and
Omt1¥m = (¢m - amtwm)wm = PmPm — Olmtw?nv
(bmwm = ¢m(¢m + ﬁmwm—l) = (Zs?n + /Bm(bmwm—l-

By defining
P™ = G (A) b1 (A) r O w™ = ¢, (A)hn (A) (O,

we arrive at the following iterative scheme

w™ = pm) 4 g pm).

g™ = 428, p(M 4 52 g(m=1) = (M) 1 B (pt™) 4 B,,qMD)
pm+D) = y(m) o Ag(m): > m=0,1,...
rm+) = (M) 90, Aw(™ + a2, A2 = (™) —q,, A (w(m) + p(mH)) ;
wm) =y 4y, (0™ 4 M)

(2.38)

Remark 2.35 (CGS and BCG). In the above method, we do not need to compute A7 any

more. Theoretically speaking, we should have
(m) _ A)r© (m) 52 (4)r0 — At
g = m(A)TY, rogy = O (A)r G (A)rpca

which means CGS should converge twice as fast as BCG. However, CGS usually generates

oscillating residual |7(™) |y in practice. O

Next we will introduce the BiCGstab method, which is much more popular in many appli-

cations. Consider a method who generates residuals in the following form:
P = (A = m(A)dm(A)r,
with a polynomial ¢,, # ¢,. Usually, it can be given as
G0 =1, Gmi1(t) = (1 —wmi1t) om(1).
In this iterative procedure, we need to determine the coefficients {wm, }m=12,...
O 16mi1 = (1= @i 1) (6m = Amtm) = (1 = wmns1t) (Smm — Amtdmtim)
Omtm = bm (dm + Bmtbm—1) = bmdm + B (1 — wmt)dm-1Ym-1.
Motivated by (2.37), we define

P = G (A) b (A) O, ™ = G (A (A) O, (2.39)

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 67

In this setting, we can immediately derive that

P = 10 4 B (T — i A) p),

r) — (T — w1 A) <r(m) — amAp(m)> = (T — w1 A)s™,

with s(™) = r(m) — o, Ap(™) . We retain the freedom to choose a suitable coefficient wy,1, also

known as the stabilization parameter, by minimizing
[V o = min [[(Z — w.A)s™ o.
w

This immediately gives

(S(m))T A M)
Wil = .
T (stm)T AT A s
Now, in order to make the iteration work, we only need to compute o, and 5,,. We have
Qm = mej Bm = pm y Pm = <¢m : ¢m>, Om = <¢m : t¢m>
Om Pm—1

We have the orthogonality property (2.36). For any ¢ € P,,,—1, the bilinear form
(1) = (WATFO) (6 (Ar @) =0, (2.40)
G- 1) = (0(AT)FO) " A (8 (A @) = 0, (2.41)

Suppose that the leading term coefficients of ¢,,, and QNSm are &, and n,,, respectively. &y = ng = 1.

Using the iteration procedure, we get

fm—&-l = _am§m7 Im+1 = —WmTm,

and v, has the same leading term coefficient as ¢,,,. Hence, ¥, — %gﬁm and ¢, — %ém are

both (m — 1)-polynomial in P,,_1. From (2.40) and (2.41), we can easily see that

m

gm 7 gm 7
Pm = {Pm * dm) = {bm - 777¢m>7 Om = (Pm * thm) = <F¢m tm)
We summarize the above calculations in the following lemma:

Lemma 2.36 (Stepsizes for BiCGstab). For the BiCGstab method, we have the following iden-

tities:
(5(0) 7 r(m))

(f(O),Ap(m))
The BiCGstab algorithm is given in the following listing. Compared to the BCG and CGS

and Bm =

m = Wm (,:(0)’ 7n(m—l)) '

methods, BiCGstab is known for its superior stability. It avoids computing the transpose op-
erator AT, is based on short recurrence, and only requires two matrix-vector inner products in

each iteration.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 68

Listing 2.8: BiCGstab method

1|%% Given an initial guess uw and a tolerance ¢;
2 |r—f—Au, p—r;

3 | Choose a fixed vector 7y such that p <« (Fo,7) # 0
4 |while |r|>e

5 w «— Ap, o « (fo,w), o« p/o;

6 s—r—aw, ve—As, w— (s,v)/(v,v);

7 U<—ut+ap+ws;

8 re—Ss—wuv;

o| e (o), B @p)wo);

10| per+Blp-ww);

11 Update: p <« p;

12 |end

2.2.7 Generalizing KSM to Hilbert spaces

It is important to note that the above convergence estimates (2.30) and (2.34) do not depend
on the finite dimensionality N. Hence the Krylov subspace methods (KSMs) can be applied for

operators A : ¥ — ¥, where ¥ is a separable Hilbert spaceS. In view of Remark 1.23, we have

Av,v alv,v]
ALy = sup T2 — up 22 <
vEY H’UH«// veY HUH“I/
and the inf-sup condition (1.16) gives
o [Av]y (Av, u) alv, u]

= inf sup —————— = inf sup

A5y = in - AL
N0ty Toly o ey ol luly oor ey ol July

Hence the condition number x(A) < C,/a, which is bounded.

However, in order to employ KSMs for the continuous equations that we are interested in, like
the Poisson’s equation, we have to consider A : ¥ — #, where ¥ and # are both separable
Hilbert spaces. Typically, # > ¥ and most likely # = ¥’. For simplicity, we consider a
symmetric isomorphism A € Z(¥;¥"), i.e.,

(Au, vy = (Av,uy, wu,ve ¥,

where (-, -) is the duality pair. Since ¥’ ¢ ¥, KSMs are not well-defined in this case. The

question is how we can apply a KSM method in such a setting.

We need to construct an isomorphism B mapping ¥’ back to ¥". We assume that the map B is

symmetric and positive definite, namely (-, B-) defines an inner product in #’. We immediately

5Note that ¥ here might not be finite dimensional.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 69

notice that B could be a Riesz operator”:

For any given f € ¥/, (Bf,v)y ={f,v), YveV¥.

As a consequence, (B~ .} is an inner product on ¥, with associated norm equivalent to

| - || This leads to a so-called preconditioned system
BAu = Bf

and BA is an isomorphism from ¥ to itself. The Krylov subspace methods can be applied to
this preconditioned system and B is called a preconditioner.

Note that BA: ¥ — ¥ is symmetric with respect to (-,)y, i.e.,
(BAu,v)y = (Au,v) = alu,v] = (u, BAv)y, u,ve¥.

The last equality follows from the symmetry of the bilinear form a[-,-]. Furthermore, due to the

continuity of a[-,-] (1.14), we obtain

|(BAv,v)y| alv,v]
|BA| v,y = sup m———5—— = sup —5= < Cy
ver ol o] 2
and the inf-sup condition (1.16) gives
BA BAv, . ’
(BAY [y, = ing LA g o BAVLY g, _alvou]
2 et oy vV ey [olyluly ve wey o]y fully

This discussion directly follows the work by Mardal and Winther [132].

Example 2.37 (Poisson solver as a preconditioner). As an example, we consider a second-order
elliptic operator A : H} (Q) — H~1(2). We need to define

(Bf, U)Hé Q) = (VBf, vv)()’Q = <f, ’U>.

In this sense, we can choose B = (—A)~! as a preconditioner. We note that other inner products
can be used, which will yield different preconditioners. As long as the above continuity condition

and the inf-sup condition hold, the preconditioned system is well-conditioned. O

Now we summarize the above discussions on how to construct a “natural” preconditioner:

1. Define an appropriate inner product (-,-)y;

alu,v]
oll»

2. Establish the inf-sup condition sup,cy > allully for any u e ¥;

3. Define B as the Reisz operator, i.e., (Bf,v)y = {f,v) for any v e ¥;

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 70

4. The preconditioned system B.A is symmetric with respect to (-,)y and well-conditioned;
5. Construct a discretization which satisfies the corresponding discrete inf-sup condition;

6. Define a spectrally equivalent B}, as a preconditioner.

2.3 Preconditioning techniques

The convergence rate of an iterative method depends greatly on the spectrum of the coef-
ficient matrix. Hence, iterative methods usually involve a second matrix that transforms the
coefficient matrix into one with a more favorable spectrum. The transformation matrix is called
a preconditioner. A good preconditioner 5 improves the convergence of the iterative method
sufficiently and is relatively cheap to compute, in order to overcome the overhead (extra cost)
of constructing and applying the preconditioner. There are a few different ways to apply pre-

conditioners, for example:

BAu = Bf Left preconditioning
ABv = f u = Bv Right preconditioning
BrABrv = B f u = Bgrv Split preconditioning

Although convergence behavior of iterative methods is not governed by the condition number
alone, it provides useful information for a variety of methods. For example, we would hope that

k(BA) « k(A), if we apply a Krylov subspace method to solve a preconditioned linear system.

2.3.1 Construction of preconditioners

We first introduce a few simple facts that could be helpful when we need to estimate the

condition number k(BA).

Lemma 2.38 (Estimation of condition number). If 19 and p; are positive constants satisfying

140 (Au, u) < (B_lu,u) < (Au,u), YueV, (2.42)
then the condition number
Kk(BA) < ML,
Ho

Proof. By change of variable u = A_%v, we have U(A_%BAA_%) c [uo,,ul] and, hence,
U((B.A)_l) - [,uo,,ul]. OJ

Using equivalent conditions found in (2.42) can often provide more convenient ways to analyze
the condition number, as demonstrated in the following lemma and remark. The proof of this

lemma has been left as an exercise for the reader and can be found in HW 2.10.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 71

Lemma 2.39 (Some equivalent conditions). If A4 and B are symmetric positive definite opera-

tors on a finite-dimensional space V', then we have the inequalities (2.42) are equivalent to

po(Bu,u) < (A u,u) < py(Bu,u), YueV, (2.43)

or
uy H(Au,u) < (ABAu,u) < pgt(Au,u), YueV, (2.44)

or
pyt (Bu,u) < (BABu,u) < pigt(Bu,u), YueV. (2.45)

Remark 2.40 (Another equivalent condition). If A and B are symmetric positive definite op-
erators on a finite-dimensional space V, @ > 0 and 0 < § < 1, then it is easy to verify the

following two conditions are equivalent:
—a(Au,u) < (A(Z — BA)u,u) < 6(Au,u), YueV (2.46)

and
(1+) M Au,u) < (B ru,u) < (1—6)"HAu,u), YueV. (2.47)

Apparently, (2.48) can also be written as

—a(u,u)4 < ((Z - BAuw,u) , < d(u,u)a, YueV. (2.48)

A

This equivalent relation will be useful later on.]

2.3.2 Preconditioned conjugate gradient method

Before we talk about preconditioned KSMs, the first question to answer is why and how CG
can be applied to the preconditioned system BAu = Bf. We have mentioned B.A is usually not
symmetric w.r.t. (-,-) but symmetric w.r.t. (-,)4 in §2.2.7. Similarly, we can define a new inner
product (-,-)g-1 := (B71,-). Then

(BA-,)g-1 = (A-,-) = BAisSPD w.rt. (-,-)5-1,
which means CG can be applied to BAu = Bf with this new inner product.

Lemma 2.41 (Stepsizes of PCG). For the preconditioned conjugate gradient method, we have

the following identities:

(Brm))
(A p(m)

(m+1) , (m+1)
(B’I“ ,T)

and ﬂm = (B'r‘(m)’ T(m))

Ay, =

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 72

We notice that B~! is cancelled out in the above inner products. With the help of this
lemma, we can write the pseudo-code of PCG with left preconditioner (compared with regular

CG, it just requires one more matrix-vector multiplication):

Listing 2.9: Preconditioned conjugate gradient method

1 (%% Given an initial guess uw and a tolerance g;
2 |r— f—Au, p < Br;

3 |while |r|>e

4 o« (Br,r)/(Ap,p);

5 U <—u+ap;

6 7 —1r— aAp;

7 B — (BF,7)/(Br,r);

8 p < BF + Bp;

9 Update: u <« u, r« 7, p<p;

10 | end

2.3.3 Precondition v.s. iteration

Let B be a symmetric iterator of the SPD operator A. We have seen that a sufficient

condition for the iterative method to be convergent is that
p(Z —BA) < 1.

In this case, let pg := p(Z — BA) = |Z — BA| 4. The method is not only converging but also
a contraction, i.e., |u — u™|4 < pfu —u®|4 — 0 as m — 4co. Similar argument as

Theorem 2.13 shows that B must be SPD. Furthermore, by definition of | - | 4, we have
((A — 2ABA + ABABA)u, u) < p2(u, u) 4.
Changing variable v = A'/2u, we obtain
((z — AV2BAV2)%y, u) < pR(v,v) —]((z — AV2BAM2)y, v)] < po(v,v)
— ‘((A - .AB.A)’UJ,’LL)‘ < po(Au,u), YueV.

Hence Remark 2.40 shows (see HW 2.12) that the condition number is uniformly bounded, i.e.,

In fact, the above estimate can also be easily obtained from p(Z — BA) = pp < 1.
We use the same notation B for the preconditioner and the iterator, apparently for a reason.

Indeed, the convergence rate of the preconditioned CG method (2.30) is equal to

1+
L VEBA -1 1—28_1:1—«/1—p3<p0 (2.49)
«/E(B.A)-‘rl /%_}_1 0o

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 73

The last inequality holds true when 0 < pg < 1.

The discussion above suggests that a preconditioner can be found for any convergent sta-
tionary linear iterative method, and its convergence can be accelerated by PCG. However, this
comes at an additional cost of applying the preconditioners. Preconditioning is crucial for prac-
tical problems, and KSMs are sometimes referred to as accelerators. It is desirable to have an

effective preconditioner which satisfy most, if not all, of the following properties:

e The preconditioned linear systems have improved “condition” of the linear system.

e The spectral condition number of B.A should be better bounded independently of the size
of the problem.

e The preconditioner is relatively easy to setup and cheap to apply; the computational cost

of Br should be proportional to the size of the problem.

e The preconditioner should be robust on different domain shapes, mesh types, jumps in

coefficients, etc.

e The preconditioner can be implemented easily and efficiently.

To summarize, we present numerical results comparing standard and preconditioned Krylov
subspace methods for solving the finite difference system that arises from the 2D Poisson’s equa-
tion on a unit square domain with homogeneous Dirichlet boundary conditions. The problem
size for this study is 16384 x 16384.

2.3.4 Stopping criteria

When an iterative method is employed, sometimes it is hard to determine when to stop the
iteration process. Ultimately we would like to have the error e(™ := y — u(™ in certain norm
(e.g. the energy norm) to be small enough, i.e., (e(m),e(m))%4 < €. However, the error is not
usually computable. Norms of the residual ™) := f — Au(™ which is not only computable
but also naturally available in the iterative process, are used instead. According to the standard

perturbation analysis, we have

o = ut™]

Jrul

)
171
In fact, A(u —u(™) = f — Au™ = (™) Hence |u—u™]|| < |A~Y|r™|. On the other hand,
it is easy to see that ||f| < |Al||u|. By combining the last two inequalities, we can obtain the

desired estimate (2.50).

< k(A) (2.50)

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS

Performance of iterative r

without pr

74

logyg [|7]lo

BCG

- *BiCGstab |_|
- GMRES
———— cG

= == ‘MinRes

50 100 150 250

Iteration number

Solving FD equation using Krylov subspace methods without preconditioning.

Perfomance of iterative methods with preconditioner ILU(0)

logy [I7(lo

BiCGstab
*GMRES
*CG
*MinRes

20 30 40 50 60 70 80 90
Iteration number

100

Figure 2.3: Solving FD equation using Krylov subspace methods with ILU(0) preconditioning.

We notice that the right-hand side of (2.50) is the relative residual (with initial guess equals

zero) and the

if the relative

left-hand side is just the relative error. Hence this inequality shows that, even

residual is small, the relative error could be still very large, especially for the

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 75

ill-conditioned problems.

is a better quantity to

[oNNIES

Although L2?-norm of (™) is usually used in practice, (T(m) r(m))

)

monitor for convergence. We notice that
(™), M) g = (A, Ae™) , = (ABAeM™ el™).

1
is equivalent to (e(m), e(m))j, if B is a good precondi-

Gyl

According to Lemma 2.39, (r(m),r(m))
tioner.

Another comment is that we have been using the residual of the original equation instead
of the preconditioned equation in PCG. In practice, there might be situations that the left
preconditioner changes the residual of the equation a lot, which will cause trouble for users to
design stopping criteria. The preconditioned equation has a residual rg = Br = B(f — Au) and
|r| might be a lot different than |r|. Sometimes it might not be a good idea to use rp instead

of r.

2.4 Domain decomposition methods

Domain decomposition methods (DDMs) are commonly used in numerical methods for par-
tial differential equations (PDEs) as they employ efficient “divide and conquer” techniques to
iteratively solve sub-problems defined on smaller subdomains. DDMs provide a convenient
framework for solving and preconditioning heterogeneous or multiphysics problems, regardless
of the discretization method used (e.g., FD and FE). These methods offer significant benefits
for solving problems on parallel computers, particularly when it comes to their algebraic solu-
tion. Although there are two ways of subdividing the computational domain, overlapping and

non-overlapping, overlapping domain decomposition methods are the focus of our discussion.

2.4.1 Divide and conquer

We consider the model boundary value problem

Au = f in Q
u = 0 on 0f2

Overlapping domain decomposition algorithms are based on a decomposition of the domain 2
into a number of overlapping subdomains. To introduce the main ideas of DDMs, we consider
the case of two overlapping subdomains §; and g, which form a covering of Q and ; [Qg # 0
see Figure 1. We let I'; (i = 1,2) denote the part of the boundary of €2;, which is in the interior
of Q.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 76

Figure 2.4: Overlapping domain partition with two sub-domains.

If we already have an approximate solution u(™, we can construct a new approximation by

solving the following two equations:

Au&mﬂ) = f in Q,
4 ugmﬂ) = ™ on I'y,
{ gmH) = 0 on 0Q\I'y,
and)
Augmﬂ) = f in Q,
u;mﬂ) = ¢gm on I'y,
ugm“) =0 on 0Q5\Is.

Here we have not specified how to choose the right boundary condition ¢("™). There are two
approaches to apply these two subdomain corrections—the additive approach and the multi-

plicative approach.

e In the additive approach, we take ¢(™ = u(™ and carry out the two corrections simulta-

neously.
e In the multiplicative approach, we take ¢(™ = ugmﬂ) and use the most up-to-date iterative
solution.
We then define the new iteration as
uémﬂ), if x € Qy;

u () = (m+1)
WY i e e O\

2.4.2 Overlapping DD methods

With the above motivation in mind, we are ready to introduce the standard overlapping

domain decomposition method in matrix form:

Aii = f, V =RV,

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 7

Suppose we have an one-dimensional domain partitioning of 2; see Figure 2.5. Of course, we

can use more general partitioning strategies as well.

A

2

0 Qs Q3 Qy Q

BH

Figure 2.5: Overlapping domain partition with four sub-domains.

Denote the set of grid point indices as G := {1,2,..., N} and it is partitioned into n subdo-
mains. Let G; be the index set of the interior points of Qi, and N; := |C§’Z| be the cardinality of
G;. Apparently, we have

G:GIUGQUUGn and N<N1+N2_|_...+Nn_
Let @; € RYi. The injection matrix (natural embedding) I; € RY*Vi is defined as

(%), if keGy
(LU = . (2.51)
0, if ke G\G;.
It is natural to define sub-problems as A; := Il-T AL (i =1,...,n). If we solve each sub-problem
exactly, then we have B; := IiAglliT.
We can define an additive Schwarz method (ASM) as

n n
Bas:= Y. By = > LA7'I], (2.52)

which generalizes the block Jacobi method. Similarly, a multiplicative Schwarz method (MSM)
is then defined by the following error propagation operator

I — BpgA := (I — ByA)--- (I — B1A) = ﬁ(I—BZ-A). (2.53)

i=n
This is a generalization of the block G-S method (with overlapping blocks). In practice, the
sub-problem solver A L could be replaced by an approximation, like the ILU method.

2.4.3 Convergence of overlapping DDMs x

Domain decomposition methods, particularly the ASM version, are typically employed as
preconditioners for parallel computing. Convergence has been analyzed in [80, 81], and we will

showcase results for the additive version.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 78

Theorem 2.42 (Effect of DD preconditioner). The condition number of AS domain decompo-

sition method is independent of the mesh size h and satisfies
#(BasA) < CH2(1 4 572),

where H is size of domain partitions, SH characterizes size of the overlaps, and C is a constant

independent of mesh sizes.

The DD preconditioner (2.52) performs very well in practice. But the convergence rate still
depends on H and the condition number could be large if H is very small. A simple approach
to get rid of this dependence on H is to introduce a coarse space Vy < V and a corresponding

coarse-level solver, i.e.

n
Basg i= IoAy'I§ + >, LAIT,
i=1
where Iy : Vo — V is the injection matrix and Ag is the coarse space problem. We then have

the following estimate on the condition number:

Theorem 2.43 (Effect of two-level DD preconditioner). The condition number of AS domain

decomposition method is independent of the mesh size h and satisfies
R(BaspA) S 1+ 871,
where C is a constant independent of mesh sizes.

The theorem above demonstrates that a suitable coarse-level correction can eliminate mesh
size dependence. In the subsequent chapters, we will create and evaluate two-level and multilevel

iterative methods.

2.5 Homework problems

HW 2.1. Show the identity (2.7).

HW 2.2. If BT = B, show that (BA)* = BT A = BA.

HW 2.3. Show the optimal stepsize (2.17) for general descent direction method.

HW 2.4. Let Ae RV*N and ¢()) := ’)\I — A{ be the characteristic polynomial of A. Show the
Cayley—Hamilton theorem, i.e., g(A) = 0.

HW 2.5. Given A € RM*N and 0 # v € RY. Then the Krylov subspace satisfies the following

properties:

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 79

1. Km(A,0) € King1(A,0);

2. AK (A, 0) € Kng1(A,0);

3. Kim(A,v) = Kp(ad,v) = (A, av), for any 0 # a € R;

4. Km(A,v) = Kp(A — al,v), for any a € R;

5. Km(Q71AQ, Q7 'v) = Q7 'K,n(A,v), for any nonsingular matrix @ € RV*¥;

6. Kn(A,v) ={p(A)v:p€ Pmn_1}, where P,,_ is the real polynomial of degree less than m.

HW 2.6. Suppose that A is SPD and Au = f. Show that the following conditions are equivalent

to each other:
1. Vector u,, € K (A, f) satisfies that [u, —u|4 = min{|v —uf4 : ve Kn(A, f)};
2. Vector u,, € K (A, f) satisfies that | f — Ay, | 4-1 = min {||f — Av|4-1 : v e Kn(A, f)};
3. Vector u,, € K, (A, f) satisfies that vT (f — Au,,) = 0, for any v € K., (A, f).

HW 2.7. Prove Lemmas 2.25 and 2.26.

HW 2.8. The Chebyshev (or Tchebycheff) polynomial of first kind on [—1, 1] can be defined
recursively as

To(x) =1, Ti(x) =z, Thti(z)=22T,(z)—Th_1(x).

Show that

and ’Tn(x)’ < 1 for any z € [-1,1]. Let 0 < Apin < Amax. Define

Su(\) = {Tn(m)}_ln(%w i =20y

)\max -)\min)\max -)\min

and we have

7

()| sl

mm \ oot
mlnaAmaX] pe']) p | m1n7Amax

where P, is the set of polynomials of degree less than or equal to n.
HW 2.9. In the BCG method, we have the following properties:
1. (f(i),r(j)) = pi(sij;

2. (¢, AgD) = 7idi;

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 80

3. Kin(A, r(o)) = Span{q(o), q(l), . ,q(m_l)} = span{r(o), r(l), .. ,T‘(m_l)};
4. K (AT, 70) = span{g®, ¢V, ..., g™V} = span{7®, 71 . #m=D},
HW 2.10. Prove Lemma 2.39.
HW 2.11. Show that (2.48) and (2.47) are equivalent to each.

HW 2.12. Let A be SPD and B be a symmetric iterator. If p = |Z — BA|| 4 < 1, then B is also
SPD and
Kk(BA) < —.

Chapter 3

Twogrid Methods

In the preceding chapter, we explored a variety of iterative solvers and preconditioners for
solving the linear algebraic system presented in equation (2.1). However, as the meshsize h
approaches zero, the convergence rate of these methods tends to deteriorate, with the exception
of the two-level overlapping domain decomposition method that incorporates coarse-grid cor-
rection. This observation serves as the foundation for our subsequent discussions on multilevel
iterative methods. In this chapter, we will delve into the two-grid (or more generally, two-level)

method for solving the discrete Poisson’s equation:

—Au=f inQ, .
v=0 on 0. '

3.1 Finite element methods

In Chapter 1, we briefly explored the finite element approximation for this model problem.
From this point forward, our discussions will primarily focus on finite element discretizations.
Throughout this chapter, we will utilize the standard notations for Sobolev spaces. That is,
HF(Q) represents the classical Sobolev space of scalar functions on a bounded domain Q c R¢,
with derivatives up to order k that are square integrable. The full norm of this space is denoted
by | - ||z, which is accompanied by the corresponding semi-norm | - |x. Additionally, the symbol
HE(9Q) denotes the subspace of H!(2) whose trace vanishes on the boundary Q. We will also
discuss the corresponding spaces as they relate to the subdomain of €.

We now take a little detour and say a few more words about the finite element discretizations;

see [58] for more details. The linear operator A : ¥ — ¥ is defined by

(Au,v)y = alu,v] = f VuVvdz, YveV¥
Q

81

CHAPTER 3. TWOGRID METHODS 82

and f € ¥ is a function or distribution. Suppose that A is bounded (1.14), i.e.,
alu,v] < Coluly|vly, Vuve?

and coercive (1.23), i.e.,

alv,v] = a|v|?, Yve¥.

We would like to find u € ¥ such that Au = f or in the weak form
alu,v] = (f,v)y, Yve¥ (3.1)

which is well-posed. And we have seen that this problem is well-conditioned in Remark 1.23.

3.1.1 Galerkin approximation

The Galerkin method exploits the weak formulation (3.1) and replaces the underlying func-
tion space by appropriate finite dimensional subspaces. We choose a finite dimensional space
Vn (trial/test space), which is an approximation to the space ¥ with dim(Vy) = N. When no
confusion arises, we shall just drop the subscript and denote the space as V = V. Then we

arrive at the Galerkin discretization:
Finduy eV : alun,vn] = (f,on), VonyeW (3.2)

Equation (3.2) yields the so-called Galerkin discretization. If the bilinear form al-, -] is symmetric
and coercive, it is called the Ritz—Galerkin discretization. In the finite-dimensional setting, we
can identify the dual space V' and V; this way, the duality pair (-,-) becomes the [*>-inner
product (-,).

For conforming discretizations, the bilinear form a[-,-] is well-defined on V' x V. If the

bilinear form af[-, -] is coercive, then we have
alun,vn] = ayllon|?, YuneV.

Since coercivity is inherited from ¥ to its subspace V, we can see that the constant ay is
bounded from below, i.e.,

Ny =0, VN

As a consequence, the discrete inf-sup condition holds!. It is easy to show the following simple

optimality approximation properties.

Tn general, the continuous inf-sup condition does not imply the discrete one.

CHAPTER 3. TWOGRID METHODS 83

Remark 3.1 (Galerkin Orthogonality). Assume V < ¥. The weak formulations of the exact

and discrete solutions satisfy
afu,o] = (fv), Ve
aluny,vn] = (f,on), YoyeV.
Taking v = vy in the first equation and simply subtracting the two equations gives the Galerkin

orthogonality, i.e.,

alu —un,vn] =0, VYVoyeW (3.3)

If a[-, -] is symmetric and coercive, then (3.3) means the error u — uy is orthogonal to V' in the
induced inner product by the bilinear form a[-,-]. Apparently, IIyu := uy is a projection from

¥ to V with respect to (-,) 4-inner product. It is oftentimes called the Ritz projection.]

Lemma 3.2 (Céa’s Lemma). If the bilinear form a[-,-] is continuous and coercive, then the

Galerkin approximation uy satisfies
C
lu—un|y < f”u —on|y, VYVouneV.

More generally, we have the following quasi-optimality or quasi-best-approzimation of the

finite-dimensional Galerkin approximation.

Proposition 3.3 (Quasi-Optimality). Suppose a[-,-] : ¥ x ¥ +— R is continuous. The fi-
nite dimensional subspace V in the Galerkin approximation satisfies the discrete inf-sup condi-
tion (1.22) with ay > 0. Let w and uy be the exact solution of (3.1) and the Galerkin solution
of (3.2), respectively. Then the error

_ IAL in e —

Ju—unly < min |u —wy |y
N wneV

Proof. For all wy € V, applying (1.20) and (3.3), we have

aluy —wn,vN] alu — wy,vN]
aylun —wn|y < sup = sup ———————
oNEV low]» oNEV low|»

< A u = wnly
Then simply applying the triangular inequality gives the estimate.

Al +
ju—unly < LA

S min fu =l

Note that this constant in the upper bound is still not sharp. The desired constant in this
Proposition was obtained by Xu and Zikatanov [194]. O

Remark 3.4 (Stability). In view of Theorem 1.16, we can see that the Galerkin solution de-

pends on the data continuously, i.e.,

1
lunly < =[£l
[0

CHAPTER 3. TWOGRID METHODS 84

3.1.2 Finite element *

The Finite Element Method (FEM) has a rich history of practical use and is widely applied
to various problems in physics and engineering. It has proven to be successful in numerous
fields, including structural mechanics. After decades of extensive development, the classical
(conforming) finite element method has become a well-understood and flourishing area in scien-
tific computation. One of the most attractive features of FEM is its ability to handle complex

geometries, boundaries, and operators with relative ease.
Definition 3.5 (Finite element). A triple (K, P,) is called a finite element if and only if
(i) K < R? be a bounded closed set with nonempty interior and piecewise smooth boundary;
(ii) P be a finite-dimensional space of functions on K;
(i) N = {MN1,...,Ni} be a basis of P’.

We usually call K the element domain, P the space of shape functions, and N the set of

nodal variables.

Definition 3.6 (Nodal basis). Let (K,P,N) be a finite element. The basis {¢;};j—1 5 of P
dual to NV, i.e., Nij(¢;) = d;; is called the nodal basis of P.

Example 3.7 (1D Lagrange element). Let K = [0,1], P be the set of linear polynomials, and
N = {Ni,No} where N1 (v) = v(0) and N2(v) = v(1). Then (K,P,N) is a finite element and it
is the well-known P;-Lagrange finite element discussed in Chapter 1. The nodal basis functions
are ¢1(x) =1 —z and ¢a(z) = =. O

Remark 3.8 (Set of nodal variables). If P is a k-dimensional space and {Ni,...,Ni} < P

Then condition (#7i) in Definition 3.5 is equivalent to the unisolvence: For any v € P,
Ni(v)=0, i=1,....k = ov=0. O

Remark 3.9 (d-dimensional simplex). Let (1), ... z(?*1) are d 4+ 1 points in R?. Suppose that

these points do not lie in one hyper-plane. That is to say, the matrix

xgl) ng) xgd+1)

:Cél) xgz) o xéd+1)
T:= : : : :

x((;) xf) o x&dJrl)

CHAPTER 3. TWOGRID METHODS 85

is non-singular. The convex hull of the d + 1 points

d+1 ' d+1
Ti={z=> Az 0K N <l i=1:d+1,) N =1}
i=1 i=1
is called a geometric d-simplex generated (spanned) by the vertices (1), ... z(@+1) Given any
point = € R%, we have
d+1 ' d+1
xr = Z Ai(z)z®, with Z Ai(z) = 1.
i=1 i=1
Here the numbers Ay, ..., A\g11 are called the barycentric coordinates of x with respect to the
simplex 7. O

Now we describe the main steps of discretization using the (K, P, N)-finite element:
Step 1. Domain partitioning: Choose K to be a simplex in R%. So we first partition the
physical domain into simplexes. We discretize a polygonal domain) into small triangles or
tetrahedrons 7. Let h; := \Tﬁ be the diameter of 7 € M and h(x) be the local meshsize, that
is the piecewise constant function with k|, := h, for all 7 € M. The collection M of elements
is called a mesh or triangulation. We call My, := M quasi-uniform if there exists a constant h
independent of 7 such that
h<h: <h, VYT1eM.

We will only consider conforming meshes, i.e., the intersection of any two elements in M is
either an edge (d = 2) / a face (d = 3), vertex, or empty (see Figure 3.1 for an example). We
denote by G(M) the set of all grid points (vertices) in the mesh M. And G(M) = G(M)
is the set of vertices except those on the Dirichlet boundary. Here we use the subscript h to
describe the discrete nature and this does not imply the underlying meshes are quasi-uniform

with meshsize h. In the future discussions, we will focus on uniform conforming meshes only.

Figure 3.1: A polygonal domain €2 with conforming partition.

CHAPTER 3. TWOGRID METHODS 86

Remark 3.10 (Number of geometric entities). Let us now briefly discuss the relationships among
the numbers of vertices, edges, faces, and elements in a triangular or tetrahedral partition. We
denote these numbers as #V, #E, #F, and #r7, respectively. As a convention, #F = #7 in
2D. In 2D, we can consider the term half-edge, which is defined as a pair consisting of an edge
and a face that it borders. We can easily see that the number of half-edges is 2 #E or 3 #F.
Therefore, we have 2 #E = 3 #F. Furthermore, according to the famous Euler—Poincaré formula,
in any polyhedron, we have #V — #E + #F = 2. Hence, we can obtain that #F ~ 2#V and
#E ~ 3#V. In 3D, we have the following asymptotic relations: #F ~ 12#V, #E ~ 7#V, and
#T ~ 6#V. O

Step 2. Finite-dimensional approximation: Let V, < ¥ be the space of continuous
piecewise polynomials over a quasi-uniform conforming mesh Myp, which satisfies appropriate

conditions on the boundary I' := Q\Q, i.e.,
Vi :i={veC(Q) : v|; € Py, for allTth}ﬂ”f/. (3.4)

We notice that there are many ways to approximate the continuous test function space. Different
choices will then result in different numerical methods. In this section, we shall focus on the
simplest case—linear finite element method on triangles or tetrahedrons, i.e., v|; is a linear
polynomial on each 7 € Mpy. The weak form of the finite element approximation reads: Find
uy, € V3, such that

alup,vp] = {fyvp), Y op €V, (3.5)

or, equivalently denoted in an operator form,
Apup, = fr, in V. (3.6)

Step 3. Assembling the finite-dimensional problem: Using the finite element definition
(K,P,N), we can give a basis of the finite dimensional approximation space V},. Suppose {¢;},
be a basis of the N-dimensional space V;,. Then (3.6) can be written as an linear algebraic
equation

Apup = fn. (3.7)
We are going to discuss this notation in §3.2.

Remark 3.11 (A very useful notation). In our discussion, we adopt the notations introduced
by Xu [189]. The symbol a < b signifies that there exists a constant C' that is independent
of the mesh size h, satisfying a < Cb. Similarly, the notations “2” and “x~” can be defined.
These notations are significant since, in our future discourse, we aim to devise solvers and

preconditioners that result in convergence rates that are independent of the mesh size h. O

CHAPTER 3. TWOGRID METHODS 87

3.1.3 Properties of finite element methods

There are a few important properties of finite element space and method that will become

crucial for our later analysis for multilevel iterative methods.

Proposition 3.12 (Interpolation error). Let M}, be a uniform mesh and Vj, be a C* (o = 0)

finite element space on My,. The interpolant Jj, : Wi (2) — V}, satisfies
m—k m .
v — jhv”wg(ﬁ) <h HUHW;,I(Q), Voe W' (), 0 <k <min{m,a + 1}.

Proposition 3.13 (Inverse estimate). Let M), be a uniform mesh and P < W} (K) (\W(K)
and 0 < m < k. If V}, is a finite element space for (K, P,N) on M, then we have

> i 1
(Te;/lh HUH;/TI)C(T)> p < hm7k+mm{07%’§} (TE;V" HUH?/V,;"(T)) q’ Vel

Using Proposition 3.13, we can easily see that, for any v € V3,

_d
o] Lo) S B 7], p € [1,00);
0]l s) < 2] 220 s € [0,1];
[vl ey € 0l mi), a€(0,5).

Moreover, there is a discrete Sobolev inequality at the bottom-line case (when d = 2) which is

worthy for special attention.

Proposition 3.14 (Discrete Sobolev inequality [49]). The following inequality holds
oo < CalM)vlE1 (@), VYve Vi,
where Cy(h) = 1, Co(h) = |log h|/2, and Cy(h) = h™=.

Proposition 3.15 (Weighted estimate for L? projection [49]). Define Qy, : L?(Q) — V}, by, for
any v € L?(Q), it holds that
(Qpv,w) = (v,w), YweV,.

Then we have the following weighted L?-estimate
[v = Quvlly + lQnol, < ko], Vve Hy(Q).

Remark 3.16 (Simultaneous estimate). From the above weighted L?-estimate, we can easily

show the so-called simultaneous estimate

inf ([Jo—wl,+ Ao —w],) S hlvls, Yove H(®).

wth

CHAPTER 3. TWOGRID METHODS 88

Remark 3.17 (Spectral radius and condition number of A;). Suppose that we have a uniform
partition with meshsize h. It is clear, from the Poincaré inequality and the inverse inequality,
that

[0]5 < IVol§ = (Anv,v) < Jolf < h20lg = p(A) V]G, Vv € Vi

In fact, we have p(Ap) = h=2 and k(Ap) = h™2. O

3.1.4 Error analysis *

We now briefly introduce standard error estimates for the continuous linear finite element;
see [68, 58] for details. For standard finite element approximation of elliptic equations, the most

important property is the following Galerkin orthogonality property (see Remark 3.1)
alu —up,vp] =0, Yo,eV.

Using the definition of the energy norm ||-|| := a[-,-]"/?, the Galerkin orthogonality (3.3),

and the Cauchy-Schwarz inequality, we have
lu = unll® = alu — up, u — up] = alu — un,u —va] < flu = upf| flu = opll, Vo € V.
Hence, we obtain the optimality of the finite element approximation, i.e.,
fu = wnll < int = wnl. (38)

This means wy, is the best approximation of u in the subspace V. In general, it is not true for

finite element approximations.

Theorem 3.18 (H'!-error estimate). If u € HJ*(Q) (1 < m < 2), its P;-Lagrange finite element
approximation uy, € Vj, © ¥ = H}(Q) satisfies

b= unly i € Bl
If m = 2, then we have |u —upf1,0 < th“o,Q'

By applying the well-known duality argument, we have the L? error estimate; see [58, The-

orem 5.4.8] for example.

Theorem 3.19 (L%-error estimate). If u € HZ(Q), its P;-Lagrange finite element approxima-
tion uy, € Vi, @ ¥ = H}(Q) satisfies

Ju— “hHo,Q < hlu— uh’l,Q S h2’“}2,9 S hZHfHO,Q‘

CHAPTER 3. TWOGRID METHODS 89

Remark 3.20 (A posteriori error analysis). A posteriori error estimation relies on the following

error equation (or residual equation):
alu — up,v] = alu,v] — afup, v] = (f,v) — alup,v] = (f — Aup,v), Yve¥.
Hence, by the Cauchy-Schwarz inequality, we obtain (see HW 3.1)
If = Aunll < llu = unll < I1f = Aur]l, - (3.9)

Here |||, is the dual norm of |-||. Notice that, on the right-hand side, we only have the data
f and the discrete solution uy. This upper bound does not depend on the unknown solution w.
Of course, to make the upper bound useful in adaptive algorithms, we need it to be local and

computable. O

3.2 Algebraic representations

In the previous chapters, we have written the discrete problem simply as

—

A = f.

We will see that, in some sense, it is an abuse-of-notation. Now we would like to clarify (especially
for finite element methods) the relation between the general operator form Apuy, = fj, and its
often-used matrix form (3.7), i.e., Ah% = ﬁ Sometimes we can drop the subscript h for

simplicity.

3.2.1 Vector and matrix representations

Assume that {¢;};—1,. ~ is a basis of the finite-dimensional space V. Any function v € V

can be represented as
N

V=) v0

i=1
and the vector representation (coefficient vector) of v is defined as

vi=| |eRM (3.10)

It is not hard to notice that there is another natural and easier-to-compute vector representation

(Ua ¢1)
7 ('l), ¢2>

<y
I
=

\'@

and (3.11)

(v7 ¢N)

CHAPTER 3. TWOGRID METHODS 90

where M € RV*N with M; ; := (¢}, ¢i) = (¢4, ¢;) is the mass matriz. v and ¥ can be referred
to as the primal and dual vector representations of v, respectively. Apparently, we have
(uw,7) = (u,7) = (u,7) = u" Mv = (u,v)y.

Suppose W is another finite-dimensional linear space with a basis {1;};—1, /. In general, W
could be of different dimension than V', namely, N’ # N. For any linear operator A : V — W,
we give a matrix representation (the so-called primal representation), A € RY XN such that it

. N’ . .
satisfies that > ;" (A)mwi =A¢; (j=1,...,N), ie,

(1, vN)A = A1, ..., dN). (3.12)

On the other hand, the dual representation (the stiffness matriz) corresponding to A is denoted
by A e RVN*N with entries (fl)” = (Adj, ¢i).
It is not difficult to check the statements in the following identities; see HW 3.2.

Lemma 3.21 (Algebraic representations). If A,B:V — V and v,u € V, we have the following

results:
1. AB= AB;
2. Av = Av;

5. A= MA,;
6. (u,v) = (Mu,v).

Example 3.22 (Identity operator). Let Z : V +— V be the identity operator. Its stiffness and
mass matrices are equal to each other, i.e., Z = M. Hence Z = M7 = I. Note that this

relation is independent of the choice of basis functions. As a consequence, we have

I=Z=AA"'=AA4"",

which gives the useful equality

At=A"1 (3.13)

That is to say, the inverse matrix of the primal form of A is the primal form of the inverse of

operator A. O

Example 3.23 (Finite difference matrices). For the finite difference methods, we can simply
let A:RY — RY be a matrix and the canonical basis ¢; = & := (0,...,1,...,0)7 € RV, then
we have A = A. Generally speaking, if A:V — V and {¢i}£\i1 is an orthonormal basis of V,
then we have M = I and A = A. O

CHAPTER 3. TWOGRID METHODS 91

3.2.2 Finite element matrices

We now use a few simple examples to demonstrate how to apply these notations. Suppose
that V' =V}, is the piecewise linear finite element space and {¢;};—1,.. n are the basis functions.
Let A be the resulting coefficient matrix of (3.2) with (A);; = a;; := a[¢s, ¢;]. By definition,
A = A e RNV i the stiffness matrix corresponding to A. Since we are going to focus on the
finite element discretization from now on, we will not distinguish A and A, when no ambiguity

arises.

Let u = (ui)Nl e RY be the vector of coefficients of uy, namely up. Let f = (fi)fil

=
{< 7, ¢1>}f\i1 Then u satisfies the linear system of equations:

—

/lng or Au=f.

Upon solving this finite-dimensional linear system, we are able to obtain a discrete approximation

N
up = > wii.
-1

The main algebraic properties for the stiffness matrix includes: A is sparse with O(N)
nonzeros, symmetric positive definite (for Dirichlet or mixed boundary condition problems) or
symmetric positive semi-definite (for Neumann boundary condition problems). We now summa-
rize this brief introduction of finite element matrices with a few comments. The following results
are valid for a large class of finite elements for second-order elliptic boundary value problems in

general domains.

Remark 3.24 (Spectrum of mass matrix). Suppose that we have a uniform partition with mesh-
size h. An often-used matrix is the mass matrix M € RV*N in which M;; = (¢, #;). In fact,

we know that
(Mu,v) = Y 0,0, (¢, 65) = (v,0) = J v () do = h) o} =~ b (v, v). (3.14)
ij Q i

It is consistent with the well-known facts that the mass matrix is SPD and well-conditioned,
ie.,

rEd s et ME < hY¢d, vEeRN.
Il

Remark 3.25 (Spectrum of stiffness matrix). Suppose that we have a uniform partition with

meshsize h. It is also well-known that the stiffness matrix A is SPD and, from Remark 3.17,
el < €TAE < hel5, vEERY.

Hence the spectral radius p(A) = h%2 and the condition number x(A) = h~2. And it has been

observed that the CG method becomes slower when h decreases. O

CHAPTER 3. TWOGRID METHODS 92

3.2.3 Algebraic forms of simple iterative methods

Now we consider the solution of the standard finite element (say the P;-Lagrange element)
for the Poisson’s equation, i.e., Au = f The simplest iterative solver for this finite element

equation is probably the well-known Richardson method:
WPy — 0 w(f_ Agold)' (3.15)
It is equivalent to
WPV — 40 +W<Mf_ MAgold) — ol _i_wM(i_Agold)'
That is to say, the Richardson method, can be written in the operator form as

ure — 0 4 B (= Auold)

with an iterator B,,, whose matrix representation is B, = wM. Therefore, it is easy to check

(HW 3.3) that the operator form of the Richardson method is

N
Bov:i=w Z(v,@-)qﬁi, YVveV <«— B, =wM. (3.16)
i=1

In general, a smoother (or local relaxation) is just a linear stationary iterative method
WPV — 0 4 S(f — Auc)
and its matrix representation is
W — 00 L S(MF — ML A = w0 £ SMY(F — Aud), (3.17)
The above equality indicates that, we shall define a smoother in the matrix form as

S:=8SM~' ie, S=SM. (3.18)

Example 3.26 (Matrix form of the Richardson iteration). If we consider the above Richardson

method (3.16) as an example, i.e. Sg := B, then
Sp=SpM ™' =B,M ! =uwl.
This coincides with the algebraic form of the Richardson method (3.15). O

We will now discuss another important concept in our future analysis: the matrix form of

symmetrization. Let w := STu. Then we have

((sTu i)) (Zu (ST, &)) (Zu @,S@)) =) w

CHAPTER 3. TWOGRID METHODS 93

This immediately gives

STu=8"u=w=M""

g
Il
S

2

In turn, it shows

ST =M (MS)" = M~'STM = ST M. (3.19)

By definition of the primal matrix representation of an operator, we have

S(b1,--,¢n) = (61,...,68)S and S ¢, 0N) = (P15, ON)SL

Using (3.13) in Example 3.22, it is easy to see that
S1=(8)" = (sM) =Mt (3.20)

Using the definition of symmetrized operator (2.13) and (3.18)-(3.20), we can define the

matrix form of the symmetrization
S = SM' = STSsT+st-AHSM!
= STM(M'STT+ M7IST - M A SMM !
= ST(s7T +871—A)s, (3.21)

which is formally consistent with the definition of symmetrization (2.13).

3.3 Smoothers and smoothing effect

The stationary linear iterative methods that have been discussed thus far, such as the damped
Jacobi and Gauss-Seidel methods, are primarily referred to as “local relaxation” methods. This
terminology reflects the fact that these techniques correct the residual vector locally, usually
one variable at a time, as demonstrated in Example 2.18. Although these methods are not
particularly efficient as standalone solvers now, they are critical components of modern multilevel
iterative methods, which can be applied to greatly reduce high-frequency error components (see
§1.3). Other methods, such as the SOR method and incomplete factorizations, have similar
effects. In this section, we will analyze the smoothing effects of these methods using different

approaches.

3.3.1 A numerical example

The damped Jacobi and Gauss-Seidel methods are frequently referred to as “local relax-
ations,” as they are particularly useful for addressing error components that are localized in

nature. Consequently, it is not unexpected that both of these methods can effectively damp out

CHAPTER 3. TWOGRID METHODS 94

non-smooth components. However, given that relatively smoother error components tend to be
more globally related, both methods are comparatively inefficient at addressing them.

It has been observed that basic stationary linear iterative schemes tend to converge quickly
in the initial stages, followed by a slowdown after a few steps (see Figure 1.4 for the convergence
behavior of the damped Jacobi method). It is noteworthy that these methods not only converge
rapidly in the first few steps, but also exhibit the ability to smooth out the error function rather
swiftly. In other words, the error function becomes a much smoother function after only a few
iterations. This property of an iterative scheme is known as the “smoothing property,” and any

iterative scheme possessing this trait is referred to as a “smoother.”

INITIAL GUESS FIRST SUBD. SOLVE

g |G 4.-._ i
ot |

(a) Initial Guess (b) A quarter of the domain relaxed
FIRST HALF SOLVED AFTER SMOOTHING
| % |] o015
o A R & 4|
o2
o.ly H o
AR gL “ Ny
AN ; . i e g
e -3 a8 = 1
05 ~ i D e “oe 06 " ~ Srett _/7-""’\0.5
gt e w2 B 0.6 PP s e 1|
e Pty R e
o o o o
(c) First half relaxed (d) After smoothing

Figure 3.2: Iterative method in the viewpoint of subdomain relaxation.

In Figure 3.2, we see a visual representation of the multiplicative overlapping domain de-
composition method using four subdomains. After a single iteration, this method is capable
of smoothing out the high frequency portion and retaining the lower frequency portion. Basic
linear relaxation schemes, such as the Richardson, Jacobi, and Gauss-Seidel iterations, are in-
herently limited in their scope as local methods. As a result, they are only able to capture the
high frequency (local) portion of the error, and do not perform well on low frequency (global)

components.

CHAPTER 3. TWOGRID METHODS 95

3.3.2 Local Fourier analysis

Local Fourier analysis (LFA), also known as local mode analysis, is a powerful technique for
comprehending and forecasting the convergence rate of geometric multigrid (GMG) methods.
Classical LFA uses error expansion in terms of the eigenvectors of a discrete differential operator
without considering boundary conditions, followed by study of the behavior of the multigrid
error transfer operator when acting on these components. LFA has been proven to yield an
exact convergence rate for GMG on model problems with periodic boundary conditions on
rectangular domains. Further discussions can be found in [53, 179, 187]. More recently, LFA has
been demonstrated to be applicable to more practical scenarios, such as those involving Dirichlet
boundary conditions. Specifically, if a problem is compatible to a periodic boundary problem,
LFA can provide an exact convergence rate for multigrid schemes, as was proven in [162].

LFA has been developed for geometric multigrid algorithms for a wide range of problems,
including those with non-constant or non-linear coefficients. The technique can be applied to
various discretization methods, such as finite difference or finite volume methods, provided that
the resulting discrete problems can be represented in a stencil form. However, its applicability
to finite element methods is limited, owing to the fact that their grids are typically unstructured.
In this context, we will use LFA to analyze simple smoothers, with the aim of providing readers
with a glimpse of this powerful tool. For more comprehensive information, readers may refer to
the practical guide on LFA written by Wienands and Joppich [187].

In order to analyze the local behavior of iterative methods, we consider the 2D Poisson’s
equation; see §1.2. We begin with the damped (weighted) Jacobi method as an example. Using

the local Fourier analysis, we have the following observation:
1. The standard five-point FD stencil can be written as
duij — (wim1y + Uigry + tijo1 +uije1) = h*fiy, ii=1,...,n

and the damped Jacobi (or Richardson) method for the above equation reads

new _ old , %W/ old old old old W2 .
ups” = (1 —wuyj + Z(uz’—l,j Fud T ug sy ufsg) + Zh figo Hi=1...,n.
2. Define the discrete error function €% := w;; — ;5" and e?}lj‘-i = U — u?}lj‘-i, for i,5 =
1,...,n. It is clear that the error function satisfies the local error equation
new old ; W¢ old old old old -
eiyj = (1 — W)eiJ + Z(eiilvj + €i+1,j + ei,jfl + 6i,j+1)7 1,] =]., ceeyn.

3. Define a grid function (essential in the LFA):

Z aoe\/*l(ieﬁrj@z)
0eO©,,

€ij =

CHAPTER 3. TWOGRID METHODS 96

and

2% 2l
0, = {(91,92) ., = Tﬂ 0, — 7” ke [—ml,mQ]},

where m; = n/2—1,mg = n/2, if n is even and m; = mg = (n—1)/2, if n is odd. Plugging

new old
2 2%
amplification factor of the local mode eV~ 1(01+502)

the discrete Fourier transforms of e and e2¢ to the above error equation, we get the

aIeleW

M) =~

Qg

< L

1 w(l ~ cos(f1) + cos(92)>
2
Furthermore, A\(#) — 1 when |#] — 0 (low-frequency components).

4. Asymptoticly, m; ~ ma ~ §. So we can define a smoothing factor (i.e. maximal amplifi-

cation factor corresponding to high-frequency local modes) by
p 1= sup {’/\(9)’ s e [—m)2\ [-n/2, 77/2)2}.
6

By plugging in the end points, we get the the smoothing factor for the damped Jacobi

1=}
2w.

Remark 3.27 (Optimal damping factor for smoothing). We notice that, if w = 1 (the Jacobi

method is
= max{‘l — 20.)},

IOJacobi

method), then p, .. = 1. This confirms the result we obtained in the previous subsection.
Apparently, the “best” weight that minimizes the smoothing factor is w = 4/5, which leads to
= 3/5. O

pJacobi

Remark 3.28 (What is high-frequency error). In the preceding local Fourier analysis, we de-
fined the high-frequency component to correspond to § < [0x| < 7. However, as noted in
Remark 1.30, high-frequency components can be accurately approximated by looking at local
behavior, while low-frequency components should be well represented on coarser grids; this will
be further discussed in Remark 3.33. As such, this definition is not universal and must be
adjusted to correspond with the coarsening algorithm under consideration. Semi-coarsening or
red-black coarsening, for instance, will lead to distinct definitions of high-frequency, as detailed

in [179]. Later, we will explore how to define this concept from an algebraic perspective. O

It is natural for us to imagine that the G-S method should be better than the Jacobi method
in terms of smoothing property. Using the same steps as above, we have the following LFA

analysis:

1. The G-S method in lexicographical order reads

new __
R

1
new old new old 2 .
(uifl,j + ui+1,j + u’i,jfl + ui,j+1) + zh f’i,ja 1,] =]., coeyn.

| =

CHAPTER 3. TWOGRID METHODS 97

2. The discrete error function satisfies

=

_ new old new old ..
W Z(eH’j +eding et i), hi=1..,n.

3. Apply the discrete Fourier transform and compute the amplification factor

aléew 6\/—191 + 6\/—192
o agld o 4 — 67\/7191 _ e*\/flag ’

4. One can show the smoothing factor for the G-S method is
_ m 1
Pas 1= ‘)\<§,arccos(4/5))’ =3

Remark 3.29 (Anisotropic problems and smoothing effect). It should be observed that the
aforementioned analysis only applies to problems that feature uniform partition and isotropic
coefficients. For anisotropic problems, it is important to note that the G-S method (as well
as other point relaxation methods) does not provide as effective a smoothing factor as in the
isotropic case. In fact, the smoothing factor will converge to 1 as the ratio between small and

large coefficients approaches 0 (refer to Chapter 6 for more detailed discussion). O

Remark 3.30 (Ordering and G-S smoother). For the G-S method, ordering is important. When
using the red-black ordering instead of the lexicographical ordering above, one can show the
smoothing factor pp,qe is + [173, 179]. This means the smoothing effect of the red-black order-
ing for G-S is better. O

3.3.3 Smoothing effect

Considering the Richardson method (3.16), then we have B,v = w Zf\; 1(v, ;) ¢i. This implies
N N
(Buv,v) = w Y (v,0:)> = w Y. (M)} = w(Muy, Mv) = w(M?v,v).
i=1 ‘
Since M is SPD, we get
(M?0,0) = (MM3zv, M) = h*(Mzv, M3v) = h*(Mu, v).

The estimate (3.14) implies that
(Bov,v) = whi(v,v). (3.22)

Now we choose the weight of the Richardson iteration to be w = h2~ % i.e.,

N
Sgv := Byv = 274 Z(v, i) i, YveV. (3.23)

i=1

CHAPTER 3. TWOGRID METHODS 98

In view of (3.22) and using the fact that the spectral radius of the FE operator is p(A) =~ h~2
(see Remark 3.17), we find

1
(Sgrv,v) = h?(v,v) =~ m(v,v).

Roughly speaking, Sg behaves like A~! in the high-frequency regime. This is a natural property

we will ask for from a smoother later on:

(Sv,v) = (v,v). (3.24)

In fact, such conditions are only needed in the range of S.
Apparently, the damped Jacobi method also satisfies this condition. In fact, using the

standard scaling argument on each element, we can see that

K72 (6,€) < (DE.€) £ hT2(£,9).
Hence, using (3.18), we have the Jacobi smoother

(Syv,v) = (MS8yv,v) = (MD™ "My, v) = h*?(v,v) = h*(v,v) = (v, 0).

1
p(A)
Next, we shall show an interesting fact that the G-S method behaves in a similar way as in

the Jacobi method.

Lemma 3.31 (Smoothing property of G-S in matrix form). Let A be the stiffness matrix and
A=A=D+L+U. Then the G-S method satisfies

|(D+ L)¢|, = | D€, = h* 2o, VEeRN.
Proof. Locality of the nodal basis functions leads to sparse matrix L; in turn, this gives
[(D+ L)g]y < |Dely < p2 el
The other direction follows from

h2els < (Dg,€) < (D + 4)€,€) = 2((D + L), €) < (D + L)E]o [€]o-
We then get the desired estimates with simple manipulations. O

Similar results for Sgg follows directly as in the Jacobi method. Now we consider the

symmetrized G-S method.

Lemma 3.32 (Smoothing property of SGS). Let S : V +— V be the symmetrized G-S (SGS)
iterator. Then we have

(Sv,v) = h?*(v,v) = (v,v). (3.25)

L
p(A)

CHAPTER 3. TWOGRID METHODS 99

Proof. The matrix form of SGS can be written as
S=SM=(D+U)"'D(D+ L)' M.
Let v be the primal vector representation of v € V. Then we have
(Sv,v) = (MSuv,v) = (MSw,v) = |[D?(D + L)™' Mu|?.
Hence to show the lemma is equivalent to prove that
| D3 (D + L)' M| = n*(Mu,v).

By changing of variable ¢ := (D + L)"'Muv € RY and the fact M =~ h¢, we can obtain the above

equality using
W72(DE,€) = W|gl§ = (D + D)g]y = (Mu, M), VEeRY,

which can be seen from Lemma 3.31. O

3.3.4 Smoother as preconditioner

From the property (3.24), which is satisfied by the aforementioned popular smoothers, we
can easily see that
pgl(v,v) < (Sv,v) < p}l(v,v), (3.26)

where p, := p(A). In this note, we refer to the smoothing property as the phenomenon whereby
the smoother S behaves similarly to A~! in the high frequency regime. While other conditions
or assumptions for smoothers have been explored and discussed in the literature, readers who
are interested in learning more about general smoothers that are defined as additive and mul-
tiplicative Schwarz methods are encouraged to refer to the paper by Bramble and Pasciak [44],
as well as the references cited within it.

Based on this property, we can establish a lower bound for the minimal eigenvalue, namely
p;ll < Amin(S). When the smoother is symmetric, this property also suggests that the smoother
satisfies the Symmetric Positive Definite (SPD) criteria, making its symmetrized form, S, a viable

preconditioner candidate. With regards to Remark 3.17, which asserts that |v|3 < (v,v)4 <

pallv]3, a simple manipulation of the terms leads us to the following conclusion:
P (0,0)4 < p) (Av, Av) < (SAv,v) 4 < p ' (Av, Av) < (0,0) 4. (3.27)
Thanks to Lemmas 2.38 and 2.39, we can deduce from (3.27) that

R(SA) 5 p(A) = K(A),

CHAPTER 3. TWOGRID METHODS 100

thereby suggesting that these smoothers, if used as preconditioners, may not necessarily improve
the condition number of the linear system. Consequently, it becomes apparent that creating an
effective preconditioner requires more than just having a good smoother, which we shall delve

into further in the subsequent sections of this note.

3.4 Twogrid methods

From the analysis in §3.3, we have found that local relaxation methods (smoothers) can damp
the oscillatory components of the error rather quickly. To address the less efficient treatment
of the smooth components by local relaxation methods, coarser levels can be introduced, as
motivated by the two-level DD method in §2.4. After a few smoothing steps, the resulting
problem can be approximated on a coarser grid and continued with a ”coarse version” of the
problem. This approach allows high frequency parts of the error to be resolved with relaxation
schemes, while the low frequency part is addressed by the coarse levels. To begin, we investigate
a much simpler case: the two-grid method, before delving into multilevel methods.

Firstly, we make an observation that heuristically explains why a coarse-grid solution can
provide a good approximation for smooth functions. Specifically, smooth functions can be
accurately represented on the coarse grid, which is the final piece of the puzzle that motivates
multilevel iterative methods. We provide only a brief outline of the proof here and leave the

complete proof to the readers (see HW 3.5).

Remark 3.33 (Low frequency error). Let uj, and uy be the finite element solutions on V}, and

Vir € Vy, respectively. Then we immediately have
a[uh—uH,vH] :0, V’UHEVH.
Using the Aubin-Nitsche’s argument, we consider a boundary value problem

—Aw = wup—ug in Q,

w = 0 on of).

Assume that we have full elliptic regularity. Then [|w]2 < C|up, — uglo is bounded. For any

wy € Vi, we get

[up, — uHug = afw,up —ug] = afw —wg,up —ug)

< lw —walllun —vall s Hlwla flun —ual -
Hence the following inequality holds

lun —uwlo s H [lun —unll < H [Junl - (3.28)

CHAPTER 3. TWOGRID METHODS 101
That is to say, if uy is relatively smooth (small first derivatives), then u; can be well approxi-
mated by ug.]

We summarize the motivations of multilevel iterative methods discussed so far:

e Solution of local problems can be used to approximate high frequency components of the

global solution; see Remark 1.30.
e A high resolution mesh can be effective in capturing local features; see Remark 1.31.

e Local relaxation methods are effective in reducing high frequency errors but not for low

frequency errors; smoother alone is not good enough; see Figures 1.4 and 3.2.

e Coarse-space problems can provide good approximations to the fine-space problems if the

solution is smooth; see Remark 3.33.

e Multilevel iterative methods can be used as preconditioners for Krylov subspace methods;

see the inequalities in (2.49).

3.4.1 General twogrid methods

Let V}, be fine grid finite element space and Vg be the coarse gird space (usually it is a

subspace of V},.) The twogrid method for equation (3.2) can be described as
Algorithm 3.1 (General twogrid method). Given an initial guess () € V},.

(i) Pre-smoothing: Apply a few smoothing steps to smooth 19 in the fine space to obtain

a new approximation u e Vi,

(ii) Coarse-grid Correction: Find ey € V by solving (exactly or approximately) the error
equation
(.AEH,UH) = (f — Au(l),UH), VUH € VH

in the coarse space, and then set u® = o) + ey;

(iii) Post-smoothing: Apply a few more smoothing steps to smooth u? in the fine space to

obtain u® € V.

A more concrete algorithm based on the above abstract algorithm can be introduced. Let
V be the fine space associated with meshsize h and V., < V be the coarse space associated with

meshsize H. Let Z, : V. — V be the natural embedding (injection), i.e., Z.v. = v¢, Yv. € V.

CHAPTER 3. TWOGRID METHODS 102

Remark 3.34 (Embedding and projection). By the definition of embedding Z. : V. — V and
the fact

(ZXv,we) = (v, Towe) = (v,we), YveV,wee Vg,

it is easy to see that
ICT = Qc

is the (-, -)-projection from V to V.. And the coarse-level operator
A =TI AL, = Q. AT,
is defined by the Galerkin relation. O

Suppose that S is a smoother and B, is a solver or approximate solver for the coarse-grid

problem.
Algorithm 3.2 (Twogrid method). Given an initial guess u(®) € V.
(i) Pre-smoothing: u™) = u(9) + S(f — Au®);
(ii) Coarse-grid Correction: w®@ =M 4 (Z.B.ID)(f — Au(l));
(iii) Post-smoothing: u(® = u® + ST(f — Au®).

If B. = AZ!, the algorithm is called an exact twogrid (TG) method. On the contrary, if
B. ~ A-!, the algorithm is an inexact twogrid (ITG) method.

An interesting observation about this algorithm is its striking similarity to the multigrid
algorithm discussed in Chapter 1. In particular, it consists of two core processes: smoothing
steps and coarse-grid correction (CGC). When implemented in a complimentary fashion, these
processes can lead to highly effective algorithms with superior performance. Specifically, choos-
ing appropriate S, V., and B, can enhance the efficiency of the algorithm in solving the given
equation. The two-grid method was developed with the intention of capturing high-frequency
components of error on the fine grid and delegating the low-frequency components to the coarser
grid. The effect of coarse-grid correction is illustrated in Figure 3.3; it’s worth noting that the

two images depicted there are in different scales.

3.4.2 Convergence analysis of twogrid method

In this section, we will estimate the convergence rate of twogrid methods. To begin, we
present a few simple lemmas. The first lemma concerns the norm of oblique projections, also
known as Kato’s lemma, which has been proven and reproduced in several different fields. For

further details, please refer to the paper by Szyld [175].

CHAPTER 3. TWOGRID METHODS 103

AFTER SMOOTHING AFTER COARSE GRID CORRECTIOMN
x 10
0.015 ..
4
oot
0.005 | 2 i
: 73
0 ol i)
-0.005 | e T ;
0.01.. ! o 3] . ;3‘
Lo " *F v v
1T i
e~ src g ae = 3
06 o " o 05 = =a¥
0.4 . e 06 o .
s " D4 i 0.4
0.2 '-_‘v_’, = 0.2 0.2 =
o] 6 o

Figure 3.3: After coarse-grid correction, global low frequency is replaced by local high frequency.
Lemma 3.35 (Norm of oblique projections). If IT is a continuous projection onto a Hilbert
space ¥ and Il is neither Z nor 0 , then

|1 = |Z — 11|

Proof. Let u € ¥ be arbitrary and |u| = 1. From the assumption on II, we can take = := ITu €

range(Il) and y := (Z — Il)u € null(II). Then we have
1= Jul® = [z]* + Iyl + 2 (z,3).

If x =0 or y = 0, then we have Ilu = 0 or |IIu| = 1, respectively. If both x and y are nonzero,

we define w := 2 + y € ¥, where

z:= ”xy:x erange(/I) and g:= ;y € null(I7).

Then |w[? = || + [y|* + 2 (z,y) = 1 and
Hu| = | = 7] = I(Z - Mw| < |T-1I| — || <|Z- 1.
The other direction can be shown in a similar way and the lemma can be proved. O
Proof of the next two lemmas are straightforward and left to the readers; see HW 3.4.

Lemma 3.36 (Iterator of twogrid method). The twogrid method has a corresponding iterator
Brg : V! — V defined as

Brc =S+ (T - STA) I.B.II (I - AS), (3.29)

where S = ST + S — ST AS is the symmetrization of the smoother S.

CHAPTER 3. TWOGRID METHODS 104

Lemma 3.37 (Error propagation of twogrid method). The error propagation operator Epg =
I — BrgA for the twogrid method is

Erc = (T — STANT — B.AL) (T — SA), (3.30)

where II. is the (-,) 4-orthogonal projection onto V.. If the coarse-level solver is exact, namely,
B. = A_!, then we have
Era = (Z—STA(Z - 11.)(T - SA). (3.31)

The explicit formula for the projection operator I1. in (3.31) can be written as
II. = T.A'TT A

Upon examining equation (3.31), we recognize the crucial role played by reducing the norms of
both the coarse-level correction operator Z — II. and the error reduction operator Z — SA in
achieving optimal performance. Furthermore, by taking into account Lemma 3.35, it is evident
that analyzing the behavior of ||II.] 4 is equivalent to assessing the exact coarse-level correction

operator ||Z — II.| 4.

Notice that II. is the A-projection from V to V.. So there is an implicit natural embedding
operator Z, in front of II. in the above equality (3.31).

We now present a theorem which gives the convergence rate of a simplified twogrid method

(Algorithm 3.3) in terms of approximability of the coarser space V..
Algorithm 3.3 (Simplified twogrid method). Given an initial guess u® e V.
(i) Coarse-grid Correction: u(!) = v + (Z.B.ZT)(f — Au®);
(ii) Post-smoothing: u® =« + S(f — AuD).
Assume that S is SPD. In the twogrid method analysis below, we need the following notation
T=Ts:=8SA:V V. (3.32)
With the above notation, we can define the inner product
(U,’U)g—l = (Tﬁlu, U)A,

the accompanying norm | - |5-1, and (-, -)g-1-orthogonal projection Qz-1:V — V..

The convergence rate of the twogrid method is given by the following theorem. One can
compare this result with the convergence rate of the smoother or iterator, S, given by Theo-
rem 2.15:

— 1
|IZ —SA|la=1——, with ¢;:= sup HUH%—I'
c - S
1 lvf.a=1

CHAPTER 3. TWOGRID METHODS 105

The following theorem can be derived from the X-Z identity, as stated in Theorem 4.17. Here,

for the sake of completeness, we present a direct proof originally given in [195].

Theorem 3.38 (Convergence rate of the twogrid method). The convergence rate of the twogrid

method, Algorithm 3.3, with the exact coarse-level solver is given by

1
Eralfh=1- ——, 3.33
H TG H.A cl(‘/c) ()
where
[(Z — Qg-1)ol5 v — vellz-
c1(Ve) := sup 5 =sup inf ——=°— (3.34)
veV lv]% veV veeVe lv][%

Sketch of the proof. (1) It follows from (3.30) that the simplified TG method has the following
error propagation operator
&ra = (I - SA)(I - Hc)'

Hence, we can immediately see that

T —SA)(T - II.)v|? T —SA)wvl|?
“gTG“?A = sup H()(>) HA _ u “(>) H_A
veV HUHA veV-A ||UHA

Using the definition of (-, -) 4-projection II., we can show that

I_T 5 T) I_H T ’
vl = sup 2D 0a g Ty gy (@2)Tow),
vEVCLA HUHA fuchLA (U7U>A 'UeVCLA (UaU)A
(2) Define
X:i= (T —I)T : V4 — Vita (3.35)

and it is easy to check that X is self-adjoint with respect to (-,-) 4. A key observation is that

the inverse of X can be explicitly written as
Z=T NT—-Q5)

Since (1.7 (T — ngl)u,v)A = (T'T- ngl)u,v)A = (7 - Qs-1)u, 0)371 = 0 for any
u e V34 and v € V,, we have II.Z = 0, which implies that Z : V;*4 s V24, Furthermore, by

the definition of projections, we get
XZ=(T-I)T-Qg1)=T—1M.=T onV5A

(3) Consequently Amin (X) = Amax (Z2)*. Finally,

—1 T —0__, T_0_, .
Amax (Z) = sup (7T« Qg5-1)0,0)4 — swp ((Qs)v,v)s
veV; A (v,0)4 veVHA (v,v)a
T—Q-1)v|%, T—0__, zﬂ
= sup ! s s sup | = Q5o = a(V).

veVCLA (’U, U)A veV ”UH?L\

CHAPTER 3. TWOGRID METHODS 106

The last identity holds because 7 — Q<1 = (Z — Qz-1)(Z — II.) and we can then take the

supremum back over all v € V' (using the same argument in the very beginning of this proof). [

Theorem 3.38 estimates the convergence rate of a twogrid method in terms of c¢;(V.). A
smaller bound on ¢;(V;) indicates a faster convergence rate for a given method. Specifically,
the twogrid method achieves uniform convergence if ¢1 (V) is uniformly bounded with respect to
mesh size. However, one potential issue when applying Theorem 3.38 is that it can be challenging
to work with S .

A natural approach to overcome such a difficulty is to introduce a simpler but spectrally

equivalent SPD operator D, such that

YvelV.

2 2 2
Crlvlp < lols— < Cullvlp

Similar to the definition of ¢;(V;), we can introduce the quantity

2
7 — Op)v
c1(Ve, D) = sup w = sup inf 5
veV lv][% vev veeVe [l|%

2
[v = velp

where Qp : V — V, is the (-, -)p-orthogonal projection. Hence
Cra(Ve, D) < cr(Ve) < Cy ar(Ve, D).
It is straight-forward to derive the following estimates:

Theorem 3.39 (An estimate of convergence rate of TG). The convergence rate of the twogrid

method (3.29) with exact coarse-level solver is given by
1 1 1

1-—— <€ <l —— <1, 3.36
N Cuc1(Ve, D) CuC (3:36)
where C' is an upper bound of ¢;(V,, D), i.e.,

. 2 2

'uilel\f;'c v —vep < Clol, VYveV. (3.37)

It is important to note that we have only presented the simplest case where the coarse
problem is solved exactly. In practice, the coarse problem is rarely solved exactly. We can also
obtain convergence estimates for the inexact twogrid method by using the convergence factor of

the exact twogrid method, as outlined in [148, 198].

3.4.3 Optimal coarse space

Next, we will discuss how to choose the coarse space to optimize the convergence rate, which
is a helpful concept when developing algebraic multigrid methods (AMGs). The space that
spans the eigenvectors of SA corresponding to small eigenvalues is the “best” coarse space as
it minimizes the convergence rate. The following theorem characterizes the optimal choice of

coarse space V. with a fixed smoother S:

CHAPTER 3. TWOGRID METHODS 107

Theorem 3.40 (Optimal coarse space). Given a smoother S, the best coarse space of dimen-
sion N, is given by
. Ne
VPP i= argmin [[Epq(Ve)|la = span {&},), (3.38)

dim Ve=N,.
where {ﬁk};f:l are the eigenfunctions corresponding to the N, smallest eigenvalues \j of SA.

Proof. Recall that &g = (Z — STA)(Z — I1.)(T — SA). Since Erg depends on V. we write

Erc(Ve) and using the same argument as in the proof of Theorem 3.38, we have

. (SAv,v)4
era(Va)la = 1— min 52004
vevia vl
Thus,
SA
“min_ [Era(Ve)|la=1— max min %
dim V.=N, dim V.=N, erClA H’UHA

By the well-known Courant minimax principle [69], we have

S
max min %

=
dim Vo=Ne ey ba [0]% Nett

and the equality holds if V., = V" as given in (3.38). O

Remark 3.41 (Lower bound of contraction factor). Since the coarse space which minimizes
the convergence rate is the coarse space which minimizes also ¢1(V.), we have the following

inequalities
1 1

- >
I—[&ralla ™ Anett

(V) or lrala>1- Ay,

which is a lower bound of the contraction factor in terms of size of the small eigenvalues (low
frequencies) of SA. O

Since the eigenpairs of SA are expensive to compute, the practical value of Theorem 3.40 is
limited. But it will provide useful guidance in the design practical algebraic multilevel methods
in §7.1.

3.5 Algebraic representation of twogrid methods

Prior to implementation, it is essential to comprehend the matrix representation of an al-
gorithm in order to tackle inquiries arising from it, such as those noted in Section 1.4. In this
regard, we will outline the matrix representation of the two-grid method within the finite element

domalin.

CHAPTER 3. TWOGRID METHODS 108

3.5.1 Grid transfer operators in matrix form

Let {¢;} be the basis of a finite element space V on the fine-grid. Then the stiffness matrix
A reads

("21)” = a[¢i, ¢;]-

Let {¢}} be the basis functions of the coarse-grid subspace V. < V and the stiffness matrix on

the coarser space is denote by A, with (Ac) ol = al¢f, ¢f]. Then ¢f can be expressed as
N
¢ = 2 (P)i,l¢i
i=1

or
(d)i?(;s?\k) = (¢1,...,¢N)P

which defines a prolongation matrix P € RV*Ne By definition, this implies that P = Z.

Remark 3.42 (Cannonical prolongation operator). Let 1x := (1,1,...,1)T. Since the basis

functions form the partition of unity, it follows that
N N,
(G- dN) I = D i =1 =D 07 = (65, , o3 1IN, = (61, ,dN) P 1n,.
i=1 =1

Hence we have that the prolongation matrix preserves constant away from the boundary, i.e.,
Ply, =1n.

The prolongation preserves the smooth vectors (actually, 1 is in the null space of A in this

case). O

It is important to note that ﬁ = Q. # @T, i.e., the matrix representation of adjoint
operator is not equal to the transpose of the matrix representation. If we take any v € V, then

we have

e = Qv and ve = (¢5,. .., ON,)ve

On the other hand, with straightforward calculations, we obtain that

N N
Ue = <(UC’¢%)>:&1 = <() (ZU (65, %) >k . (Zlvj(ICTM)k,j>kN=c1 = &TMQ.

In turn, we can obtain the matrix representation of the L?-projection

Qv =ve =M "0, =M'Z"Mv = I/ =0Q =M'7"M=M"P'M (3.39)

CHAPTER 3. TWOGRID METHODS 109

3.5.2 Coarse problem in matrix form
Since the coarse-level operator is defined as A, = ICT AZ., we obtain its matrix representation
Ac= Q. AL, — A.=M.A. =M. Q. AL, = PTMAP = PTAP. (3.40)
Then the coarse stiffness matrix satisfies
A. = PTAP. (3.41)
Therefore, the algebraic form (3.41) of the coarse level problem is equivalent to the matrix

representation of the operator form.

In the above equality, we observe that, the L?-projection Q. is not needed for implementation.

Instead, we only need to use a restriction matrix R := PT.

Remark 3.43 (Finite difference case). Notice that, here, for the finite element stiffness matrices,
the restriction matrix is just R = PT. However, we have already noticed that R # PT for the
finite difference method in (1.37). In fact, many books (see [64] for example) states R = aP”.
This difference comes from the scaling effect caused by different meshsizes. In the 1D FD
example, the coefficient matrices on fine and coarse levels are A = h™'A and A, = H ' A,,

respectively. Hence we get

A.=PTAP — A.= (ZPT> AP =: RAP.

This remark explains how we can obtain such the constant « in general. O

3.5.3 Twogrid iterator in matrix form
From (3.29), we have that the twogrid method with exact coarse solver is
Bre =S+ (Z-STA) AT (T - AS).
We can then write the above equation in matrix form
Brc =8+ (Z - STA)LA'T] (Z - AS).
So we define
Brg :=BraM ™ =SM ™ + (Z - STA)LA'T] (Z - AS)M .

Using the matrix form the symmetrization, inversion, and transpose derived earlier, we can

easily get

Brg =S+ (I —STA)PAT'PT(I — AS) = § + (I — STA)P(PTAP) ' PT(I — AS).

CHAPTER 3. TWOGRID METHODS 110

Now we are ready to introduce the matrix representation of the twogrid method for solving the
linear system Au = f We describe the twogrid method as a preconditioner action Brg(-). For
the sake of simplicity and consistency, here we abuse the notation and still use the general vector
notation ¥ to denote the primal form of v. For any given vector (usually it is the residual vector)

7e RN, we can compute Brq(7) in the following steps:

Listing 3.1: A twogrid method

1|%% Given any vector 7;
2 |Pre-smoothing: ¥ « S7;

3 |Coarse-grid correction: W« ¥+ P(PTAP)™'PT (¥ — A7);

4 |Post-smoothing: Bl <« W+ ST(F— AW);

Similarly, from (3.31), we have matrix form of the iteration matrix

Erg = E&rc = (I — STA)I — PAZ'PTA)(I — SA)
=(I—-STA)(I-T1.)(I - SA), (3.42)
where Il := II. = PA;lPTA is the matrix form of the coarse-level correction; see HW 3.8.

In [89], an algebraic analysis of the twogrid method has been given and the convergence rate

of the TG method can be written as

p(Erg) =1 —inf Y

where II,. := A%HCAfé = A%PAc_lPTA%. This algebraic form is explicit and might be easier

to understand compared with Theorem 3.38.

3.6 Homework problems

HW 3.1. Show the a posteriori error bounds (3.9).

HW 3.2. Prove the statements in Lemma 3.21.

HW 3.3. Show the operator form and matrix form (3.16) of the Richardson method.
HW 3.4. Prove Lemma 3.36 and Lemma 3.37.

HW 3.5. Give a complete proof of Remark 3.33.

HW 3.6. Write the 1D multigrid method in §1.4 as a twogrid method (Algorithm 3.2) called

recursively and modify your implementation in this way.

CHAPTER 3. TWOGRID METHODS 111

HW 3.7. Give the detailed proof of Theorem 3.38. Hint: First show that
|Z=SAZ -1yl _ NZ=SAT-H)ols (T = SA[;

)

sup = =
veV [vl vev [(Z = eolZy + [HTevl i lvl%

Then prove that X defined in (3.35) is self-adjoint with respect to (-,)4-inner product.

HW 3.8. Derive the primal matrix representation of II. and &t respectively.

Chapter 4
Subspace Correction Methods

In the previous chapters, we have introduced several iterative solvers for the linear equation
Au = f, (4.1)

where A : V — V is SPD. A linear stationary iterative method can be written as
u" = % 4 B(f — AuY). (4.2)

In Chapter 2, we have seen that: If B is an SPD operator, with proper scaling, the above iterative
method (4.2) converges; Furthermore, B can be applied as a preconditioner of Krylov subspace
methods, like PCG.

In this chapter, we present a theoretical framework for analyzing linear iterative methods
and/or preconditioners in terms of space decomposition and subspace corrections. This gen-
eral framework can be used to establish convergence theory for various methods, including the
multigrid method, the domain decomposition method, and the twogrid method discussed in the

previous chapters.

4.1 Successive and parallel subspace corrections
Suppose we have a subspace decomposition of the solution space
J
V=>V, and V,cV (j=1,...,J)
j=1
For any v € V, we can write it as v = Zj']:1 v; with v; € V;. Notice that this representation

is not unique as there could be redundancy in the subspace decomposition. Later on, it will

become clear that such redundancy is crucial for constructing optimal multilevel methods.

112

CHAPTER 4. SUBSPACE CORRECTION METHODS 113

4.1.1 Abstract framework for subspace corrections

We first define a few operators which have already been used at different places in the

previous chapters.

Definition 4.1. Let V be a finite-dimensional Hilbert space with inner product (-,-) and V; < V
be a subspace. We define

subspace problem A;:V; —Vj, (Ajvj,wj) = (Avj,w;), Vo, wje Vi
(,-)-projection Q;: V=V, (Qju,wj) = (v, w;), Vw; € Vj;
(+,-)a-projection II; : V =V, (ILjv,wj) 4 = (v,wj)a, YwjeV.

Using Definition 4.1, we have the following elementary results:
Lemma 4.2 (Relation between projections). The following equalities hold:

LIl = Q;, IF = II;;

2. ;A= Al
Proof. (i) By definition, for any u € V,v; € V;, we have

(Qju,vj) = (u,v5) = (u, Zjv;) = (I} u, vy),
(ITju,vj) 4 = (u,vj) 4 = (u,Zjv;) 4 = (I;u, Vi) A-
(ii) For any u € V,v; € V;, we have
(AjITju,v5) = (ITju, v5)a = (u,v;)a = (u, Zjvj) 4 = (Au, Zivy) = (Q;Au, v;),

which gives the second identity. O

Remark 4.3 (Matrix representation of the A-projection). Let u, := [T.u. Since I, : V — V,

V is the A-orthogonal projection operator, for any u € V', we have
alue, ve] = a[llu,v.] = alu,ve], Yv.e V..
Using the matrix representation notations introduced in §3.2, we have, for any v. € V., that
alue, ve] = (Aue, ve) = ETACE, YVu. € Vg (4.3)
alu,ve] = (Au,v.) = (Zwe) " Au = v PTAu, YueV. (4.4)
From (4.3) and (4.4), we can derive the matrix representation of the Galerkin projection on the

coarse grid

A~

A, = PTAy = I,

<

= ll.u=u.= AC_IPTAQ.

CHAPTER 4. SUBSPACE CORRECTION METHODS 114

Hence, we obtain the matrix representation of the A-projection operator
I, = A1 PTA. (4.5)
One can compare the above equation with the matrix form of the L2-projection in (3.39), i.e.

Qc::Zi:Mc_lPTM,

which has been derived in the previous chapter. O
Remark 4.4 (Subspace problems). From the definition of A;, we get
_7qT _ _ T

With the help of Lemma 4.2 and simple calculations, we can immediately obtain the error

equation on each subspace Vj:
Ae=r = QjAe=Qr =— Ajllje=0Q;r — Aje;=r;,
where r; := Q;r and e; := Ilje. O

The main idea of method of subspace corrections (MSC), namely divide and conquer, has
already been discussed in the domain decomposition method; see §2.4. We first describe the
idea of subspace correction in the following abstract “algorithm”!

of Algorithm 2.1:

, which is just a generalization

Algorithm 4.1 (Method of subspace corrections). u"*V = SC(’U,Old)
(i) Form residual: r = f — Au°

(ii) Solve error equation on Vj: Aje; =r; by e; ~ €; = Sjr;j

(iii) Apply correction: u™*" = u°Md + ¢;

Notice that, instead of constructing an iterator for the whole system, Algorithm 4.1 only con-

siders one subproblem (on the subspace V;) at a time.

Remark 4.5 (Subspace solvers). It is well-known that

u; = argmin F(v) := %(Av,v) —(f,v)

veVj

!Note that this procedure is not a real algorithm due to the fact that it does not specify how to combine the
corrections €;’s from different subspaces.

CHAPTER 4. SUBSPACE CORRECTION METHODS 115

is equivalent to find

u; = argeniin Hu — UHA.

We notice that the solution of the subspace problem Aje; = r; = er"ld satisfies that

F(u + ¢;) = min F(u + e).

eeVj

In order to provide an effective yet practical subspace solver, we should pay attention to the

dimension of the subspace and choose an appropriate problem size. O

4.1.2 SSC and PSC methods

Algorithm 4.1 did not specify how to combine the corrections €;’s from different subspaces.
There are two basic approaches: the successive subspace correction (SSC) and the parallel
subspace correction (PSC). SSC can be viewed as the multiplicative Schwarz method (2.53) and
PSC can be viewed as the additive Schwarz method (2.52). We now give descriptions of the SSC
and PSC algorithms.

Algorithm 4.2 (Successive subspace corrections). u™" = SSC(u°'?)
(i) v=u
(i) v=v+8;Q;(f—Av), j=1,...,J

(iii) u™ = v

Remark 4.6 (Relaxation for subspace solvers). In the above algorithm, we can introduce a re-

laxation parameter in each subspace correction step
v=v+w;S;Q;(f—Av), j=1,...,J

Good relaxation parameters are difficult to obtain in general, but they can improve convergence
if optimal values can be found. We will not discuss this modified subspace correction though

because w; can always be absorbed in ;. O
Algorithm 4.3 (Parallel subspace corrections). u"*" = PSC/(u°)
(i) rold — f _Auold

(ii) uew — qold + Z}le Sj erold

CHAPTER 4. SUBSPACE CORRECTION METHODS 116

From the above algorithms (Algorithm 4.2 and 4.3), it is immediately clear why they are
named as SSC and PSC, respectively.
Define operators
T = 7:§j =8;9;A=8SA11; : V — V.

Apparently, as in (3.32), if we restrict the domain to Vj, then we have
Tj=Ts; = SjA; Vi = Vj.

We shall now assume all the subspace solvers S; are SPD operators. As SJT = §j, the operator
T; = SjA; : Vj — Vj is symmetric and positive definite with respect to (-,-) 4. If S; = A;l, ie.,
the subspace solvers are exact on each subspace, then we have 7; = II;.

e The SSC method satisfies:
u—u" = (Z — BsscA)(u— v = (T =T7) - (T —T)(Z — T1)(u — u?). (4.6)

If J = N, V; = span{¢;} and S; = .Aj_l (j = 1,...,N), then the corresponding SSC
method (4.6) is exactly the G-S method; see (2.19).

e For the PSC method, the iterator (or, more often, the preconditioner) satisfies

J J J J
Brsc =). 8;Q; = >.1;5;Q; and BpscA=) SQA=)T,. (4.7)
j=1 j=1 j=1 j=1
If S;’s (=1,...,J) are all SPD, then the preconditioner Bpgc is also SPD; see HW 4.2.
If each subspace V; = span{¢;} (j = 1,...,N), then the resulting PSC methods with
S;j = w(-,¢j)¢; and S; = Aj_l correspond to the Richardson method and the Jacobi

method, respectively.

So far, we have not mentioned any multilevel structures in the above methods. In order to intro-
duce multilevel iterative methods in the subspace correction framework, we will need multilevel

subspace decompositions.

4.2 Expanded systems and block solvers

In this section, we discuss an expanded system of Au = f (namely the equation (4.1)) and
its block iterative solvers. Moreover, we will show how these block solvers are related to the
subspace correction methods for the original linear system (4.1). This relation will become
important in the next section for deriving the X7 identity, which gives the convergence rate of

SSC.

CHAPTER 4. SUBSPACE CORRECTION METHODS 117

4.2.1 Generalized G-S method

Similar to the weighted Jacobi method (see Example 2.16), we define the weighted G-S
method B, = (w™'D + L)~!. We have

BT +B'—A=(w'D+L)T +(w'D+L)—(D+L+U)= (2w ' =1)D.

The weighted G-S method converges if and only if 0 < w < 2. In fact, w = 1 yields the standard
G-S method; 0 < w < 1 yields the SUR method; 1 < w < 2 yields the SOR method. One
can select optimal weights for different problems to achieve good convergence result, which is
beyond the scope of this lecture.

Motived by the weighted G-S methods, we assume that there is an invertible smoother or a
local relaxation method S for the equation Aw = f, like the damped Jacobi smoother S = wD ™!

(0 <w < 1). We can define a generalized or modified G-S method:

1

B:=(S""+1L) . (4.8)

This method seems abstract and not very interesting now; but we will employ this idea on block
matrices for multilevel iterative methods later on.

We can analyze the convergence rate of this generalized G-S method using the same technique
discussed in §2.1. Since K = B~7 + B~! — A is a symmetric matrix and we can write (2.13) as

B = BTKB. If B is the iteration matrix defined by (4.8), we have
K=ST+0)+ (S +L)-D+L+U)=5ST+5'1-D.

Furthermore, from the definition of K, we find that B~! = K + A — B~T. Hence we get an

explicit form of B! by simple calculations:
B'=(K+A-B K'Y K+A-BY=A+(A-B K (A-B™).

This identity and the definition of B yield:
(E*a@=4mmn+@r%D+U—54w4D+U—54w) v e RV,

Now we apply Theorem 2.15 and get the following identity for the convergence rate:

Corollary 4.7 (Convergence rate of generalized G-S). If K = S~7 4+ 8~! — D is SPD, then the
generalized G-S method converges and
2 e 1 : _1 1y |2
[—BAP% =|I-BAja=1— ——, mmcmzsw>wde+U—S)w.
1+ [7]a=1

This fundamental result will serve as the foundation for our subsequent analysis of subspace

correction methods.

CHAPTER 4. SUBSPACE CORRECTION METHODS 118

Example 4.8 (Solving 1D Poisson’s equation using G-S). If we apply the G-S method to the
1D FD/FE system (1.25) for the Poisson’s equation discussion in §1.2. For simplicity, we first
rescale both sides of the equation such that A := tridiag(—1,2,—1) and f:z (hzf(xz))fil

this case, S = D! and K = D in the above generalized G-S method. Corollary 4.7 shows that

In

the convergence rate of the G-S iteration satisfies that

1 LD~ U%, v
II - BA|3 =1—- ——, with ¢g= sup %
L+co FeRN\{0} 1911%

The positive constant can be further written
D-UT,UT LU, us IS w2
Cop = Sup (A_,_,): sup Q(A_,_,)I sup 2%:2_,1
gerN\(o} (A7, D) gerN\(o} (AT, 0) gernyjoy (AT, 0)

Because we have the eigenvalues of this discrete coefficient matrix A of FD (see Remark 1.26),

we can estimate the denominator

(A%,)

\%

o . ™ o
Amin(A)[7]* = 4sin® <m)”””2~

Hence, asymptotically, we have the following estimate

3171°

cp < sup ~(N+1)2=h2

TeRN\{0} 4 sin? (%) ||17H2

Hence

Il — BA|a ~V1—Ch?~1—Ch2

Similarly, for the FE equation, the condition number also likes O(h~2) and convergence rate will

deteriorate as the meshsize decreases. O

4.2.2 Expansion of the original problem

Suppose that the finite dimensional vector space V' can be decomposed as the summation of
linear vector subspaces (might not be linearly independent), Vi, Vs, ..., Vs, ie, V = Z;-]:I V.
We define a new vector space

V::ViXVQX---XVJ.

Define an operator IT : V — V such that ITu := Z}]=1 u;, where u = (ug,...,uy)T € V with
each component u; = u; € V;. From the definition, it is easy to see that II is surjective. This

operator can be formally interpreted as

.= (T, ..., I),

CHAPTER 4. SUBSPACE CORRECTION METHODS 119

where Z; is the natural embedding from V; to V. Hence, we have

U1 J J
HUZ(Il,...,IJ) ZZIJ‘U]‘ZZU]‘.
j=1 j=1
ugj
So we have
r o
n’ = = :
7 Q

It should be noted that IITI” # Z, in general.
Define A : V — V such that A;; = A;; := IZ-T.AIj : Vj — V;. And we denote A; := A; ;

(j =1,...,J). Hence we can write the operator A in a matrix form
A - Ay
A = HT.AH: = (Ai,j) .
JxJ
App - Agg

)

Given any right-hand side function f € V', we define
Ii'f
f.=TI"f = : eV.
i f
In this setting, we consider the following problem: Find u € V, such that

Au=Tf. (4.9)

This system is called the expanded equation of the original linear equation (4.1). We will see
how the solution of these two problems are related. If A is SPD, then A is a symmetric positive
semidefinite (SPSD) operator. Note that A is usually singular due to its nontrivial null space,
null(IT). However, its diagonal entries A; (j = 1,2,...,J) are non-singular. We can define a

semi-norm for B: V— V

B
IB|a := sup [Bv]a
[v]a#0 Iv]a

4.2.3 Block solvers for expanded systems

As before, we denote the lower, upper, and diagonal part of A as L, U, and D, respectively.

We can immediately see that the stationary iterative methods discussed in §1.3 can be easily

CHAPTER 4. SUBSPACE CORRECTION METHODS 120

adapted to solve (4.9). The linear stationary iterative methods for (4.9) can be written in the

following abstract form
u™®" = ud 4 B(f — Au®d), (4.10)

where the iterator B: V — V. If B = D!, then we have the block Jacobi method for (4.9); if
B = (D + L)™', then we have the block Gauss—Seidel method.
Motivated by (4.8), we can generalize the block Jacobi and G-S methods. Suppose that there

is a non-singular block diagonal smoother (or relaxation operator) S: V — V| ie.,
S = diag(&1, S, ..., Sy), with Sj ViV g=1,2,...,J.

We define generalized block Jacobi method by B = S and the generalized block Gauss—Seidel
method by B = (S7! + L)~L.

Theorem 4.9 (Solution of expanded and original systems). The linear stationary iteration (4.10)

for the equation (4.9) reduces to an equivalent stationary iteration (4.2) with the iterator
B=TIBIO"

for the original equation (4.1). Moreover, these two methods have the same convergence behav-

ior, namely,

|Z = BA|a = [T—BA[a.
Proof. The linear stationary iterative method
wiev = ol ¢ B(f — Auld)
is equivalent to
W = w Y B (T - Y Al
k)
= w1 Y'B T (f = Aziu;?ld) = M+ YB;,If (f - Au°1d>.

k i k

Therefore, we have

utev — ZIju§eW _ uold + ZIij,kI]? (f _ .AUOId) _ uold + B(f _ .AU,Old))
j j7k
This proves the equivalence of (4.10) and (4.2).
A key observation is that

(BAv,v)a = (ABAv,v) = (T ATIBII' ATlv,v) = (ABATIv,IIv) = (BATIv, TIv) 4.

CHAPTER 4. SUBSPACE CORRECTION METHODS 121

The contraction factor can be written

T - BA)|)4 — ((B" + B — BT AB).Av,
T BAR = suplE-BARE @04 (()Av,v) ,
v#0 lv]% v#£0 (v,0)4
(v, IIv) 4 — (BT + B — BT AB) Allv,I1v) ,
= sup
TIv+#0 (HV, HV)A
(v,v)a — (BT + B-BTAB)Av,v)
= sup 5
[v]a#0 N
= |T-BAJA.
Hence we get the desired result. O

Example 4.10 (Block Jacobi method and PSC). We now apply the block Jacobi method for
the expanded system (4.9), i.e.,

utev — uold + D—l(f . AuOId).

We notice that D™'A = D~'IIT AII, which is spectrally equivalent to TID™'TI” A because
a(BA)\{0} = o(AB)\{0}. In fact, from Theorem 4.9, we can see that the above iterative method

is equivalent to

J
utev — uold + HD—lﬂT(f _ Auold) _ uold + Z I]AJ—II]T (f _ AUOId).
j=1

We immediately recognize that this is the PSC method (or the additive Schwarz method) with

exact subspace solvers. O

Example 4.11 (Block G-S method and SSC). Similar to the above example, we find that the
block G-S method is just the SSC method (or the multiplicative Schwarz method) for the original
problem. We now apply the block G-S method for the expanded system (4.9), i.e.,

u"" = u’ + (D + L) H(f — Aul).
We can rewrite this method as
(D + L)u™" = (D + L)u® + (f — Au®).

Hence we have
DuleV — Duold +f — Lu"v — (D + U)uOId;

in turn, we get
utew — uold + D—l <f — Lu"v — (D + U)uold))

CHAPTER 4. SUBSPACE CORRECTION METHODS 122

For j =1,...,J, the block G-S method can be written as

new __, old -1 Ty T L, new T _,,0ld
Wi = a4 A7 (T f - Y T AT = Y T AT,
1<j =]

We define iteration

A
uJ

Zu?ew + Z U?ld _ Zziu?ew + Zl—iu;ﬂd’ j= 1,...,J.

1<j =7 i<j =7

By this definition, we can see that

j+1
J

u T = ul 4 Lut — LuS = ud + LA (f - Au).

Here the term f — Au% is sometimes called the dynamic residual, which is the residual at an
inner iteration of the G-S method. From the above equation, we notice that the block G-S
method is just the SSC method with exact subspace solvers §; = A;l for the original linear
equation (4.1). O
4.2.4 Convergence of block solvers

Motived by the weighted Jacobi and G-S methods, we assume that there is an invertible
smoother or local relaxation S for solving Au = f. Similar to the method presented in §2.1, we

define a generalized or modified block G-S method:
B:=(S'+L)"" (4.11)

We analyze the convergence rate of this method. Let K := B™7 + B™! — A be a symmetric

operator and the symmetrization operator as B = BTKB. Then we get
(ﬁ_lv,v> = (B_lK_lB_TV,V> = ((S_1 + L)K_l(S_T + U)V, V>, YveV (4.12)
By the definition of K, it is clear that K is diagonal and
K=6ST+U)+(S'+L) - (D+L+70)
=S 7T+s'-D=8T7(s"+s-8"DS)S".
Hence, its inverse matrix is also diagonal and
K ! =8(8" +s-s"Ds) !s”. (4.13)

Using the definition of K, we can obtain that B~! = K + A — B~T. Hence we have a represen-

tation of B " by simple manipulations:

B' = K+A-B K (K+A-B H)=A+A-B K (A-B™).

CHAPTER 4. SUBSPACE CORRECTION METHODS 123

The last equality and (4.11) immediately yield another important identity:
(E‘lv, v> — (Av,v) + (K*l(D +U-S Yy, D+U- S*l)v), WweV. (4.14)

Now we apply a modification of Theorem 2.15 (i.e., the general convergence rate estimate

for SPD problems?) and get the following convergence result:

Theorem 4.12 (Convergence rate of generalized block G-S). If K :=S~7 + S~! — D is SPD,
then the generalized block G-S method converges and

1 1 2
II-BAJZ=1--—, with ¢o:= sup HK*E(D +U - S*l)vH .
1+co

[via=1
4.3 Convergence analysis of SSC

In the previous section, we have found that the SSC method for the original equation is
equivalent to the block G-S method for the expanded equation using the subspaces {V]}j:l
Now we try to analyze the convergence rate of the block G-S method for the expanded system.
In this way, we can give a convergence analysis for the successive subspace correction method.

The proof here follows the discussion in [67].

4.3.1 A technical lemma

Suppose V = ijl Vj. It is clear that IT : V +— V is surjective and ITu = ijl Zijuj. We

have the following simple but useful lemma:

Lemma 4.13. If the iterator B in (4.10) is SPD, then B = IIBII? is also SPD and

(B 1w, v) = in\ff (B7lv,v), YveV.
\S
IIv=v

Proof. Tt is clear that (Bv,v) = 0 for any v € V' due to positive definiteness of B. Furthermore,

we have
0=(Bv,v) = (BITo,I"v) — Mv=0 =— venull(II”) = range(II)".

Since IT is surjective (onto), we have v = 0. This proves the iterator B is SPD.

Define v, := BIITB~1v. It is easy to see that

v, =NBI'B v =BB"'v=v, YveV,

2In order to apply the convergence rate estimate Theorem 2.15 for stationary iterative methods to a symmetric
positive semi-definite problem, we can restrict the domain of operator A inside the subspace, range(A). This way
the operator A is non-singular.

CHAPTER 4. SUBSPACE CORRECTION METHODS 124
and
(B lv,,w) = (7B v, w) = (B7'v,lIw), YweV.

If w € null(IT), then (B~!v,,w) = 0. This ensures that, for any vector v € V, there exists a

B~ !-orthogonal decomposition v = v, + w with w € null(IT). Hence, we get

(B~ lv,v) = (B_l(v>.< + W), Vi + W) = (B_lv*,v*) + (B_lw,w).

Thus
. -1 _ -1 : -1
ﬁ%l\ilv(B v,v) = (B7lvy,vi)+ weé{lllf(r[) (B~ 'w,w)
= (B_lv*,v*) = (HTB_lv,BHTB_lv) = (B_lv,v).
Hence the result.]

Remark 4.14 (Minimizer for the expanded system). From the above proof, we can easily see
that
v, = BII' B~ v
is actually the minimizer of inf yey (B~ lv,v).]
IIv=v
Remark 4.15 (Auxiliary space method). The above lemma on relation between the expanded
problem and the original problem can also be extended to the auxiliary space lemma: For two
vector spaces V and V and a surjective 1I : V — V, if the iterator B : V' — V is SPD, then
B =181 is also SPD and
(B~ v, v) = inf (B719,0), YveV.
veV
IIo=v

See more discussion on the auxiliary space method in §4.5. O

We can then derive the following expression for the inverse of the PSC preconditioner (see
Example 4.10), which can be found in [186, 190, 102, 195].

Lemma 4.16. Assume that all S;’s are SPD. Then

J
(B}_)Slcv,v) = inf Z(Sj_lvj,vj), YovelV.

V=V

j j=1

Apparently, if S; = A;l, the above lemma reads

J

(Bpgcvsv) = _ inf Z(Uj,vj)Aj, YveV.

25 vj=v j=1

CHAPTER 4. SUBSPACE CORRECTION METHODS 125

4.3.2 The XZ identity

We now give the XZ identity originally proved by Xu and Zikatanov [193] which gives the

exact convergence rate of the SSC method.

Theorem 4.17 (XZ Identity). Assume that B is defined by Algorithm 4.2 and, for j = 1,...,J,

w; = A;1l; Zizj v — Sj_lvj. If Sj_T + S]-_l — A; are SPD’s for j = 1,...,J, then
1 1
T—-BAA=1- —1- =, 4.15
T BAE=1- =1+ (4.15)
where
cp:= sup _ inf Z HSTWJHE,l (4.16)
lvlla=1 25 Vi="
and
— f Hs Sy, + ST H 4.17
c1 sup _in Z Vi S w; 5 (4.17)

o .a=125 Vi=v

Proof. (1) By applying Theorem 2.15 and Lemma 4.13, we know

-1 -1
IZT - BA|% =1~ (sup (B_lv,v)> =1- (sup _inf (B_lv,v)> : (4.18)

lvla=1 o] 4=1TIv=0

From (4.14), we have, for any v € V, that
@§4mv):(Avw)+(K*%D+4J—S*§m(D+IJ—S*HV)
By simple calculation, we get

(D+mv::(ZQM%MyZQM%%w“Y

j=1 j=2

(Z AILZ;v g, Z A Il Zivj, - .>T

j=1 §=2

(./41]71 Z v, Aally Z vy,)T

j=>1 j>2

Hence we can denote

(D +U- S_l) v = (wi,wa,...,wy), with W, = .AjUjZVi —S;lvj.

i>j

Due to (4.13) and the fact that K is diagonal, we have

7717

@CWD+U—S‘)(D+U s) é(Q%R§W“W) i‘

CHAPTER 4. SUBSPACE CORRECTION METHODS 126

where S := SjT + S5 — SjTAij is the symmetrization of ;. We then obtain, for any v € V,
that

J
. =1 . T 2
sup inf (B "v,v) =14+ sup _inf Siwill__,.
Iv= ’ Mv= J V|1
lvlla=172V=Y [vlla=1"2V=Y 525 S;

This gives the desired estimate for the constant cg.

(2) On the other hand, from (4.12), we have

(E_lv, v) = (K_1 (S_T + U)v, (S_T + U)v)

2

J 1
- 2 H(Sj_l + Sj_T —Aj)? (SJ-_TV]‘ + Z Q,;AL;v;) (4.19)
j=1

1>7]

We notice that

STV + Y QAT = ST v+ A Y vi = (87T + 87— Aj) vy + w;

i>7 i>]

= Sj_ngSj_lvj +w; = SJ_T (ngj_lvj + SJTW])

Plug this into the previous identity, we get
J

(RO

Jj=1

2

< o1 T
Sij v+ Sj W

Hence the estimate for the constant c;.]

Remark 4.18 (An equivalent form). We have introduced operators 7; := S;A; : V; — V.
Hence Tg, := SiA; =T, + T —T;T; : Vj = Vj and we can rewrite the above estimate (4.17)
in a slightly different form. Notice that, in (4.19),

87Ty + 3 QAT = Ay (STA) Vi + AT Y Vi = A (T7) 7 + 11) v

1>7 i>] i>]
and
(877 48" = A) A = (T (T - 1) =TT T
Thus we have ;)
1
U Zjigff” ;1 s <Vj i ;v) A 2
O

Example 4.19 (Linear stationary iterative method). One-level linear stationary iterative method

utev — uold + g(f _ .A’LLOld),

CHAPTER 4. SUBSPACE CORRECTION METHODS 127

can be viewed as a special subspace correction method with only one subspace V. Hence,

using (4.20), we immediately have

-1 2 = - =—1
c1 = sup HT§ QU”A = sup ((S.A) 1v,v)A = sup (S U,v),
lvla=1 lvll.a=1 lvll.a=1
which is exactly the convergence rate derived in Theorem 2.15. 0

Example 4.20 (Twogrid method). Theorem 3.38 can be viewed as a special case of the XZ
identity in the case of space decomposition with two subspaces, i.e., V = V. + V. Suppose we
use A ! and S as subspace solvers, respectively. According to (4.20), we get

. — 1
c1 = sup inf v, + HCvHi‘ + [(SA) 2v|\?4.

wla=t L5 bet

V€V, veV
We can prove that
1
-3 2
€1 = sup ||7-g (T ngl)vHAv
lvlla=1

which is consistent with (3.34) in Theorem 3.38. For a complete proof of this result, we refer to
Zikatanov [212]. O

When we solve each subspace problem exactly, the X7 identity is substantially simpler since
T; = 1I; : V — Vj in this case. This special case of the XZ identity is given in the following

corollary.

Corollary 4.21 (SSC with exact subspace solvers). If an exact subspace solver S; = A;l is

used for each subspace, then we have, in (4.15), that

J

2
co= sup _ inf HHj v; (4.21)
Jola=12,; Vi=v ;1 ; A
and
J 2
¢y = sup _ inf Hﬂj vill . (4.22)
lvlla=12; Vi:”; ; Aj

Remark 4.22 (Alternating projection method). Provided that II; : V — V; (j = 1,2,...,J),
define ©; : =7 - 1II; : V V;-L =:U;. Now we can define a projection

J
©: ViU, Up:=[)Uj.
j=1

We notice that ©;0¢ = ©¢. From the XZ identity with exact subspace solvers, we have

2 2 ‘o
Y R

CHAPTER 4. SUBSPACE CORRECTION METHODS 128

We immediately see that

2

oo < e,

T e e (DL
Hence,

I;_;..10; - © H
H(]J,l 0)v 1+c”HA

Besides, (szj,.._71@j - @o)k = (Hj=J7._.,1@j)k—@0. We obtain that limkaoo (szt],...71@j)k = @0,
which means the method of alternating projections by von Neumann converges. O

4.4 Convergence analysis of PSC

In this section, we estimate the condition number of the PSC method. In general, PSC
might not converge as an iterative method, but we can show that it is uniform convergent as a

preconditioner under certain conditions.

4.4.1 Relating PSC to SSC
The following theorem shows the relation between the PSC and SSC methods.

Theorem 4.23 (PSC and SSC). If §; = .A;l for all j and V; are subspaces of V, then there

exists a constant ¢, depends only on topology of the overlaps between the subspaces such that
1 -1 ——1 —1
Z(Bpscvv”) < (Bsscv,v) < cx(Bpgev,v), VveV.

Proof. Given v = Y7_, v; with v; € Vj. Tt follows that

j=1
J J J
lv|%4 = Z (g, v5) A Z < (v, VE)A + 2 Z(vk,vj)A)
k=1 k=1 j>k
J
:22 Z(vk,vj Z Vk, Vk) A

k=1j>k

Hence, since Il is an A-projection, it follows that

J J J J
Dl <2 Y] (o Y v) , = 2(% e),
k=1 k=1 j=k k=1 j=k
J 1 J J 9 1
<2(2 IoelZ)* (0 e X i)™
k=1 k=1 j=k

In turn, it gives

J J J)
2 el <4 30 [3w
k=1 Jj=k

CHAPTER 4. SUBSPACE CORRECTION METHODS 129

Together with Lemma 4.16, Corollary 4.21, and (4.18), it gives the first inequality. The second
one is also easy; see HW 4.5.]

Remark 4.24 (From sequential method to parallel method). This theorem shows that, if the
SSC method works well as an iterative method, then the PSC method based on the same space
decomposition also works well, as a preconditioner at least.]

4.4.2 Condition number of PSC

Next, we give a direct analysis of the condition number of the PSC method. In order
to obtain estimates on the condition number of the preconditioned systems, we first give the

following assumptions:
Assumption 4.25 (Convergence assumptions for MSC). We assume that

1. For any v € V, there exists a decomposition v = Z}le v; with v; € Vj such that

J
Z (S;lvj,vj) < Ky (Av,v); (4.23)

j=1

2. For any u,v eV,

(4.24)

_/
N

J 1 J
Z (72u77;v)A < KQ(Z Tiu, u))2(2
(4,9) i=1 J=1
Theorem 4.26 (Condition number of PSC). If the above Assumption 4.25 holds true, the PSC
method (4.7) satisfies

H(BA) < KiK.

Proof. (1) For any v € V, suppose that v = Z}le vj is a decomposition that satisfies the first

condition of Assumption 4.25. It is easy to see that

J J J J 1 1
(v,v)4 = Z (vj,v Z (vj, Ijv) A Z (v5, A = Z (Sj 21}j,Sj2Ajva)
7j=1 7=1 7=1 7j=1
J 1 1 J 1 1
< 2 S vj,v] 2 (SjAjva,Ajva)2 = Z (S U],’Uj)Q (S].AJIYJ'U,v)f4

1

(2 ()

Consequently, we have the lower bound

1
K,

<.
Il

1

J 1
(S men) < VR L Ean0)
1

Jj=

IN
[NIES

(v,v)4 < (BAv,v)4, YveV.

CHAPTER 4. SUBSPACE CORRECTION METHODS 130

(2) From the second assumption, we have

J
|BAv|% = > (Tiv, Tyv) 4 < Ka(BAv,v)a < Ko BAv|.a][v] a-

1,j=1

So we obtain the upper bound
(BAv,v) 4 < Ko(v,v)4, YveV.
Thus Lemmas 2.38 and 2.39 yield the desired estimate. O

According to Theorem 4.26, if we can find a space decomposition and corresponding smoothers
with uniform constants K; and K5, then we are able to construct a uniformly convergent pre-

conditioner using the PSC framework. Similar results can be obtained for SSC as well.

Remark 4.27 (Similar estimate for SSC). In fact, with the same assumptions (Assump-
tion 4.25), we can also show that the SSC method also converges with
2 — w1

IT-BAA<1— s

and wp := max p(S;A;) = max p(T;). (4.25)
J J

Because a sharp result has been given in §4.3, we will just leave the proof to the readers (cf., for
example, [189]). O

4.4.3 Estimates of K| and K,

Assumption 4.25 is not easy to verify directly. So we now give a few useful estimates for
the constants in these conditions. We first give a straight-forward estimate of K7, which clearly

separates the condition on space decomposition part and smoother part.

Lemma 4.28 (Estimates of K1). Assume that, for any v € V, there exists a decomposition

J : .
v =210 with vj € Vj:

(i) If the decomposition satisfies that

M“

Ujuvj 1(”7”)./47
7j=1

then we have
K, < Ci/wy, where wp:= mln {)\mm (S;A;j)},

i1
(ii) If pj := p(A;) and

J

Z U],”Uj él(va U)Av

then we have

Kl < él/d}o, where (2)0 = ‘nllinJ{pj)\min(Sj)}.
J=4

CHAPTER 4. SUBSPACE CORRECTION METHODS

Proof. (i) By the definition of wy and the fact that A(S 1/2A 51/2) A(S;A;j), we have

(817458178, 05, 85 P0g) = wo(S] g vy), G =1,

Note that
J J J
Z I/QA 81/2 1/2 ; 1/2 Z (Ajvj,v5) = 2 vj,05) 4 < C1(v,v) 4.
j=1 7j=1 j=1
We then have
J J
Z S vj,v5) < C1(Av,v) Z S vj,vj) (.Av v),

which implies that K7 < Cy/wy.

(ii) Similar to the previous part, from the definition of @y, we have

—1/2 —1/2 ~ — .
pj(vj,vj) = ,Oj(Sij / ’Uj,Sj / Uj) = OJO(Sj l’Uj,Uj), j=1...,J

Hence, we have

J
@o Y (S5 v, 05) < D pj(vg,05) < Ch(v,v) 4,
j=1

T
>

which implies that K; < C; J@o.
We introduce a nonnegative symmetric matrix
Y= (O-Lj) € RJXJ,
where each entry o; ; is the smallest constant such that
1 1
(Tiu, Tv) < w0y (T, u)f4 (T;v, U),QA’ Vu,veV.

It is clear that 0 < 05 j < 1. w; has been defined in (4.25).

131

(4.26)

(4.27)

Lemma 4.29 (Estimate of K3). The constant Ky < wip(X). Furthermore, if 0; ; < ’y‘i_ﬂ holds

for some parameter 0 < v < 1, then p(X) < (1 —)~} in this case, the inequality (4.24) is the

well-known strengthened Cauchy-Schwarz inequality.

Proof. From the definition of ¥ as in (4.26), it is immediately clear that Ky < wip(X).

Fur-

. . . . J
thermore, because the matrix ¥ is a real symmetric matrix and p(¥) < maxj—1,. 5>, _, 0i , we

have
J J
-1
max Z Z '
S 1<j<J 4 7
i=1 i=1

Hence the result.

CHAPTER 4. SUBSPACE CORRECTION METHODS 132

4.5 Auxiliary space method x*

Sometimes, we cannot apply subspace correction methods directly due to difficulties in ob-
taining an appropriate space decomposition. In this case, we can introduce an auxiliary or
fictitious space V for assistance. Suppose IT : V +— V is surjective and satisfies the following two

conditions:

e Firstly, II is stable
[Mola < mlily, VieV.

e Secondly, for any v € V, there exists © € V such that IIo = v and

poldl z < vla, VoeV.
Under the above assumptions, if B is a SPD preconditioner for A, then B = TIBNO7T is SPD and

K(BA) < (5;)2 K(BA).

This suggests that we can construct a subspace correction method on V instead of the original
space V. This result is also known as the Fictitious Space Lemma or the Fictitious Domain
Lemma; see [145, 191].

The fictitious domain method is a large class of methods which is usually employed for
problems in geometrically complex, and most likely moving, domains. By embedding the original
physical domain in a larger artificial domain, we can discretize the partial differential equations
on a more structured grid and, hence, solve the resulting linear algebraic systems more quickly.

Of course, the boundary conditions have to be handled with great care; see [98] for details.

4.6 Homework problems
HW 4.1. Prove the statements in Remark 4.5.
HW 4.2. If §; (j =1,...,J) are all SPD, then the preconditioner B = Zj;l §;Q; is also SPD.

HW 4.3. Show that the block G-S method for the expanded system is just the SSC method

for the original problem.
HW 4.4. Prove Theorem 4.12.

HW 4.5. Prove Theorem 4.23. What is the constant c4?

Part 11

Examples of Multilevel Iterative
Methods

133

Chapter 5
Subspace Correction Preconditioners

In Chapter 4, we discussed linear stationary iterative methods in the method of subspace
corrections (MSC) framework. In this chapter, we provide examples of multilevel methods and

analyze their convergence within the subspace corrections framework.

5.1 Two-level overlapping DDM

In this section, we will investigate the two-level overlapping domain decomposition method
(DDM) presented in §2.4 using the MSC framework.

5.1.1 Two-level space decomposition

Based on the previous discussions, it is now easy to understand that the additive and mul-
tiplicative Schwarz domain decomposition methods can be considered as PSC and SSC, respec-
tively. For proof-of-concept, we use the Poisson’s equation on 2 as an example. In this case,
Y = H(Q), Q = szl Qj, and ¥; := {v e ¥ : suppv C QJ} c ¥; see Figure 2.5. Sup-
pose we have a finite-dimensional coarse space Vy < ¥ on a quasi-uniform mesh of meshsize

H = diam();). Apparently, this yields a space decomposition:
V=VW+N+---+7].

The SSC method based on this space decomposition with exact subspace solvers on each sub-
domain as well as on the coarse space gives an abstract multiplicative Schwarz DDM method!.

We first define a partition of unity function ; € C'(Q) (j = 1,...,J) such that

(1) 0<6;<land Y}/ ,0; =1

Tt is an abstract algorithm because we did not discretize each sub-domain problems.

134

CHAPTER 5. SUBSPACE CORRECTION PRECONDITIONERS 135

(2) suppf; = Q;
(3) max |V0;| < Cg/H, where Cz depends on the relative overlap size f3.
This way, for any function v € ¥, we can define a decomposition
v=v+v+---+0y,

where
veVo and wvj:=0;j(v—wv)e¥, j=1,...,J

5.1.2 Convergence analysis of DDM

Based on the above decomposition, we have ijl v; = v — vy and

J J J J J 5
Z’ Z v; :Z‘ 2 v—vo‘ ‘Uov—v()’ +Z‘Hj 2 9,;(1)—1)0)’.
7=0 i=j+1 j=0 i=j+ j= i=j+1 1

Since II;’s : ¥ — ¥; (j = 1,...,J) are A-projections, it is easy to see that |Ijw|; < |w|;.

Furthermore,
J 2 J 2
m % o6, = | 3 so-mf < | 3 o,
i=j7+1 i=j+1 i=j+1
2
< H 20 (v — o) —|—HV(26’1‘)(’U—UO)H R

< Jo—wol{q, + CBH v — volgq,-

By summing up all the terms, we have

Eln 3o

J J
< v —voﬁ + Z }fu _Uo‘iﬂj + C%H*2 Z Hv — v
=1

j=1
2 _ 2
< ool + C3H 2 —wol?,
where the constant in the last inequality depends on the maximal number of overlaps in domain

decomposition. Because vy could be any function in V{, in view of Proposition 3.15 or the

so-called simultaneous estimate in Remark 3.16, we can obtain

Sl 3% o

1=7+

< ol

Using the X-Z identity (Corollary 4.21), we can get the following uniform convergence result.

CHAPTER 5. SUBSPACE CORRECTION PRECONDITIONERS 136

Proposition 5.1 (Uniform convergence of two-level DDM). The abstract domain decomposi-

tion method with coarse space correction converges uniformly.
We leave the full proof to the interested readers; see HW 5.16.

Remark 5.2 (DDM without coarse space). This analysis demonstrates the importance of the
coarse space Vp. In fact, a similar proof shows the convergence rate depends on H 2 without

applying the coarse space correction. O

5.2 HB preconditioner

In the previous section, we have seen a two-level domain decomposition method in the setting

of subspace corrections. Now we investigate an example with multiple levels.

5.2.1 Nested space decomposition

We consider the Poisson’s equation on a sequence of nested meshes M; (I =0,...,L) gen-
erated from an initial mesh Mg by uniform regular refinements. Hence meshsize h; of M; is
proportional to 42! with v € (0,1). For example, in Figure 1.5, there is a hierarchy of grids with
hy = (1/2)*1 (1=0,1,...,L). Clearly,

ho > h1 > ho>--->hp =:h.
Define continuous piecewise linear finite element spaces on the mesh M; as
Vii={ve? : v, ePi(r), VT e M}. (5.1)
This way, we build a nested subspaces
VocVic---cVp=Vc¥=H)).

The set of interior grid points on the [-th level is denoted as z;; € G(Ml) (t=1,...,n;). The
subspace V] is assigned with a nodal basis {¢;;};,, where n; := |G(Ml)| The space V; can be
further decomposed as the sum of the one-dimensional subspaces spanned with the nodal basis
Vii:=span{¢y;} (i =1,...,n).
We then define
Wy={veV, :v(z)=0,Vze é’(./\/ll,l)} (5.2)

and obtain a multilevel space decomposition

V=We@W,® - dWy. (5.3)

CHAPTER 5. SUBSPACE CORRECTION PRECONDITIONERS 137

Let J; : V — V; be the cannonical interpolation operator and define J_; := 0. It is easy to see
that
Wi=(J-3)V=Z-J-1)V, 1=0,... L

For level | = 0,..., L, we define a nodal basis function
i) = dri(x), for a; € GMNGM_1) and i =1,...,m; :==n; —n_y.
Apparently, Zszo m; = ng, = N. This basis
{ri(x) - i=1,...,my, 1=0,...,L} (5.4)

is the so-called hierarchical basis.

@o,1 = Vo1
=0
1
d11 = Y11 D12 = P12
=1
¢2,1 =21 @22 =22 P23 =23 $24 = P24
=2

Figure 5.1: Regular and hierarchical bases in 1D.

CHAPTER 5. SUBSPACE CORRECTION PRECONDITIONERS 138

Notice that the decomposition (5.3) is a direct sum and there is no redundancy in this decom-

position at all.

5.2.2 Telescope expansions
Using notations in Definition 4.1, we have

A VsV (A, v) = alug,v], Yu,v eV
Q:L*—~V, (Qu,v) = (u,v1), VeV (5.5)
I . v — V, (Iu,v;) = alu,v], VYuv eV

We introduce a new notation ¢ A j := min(s, 7). It is trivial to see that
QiQj = Qinj, LI = Il; 1, (5.6)
and
(Qi — Qi)(Qj — Qj—1) = (I — 1) (IT; — II;—1) = 0, Yi#j. (5.7)

If we define Q_1 = II_; = 0, we have the following possible decompositions

L

— Qi)=Y (I, — I _1)v. (5.8)

=0

”M“

5.2.3 Hierarchical basis preconditioner

We now use the Richardson iteration discussed in §3.3 as the subspace solver, i.e.,

S1iQuiv = hi™H(Quiv, vis) Yus = b~ (v, ¥s) Vi

The PSC method based on the space decomposition (5.3) can then be written

L

N my
i=1

j=1 1=0

And this is the explicit form of the well-known hierarchical basis (HB) preconditioner proposed
by Yserentant [206].
We now analyze this preconditioner in the framework of PSC in §4.4. In order to do that,

we need a few important estimates.

Lemma 5.3 (H!-stability of interpolation). We have
[(F = Tiza)olg + hE|Tof; < ca@bilof}, YweV,

Whel“e Cl(l) = 1’ CQ(Z) = L — l’ and C,?,(l) — V_Q(L_l)

CHAPTER 5. SUBSPACE CORRECTION PRECONDITIONERS 139

Proof. Using the interpolation error estimate in Proposition 3.12, we have
(Tt — Ti—1)vlo = [Tiv — Ti-1Tivllo < Ml Tvls-

Let 7 € M; and v, := |7|7! STvda: be the average of v on 7. Using the standard scaling
argument for |- |1 7, the discrete Sobolev inequality Proposition 3.14, and the Poincaré inequality

Proposition 1.10, we can obtain that

d__
Tivlar = |0 = vrlir < BT = vl

d
<o = vrllor < Callo — v,

1,7 < Cd’Uh,T'
Hence the desired result follows by summing up terms on all elements in M;. O

Remark 5.4 (Condition number in hierarchical basis). The above lemma suggests that, if

ve W, for any 0 <! < L, we have
e (DR 2 (v,v) < afv,v].

Compare this with the general Poincaré inequality in Proposition 1.11. Furthermore, from the

inverse inequality Proposition 3.13, we always have
alv,v] = [vff < 2 olF = B2 (v,).

Hence the operator AFB is “well-conditioned” up to a constant cg(l); compare this property

with the standard Lagrange finite element basis case in Remark 3.17. O

5.2.4 Strengthened Cauchy-Schwarz inequality

Lemma 5.5 (Inner product between two levels). If i < j, we have
alu,v] < fyj*"hj_1|u]1|\vug, VueVi,veV.

Proof. We first restrict our attention to an element 7, € M;. For v € Vj, there is a unique
function v1 € Vj, such that vy vanishes on 07; and equals to v at all other grid points. Let
vo := v — v1. Because u € V; is a linear function on 7;, we have ST_ VuVv; = 0.
R ~ (hi d-1 d _ pd—1 leal

Define T' := UTjeMj,?jﬂan;é@ 7j. Then |T| = (E) h§ = hi™"h; and supp(vg) = 1. We

have
2 dp—2,2 _ d—2 2 —21[,.112
[Voollo, s 20 M@ = X hgTRew) S bRy
CEEGQ(Mj)maTi Z‘Eé(/\/[j)ﬂan

Since Vu is a constant on 7;, we have

_ 1/2
\Tﬂﬂ'\m h? 'h; i—i
IVulorn., = =z 1Vulo, < | IVl <A77l
| / he

|7i

CHAPTER 5. SUBSPACE CORRECTION PRECONDITIONERS 140

Combining the above two inequalities, we have

J Vu-Vov = f Vu- Vg < 'yjfihjfl’u‘lﬂ_i UHO,n’ V1, € M;.
Ty T
By the Cauchy-Schwarz inequality, we obtain the estimate:
derd = 3 [veve s S oo,
TiEMi Ti TiEMi o v
o 9 \1/2 5 \1/2 o
< (X kL) (X L) = AR el
T,L‘E./\/li TZ'GMZ‘
Hence the result.]

Lemma 5.6 (Strengthened Cauchy-Schwarz inequality for interpolations). If u,v € V', let u; :=
(Ji — Ji—1)u, and vj := (J; — Jj—1)v, then we have

afui, vj] £ A uil vy

Proof. If j = i, we have v; = v; — Jj—1vj. So |vjllo = [lv; — Tj—1vjllo < hj|vj|.a follows from
Proposition 3.12. If i > j, we can argue in a similar way. Hence the result follows directly from
Lemma 5.5. O

If veV, Lemma 5.6 yields

Wi = Y (VT = Te1)v, V(T — Tne1)0)

Im

S = el o = Tl £ S = T
l

lm

A

On the right-hand side, we have the summation of components from all levels.

Lemma 5.7 (Estimating K3). Assume that 7; = S;.A;1I; and the subspace smoother S; : V; —
V; satisfies
SiAl < o7t (Ajv,0), VoeV,

where p; := p(A;). Then, if i < j, we have
(ui, Tio)a < ¥ Juilalv]a, Vuie ViweV. (5.10)
For 0 < i,j < L, we have the strengthened Cauchy-Schwarz inequality

. 1 1
(Tiw, Tjv) a4 < A2 (T, u)y (Tjv,v)%, VYu,veV. (5.11)

CHAPTER 5. SUBSPACE CORRECTION PRECONDITIONERS 141

Proof. By applying Lemma 5.5, we get
(s, Tj0).a = alug, Tv] < 775 ug| al Tyolo.
Furthermore, we have
[Tvllo = 1854 Tvllo < ksl A2 Mivlo < bl vla < hyllv]a.

This proves the first inequality (5.10).
Consider the case when j > i. By the Cauchy-Schwarz inequality and the inequality (5.10),

we get

M‘H

1 . 1
(Tou, Tiv)a < (T;Tiu, Tow) % (Trv,0) % < Y ~2 T a (Tjo,0) 3.

1
Also observe that, a special case of the above inequality is (Tiu, Tiu)a < |Tiw|a(Tiu,u)?% and
the second inequality (5.11) follows immediately. O

5.2.5 Convergence analysis of HB preconditioner

Theorem 5.8 (Convergence of HB preconditioner). The multilevel PSC preconditioner Byg de-
fined in (5.9) satisfies
H(BHBA) < Cd(h),

where Cy(h) =1, Ca(h) = |log h|?, and C3(h) = h~L.

Proof. We choose a decomposition v = ZZL:O v 1= ZZL:o(jl — Ji—1)v, where (J; — Ji—1)v € W,
and J_1 = 0. With careful calculations, Proposition 3.13 and Lemma 5.3 (J; = II; in 1D) yield

L L
DIl < 30 2l < Ca(h) ol (5.12)
=0 =0

On the other hand, we know @&y = min; ppAmin(S;) = 1. Therefore K1 < Cy(h) due to
Lemma 4.28. The strengthened Cauchy-Schwarz inequality (5.11) and Lemma 4.29 give that

Ky < 1. The convergence result then follows directly from Theorem 4.26. O

This theorem shows the HB preconditioner converges rapidly when combined with some
Krylov subspace method. However, the condition number still depends on the mesh size h,
especially in 3D. We now briefly discuss how to eliminate this dependence.

Define an operator ‘H : V — V such that

L
(Hv,w) := Z Z hd72<(‘7ﬂ) — J-1v) (), (Jw — Ji—w) (331))

2:€G(M)\G(M;_1)

CHAPTER 5. SUBSPACE CORRECTION PRECONDITIONERS 142

Hence we get

2
, YveV.

L
(Hv,v) Z h;i_2' (Jiv — Ji—1v) ()
1=02;eGM)\G(M; 1)

In fact, this operator is the inverse of the HB preconditioner, i.e., H = Bﬁé; see [207]. In fact,

in the proof of Theorem 5.8, we have shown the following norm equivalence result:

L
[o]% < (Hv,v) = T 2(J = Tiea)vld < Ca(h) vl (5.13)
=0

Since [T} is the (-,) 4-projection from V to V, it is easy to check that
a[(Il; = Mi—1)v, (IT; — Ij—1)v] = 0, Vi#j.

We can then obtain that

ol = H ~moge =N al(h - e, (T -)]
9

L L 9
= Z — I q)v, (I — 1 _1) Z ‘ —1II_1) ‘
Notice that this is corresponding to the telescope sum of the Ritz-projections in (5.8). Motivated
by the above norm equivalence and (5.13), one can easily construct a “better” multilevel PSC
method B = Z}-le S;11;. However, II; is not good for computation in general except for d = 1 in
which II; = J; is just the interpolation®. In the next section, we explore the idea of telescope
expansion using the L2-projection (5.7) instead of the interpolation or the Ritz-projection. And

it turns out to give rise to the well-known BPX preconditioner.

5.3 BPX preconditioner

In the previous section, along with the hierarchical basis decomposition, we have also ob-

tained a natural multilevel space decomposition

L L
=Y Vi=> > Vi, (5.14)
=0 =0 i=1

which contains a lot of “redundancy”. Heuristically, one might want to avoid such redundancy
in their algorithms. However, it turns out these extra subspaces are indeed critical for optimal

convergence rate.

2Note that this is equivalent to the HB preconditioner in 1D.

CHAPTER 5. SUBSPACE CORRECTION PRECONDITIONERS 143

Using the multilevel space decomposition (5.14), we can construct multilevel subspace cor-
rection methods. Among them, the most prominent (multilevel) example of PSC methods is the

BPX preconditioner [48] based on the multilevel subspace decomposition (5.14):

J L
B= 2 Sij, with J = Z ng, (5.15)

j=1 1=0

which is computationally more appealing and converges uniformly. The HB and BPX precon-

ditioners both belong to the class of so-called multilevel nodal basis preconditioners.

5.3.1 Norm equivalence

We will now show why the BPX preconditioner is “better” than the HB preconditioner. We
note the HB preconditioner is not optimal for dimensions higher than 1D due to the worsened
H'-stability property of the interpolations. We would expect improved stability properties for

L? projections.
Lemma 5.9 (Telescope sum of L2-projections). For any v € V, we have

(Q — Ql,l)v\l ~ hl_lﬂ(Qz - QH)UHO-
Proof. Using the inverse inequality, Proposition 3.13, we get

(Q1 = Qi—1)v|, < b (= Q1o
Proposition 3.15, together with the trivial equality

(Q—Q1)v=(Z—-9-1)(Q2 — 1),

gives the other direction. O

Lemma 5.10 (Strengthened Cauchy-Schwarz inequality for L2-projections). If u,v € V, let u; :=
(Qi — Qi—1)u, and v; := (Q; — Qj_1)v, then we have

a[ui, v;] 47 il alloj] -

Proof. If j > i, Lemma 5.9 shows that |vj]o < hj|vjll4a. Hence the desirable result follows

directly from Lemma 5.5. If i > j, we can argue in a similar way. O

Lemma 5.11 (Norm equivalence). For any v € V, we have

L
Sl@i— i = ol
=0

CHAPTER 5. SUBSPACE CORRECTION PRECONDITIONERS 144

Proof. (i) Since Q; is the L2-projection, we have |Quu|o < |v/o, Yv € L?(2). Furthermore, using

Proposition 3.15, we obtain
1Qvl1 < [v], Yve?.

By space interpolation, we have, for any o € (0, %), that
1Quwls < lollos Vve?.
Let a e (%, 1). If I : ¥/ + Vj is the standard H'-projection, the finite element theory gives

lv— Hleia < h?Hle, YveV. (5.16)

Let v; := (I; — Ili_1)v. Note that p; = p(A;) = h; % Tt is easy to show, with help from the
inverse inequality (Proposition 3.13) and (5.16), that

[(Qr = Qun)uily s b (@ = Qunuill_, < B il < B 2onEe ol = pf e fuil
Using this inequality and the Cauchy-Schwarz inequality, we can derive that
IA]
ZZ (V(Q = Q1)vi, V(Q1 — Qi1)vj) = ZZ (V(Q = Q1)vi, V(Qi — Qi-1)vj)
I i, i, 1=1
IAN] .
< DI TAReRS villlojl < Yt he RS il s A il vjla
ij 1=1 ij ij

Note that here [, ¢, and j are all level indices and we can apply summation by parts.

We can show that >, ; A=l v 11wl < X2 [vil? < JJol3, which, in turn, gives
2
Y= Qi) s vl
l

(ii) On the other hand, using Lemma 5.10, we obtain

ol = > (V(Q = Q1)v, V(Qm — Q1))
l,m
< YA (@ -)], [(Qm — Quen)v], £ D (Q - Qi)
lm l
Hence we get the norm equivalence using Proposition 1.11. O

Remark 5.12 (Fractional norm). We have shown the norm equivalence in H'-norm. In fact,

similar results also hold for H*(Q) with § < o < 3. O

CHAPTER 5. SUBSPACE CORRECTION PRECONDITIONERS 145

5.3.2 Convergence analysis for BPX preconditioner

All subspaces in (5.14) are one-dimensional and, thus, the subspace problems are very easy
to solve. We can write the subspace solver (exact solver on each one-dimensional subspace) as

follows: .
1

SPv = > (A, ¢13) 7 (v, b1) dri = Y (Vori, Vo) ™ (v, 1) b

i=1 =1
Since we are now considering the uniform refinement for the linear finite element discretization,

we can use an approximation of SZO , for example a local relaxation method:

Sy = 2h2 (0,01 b0 (= 8v). (5.17)

This simplification helps us to reduce the cost of computation as well as implementation. Ap-

parently, we have
(S, v) = hi~ 4(5,7) = h} (v,v). (5.18)

We have seen that the Richardson method, the damped Jacobi method, and the G-S method

all satisfy such a condition; see (3.24).

Remark 5.13 (Behavior of the smoother). Note that the method (5.17) is just the Richardson

2—d
hl

method with a weight w = on level [. O

Using the above space decomposition and subspace solvers &;, the PSC method yields the

well-known BPX preconditioner
L L L
B=Y'89 =108 =) LSI] (5.19)
=0 =0 =0
in operator form [48].

Theorem 5.14 (Uniform convergence of BPX). The BPX preconditioner (5.19) is uniformly

convergent, i.e., K(BA) < 1.

Proof. We take a decomposition v = ZIL:O v = ZlLZO(Ql — Q;1)v, where Q_; = 0. Then we

can obtain, from Lemmas 5.11 and 5.9, that

Dgh

L L
(Av,v) = Z Ql—l)vﬁ = Z h 2 (Qr — Qia)v§ = (72(Q1— Qi1)v, U)-
=0 =0

=0

Define A := ZlL:O h;2(Q— Q—1). Apparently, (Av,v) = (Av,v), Vv € V. Using (5.6) and (5.7),
we can easily verify that (see HW 5.17)

L
=Y hi(Q - Qi)
=0

CHAPTER 5. SUBSPACE CORRECTION PRECONDITIONERS 146

Hence
L L L—1
2 hi (Quv,v) 2 (Qi_1v,v) = h2(Qrv,v) + Z(l — V)R (Qv,).
1=0 1=0 1=0
On the other hand, we have
L L
(Bv,v) (ZSlle v) = Z(SZQZU v Z (Qv,v)
=0 =0 1=0

Namely, (A~'v,v) = (Bv,v). That is to say, (Av,v) = (Av,v) = (B~ v,v). Hence it gives the

uniform convergence result by Lemma 2.38. O

Remark 5.15 (Multilevel decomposition according to frequencies). From the above analysis,

we find that, for any ve V,
Q= Qun)o]y = (Q = Qa)ofly = [Vuillo ~ [oo

This fact draws close comparison with the Fourier expansion. That is to say v = ZZL:O v is a
multilevel decomposition to different frequencies. Hence A can be viewed as a multi-resolution
expansion of A and /1(/171.,4) < 1. O

5.3.3 Matrix representation of BPX

Using the matrix representation notations introduced in §3.2 and §3.5, the equation (3.39)

in particular, we immediately obtain the matrix representation of the BPX method:

L
Bu = Z 1S ZU—ZPZ h2=AMy) (M PZTMu—ZhQ ip, P M w.
=0 =0 =0

In view of (3.17), we get the matrix form of the BPX preconditioner

L
B:=BM ' =) hn PP (5.20)
1=0
This is the matrix form of the BPX preconditioner when we implement it. To improve efficiency,

we can use prolongation between two consecutive levels to obtain P;.

5.4 Homework problems

Problem 5.16. Give the complete proof of the uniform convergence of the two-level domain
decomposition method (Proposition 5.1). What will happen if we do not include the coarse-level

correction (Remark 5.2)7?

CHAPTER 5. SUBSPACE CORRECTION PRECONDITIONERS 147

Problem 5.17. Let A:= 3 7 2(Q; — Q;_1). Show that A~ = 327 [h?(Q) — Q1_1).

Problem 5.18. Implement the BPX preconditioner for the Poisson’s equation on a uniform

grid. You can choose your favorite discretization method.

Chapter 6

Geometric Multigrid Methods

Multigrid methods are a group of algorithms for solving differential equations using a hierar-
chy of discretizations.The idea of multigrid was proposed initially by Fedorenko [91] in 1962 for
2D finite difference systems arising from the Poisson’s equation. It accelerates the convergence of
a basic iterative method (known as a relaxation or smoother) by global corrections from time to
time, accomplished by solving a coarse problem approximately.The coarse problem is “similar”
to the fine grid problem, but much cheaper to solve. This recursive process is repeated until a
coarse grid where the cost of direct solution is negligible compared to the cost of one relaxation
sweep on the finest grid. In 1970’s, Widlund, Hackbusch, Brandt et al. [104, 50] noticed that
this iterative procedure was considerably faster than standard relaxation methods and brought

it to the attention of the western scientific community.

6.1 Geometric multigrid method

The geometric multigrid (GMG) method is an optimal iterative solver for the linear algebraic
systems (2.1) arising from some discretizations of partial differential equations. It is based on

two important observations we have pointed out earlier in Chapter 3:

e A local relaxation method damps out the non-smooth (high-frequency) error components

and the residual becomes relatively smooth after a few relaxation sweeps;
e A smooth (low-frequency) vector can be approximated well on coarse spaces.

GMG establishes and exploits hierarchical structures. It exemplifies the divide and conquer
approach, which has been applied in two-grid methods, as discussed in §3.4. Unfortunately,
for large-scale problems, the coarse grid problem can remain too large to solve efficiently. This

naturally leads to introducing more than two nested meshes.

148

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 149
e Smoothing: Reduce high-frequency error using a few smoothing steps based on a simple
iterative method;
e Restriction: Restrict the residual on a finer grid to a coarser grid;
e Coarse grid correction: Solve an approximate problem on a coarse grid;

e Prolongation: Represent the correction computed on a coarser grid to a finer grid.

Fine Grid
~ =
D

— >
ke 4

: 5

) e
r—o< (=]

o

A

Coarse Grid

Figure 6.1: Pictorial representation of a multigrid method with three grid levels.

6.1.1 V-cycle multigrid method

Now we will explain the multigrid algorithms using the P; finite element method for the
Poisson’s equation on < R?% as an example. Suppose we have a sequence of meshes M;
(Il =0,...,L) generated from an initial mesh My by (uniform) regular refinements. Hence

meshsize h; of M, is proportional to 4/ with v € (0,1). Clearly,
h0>h1>h2>"‘>hL=:h.

It is easy to see that a multigrid method can be viewed a recursive two-grid method. So
we only need to introduce how to do the iteration on two consecutive levels. We denote Z;_1 ; :
Viei = Vi (I = 1,---,L) as the natural embedding and Q;;— = IELZ : Vi — Vi1 as the
(+,-)-projection. Define A; (I =1,---, L) as the operator form of A on the subspace V; in (5.1).

Then a V-cycle multigrid method is given as follows:

Algorithm 6.1 (One iteration of MG V-cycle). Assume that B;_1 : Vi_1 — Vj_; is defined and

the coarsest level solver By = A lis exact. We shall define, recursively, B; : V; — Vj, which is

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 150

an iterator for the equation A;v; = r;. Let v; be the initial guess on each level, i.e., v; = w0

and v; = 0 for 0 <[< L. Do the following steps:
(1) Pre-smoothing: For k = 1,2,...,m, compute

v v+ S(r — Ay);

(2) Coarse grid correction: Find an approximate solution e¢;_1 € V;_ of the residual equation

onlevel | —1,1ie., 41611 = Q111 (7’1 — .Alvl), by an iterative method:

€1« Bi1Qu1(r — Awp), v v +D1e1;

(3) Post-smoothing: For k = 1,2,...,m, compute

v — v+ SZT (7"; — Alvl).

Remark 6.1 (Setup and solve phases). Algorithm 6.1 gives a typical solve phase of multigrid
methods. It relies on the hierarchical information (for example A;, [= 0,1, ..., L—1) constructed
by a procedure called the setup phase. Apparently, the setup phase only need to be called once

and shared by the iterations in the solve phase. O

From the above algorithm, we can see this V-cycle multigrid method is just a generalization
of Algorithm 3.2 (the abstract two-grid method). Clearly, this geometric multigrid method
(with one G-S iteration as pre-smoothing and one backward G-S iteration as post-smoothing) is
actually a special successive subspace correction (SSC) method based on the following multilevel

space decomposition

J
v=> 7= Ve + Vo + > D> Vi

j=1 I=L:—1:1 1=1l:ny I=1:L i1=n;:—1:1

which is a modification of (5.14). Furthermore, on each one-dimensional subspace ‘7j, the
subspace problem is solved exactly.
According to Lemma 3.37, the error transfer operator of V-cycle on the [-th level can be

written as
51 = I —_ BZ.A[= (Z — SIT.AZ)(I - Blfl.A[flJYlfl)(I — SZA[),

where II;_; is the Ritz-projection from V to Vj_;. By applying this operator recursively, we

obtain the error transfer operator for the MG V-cycle:

EL=TI—-BL A, =(I—-S[AL) - (T—STA)(T—1IL)(T—-81A) - (T—-SLAL).

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 151

6.1.2 Matrix representation of GMG

Similar to the matrix representation of two-grid method discussed in §3.4, we can write the

matrix representation of multigrid method. By definition, we have
(A, v) = (Aug,vp), Vg, v € V.

Hence,

(A Quu, Q) = (I ATiQuu, Qv) = (AT Qu, T;Qv), Yu,ve V.
It is easy to see that
A =IAT, = A=IAT =1 AL,
This and (3.39), in turn, give the inter-grid transformations:
Al=MA = MIM AL = MTf M7 AL, =1," AT, 0<i<L.
Hence we get the matrix form of the coarse level operator

A =PFAP, 0<I<L. (6.1)

6.1.3 Anisotropic problems x

For GMG, error smoothness is in the usual geometric sense. However, this is not trivial for
problems on unstructured meshes or with complex coefficients. A representative example is the

second-order elliptic problem

—€Uzy — Uyy = f(x,y), V(z,y)€Q, (6.2)

where € > 0 is usually small.
If we just naively apply the standard finite difference discretization in §1.2 on the uniform
n x n tensor-product grid for this problem, or equivalently the P; finite element discretization

on uniform triangular grid from regular refinements, then the coefficient matrix for (6.2) is
A =1®A+C®I, with A; . = tridiag(—e, 2 + 2¢, —¢), C = tridiag(—1,0, —1).

The eigenvalues of A are given

— 2cos T _ 4e sin? + 4sin? JT

i i
Aj(A) =2(1+¢)—2 T T
i(Ad) = 2(1+¢) ST n+1 2(n+1) 2(n+1)’

with eigenvectors

- . kim . ljm
&ij= (sm sin) .
’ n+1 n+1/ki=1,..n

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 152

If e «1,then M1 < X1 < -+ < A1 < A2 < A2 < ---. We notice that, unlike the
Poisson’s equation, these eigenvalues are ordered in a different pattern. The geometric low-
frequencies can be highly oscillatory in the x-direction. It is natural to expect such a behavior
from the PDE itself as the z-direction is much less diffusive than the y-direction. We call the
a-direction (with smaller coefficient) the weak direction and the y-direction the strong direction.

We can also view this problem from a different perspective. Using the LFA analysis in §3.3,

we obtain that the error of the G-S method satisfies

new new old new old ©
(2 +26)e7F" = ee;Y teef S teist el iy, hi=1,...,m

According to the local Fourier analysis, we can obtain that

new Vv—160 v—10
Qg €e t+e 2

>\(91792) = agld = 2+ 2% — 66_\/?101 _ 6_\/j102)

In this case, the smoothing factor of the G-S method is

<6<1_pgs>>>:m+2_>

2(e +1)p2, 5¢ + 3

Pas = A(g,arctan 1, ase—0.

This observation suggests that the standard G-S method barely have any smoothing effect on

the anisotropic problem when € is small.

{ i+ 1 l i+1

j—1 j j+1 j—1 j j+1

Figure 6.2: Standard (left) and line Gauss—Seidel (right) smoothers: Blue points have updated
values and white points have old values.

On the other hand, if we apply the line G-S smoother, things will be a lot different; see

Figure 6.2. Suppose we apply the line smoother in natural ordering (from left to right), namely,

new __ new old new new . .
(2+2€)ul7] = E’UIZ'_]_J +€u’i+l,j +u’i,j—l +ui,j+17] = 1,...,7’&, 1= 1,...771.

Then the error satisfies

new __ new old new new . .
(2 + 26)81'7]‘ = 682'_17]‘ + €€i+1,j + ei,j—l + ei,j-i-l?] = 1, ee,n, 1= 1, e, n.

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 153

And we get
aBew ceV—101

add 24 26— cem V101 — 2e—V=T0

The maximal smoothing factor is then

B € \/5
Puos =max {5 %5 |

If 0 < € < 1, we always have p, . = v/5/5 < 1 independent of e.

In the multigrid setting, one can handle such an equation using special treatments like: (1) apply
an line smoother (group all those y-variables corresponding to the same z-coordinate together),
or (2) employ y-semi-coarsening (only coarse in the y-direction), or (3) construct operator-
dependent interpolations. In the next chapter, we will turn our attention to the third approach,

which leads to algebraic multigrid methods for solving such difficult problems.

Figure 6.3: Examples of coarsening methods (Left: standard coarsening; Right: y-semi-
coarsening): Red depicts coarse points and black depicts fine points.

This example illustrates a typical problem used by researchers to evaluate the robustness of
multigrid methods as well as other iterative solvers. Other examples may include problems with

high-contrast coefficients, heterogeneous coefficients, anisotropic meshes, etc.

6.2 Convergence analysis of multigrid methods

In this section, we show the slash cycle or sawtooth cycle (i.e., /-cycle) method converges
uniformly (h-independently) using the XZ identity discussed previously. For simplicity, we will
only discuss the proof in 1D here. Multidimensional cases and other MG methods can also be
analyzed in the subspace correction framework, but the analysis is more technically involved;

see [189] for an example.

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 154

6.2.1 Convergence analysis of GMG method

Assume the subspace problems are solved exactly, i.e., §;; = .Al_il, for i = 1,...,n; and
=0,...,L. We denote the canonical interpolation operators from V to V; as J;. That is to

say, for any function v e V,
ny
(J)(Z 1=0,..., L.

Let J_1v := 0, vy := Jov, and v; := (J; — Jj—1)v, | = 1,..., L. Using the interpolants in

multilevel spaces, we can write

L L
v=Jv= 2 (jl — ﬁ_l)v = Z V). (6.3)
=0

We also have
n

S o) dha) = 3 Y

0i=1 [=01=1

M=

L
0= Yu -
=0

l

It is easy to check that

L ny
(Z — Tx)v Z v = Z Zvl,j

I=k+1 I=k+1j=1
To estimate the convergence rate, in view of Corollary 4.21, we only need to estimate the

quantity:
L ng 9

c1 := sup inf ZZ I ; Z Uk’j‘{

\vh 1 20, 0i= YiZ0i=1 (k,5)= (1)

We now define and estimate

(Z”lﬁ % St

k=1+1j=1

L n
1=0 i=1
We use the same notations introduced in Chapter 4 for projections, If;; : V — V; is the

(+,-)a-projection. For one-dimensional problems, it is easy to see that I, = J;; see HW 6.2.

This leads to the following identity
IL,(I—-7)=0, Vi<i<n, 0<I<L.

Furthermore, we also have]Yl,i(iji v) = I, (Um‘ + UMH). Using these properties, we have

L n
ci(v) = Z Z |\, (v + vii) + (T — \71)0’?
1=0 i=1
L lnl L n
= ZZ’H“U“J”}““ ZZ loil;
=0 1=1 =0 =1
L l L

= Z - Tl < Yl = el

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 155

The last equality is easy to check; see HW 6.3. This estimate shows the convergence rate of MG

is uniformly bounded.

Remark 6.2 (Relation with the HB preconditioner). Note that several parts of the above anal-
ysis depend on the one-dimensional (d = 1) assumption for simplicity. In fact, the decomposition
(6.3) used in this proof is the hierarchical basis (HB) decomposition discussed in §5.2. We have
already seen that the HB method convergence rate is not actually optimal for multidimensional
cases (d > 1). So the proof requires modification for higher dimensions. We will not explore
the details of that approach here. Several alternative approaches in the literature prove the

optimality of GMG methods; we briefly review them in the following subsection. O

6.2.2 Some historical remarks *

The theoretical analysis in this note closely follows the argument of subspace corrections
theory. We now briefly review the history of multigrid convergence theory. A comprehensive
literature review is not possible here; interested readers should see the monographs [106, 135,
40, 64, 179, 183], survey papers [189, 208], and references therein for a more thorough treatment.

In the early 1960s, Fedorenko first introduced and analyzed the multigrid method for finite
difference equations of the Poisson equation on a unit square [91, 92]. Bakhvalov extended the
result to more complex cases with variable coefficients [10]. Nicolaides provided an analysis
for finite element discretizations of second-order elliptic equations [147]. In the late 1970s,
Hackbusch and Brandt made a major breakthrough, showing multigrid is highly efficient [104,
50]. Their seminal work popularized multigrid, motivating extensive research to develop a
general convergence theory. The simplest case is a two-level hierarchy. Bank and Dupont
developed a two-level hierarchical basis (HB) finite element method [13] and proved two-grid
method convergence for finite elements [12]. Under certain conditions, their two-grid theory
shows W-cycle (or more robust) multigrid with sufficient smoothing steps converges similarly to
the two-grid method; see [12, 105, 106, 179]. However, this approach cannot prove the uniform
convergence of V-cycle multigrid, which is more important in practice [105].

Hackbusch [105] and Braess and Hackbusch [38] first gave a general convergence theory
for multigrid, including the V-cycle. The classical book by Hackbusch [106] summarized early
development of convergence and optimality of multigrid methods. Hackbusch and collabora-
tors reduced the conditions for the V-cycle convergence to the smoothing and approzimation

properties, namely,

(v, Ao < (v, By), Vo eV (6.4)

(wl,Bl_lwl) < H(wl,Alwl), le € I/Vl = {(]Yl — Ul_l)v L VE V} (6.5)

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 156

If the above conditions hold, then there is a positive mesh-independent constant C' such that
V(m, m)-cycle multigrid converges uniformly and

C

T — BV—cycleA <

which indicates the convergence factor goes to zero as the number of smoothing steps increases.
The approximation property (6.5) often requires full elliptic regularity on the boundary value
problem and quasi-uniformness of the underlying meshes. These restrictions made the classical
theory not applicable in many situations where the multigrid methods are still effective. There
are some exceptional cases where full elliptic regularity is not necessary; see, for example, [36, 16].
Bramble and Pasciak [42] introduced a regularity and approzimation condition to show conver-
gence of multigrid methods including the V-cycle for any positive m. Bank and Yserentant [16]
presented the classical convergence theory of the multigrid methods from an algebraic point of
view.

An alternative convergence theory is the framework of subspace corrections, with which
inexact subspace solvers can be analyzed, very general meshes can be treated, and restrictive
regularity assumptions can be removed. The subspace correction methods (or the Schwarz meth-
ods) emerged and analyzed in both multigrid and domain decomposition communities. Closely
related to the multigrid methods (which can be viewed as multiplicative Schwarz methods),
additive versions of the multilevel Schwarz method also gained popularity as parallel comput-
ers emerged and became the dominant computing environment. Yserentant [206] and Bank,
Dupont, and Yserentant [14] extended the two-level HB idea to the multilevel case and obtained
the HB preconditioner (additive) and the HBMG method (multiplicative), respectively. The
HB-type methods (see §5.2) are easy to implement and very efficient in many cases, especially
so in 2D.

Bramble, Pasciak, and Xu [48] proposed a parallel version of V-cycle multigrid called the
multilevel nodal basis preconditioner, which is better known as the BPX preconditioner. In
this seminar paper, the authors suggested an L2-type telescope sum (see §5.3) to construct a
stable decomposition, which is a break-through and motivated a lot of research. Such a tool also
allowed Bramble, Pasciak, Wang, and Xu [47, 46] to analyze the V-cycle multigrid and domain
decomposition methods on nonuniform meshes. This analysis gave convergence estimates for the
multilevel Schwarz methods mildly depending on mesh size (i.e., depending on the number of
levels only). Dryja and Widlund [82] also showed similar convergence estimates for the multilevel
additive Schwarz methods in a more general setting. Later, these results were improved and
the multilevel Schwarz methods were finally shown to converge uniformly with respect to mesh
size and number of levels (without regularity nor quasi-uniformity assumptions) in different

ways [154, 211, 189, 45, 35, 102].

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 157

Xu [189] gave a unified theory on subspace correction methods based on stable subspace
decomposition of finite element spaces and laid solid foundation for further studies in this field.
Yserentant [208] reviewed the classical proof and the subspace correction proof for the conver-
gence of multigrid methods. By combining the two convergence theories, Brenner [57] proved
that convergence factor for some V-cycle methods decreases as number of smoothing steps in-
creases without full elliptic regularity assumption. Moreover, Xu and Zikatanov [193] considered
methods of subspace corrections in an abstract setting and showed that the convergence factor

of successive subspace correction methods can be characterized by a precise estimate

1
|7 - BY oA = 1

which is known as the XZ identity (Theorem 4.17). This theory does not depend on the number
of smoothing steps explicitly.

By far, we have mainly discussed general convergence theories for the multigrid methods.
These theoretical results indicate that the convergence factor of multilevel iterative methods is
independent of mesh size h without telling how big the convergence rate accurately is. Such
qualitative theories usually do not give satisfactorily sharp nor realistic predictions of the actual
convergence factor in practice [179]. This statement seems confusing as the XZ identity gives
an exact equality for the convergence factor instead of an upper bound. But an optimal space
decomposition in the XZ identity is not readily available practically speaking and, hence, it is
not easy to obtain a quantitative convergence estimate with the identity. Algebraic convergence
estimates can be applied to obtain reasonable quantitative convergence speed for multigrid
methods; see [134, 141] for more details. More algebraic convergence analysis results will be
reviewed in Chapter 7.

Although the aforementioned qualitative results show h-independent convergent speed of
multigrid methods, they still do not fully reflect high efficiency of multigrid algorithms (like the
so-called textbook multigrid efficiency). Moreover, these results can not provide much assistance
for designing an optimal algorithm. On the other hand, quantitative analysis tools, including
rigorous Fourier analysis and local Fourier analysts, have been developed in the literature to
analyze practical performance of multigrid methods for rather general problems. For some cases,
they can even provide ezact convergence factor of the multigrid algorithms (in the sense this

convergence factor can be obtained by the worst case mode); see [52, 161].

6.3 Nested iterations

As in Algorithm 6.1, the solve phase approximates corresponding problems by calling a two-

grid algorithm recursively. There are different approaches for the solve phase; for example, the

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 158
V-cycle method in §6.1. In this section, we discuss other popular methods for the solve phase.

6.3.1 V-cycle and its generalizations

The V-cycle iterator B, Algorithm 6.1, is a two-grid method with an inexact coarse-level

solver defined recursively, i.e., the coarse-level iterator B. is just B on the coarse grid. On the

old

o = 0 and then iterate

coarse level, we start from the initial guess
ulv = ugld + B, (fe— Acugld), where B, is the two-grid method for A..

c

In the the V-cycle, we only apply the above iteration once on the coarse-level. Apparently, this

procedure can be generalized. For example, we can iterate multiple steps:

u® =0, u® =u* V4B (fo — AulfV), k=1,...,w (6.6)
This gives the following equation
ul) = Bofo+ (L= BeAo)ul ™ = Befe + Eul’ ™) = oo = (T+ &+ -+ EL7V)B.f.,
where & := 7 — B.A.. We can define a new iterator B., such that
Bewfer= (2 —E)(Z— &) 'Bufo = (T—EX) AT fe (6.7)
Motivated by (6.7), we introduce a polynomial ¢, (t) := (1 —¢)” € P, and let
Bewi= (T— au(BoA)) A"

The parameter v is often called the cycle index.

Finest . . . Relaxation

J J
/ a\
Y, J\f WA

Figure 6.4: Multigrid V-cycle (left) and W-cycle (right).

Exact solving

\ Restriction

Prolongation

Algorithm 6.2 (One iteration of multigrid cycle). Assume that B;_1 : Vj_1 — Vj_1 is defined
and the coarsest level solver By = Ay 1is exact. We shall recursively define B; : V; — V; which

is an iterator for the equation A;v = r;. Let v = v(9) be the initial guess.

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 159

(1) Pre-smoothing: For k =1,2,...,m, compute

v<—v+81(rl —.Aw);

(2) Coarse grid correction: Find an approximate solution e¢;_; € V;_ of the residual equation
on level [— 1, ie., Aj_1e;_1 = Qu_l(rl — Alv) using the iteration: Set e¢;_; = 0 initially.

For k =1,...,v, compute
e—1 —e—1+ B (Qz,z—l(ﬁ — Aw) — Az-1€l—1); (6.8)

Update the solution with

v v+ €-1;
(3) Post-smoothing: For k = 1,2,..., m, compute

v<—v+SlT(rl—.Aw).

In the above general algorithm, the numbers of pre-smoothing and post-smoothing steps
could be different from each other or level from level. The notation like V(1,2) means the
V-cycle multigrid with 1 pre-smoothing and 2 post-smoothing steps.

From the previous discussion, we notice that there is a lot of freedom in the choice of g, ().
If v = 1, then Algorithm 6.2 is the V-cycle. The first non-trivial example is the well-known
W-cycle (v = 2), which is a simple extension of the V-cycle algorithm; see Figure 6.4. By calling
the coarse correction steps twice as in (6.8), we can obtain B, i.e. the W-cycle; see HW 6.4.
Apparently, the cycle index v on each level does not have to be a fixed integer and one can use
v;—1 > 0 to balance convergence and computation complexity; see Remark 6.5 for an alternative
scheme.

In V-cycle and W-cycle, the iterators on different coarse levels (except the coarsest level) are
the same. We can also use different polynomial orders v; on different levels [(0 <[< L). For
example, we can use a polynomial g, () such that ¢, (0) = 1 and 0 < ¢, (t) < 1 on the spectrum of
B.A.. This type of methods are referred to as the AMLI-cycle (Algebraic Multi-Level Iteration

cycle!); see [6] and references therein for details.

Remark 6.3 (Nonlinear AMLI cycles). Indeed, we can choose some optimal polynomial g, (t)
like the Chebyshev polynomials. This reminds us about the Krylov subspace methods discussed
in §2.2. Inspired by this similarity, we can apply a preconditioned Krylov methods (like Flexible
CG or GCR methods) on some of the coarse levels to improve convergence. This type of methods
are called Krylov-cycle (K-cycle) methods or Nonlinear AMLI methods [152]. O

'Here “algebraic” stands for the fact that certain inner polynomial iterations are used in the multilevel cycle.

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 160

Example 6.4 (A simple AMLI-cycle). A simple AMLI-cycle method is to give Iy = 1, pu; >

o = 1, and use the following polynomial orders

pa, if 1= klo;
v =
2, otherwise.

It is clear that, if [p = 1 and py = po = 1, then this method is just the standard V-cycle. O]

6.3.2 Complexity of multigrid iterations

Now we turn our attention to the work estimate (i.e. the number of floating-point calcula-
tions) of nested iterations. For simplicity, we only consider the AMLI-cycle in Example 6.4 with
o = 1. Denote the computational work needed by B; is W;. Assume the each smoothing sweep
costs O(NN;) operations and N, ~ h;7% ~ 47!, Then it requires 2m O(N;) operations for the pre-
and post-smoothing on level [. The prolongation and restriction also requires O(NN;) operations.

Hence, for the AMLI-cycle, we have

Wit = 10 (Nies1yy) + O(Natg1 + -+ + Nitgriy) + 11 Wiy
= 11O (Nyerayy) + #1 Weio
= 1O (Nges1yio) + #3O(Nkay) + 83 Wik—1y1,

k+1

k+2—j
= O X I NG,) + bWy
=2
k+1

= o(X ut N,

=1
+

di

= Nk+1)10 Z p1y*0)

Let N = N be the number of unknowns on the finest grid. This AMLI method costs O(N)
operations in each cycle, if we choose an appropriate p; such that pu;y¢% < 1. Apparently, this
analysis also yields computational complexity of the standard multigrid cycles like V-cycle and

W-cycle quickly.

Remark 6.5 (Variable V-cycle). Sometimes it is very desirable to use more smoothing steps
on the coarse meshes to achieve better convergence. For example, we can modify the V-cycle
algorithm by making the number of smoothing steps vary with the level [. Namely, we can
replace m in Algorithm 6.1 with m;, where m; = B'm with a fixed integer 8 > 1. Usually
in practice = 2 and m = 1 are taken and then m; = 2F~!. Note that the computational

complexity is still optimal O(N) as the number of grid points decreases geometrically. O

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 161

6.3.3 Full multigrid method

The multigrid methods discussed above converge uniformly with respect to the meshsize h
and requires O(N) operations in each cycle. This means the computational cost is O(N) to reach
a fixed tolerance. On the other hand, when we solve a discrete partial differential equation, we
need to solve the linear systems increasingly accurate using smaller tolerances for finer meshes,
in order to obtain discretization accuracy. This leads to the fact that, to reach the discretization
accuracy, the V-cycle multigrid method requires O (N log N') operations.

One way to further improve the cycling algorithms (for example, the V-cycle algorithm) is
to provide better initial guesses using coarse approximations (cheap in computation). This idea
leads to a nested iteration method, i.e., the so-called full multigrid (FMG) cycle; see Figure 6.5.
From this figure, we can see the full multigrid method can be viewed as a sequence of V-cycles
on different levels. Note that FMG prolongations are different than the usual prolongations

because they must control error and decide when to proceed to the next finer level.

Finest
o Relaxation
@) Exact solving
\ Restriction
4\ ‘\ / Prolongation

FMG prolongation
¢

Coarsest

Figure 6.5: Full multigrid cycle.

We can write the concrete algorithm as follows:

Listing 6.1: Full multigrid method

1 ﬂ0<—A61f0;
2 [for l=1,...,L

3 ul(O)HIl 1,017

4 ul() v- cycle(l, fi,u; (k= 1)) k=1,...,v;
5 ﬂl<—ul();

6 | end

Theorem 6.6 (Full multigrid convergence). Assume that the [-th level iteration is a contrac-
tion with contraction factor 0 < § < 1 independent of level [. If v is large enough, then we
have

lur — @l < halul,,

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 162

where wu; is the exact solution of finite element problem on level [and 4; is the full multigrid

approximation solution on the [-th level.

Proof. Let e; := u; — @;. Apparently, on the coarsest level, we have eg = 0 initially. On the [-th
level (0 << L), we have
ledl < 6% lw —] < 5”(e = wll + flwr—r = wll + flus—1 = 7TLHIH>

< & (Chululy + ller-1ll)-
By iteration, we obtain that

ledl < €8+ 8% iy + -+ 6%y) Jul,

— O8Iy (1 F Oy 4t 5<H>wl*1> Jul,.

Furthermore, if v is large enough, then ¢ < v and

Co"h
leill < ==

T g Ul = ululy

Hence the result. O

The above theorem indicates that, if we do enough number of V-cycles on each level (independent
of meshsize h;), we can obtain an approximate solution within the accuracy of discretization
error. That is to say, ||[u — 4| < ||u — w|| + |lu; — @|| < hi|u|2. This means that FMG can reach

discretization error tolerance within O(NN) operations.

6.4 Two-grid estimates for multigrid analysis

In this section, we introduce a simple tool for estimating convergence speed of the multigrid
methods using the two-grid convergence factor. As we mentioned earlier, although this classical
approach works well for the W-cycle or more complicated cycles only, it is relatively easy to give

practitioners some idea how fast a multigrid code should be quantitatively.

6.4.1 From two-grid to multigrid

It is well-known that, if the exact two-grid method converges sufficiently fast, then the
corresponding W-cycle multigrid method will also converge fast [12, 105, 179]. This is very
helpful, for practical purposes, to assess how fast a multigrid algorithm will work for a particular

problem.

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 163

A more rigorous analysis has been given by Notay [148] through a closer look at convergence
rate of the inexact (or perturbed) two-grid methods Brg in Algorithm 3.2. As we have seen
earlier, the multigrid methods can be viewed as recursive calls of the two-grid method. Hence
they are indeed inexact two-grid methods. Moreover, we have the following relations between

the general two-grid method Brg and the exact two-grid method Berg:

)\max(BTGA) <)\max(BeTGA) max {)\max(BcAc)7 1}7
)\min(BTG-A) =)\min(BeTGA) min {)\min(Bc-Ac)a 1}-

Let p; := p(Z; — B A;). In view of the above inequalities and (2.10), we obtain the following

estimate
p}ﬂ/-cyele <1-— (1 _ pleTG> (1 _ (p}’if—lcycle)Q), [=23,...,L.

If pfT¢ <0 < 1/2 and prX'fyC‘e < 1Z, then we can derive, by recursion, that
_ o
p Y T 1=23,... L

This is a uniform estimate of the “convergence speed” of the W-cycle multigrid method with
respect to the number of levels. This result confirms and quantifies the common wisdom about

the W-cycle convergence speed.

6.4.2 Limitations of two-grid theory for GMG x

As we mentioned earlier, this approach does not yield uniform convergence estimate for the
V-cycle multigrid. This fact shows there is a fundamental difference between two-level and V-
cycle multigrid iterations in terms of conditions on convergence. When the above technique is
applied to the V-cycle multigrid method, we can easily obtain that: If)\maX(BleTGAl) < 1 holds

for all levels, then

pyevcle <1 _ (1 B pleTG) (1 _ (pl\f_-iycle)>, 1=23,... L.

For example, suppose that pY“CyCle = p:TC and the exact two-grid method converges uni-

formly with pleTG < 0.2 for all [> 0. Then it yields the following non-uniform convergence

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 164

estimates for the V-cycle multigrid:

py ¥ < 1-0.8 x (1 —0.200) = 0.360,

py ¥ <1 - 0.8 x (1—0.360) = 0.488,
p}lf-cycle <
pg]—cycle <1-0.8x%x(1-0.590) =~ 0.672,

()
()
1-0.8 x (1 —0.488) ~ 0.590,
()
()

pV—cycle <1-0.8x

6 1-0.672) ~ 0.738,

In general, uniform two-grid convergence is not sufficient to guarantee uniform convergence
for the V-cycle multigrid; see [139] for example. To give uniform estimate for the V-cycle
multigrid, there are additional conditions to be satisfied; see the work by Napov and Notay [142].
Nevertheless, from the above discussion, we find that the analysis for two-grid methods can
improve understanding of the convergence behavior of multilevel iterative methods. It is simple
yet very powerful. Furthermore, the analysis of inexact two-grid methods indicates that it is
possible to apply the inexact (possibly non-Galerkin) coarse-level operators and might lead to
new multigrid algorithms (particularly, algebraic multigrid methods). More discussions can be
found in the PhD thesis of Xuefeng Xu [198] and [203].

6.4.3 LFA ladder

For a specific problem, it is recommended to perform quantitative analysis (more specifically,
the LFA method) to determine the maximum possible convergence rate of multigrid algorithms.
A general procedure for developing multigrid programs, known as the "LFA ladder”, has been

adopted in practice:
1. Choose an appropriate discretization scheme for the problem:;
2. Find an effective smoother with a satisfactory convergence factor p using the LFA method;
3. Select transfer operators and determine the two-grid LFA convergence factor o;
4. Check if the two-grid LFA convergence factor o is close to u;
5. Check if the convergence factor of the multigrid program approximates o;

6. Apply the full multigrid method and verify if the expected discretization accuracy is

achieved.

This procedure helps practitioners make development decisions and improve efficiency. We

recommend readers see [179, 187] for more details on these techniques.

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 165

6.5 Implementation of multigrid methods

In this section, we will briefly discuss how to implement the multigrid V-cycle (Algorithm 6.1)

RN*N (N is usually very large). There

for solving the finite element equation Au = f with A €
are a couple of different ways for implementing the multigrid V-cycle algorithm. Here we use a

matrix-based implementation to allow generality while it might not be an efficient way.

6.5.1 A sparse matrix data structure

First, we discuss how to represent a sparse matrix in practice. Evidently, we do not wish
to store the zeros in a sparse matrix. There exist various ways to store a sparse matrix with
optimal storage complexity. More importantly, the choice of storage format usually depends
on the hardware architecture. A widely used general purpose data structure is the so-called
Compressed Sparse Row (CSR) format [166]. The CSR storage format of a sparse matrix A

consists of three arrays, defined as follows:
1. A double array of non-zero entries corresponding to the column indices, val, of size nnz;
2. An integer array of row pointers, A, of size N + 1;
3. An integer array of column indices, JA, of size nnz.

More precisely, the index IA(i) points to the beginning of the i-th row in JA and val. Moreover,
the nonzero entries of a sparse matrix are stored in the array val row after row consecutively,
that is to say, the i-th row begins at val(IA(7)) and ends at val([A(i + 1)—1). In a similar way,
JA(IA(7)) to JA(IA(i+1)—1) contain the column indices of the nonzeros in row ¢. Thus IA is of
size N + 1 (number of rows plus one), JA, and val are of size equal to the number of nonzeros.
The number of nonzeros in the i-th row is then equal to TA(i + 1)—IA(7) and the total number
of nonzeros is equal to TA(N + 1)—IA(1). Note that, as a convention, we always start the indices
from 1 instead of 0.

When the matrix is a boolean (i.e., all entries are either true or false), the actual nonzeros

are not stored because there is no need to store them.
Example 6.7 (A simple CSR matrix). Consider the following 4 x 5 matrix

10 1.5 0 0 1.2
0 1.0 60 7.0 1.0
30 0 60 0 O
1.0 0 20 0 5.0

When in the CSR format, this matrix is stored in the following way:

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 166

e val is of the same size as JA and

val =|| 1.0 | 15| 12|/ 1.0| 70| 6.0| 1.0 | 3.0] 6.0 20| 50] 10|

e JA is of size 5 and
a=|1]a|s]10]13

o JA is of size IA(5) — IA(1) = 12
sa=|1l2fs]zlafs]s]|1]s]s]5]1]
Note that the indices in JA need not be sorted in ascending order as seen in this example. [

Remark 6.8 (Some comments on CSR). We provide a few comments on the CSR format:

1. There exist various data structures for storing sparse matrices, suited to specific problems,

algorithms and hardware. Nevertheless, the CSR format remains widely used and accepted.
2. The format does not assume any ordering of entries within each row.
3. The format allows duplicating nonzero values. O

With a sparse matrix stored in the CSR format, the matrix-vector multiplication v = Au

can be performed in the following way:

Listing 6.2: Sparse matrix-vector multiplication

1|for ¢=1,...,N

2 t<—0;
3 for k= I1A(),...,IA(GGi+1)—1
4 j — JA(k);

ot

t—t+ val(k)=u(j);
end

v(i) <« t;

[o RS BN

end

Now we give a pseudo code of the GS method (1.31) for solving Au = f. We assume that
the initial guess is stored in the vector u. The pseudo code below uses an ordering given by a
permutation array m, which takes value from 1 to N. Note that if 7(¢) = ¢ for any ¢, then the
code just yields the forward Gauss—Seidel method. It is important to notice that the positions

of the diagonal entries of A in JA and wval are not known in advance.

Listing 6.3: Gauss—Seidel method with ordering

1 |for £=1,...,N
2 i—m7(l);

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 167

6
7
8

9
10
11

12

13

t— f(i);
for k<« IA(®),...,IAGi+1)—1
j <« Jak);
if (j==1)
diag < val(k);
else
t—t—wval(k)*u(j);
end
end

u(i) < t/diag;

end

We immediately notice that this pseudo code is very similar to the previous matrix-vector

multiplication and can be implemented very easily.

6.5.2 Assembling finite element matrix

Geometric multigrid methods are often implemented without assembling the global stiffness

matrix (matrix-free). However, we implement GMG using a matrix-based approach. So we first

discuss how to assemble the finite element matrix. Consider the mesh in Figure 6.6 which has

both triangles and quadrilaterals.

Figure 6.6: A mesh with 4 elements and 8 nodes

Most finite element basis functions are constructed to be locally supported. Very often, a

“natural” assumption can be made about how a stiffness matrix is constructed from a finite

element mesh:

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 168

We have a nonzero in the stiffness matrix at the (4, j)-entry if and only if the nodes ¢ and j

appear in the same element.

In order to assemble the stiffness matrix, the following two steps are performed:
1. Find the sparsity pattern of the stiffness matrix A, namely, IA and JA;

2. Loop through elements and compute the actual entries in A; This step (the actual assembly
of the entries) is usually easier but has to be done case by case. We leave this step to the

readers.
Here we only explain the first step in the following abstract algorithm:
Algorithm 6.3 (Finding sparsity). Suppose a finite element mesh M is given.
(1) For each element, find the indices of nodes that belong to it;
(2) For each node, find the indices of elements that it belongs to = Patch(i);
(3) Obtain the sparsity pattern of A:

for i € Nodes(M)

for e € Patch(i)

Add all nodes in element e to the list of possible nonzeros in row i2.

It just remains to show how we can perform steps (1) and (2) of Algorithm 6.3. This can
be easily achieved by thinking of the element—node correspondence as a sparse matrix of size
#elements x #nodes. For example, the so-called element topology is trivially represented by a
4 x 8 matrix E for which E;; = 1 if and only if the node j is in the element i. Using the mesh

in Figure 6.6 as an example, F is given below:

o = O O

1 0
0 0
1 1
1 0

—_ O = =

1
0
1
0

= o = O

00
11
0 0
00

Since this matrix has value either 1 or 0, we can represent F in the compressed sparse row
format with the sparsity pattern only:

IE =|1]4|8]12|15|
JE =|7[8[2]8|3[4][5]1[6]7|2]2]|5]8]

2Make sure that you do not add anything twice. This can be done using an additional indicator array.

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 169

This concludes Step (1) of Algorithm 6.3.
On the other hand, Step (2) is also easy to achieve because the columns of E represent the
correspondence

Node — Patch.

This means that, for step (2), we can use the transpose matrix E7.

Remark 6.9 (How to find transpose of a CSR matrix). The nontrivial task is to perform trans-
position without using additional memory. An algorithm by F. Gustavson from the 1970s can
achieve this, found in [155]. During transposition by Gustavson’s algorithm, column indices

within each row emerge in increasing order naturally. O

6.5.3 Matrix form of transfer operators

As seen in (6.1), we can obtain coarse level stiffness matrices using the algebraic Galerkin

relation:

Aj=P'AP, 0<I<L.

Since we can calculate the matrices A;’s level by level, we only need the prolongation matrix
between two consecutive levels, P,_;; for 0 < [< L. In the operator form, it is trivial to
define the prolongation, which is just the natural embedding operator. But for implementation,
we need to find the algebraic form of the prolongations. For geometric multigrid methods, we
usually have to write the prolongation subroutines for different cases, and it makes the multigrid
code almost a white box.

Here we are going to use a matrix-based implementation. Such a strategy is easy to be
adapted to different discretization methods and have an almost identical structure as the AMG
methods we will discuss next. Since we have seen how to apply a matrix-vector multiplication
and how to apply the smoothers, we are left with construct prolongations as a sparse matrix.
But, of course, obtaining such flexibility will cost us more storage as well as computational time.
To complete the algorithm we have to give the action of Plj:u and P,_y;, which are just matrix-
vector multiplications to transfer data between two consecutive levels. The only programming
difficulty here is keeping track of who on the fine grid is interpolated by whom on the coarse
grid. We now focus on the particular case in which V}, is the classical linear finite element space

corresponding to a uniform grid with size 27%.

Remark 6.10 (Matrix-free implementation of prolongation). One can easily observe that, there
is actually no need for A; 1 to be computed as qull 1A1P_1 because A;_; is just the stiffness
matrix corresponding to finite element discretization on a grid with size 2!/, In such a case,

we do not need to store P themselves, but only the action of prolongations. O

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 170

In the following example, it is shown how to perform the actions of prolongation for [= 1

of grid with meshsize 1/4 on the unit square. We can easily obtain the finite element matrix on

5 3 3

4 1 g 7

3 3 2

2 7 3

1 6 1 16 of 1 . 4 . 7

Figure 6.7: Fine and coarse meshes.

the coarse mesh Mj; see Table 6.1.

i J | (A)y i J | (A1) i J | (A i g (A1)
1 1 1.0 3 3 1.0 5 6 —-1.0 7 8 —0.5
1 4| —05 4 11 -05 5 8| —1.0 8 7| —05
1 2| —05 4 41 20 6 5 —1.0 8 8| 20
2 1| -05 4 5| -10 6 6 20 8 5| —1.0
2 5 —-1.0 4 71| —-0.5 6 3 —0.5 8 9 —0.5
2 2| 20 5 41 -1.0 6 9| —05 9 8| —05
2 3| —05 5 5| 4.0 7 4| —05 9 9| 1.0
3 2| —05 5 2| —1.0 77| 1.0 9 6| —0.5
3 6| —05

Table 6.1: The nonzero entries of the stiffness matrix A; on the fine grid.

Let e(i), i = 1,2,...,9 be a given vector corresponding to the representation of ey on the

coarse grid. Let r(i), i = 1,2,...,25 be a residual vector on the fine grid. According to the

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 171

numbering given in Figure 6.7, we have the following formulae for computing Pe and PTr:

(Pe)(13) = e(5);

(Pe)(12) = 0.5+ (e(4) +e(5));
(Pe)(8) = 0.5=(e(2) +e(5));
(Pe)(17) = 0.5 (e(4) + e(8));

(PTr)(5) = 7(13) + 0.5 (r(7) + r(8) + r(12) + r(14) + r(18) + r(19));
(PTr)(1) = 7(1) +0.5% (r(2) +r(6) +r(7));
(PTr)(4) = r(11) + 0.5 (r(6) + r(12) + 7(17) + r(16));

The remaining values in Pe and PTr at other grid points can be obtained in a similar way.

Remark 6.11 (Improving efficiency of V-cycle implementation). While Algorithm 6.1 is defined
as a recursive call of the two-grid method, this often results in a costlier implementation. Several

techniques can improve the efficiency (reducing wall time) of each V-cycle:
e Matrix-free implementation to avoid SpMV;
e Replace the recursive procedure by a loop over each level;
e Use red-black ordering for smoothers to obtain better parallelism;

e Combine smoothing sweeps to reuse cache.

6.6 Homework problems

HW 6.1. Show the geometric multigrid V-cycle (Algorithm 6.1) is uniformly convergent in R,

HW 6.2. If A = —A, show that the interpolant J; : V' +— V] is equal to the (-,-)4-projection
,:V V.

HW 6.3. Let Q = (0,1) and v € V}, be a P; Lagrange finite element function. Show that

[olf = S uilf.
HW 6.4. Let ¢(t) = (1 —t)%. Show that B = (Z — q(B.Ac))A; ! can be obtained by (6.8).

HW 6.5. Show the work estimate of the full multigrid method is O(XV).

Chapter 7

Algebraic Multigrid Methods

Consider the system of equations arising from Poisson’s equation on unstructured grids or

the second-order elliptic equation with anisotropic coefficients
Au=f, where Ae RV*N is SPD and u, f e RY.

Problems with anisotropic coefficients on regular grids, or problems with isotropic coefficients
but on anisotropic grids, can cause difficulties for geometric multigrid methods. While ge-
ometric multigrid (GMG) fundamentally relies on the availability of robust smoothers, alge-
braic multigrid (AMG) takes a different approach by focusing on constructing a suitable coarse
space [55, 56, 165]. AMG is a means to generalize GMG and enhance its robustness. There are
several situations where AMG can be applied but GMG cannot, for instance, problems on com-
plex domains or irregular triangulations, problems with discontinuous coefficients, and purely

algebraic problems.

7.1 From GMG to AMG

How to make multigrid methods more robust in practice has been an important question since
the early stages of the method’s development. AMG is one approach to improving robustness.

In this section, we first demonstrate some motivations for algebraic multigrid methods.

7.1.1 General procedure of multigrid methods

From our previous discussions, we observe that a typical multigrid (MG) algorithm contains
two phases: the “setup” phase and the “solve” phase. The setup phase initializes a hierarchical
structure, including coarse spaces, prolongations, restrictions, and coarse solvers for multilevel

iterations. Note that the setup phase only needs to be called once before iterations; sometimes,

172

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 173

the same setup phase can be used at different time levels for time-dependent problems. For geo-
metric multigrid (GMG) methods, the setup phase is trivial using the hierarchical grid structure.
However, GMG methods are challenging to apply for equations on general domains equipped
with unstructured grids. Algebraic multigrid (AMG) methods can be viewed as a generalization
of GMG methods. See [196] and references therein for details.

We now explain how to perform the multigrid setup phase in a relatively general setting.
Once complete, an appropriate nested iteration scheme should be chosen for the solve phase;
see §6.3. It is immediately evident that we only need to discuss how to set up hierarchical
information between two consecutive grids/levels for multigrid methods. We can summarize a

general multigrid setup procedure in the following steps:
Step 1. Selecting a smoother: Choose a smoother S for Au = f.
Step 2. Coarsening: Identify a coarse space V. < V, which contains smooth vectors.
Step 3. Constructing a prolongation: Construct a prolongation P in two steps:

3a. Decide, for each fine variable, which coarse variables are used for interpolation;

3b. Determine the weights for prolongation P.

Step 4. Multilevel cycling: Apply the same algorithm one or more times for the coarse
problem A.u, = f., where A, = PTAP and f, = PTf.

For GMG methods, Steps 2-4 are determined by the information of nested grids and the
users can only find an appropriate smoother S. For example, in §1.4, we have presented a 1D

GMG method in a purely algebraic fashion. We have observed that:

(1) In GMG coarsening, the topologies of the graph representing the stiffness matrices on

different levels are explicitly clear from the geometric refinement procedure.

(2) Prolongation and restriction for GMG usually depend only on the topological structure of

the grids without considering the grid coordinates.

(3) For GMG, smoothness of error is defined geometrically. In more general settings, a geo-

metrically smooth error can be non-smooth.

The key to an efficient GMG algorithm is to construct effective and cheap smoothers for
the problem at hand. On the contrary, for AMG, we focus on how to pick coarse space and
constructing interpolation to approximate the error components that cannot be effectively re-

duced by smoothing. AMG usually employs a simple relaxation process (typically point-wise

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 174

relaxation) and then attempts to construct a suitable operator-dependent interpolation using
the algebraic information of A to treat the error components that cannot be reduced by the

relaxation process.

7.1.2 Sparse matrices and graphs *

A sparse matrix can be represented as a graph. As the sparse matrices that we consider are
mainly symmetric, we only discuss undirected graphs here. We first introduce a few elementary
concepts from the graph theory. An undirected graph (or simply a graph) G is a pair (V,E),
where V is a finite set of points called vertices and E is a finite set of edges. As set of vertices we
always consider subsets of {1,..., N}. An edge in E is an unordered pair (j, k) with j, ke V. A
graph Gg = (Vo, Ep) is called a subgraph of G = (V,E), if Vo < V and Ey c E.

If (j,k) € E is an edge in an undirected graph G = (V, E), vertices j and k are said to be
adjacent. The set of neighboring vertices of i is the set of all vertices that are adjacent to i;
and it is denoted as N; € V. An independent set of a graph G is a set of vertices in G that are
nonadjacent (i.e. no two vertices are adjacent). A mazimal independent set (MIS) or mazimal
stable set is an independent set such that adding any other vertex would introduce an adjacent
pair. A graph can have many MISs of varying sizes; the largest MIS, or potentially several
equally large MISs, of a graph is called a mazimum independent set.

A path from a vertex ¢ to another vertex j is a sequence of edges

{(i, 71), (1. 42)s - s G2y d1-1)s (i-1,4)} < E

and the number of edges [is called the length of this path. A vertex j is connected to a vertex
k if there is a path from j to k. The distance between j and k is defined as the length of
the shortest path between these two vertices. Apparently, the distance between two vertices is
equal to 1 if they are adjacent and is set to oo if they are not connected. An undirected graph
G = (V, E) is called connected if any pair of vertices are connected by a path; otherwise, G is
said to be disconnected.

Let A e RV*N be a sparse matrix. The adjacency graph of A, denoted by G(A), is a graph
G=(V,E)withV:={1,2,...,N} and

E:= {(j, k) :aj # 0}.

As a general rule, sparse matrices do not provide any geometric information for the underlying
graph except the combinatorial /topological properties of G(A) or its subgraphs; see Figure 7.1.
We note that two different discretizations on different meshes could lead to same sparse coefficient

matrix A and, hence, same graph G(A).

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 175

e 4 e A AN AN
J L U NN VAN
(e e N AN AN
L J v \ZEAN VAN %
I (i e A AN AN
L/ T/ L vV v QY

Figure 7.1: Finite element grid (left), finite difference grid (middle), and graph of their corre-
sponding stiffness matrices (right).

Let A be the coefficient matrix corresponding to the finite element discretization of the
second-order elliptic equation with Neumann boundary condition. Apparently, A has zero row

sum. Hence we can write

(Au,v) = Z —a; j(u; — uj)(v; — vj). (7.1)

(i,4)eE
i<j

We can also easily derive the corresponding equality for the Dirichlet boundary condition or the

mixed boundary condition:

(Au,v) = Z —a; j(u; — uj)(v; — vj), if wj=v;=0, VajeTp. (7.2)
(4,4)eE
1<j

7.1.3 M-matrix and Delaunay triangulation x

We first introduce the concept of M-matrix. We call A an M-matriz if it is irreducible (i.e.,

the graph G(A) is connected) and

a;i; >0, a;; <0 (1 #]), aj;=> Z |am‘|, a;; > Z |a¢7j| for at least one j.
i 1#]
Apparently, the stiffness matrix A in equation (1.26) for the model problem is an M-matriz .
The classical convergence theory for AMG was developed for this class of symmetric M-matrices
(see [51, 165]). However, stiffness matrices from finite element discretizations are generally
not M-matrices, even for the Poisson’s equation. In fact, whether a stiffness matrix is an M-
matrix depends on the specific mesh M used. In practice, many AMG algorithms use simple
filtering schemes to construct an approximate M-matrix Aj; from the stiffness matrix A. Xu
and Zikatanov [195] introduced the concept of ”M-matrix relatives” to analyze such constructed

M-matrices.

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 176

First, we introduce a few notations using Figure 7.2. In any given simplicial element 7 in
R3; similar definitions can be introduced in R? for d > 2. An edge (i, j) has two vertices z; and
x; and denote this edge as E. Let kg(7) := F; ﬂFj and Og(7) be the angle between faces F;
and Fj. Define a quantity

wg(T) = d(dl_l)|/£E(T)|cot9E(T). (7.3)

Figure 7.2: Definition of g and kg in a simplex in 3D.

We then have the following result; see [192] for details.

Proposition 7.1 (Condition for M-matrix). The stiffness matrix for the Poisson’s equation is

an M-matrix if and only if, for any edge F, >, _ pwg(7) = 0 with wg(7) defined in (7.3).

Remark 7.2 (Delaunay triangulation and M-matrix). In R2, the above proposition simply
means the sum of the angles opposite to any edge is less than or equal to 7, implying the un-
derlying triangulation must be Delaunay. Hence, the stiffness matrix for the Poisson’s equation

will be an M-matrix if the triangulation is Delaunay. This condition is nearly sharp'. O

For a given mesh My, the stiffness matrix of P;-finite element method for the Poisson’s

equation is not necessarily an M-matrix. However, it can be estimated by an M-matrix. More

!The opposite direction is true with a few possible exceptions near the boundary.

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 177

specifically, if we keep all the vertices on M, and swap internal edges, we can obtain a Delaunay

triangulation ./\/l,? . We have
(AMEU,U) < (Ath,v), VveRY;

moreover, the equality in the above inequality holds if and only if M}, is Delaunay. We refer

the interested readers to [160] for details. Let ¢aq, € V3 is a piecewise linear function and

om, (z) = Zi\il vi¢i, m,, (x). Then we have
2 2
[aaply <lomuly VoeRY.

This means the Delaunay triangulation results in lower roughness of finite element functions

among all possible triangulations on a fixed set of vertices.

7.1.4 Tarjan’s algorithm x

By far we have not assigned any kind of ordering for the unknowns in the solution vector.
Sometimes, it is very important for the iterative methods like the Gauss—Seidel method. For
example, in Remark 3.30, we have shown that the ordering is important using the local Fourier
analysis. In AMG methods, the underlying meshes are not accessible and the natural ordering
or C/F ordering can be used. We can also order the unknowns based on algebraic information.
In particular, when we solve a flow problem, we would like to order the unknowns following
the direction of the flow. Such an ordering (or permutation) results in a matrix which has all
its “big” entries in the lower triangle and this technique can enhance the performance of the
Gauss—Seidel smoother.

The first question is of course how to find such an ordering. In this section, we present
the Tarjan’s algorithm [178] in the graph theory to find the “best” ordering for the Gauss—
Seidel method. Tarjan’s algorithm is used to find strongly connected components in a graph. A
strongly connected component is a maximal subset of vertices such that there is a path between

any two vertices in the subset. Tarjan’s algorithm uses depth first search on the graph:

1. Drop some of the entries in the matrix A, which are considered non-essential. This will

transform the graph corresponding to A to a directed one.

2. Find the strongly connected components in this directed graph. Each one of these com-

ponents will correspond to a diagonal block in the stiffness matrix after the permutation.

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 178

In fact, after permutation according to the strongly connected component ordering obtained by

the Tarjan’s algorithm, the matrix A will have the following structure:

_ ~e o ~e]
e

A= |45 | [Asp| |Ags] - - | (7.4)
_’Am‘ |Axa| [Aks] - [Akx

Before we explain the actual algorithm for finding the strongly connected components in the

digraph, we look at Figure 7.3, in which the bold edges represent the “strong” connections for

flow

Figure 7.3: A sample mesh with a specify flow direction

example. If we number the blocks sequentially from left to right, with the degrees of freedom
within each block ordered arbitrarily, the stiffness matrix will have a lower triangular structure
as shown in Equation (7.4).

Imagine now that the graph represents a town, the edges are streets and the vertices are
houses. You are walking along the streets, some of them are one way (directed). You may go
and arrive at a house for the first time; other than that, there are two situations which may

occur:
1. Either you arrive at a house (vertex) you have already visited, or
2. You are at a house with no way out of it, i.e. a vertex with all edges pointing to it.

Having this in mind it is obvious that, if we return at a place we have been before (encountering

a cycle), this corresponds to a so-called strongly connected component. In the second case, it is

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 179
precisely the vertex we would like to number last, because all edges are sinking into it, i.e., it is
at the end of the flow. The algorithm then is as follows:
Algorithm 7.1 (Simplified Tarjan’s algorithm). Given a directed graph G with N vertices.

1. If all vertices of G have been numbered, stop.

2. Set v = 0.

3. Choose any unnumbered vertex v € G.

4. If v has no edge out, we number it N — ¢, set ¢ = ¢ + 1, and return to Step 3.

5. If v has been visited before (encounter a cycle), then

e Collapse all the vertices in the cycle as a single vertex vmacro;
e Connect Vpmacro With all vertices which were connected to member(s) of Umacro;

e Thus we obtain a new graph G'. Goto Step 2 and continue with G'.

Example 7.3 (Finding strongly connected components of a graph). The above algorithm is

visualized in Figures 7.4, which we have a 2D flow problem. First we assume that we start from

[~A 7R
O—0O—@——GC 2’\£
®

&)

®

©

() "
O—O—~0
Figure 7.4: Finding strongly connected components of a directed graph
vertex 1 and then follow the path
1-2-53-54-55—-6—4,

and we encounter a cycle. We collapse {4,5,6} as a single vertex vmaero = 4’ and return from

the beginning. Following the path

1-2-3-4 5784,

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 180

again we have a cycle. We collapse the cycle and set 4” = {4’,7,8}. The next step is again
collapsing a cycle {4”,3,4"} to a vertex 3'. What is left after this step is a simple graph with
three vertices, which precisely looks like the one corresponding to 1D convection dominated

problem. O

Apparently, this algorithm has a drawback that there might be quite a lot of renumbering
when collapsing the cycles. The fix is to use a stack as proposed by Tarjan and do not renumber
anything until the whole connected component is in the stack. This reduces the renumbering
dramatically and such an algorithm is linear in the total number of vertices and edges in the
graph. In turn, for finite element stiffness matrices and their graphs, this algorithm is linear
in the number of unknowns, because these matrices have just a few number of non-zeros per
row, i.e., each vertex is incident with only few edges (only a bounded number independent of
the mesh size h). A computer program realizing the above Tarjan’s algorithm can be found
in the article by Gustavson [103]. A good explanation and a lots of examples related to the
Tarjan’s algorithm are to be found in [96]. A better and more general algorithm is known as
the Cross-Wind-Block method by Wang and Xu [184].

Remark 7.4 (Preprocessing to a get directed graph). We comment that sometimes the graph
corresponding to A (for example, the finite element stiffness matrix of the Poisson’s equation)
is undirected. However, if we are consider a non symmetric problem, situation could be very
different. In any event, suppose that we can make the graph be directed by “dropping” some
of the “insignificant” entries of A. For example, by setting a threshold € € (0,1), we drop all
ak; such that |ag;/a;x| < €. Then we can apply the Tarjan’s algorithm for finding the strongly

connected components in the digraph. O

7.2 Motivations of algebraic multigrid methods

In §6.2, we have discussed general convergence theory for multigrid methods. In this section,
we briefly review the convergence theory that are applicable to AMG methods and give on the
construction of AMG methods. Following the seminar work by Brandt et al. [55, 56, 51] on the
convergence analysis applicable to AMG methods, there have been a lot of discussions on the
AMG convergence theory; see [165, 60, 172, 88, 89, 183] for example. The readers are referred
to the recent survey paper by Xu and Zikatanov [195].

7.2.1 Algebraic convergence theory

Since the Fourier analysis is not available, algebraic convergence theory appears to be the

right tool for developing and analyzing AMG algorithms. Since sharp and computable estimates

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 181

for general AMG schemes are still lacking [125, 151, 195], we mainly focus on the classical two-
level theory of AMG for symmetric positive-definite (SPD) problems. For the development on
non-symmetric problems, we refer to [127, 149, 129, 128]; for analysis based on aggregation-type
AMG algorithms, we refer to [180, 182, 61, 139, 143, 59].

We have shown the exact convergence factor estimate of two-level methods in Theorem 3.38.
Now we derive a convergence estimate from an algebraic viewpoint. In particular, we wish to
give conditions on the grid-transfer matrices, like P, such that two-level AMG methods converge.
We mainly follow the argument in a recent survey by MacLachlan and Olson [125]. Throughout

this chapter, we assume that

Assumption 7.5 (General AMG setting). The coefficient matrix A is SPD, the prolongation

P has full column-rank, and the given smoother S itself is A-convergent (i.e., [I — SA|4 < 1).

Let V = RY and V, = RN¢ denote the fine and coarse spaces, respectively. For simplicity, we
focus on Algorithm 3.3, V(0, 1) two-grid method. The CGC operator corresponds to the matrix
I —1II. and

I, = PA'PTA = P(PTAP)"'PTA (7.5)

is a projection onto range(P). The error reduction matrix for the two-gird method in Algo-

rithm 3.3 can then be written as
Erg := (I —SA)(I —11,). (7.6)

From Theorem 3.38, the convergence rate of the two-grid method depends on effectiveness
of the smoother S and approximability of the coarse space range(P). Our goal is to give an

estimate in the form of

— _ 2
|Eral? = sup [L=SAU —Te)el3

5 —1- 4%, (7.7)
e#0 HeHA

where 0* yields the sharp and parameter-independent two-grid convergence factor. Of course,
it is essential to pose conditions only on the prolongation P to ensure convergence, as the rest

components in (7.6) are considered given.

Theorem 7.6 (Convergence factor of two-level algorithm). If there exists ¢ > 0 such that
2 2
(1 = S5A)e|y < leld —0|(I —e)e|, VeeV, (7.8)

then the V(0, 1) two-grid method satisfies that

le|4 — (I — SA)e|?
(I-Tye0 (I —Tc)el%

|Erg|3 =1—46 with 6:= > 6.

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 182

Proof. Notice that |le|} = |e|) + |(I — H.)e|% because II. is an A-orthogonal projection.
Since (I —1II.)e = 0 yields (I — SA)(I —1I.)e = 0 as well, we have
|(= SA)I —T)e|% |(1 = SA)I —T)e| %

| Erc[= sup = sup :
e#0 lel% (-Toexo | (1 = He)elh + [Teel’

If é achieves the above supremum, then (I —II.)é also achieves the supremum because

(- SAI 2% (= SAI~TL)e} _ |~ SA)(I ~L)ef
|7 = TLe)2e]% + [Te(1 = TL)e]% |-t~ lél% ‘
So the convergence factor achieves the supremum when II.é = 0. That is to say, from the
definition (7.7),
(Eroll =y LUZST,
(I-Te)e0 [[(I —TLe)e|’y

Hence the result. O

Note that, if we further assume that the parameter § in Theorem 7.6 is bounded uniformly on all
levels, we can also obtain a uniform bound for the V-cycle convergence factor by recursion [134].

This bound also gives reasonable estimates numerically [141].

Basically, the assumption (7.8) implies that the smoother S is efficient for the components
that cannot be treated by CGC efficiently. On the one hand, for the error components that
cannot be reduced by CGC, the smoother S must be effective uniformly; on the other hand, for
the error components that can be reduced by CGC efficiently, .S is allowed to be ineffective. The
components for which S is ineffective are called smooth and they have to be in the range of the
interpolation, range(P), roughly. So (7.8) is natural to assume in order to get an efficient TG
algorithm.

However, such a § is difficult to obtain in practice and we need to give some positive lower

bounds of §. So we introduce a nonnegative function g(e) = 0 and define

_eld - 1T = SA)el

[(I —TL)el%
g(e) '

g(e)

ag(e) : and [y(e) :=

Let Gy := inf ey .0 ag(e) and By = SUDg ()0 Bg(€). Due to the fact

| Braeld < |(I = M)e|, — dgg((I — I)e)

< @ = To)efy = a5 (7~ TLo)e

~

— (1= g) (1 = el (7.9)

< (1= agBy ") el

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 183

we have § > &gﬂg_l, ie.,

|Bral% < 1-ag6,"

In view of the above estimate, we can give two separate assumptions:
|(1 = SA)el, < [le|t —aggle), YeeV, (7.11)
and
3 By, s, such that (I — HC)CHi < Bysgle), VeeV. (7.12)

The condition (7.11) is a smoothing property and the condition (7.12) is a type of approximation
property. The condition (7.12) is oftentimes called the strong approzimation assumption. In view

of (7.9), we can further weaken this condition and assume the weak approximation assumption:
3 By,w, such that (I — IL)e| < Bgwg((I —I)e), VYeeV. (7.13)
From the above analysis, we can easily deduce the following theorem.

Theorem 7.7 (Convergence estimate of two-level AMG). If (7.11) and (7.12) (or its weaker
version (7.13)) hold, then V(0,1) two-grid method satisfies

|Bralh <1—ayB; "
Remark 7.8 (Strong and weak approximation properties). The strong approximation assump-
tion (7.12) can be used to show convergence of V-cycle AMG methods via a recursion [134, 165].

But the weak approximation assumption (7.13) is not sufficient for V-cycle to converge [51]. [

It is important to recognize that, even if we can provide simple conditions on coarsening to
ensure the approximation assumptions necessary for a convergent two-level or multilevel AMG
method, it remains unclear how to develop an algorithm that satisfies these assumptions using
purely algebraic information. In fact, doing so in a strict sense is challenging. The coarsening
process involves identifying coarse variables and constructing prolongation matrices, and these
two steps are typically interdependent. In the remainder of this chapter, we discuss more

practical approaches for constructing the coarsening space.

7.2.2 Interpolation operators

Now the question is how to choose such a function g(e)? Furthermore, how to apply The-
orem 7.7 to enforce convergence conditions on the prolongation (or interpolation) matrix P to

guarantee good AMG performance?

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 184

Apparently, if g(e) := | (I —IL.)e|?, we have &, = § and Bg = 1. Another possible choice has
been suggested by Ruge and Stiiben [165]:
g(e) = lel%p-1a-

In this case, by definition, the strong approximation assumption (7.12) can be rewritten as

inf e~ Pecly < B lelfpa VeeV. (7.14)

c

On the other hand, noticing (7.5) and let e, € V., we have

(7 =T)el, = ((~ e, (T~ oe) , = (I ~Mo)e, (I~ To)e — Pee)
< 1y (= Te)e = Pec|,
If we assume, instead of (7.14), that
nf fle—Peclp < Buleld, VeeV, (7.15)
then
[=T)ely < (7~ To)e] gy (T = The)e = Pec]

< (I =T)e] gy p - BE T —TL)e] .

which yields the weak approximation property (7.13). In this way, we derived two alternative
bounds, Egs. (7.14) and (7.15), for the strong and weak approximation assumptions, respectively.

Using Eq. (7.15), we can also obtain a convergence bound for the two-level method.

As noted previously, the weak approximation property in Eq. (7.15) is typically insufficient to
ensure good interpolation P for a V-cycle. Additional conditions must be imposed for practical

construction of AMG methods.

Let @ € RV*N be a projection onto range(P). So, by definition, it can be written as Q = PR,
where R € RN*N gatisfies RP = I.. If Ry := (PTAP)"!PT A, then it is easy to see that
Qs = PR, = T1,. is such an example. We can also give a simplified choice Ry, := (PTDP)~'PTD.
For any vector 0 # e € V', we can assume that

2 2 2
e = Pecly _e—Qel}y _ - o le=Pecfp _ Jle—Qel,

inf < Bs or inf
cecVe lelipia — lelip A\ ; Ve feld T el

< Bw, (7.16)

to give upper bounds for the strong and weak approximation assumptions, respectively. These
inequalities give bounds for constructing P such that the two-level method converges according
to Theorem 7.7.

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 185

We notice that, in the above inequalities (the second one in particular), the measure like

I—Q)e|?
HD(Q;G) = H(622) HD7 Ve #0
el
can be generalized to
I — 2
,UX(de) = H(C22)6HX7 Ve # 0’
lel%

where X is an SPD matrix. We assume that px(Q,e) < k. Then

le—Pecly _ le—Qeliy
el

inf = ux(Q,e) < k. (7.17)
eceVe e}

If we minimize

sup 1x (PR, e)
e#0

to find the “best possible” interpolation operator P, then it yields the so-called ideal interpola-
tion [88, 202].

In particular, if X = g_l, then & = 1 for the smoothing assumption and the convergence
factor of TG is bounded by

1
|Brald <1-—. (7.18)

7.2.3 Algebraic smooth error

In Theorem 3.40, we have seen the following theoretical result: For any given smoother S,

the best coarse space of dimension N, is given by
VPt = span{di s, (7.19)

where {(bk}kN:CI are the eigenfunctions corresponding to the smallest eigenvalues \;(SA). So the
desirable coarse space should well approximate the lower end of the spectrum of SA, which can
also be called the near-null space. However, it is difficult to find small eigenvalues of SA in
practice.

A good interpretation of smooth error in algebraic sense could lead to an efficient AMG
method. In view of (3.27), we know that the standard pointwise relaxation methods, like the

Richardson, weighted Jacobi, and Gauss—Seidel methods, satisfy that

PZl(vav)A S (SAU’U)A S (U’U)A‘
Together with (7.11), it motivates the following definition of the algebraic smooth vector:
Definition 7.9 (Algebraic smoothness). Let ¢ € (0,1) be a small parameter. If e € V satisfies

(gAe, e)A < 6(6,6) ie. (?Ae,Ae) < 6”6“124,

A?

then e is algebraically e-smooth (or the e-algebraic low-frequency) with respect to A.

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 186

For the algebraic smooth error component e, by adding and subtraction and (2.13), we immedi-
ately have
2
| — SA)e|y
2
lells

Evidently, the contraction factor for this error component e approaches 1 if € is small. Essentially,

>1—ec.

((I—?A)e,e)A > (1—¢)(ee) ,

this means that algebraically smooth error components are those that the smoother S or S cannot
effectively damp. That is, an error that cannot be eliminated by the smoother constitutes a

smooth error, as noted in Remark 1.30 for geometrically smooth errors.

Since S is SPD, the algebraically smooth vectors satisfy

He”?4 = (?éAe,g_%e) < (?Ae,Ae)l/2 (S e, 6)1/2 < 51/2H6HA(§_16,6)1/2.
Then we can derive the following estimate
Jel’y < ellelz+. (7.20)

which can be viewed as an alternative characterisation of algebraically smooth (low-frequency)
vectors.
Similar to algebraic low-frequency components, we can define algebraic high-frequency com-

ponents as follows:
Definition 7.10 (Algebraic high-frequency). Let ¢ € (0,1]. If e € V satisfies
2 2
lels = ¢lels1.
then e is called the (-algebraic high-frequency vector with respect to A.
With this notion, we can obtain the following convergence estimate [195]:

Theorem 7.11 (Convergence estimate based on space decomposition). Let V., < V be the
coarse space and Vyr consist of (-algebraic high frequencies. Suppose V' = V. + Vit is a stable
decomposition, i.e., for any v € V, there exist v. € V. and vps € Vjy¢ such that v = Puv,. + vpe and

long|% < Bllv]%4. Then the resulting two-level AMG satisfies

|Eraa<1-¢B7h

Proof. Since we have the following estimate

2

Jnf, [v = Puclz-1 < Jonz— < gH”thA s

we can prove the theorem using (7.18). O

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 187

Remark 7.12 (Local adaptation of AMG). In AMG methods, it is not important whether the
smoother S smooths the error in a geometric sense. Rather, the key point is that the error after
smoothing sweeps must be characterized algebraically to a certain degree, making it possible
to construct coarse levels and define interpolations locally adapted to the given smoother’s

properties. O

Remark 7.13 (Smooth error and Classical AMG). A simpler characterization of smooth error
is used in methods like the Classical AMG. If the vector e corresponds to the low-end of eigen-
values, then we have Ae « 1 in the entry-by-entry sense. According to (7.1) and (7.20), the
algebraically smooth error e satisfies that
Z —a; j(e; —ej)? = (Ae,e) < EHGH%A « 1. (7.21)
i<j
This inequality provides an important motivation for the Classical AMG: Smooth error varies
slowly in the direction of relatively large (negative) coefficients of the matrix. And it motivates

the notion of strongly negative coupled variables. O

7.2.4 Construction of coarse spaces

We now discuss a few guidelines on how to construct coarse spaces and prolongation matrices
based on the AMG theory developed above. In §6.1, we have discussed a general procedure
of the multigrid setup phase, among which the coarsening algorithms (Step 2) are automatic
procedures for determining the coarse-level variables. Such algorithms are usually based on
selecting or combining vertices in the adjacency graph corresponding to the (filtered) coefficient
matrix A.

A natural choice of the coarse-level DOFs is to use a subset of fine-level DOFs. Under proper
re-ordering (coarse variables first and then fine variables), R = (I,0) € RY<*N. According to

RN*N of A to analyze the smoother S

Theorem 3.39, we can use the diagonal matrix D €
defined by the point-wise Gauss—Seidel method. This result motivates that we should construct

a coarse space V., such that

2 : 2 2
[v=Qoof, = mf Jo—wve|p, < By, VeV,

where the constant S should be small and uniform with respect to interested parameters (like
the meshsize h). If v is smooth, i.e., [Vv| is small, then v can be approximated well in the
coarse space V.. This condition is sufficient for convergence of the two-grid method. Motivated
by Lemma 3.32, we can further simplify it and just choose D := | A|I, for example.
Heuristically, the error becomes smooth after a few relaxation steps, and we can expect
the coarse space to approximate a smooth vector v accurately if the coarse space is chosen

appropriately. Motivated by Theorem 7.7 and Equation (7.16), we propose Assumption 7.14:

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 188

Assumption 7.14 (Weak approximability). ||(I — PR)U”D < B|vlla, YveV.

In view of Remark 3.42, we assume that the prolongation operator preserves constants (As-
sumption 7.15). In fact, from the weak approximation property (Assumption 7.14) and let
D := |A|I, we have

|4]2}v = PRo| < Bl]a.

If v is in the near-null space of A4, i.e., |v|4 ~ 0, then PRv ~ v. Hence we get the following

simplified assumption:

Assumption 7.15 (Constant preserving). Ply, = 1.

Unlike in the geometric setting, considering convergence alone is not meaningful in the algebraic
multigrid context. This is because the computational complexity of each AMG cycle could be
prohibitively large. Compare this with the GMG complexity discussed in §6.3. A uniformly
convergent AMG method could be still very slow. Hence the complexity of the multilevel

hierarchy for AMG is crucial.

Remark 7.16 (Operator complexity). When constructing the prolongation P, we must control
the sparsity of the coarse level matrices. For efficient overall performance, convergence speed
is only one aspect. An equally important aspect is the complexity (sparsity) of the coarser
level matrices produced by AMG. We now define a measurement of sparsity, i.e., the operator

complexity

Oy = ZlL=O HHZ(Al)
A nnz(A)

where nnz(-) is the number of nonzeros of a matrix. Apparently, C4 > 1 is always true and
Ca = 1 corresponds to the one-level case. When constructing an interpolation operator, we
would like to make C'4 as close to 1 as possible while keeping good convergence performance.
This is not always the case when using the Galerkin-type coarse operator as we discussed in
this note. Usually, the coarser matrices A;_; becomes more dense than A;. This problem
becomes more serious when solving very large linear systems. Sometimes, we have to truncate the

“Insignificant” nonzero entries or specify sparsity patterns to maintain low complexity [87]. [

7.3 Classical algebraic multigrid methods

The original AMG approach (the classical AMG) was developed under the assumption that
such a problem with A being an M-matrix was solved [55]. The multilevel hierarchy is con-
structed based on the coefficient matrix only. Later, the AMG algorithm was further gener-

alized using many heuristics that served to extend its applicability to more general problems.

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 189

For simplicity, we suppose that A = (a;;) € RV*¥ is an SPD M-matrix and G = (V, E) is the
corresponding graph of A.

7.3.1 General AMG setup phase

We have presented a general framework for implementing multigrid methods in Section 7.1.
Here, we provide a general two-level setup procedure suitable for AMG methods (including both
the classical AMG and aggregation-based AMG approaches). This setup algorithm can then
be applied recursively to construct a multilevel hierarchy until the coarse grid size N. becomes

sufficiently small or the coarse grid matrix A, becomes too dense to continue coarsening.
Algorithm 7.2 (General algebraic setup algorithm). Given a sparse matrix 4 e RV*V,
1. Filter A to obtain a suitable matrix for coarsening Ay (usually Ay = A);
2. Define a coarse space with N, variables;
RN xNe.

3. Construct the interpolation P €

3.1. Give a sparsity pattern for the interpolation P;

3.2. Determine weights of the interpolation P;
4. Construct the restriction R € RV*V (for example, R = PT);
5. Form the coarse-level coefficient matrix (for example, A. = RAfP);
6. Give a sparser approximation of A. if necessary.

The above framework is abstract and general enough to describe a variety of algorithms.

Now we give a few comments on this algorithm:

1. If the coefficient matrix A is not symmetric or not an M-matrix, one might be able to
perform a preprocessing step to obtain a more suitable matrix Ay. This step can be used

as a way to introduce an auxiliary space method.

2. In classical AMG methods, we use the so-called C/F splitting, namely, split all N variables
into two sets: N, C-variables and Ny F-variables, i.e., N = N. + N;. On the other hand,
aggregation-based AMG forms aggregates of F-variables.

3. As observed previously, forming an interpolation P that satisfies the weak approximation
property is crucial for convergence. This task can be further divided into two stages:
(1) Determining the sparsity pattern; (2) Assigning weights to P. Sometimes, we can

truncate small entries if it is not sparse enough.

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 190

4. For symmetric problems, the Galerkin relation naturally leads to assuming R = PT. But

for nonsymmetric problems, R may also need to be constructed.

5. In GMG, the coarse-level problems can be given by discretization on a coarser grid. But
in AMG, we must use the restriction, interpolation, and the fine-level coefficient matrices
to compute A, using the triple-matrix product. This can easily become the most time-
consuming part of the setup phase. Implementing this part requires attention, especially

for parallel efficiency.

6. Sometimes, A, might not be sparse enough even after P is truncated when using the
Galerkin relation. In this case, A. may need to be further modified to obtain a sparse

approximation.

7.3.2 Strength of connections

In coarsening, we need to find coarse-level variables. Let O, € (0,1) be a given real num-
ber, usually called relative strength parameter. In view of Remark 7.13, we give the following

definition: If a pair of indices (i, j) satisfies that
—aij = Os| mkin i,

then we say that the variable i is strongly negatively coupled or strongly n-coupled to the variable
j. Note that, by this definition, (7, j) and (j,7) are two different pairs. We can easily generalize

this concept to strongly coupling by considering the positive coupling as well.

Remark 7.17 (Alternative definitions for strong coupling). There are different ways to define

strongly coupled pairs. For example, we can call ¢ and j strongly negatively coupled, if

a;j < 0 and |(Iz'7j| > estr\/m

or
~ai > Oste i
Such definitions can be used to define aggregation-based methods in the next section. O

Denote further
Sj = {z € N; : 7 strongly coupled to j} and S;‘-F = {z eV: je Si}.

So S; is the set of indices which affects j and SJT is the ones which are affected by j. After
finding the strongly coupled variables, we can filter the coefficient matrix to obtain a filtered

matrix As by removing non-strongly coupled connections.

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 191

The above definition of strongly coupled variables applies to the direct connections. Some-
times we also need to consider indirect (i.e., long-range) connections; for example, in aggressive
coarsening (see Remark 7.20). A variable i is said strongly connected to another variable j along

a path of length [if there exists a sequence of edges

{(i, 71), (1. 42)s - s G2, d1-1)s (i—1,4)} < E

such that ji1 € Sj,. If there exist at least one path of length less than or equal to £ such that ¢
is strongly connected to j, then we say that ¢ is /-strongly connected to j and denoted by j € Sf.

We note that, based on the nonzero pattern of A¢ or a filtered version Aé, one can tell
whether there are paths between i and j of length ¢ or not. For example, if we consider five-
point stencil finite difference scheme on the mesh given in Figure 7.5 (left). Consider the vertex

at the center, the point 13. Then
Si3 = {12,8,14,18} and 5%3 = {12,8,14,18,11,3,15,23,7,9,19,17}.

And we give the weights of A and A? in Figure 7.5. See Figures 7.6, 7.7, and 7.8 for powers of
the matrix A.

AN AN AN AN AN
VAWV ANWVANVAN
AV AR WARWANWZAN)
NVANVANVANVANY
JAAVNAANAAWARAWAA)
NVANVANVANVAN
DD D D)
NVARNVAR VAR VARG
M A D AN
INVARN VAR VAR VRNV

Figure 7.5: Finite difference grid (left), strong connections and weights in A of vertex 13 (middle),
and 2-strong connections and weights in A? of 13 (right).

7.3.3 C/F splitting

The classical Ruge—-Stiiben method splits the set of vertices V into two non-intersecting sets:
the fine variables F and the coarse variables C. All indices in F are affected by some index in
C, while C contains as few entries as possible. Then, F is chosen as the set of indices of finer

grid nodes, and C is chosen as the set of indices of coarse grid nodes. The indices of nodes are

192

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS

The stiffness matrix A for five-point stencil finite difference scheme on the mesh

Figure 7.6

7.5 (left).

igure

F

given in

> AxA

ans

18

18

19

20 =

20

20

18

19

19

20

20

20

19

18

19

18

iven in

t stencil finite difference scheme on the mesh gi

The matrix A? for five-poin

Figure 7.5 (left).

Figure 7.7

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS

>r Awhxh
ans =

88 -53 12 -1 0 -53 24 -3 0 0 12 -3 0 0 0
-53 100 -54 12 -1 24 -56 24 -3 0 -3 12 -3 0 0
12 -54 100 -54 12 -3 24 -56 24 -3 0 -3 12 -3 0
-1 12 -54 100 -53 0 -3 24 -56 24 0 0 -3 12 -3
] -1 12 -B3 28 0 0 -3 24 -53 0 0 0 -3 12
-53 24 -3 0 0 100 -BA 12 -1 0 -54 24 -3 0 0
24 -56 24 -3 0 -5 112 -§ 12 -1 24 -57 24 -3 0
-3 24 -B6 24 -3 12 -57 112 -57 12 -3 24 57 24 -3
0 -3 24 -56 24 -1 12 -57 112 -5@ 0 -3 24 -57 24

] 0 -3 24 -53 0 -1 12 -6 100 0 0 -3 24 -B4
12 -3 0 0 0 -54 24 -3 0 0 100 -56 12 -1 0
-3 12 -3 0 0 24 -87 24 -3 0 -56 112 -57 12 -1
0 -3 12 -3 0 -3 24 57 24 -3 12 -5 112 -57 12

0 0 -3 12 -3 0 -3 24 -57 24 -1 12 -8 112 -56

0 0 0 -3 12 0 0 -3 24 -b4 0 -1 12 -b6 100
-1 0 0 0 0 12 -3 0 0 0 -54 24 -3 0 0
0 -1 0 0 0 -3 12 -3 0 0 24 -57 24 -3 0

0 0 -1 0 0 0 -3 12 -3 0 -3 24 57 24 -3

0 0 0 -1 0 0 0 -3 12 -3 0 -3 24 -57 24

0 0 0 0 -1 0 0 0 -3 12 0 0 -3 24 -bd

0 0 0 0 0 -1 0 0 0 0 12 -3 0 0 0

0 0 0 0 0 0 -1 0 0 0 -3 12 -3 0 0

0 0 0 0 0 0 0 -1 0 0 0 -3 12 -3 0

0 0 0 0 0 0 0 0 -1 0 0 0 -3 12 -3

0 0 0 0 0 0 0 0 0 -1 0 0 0 -3 12

Figure 7.8: The matrix A3 for five-point stencil finite difference

Figure 7.5 (left).

-56

112

0 0 0 0
0 0] 0
-1 0 0 0
0 -1] 0
0 1] -1 0
0 0 0 -1
-3 0] 0
1z -3 0 0
-3 12 -3 0
0 -3 1z 0
-3 0 12
24 -3] -3
-7 24 -3 0
24 -57 24 0
-3 24 -bd 0
12 -1 0 -53
-57 12 -1 24
112 =57 12 -3
-5 112 -5 0
12 -B6 100 0
-3 0] a8
24 -3 0 -53
-56 24 -3 12
24 -G6 24 -1
-3 24 -53 0

scheme on the

193

0 0 0 0

0 0] 0

0 0 0 0

0 0] 0

0 1] 1] 0

0 0 0 0
-1 0] 0
0 -1 0 0

0 0 -1 0

0 1] 1] -1
-3 0 0 0
1z -3] 0
-3 12 -3 0
0 -3 12 -3

0 0 -3 12
24 -3 0 0
-56 24 -3 0
24 -B@ 24 -3
-3 24 -56 24
0 -3 24 B3
-53 12 -1 0
100 -54 12 -1

-54 100 -54 12
12 -84 100 -53
-1 12 -53 88

mesh given in

assigned as coarse or fine successively. Let U denote the set of indices of nodes not yet assigned.

We summarize the algorithm in the following subroutine:

Listing 7.1: Classical C/F splitting method

1|U«<V, C—0, F—0;
2 [while U# @

3 Xi < 2ISTOF|+|STNV|, ieU;
4 k — argmax{\;,i € U};

5 C— CU{k}, U<—U\{k};

6 F—FUSE, U« USE;

7 | end

Note that A; is a measure of importance—It is a measurement about how many points are

affected by 4. If \; is big, we would like to include this point in C. In this way, we can make C

contains less points to get bigger coarsening ratio, which is extremely important for the classical

AMG because it usually yields relatively small coarsening ratio.

e We weight more on |S] (F| than |S? (U] due to the fact that the first part has already

been determined to be on the fine grid.

e In the early stage of coarsening procedure, F does not contain many points, the above

algorithm selects a coarse point with as many as neighbors that strongly coupled to it.

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 194

e In the later stage, vertices that strongly coupled to many F-variables are preferred to be

selected.

There are a few special cases which require careful treatment during the C/F splitting pro-

cedure. We now summarize them in the following remarks:

Remark 7.18 (Isolated points). Before starting the above algorithm, isolated points (like
Dirichlet boundary points) are usually filtered out and defined as F-variables. Similarly, if a
point has very strong diagonal dominance, it can also be safely considered isolated and moved

to F. These are trivial cases. O

Remark 7.19 (Termination of C/F splitting). If successfully terminated, the set C is an in-
dependent set of vertices of the underlying graph G. All F-variables have at least one strongly
negatively coupled C-variable, except the trivial ones in the previous remark. However, there
might be some U-variables left (with measure A; = 0)—They are not strongly negatively coupled
to any C-variables or themselves. Furthermore, there are no F-variables are strongly negatively
coupled to these points. In order to interpolate at these points, we can add them as F-variables

and interpolate indirectly through the F-variables, to which they are strongly coupled. O

Remark 7.20 (Aggressive coarsening). In practice, the standard C/F splitting scheme given
above usually results in high operator complexity (refer to Remark 7.16), which leads to high

computational and storage demands; see Table 7.1. In such cases, we can apply the so-called

Coarsening method Standard Aggressive
Operator complexity 2.889 1.606
Setup time (sec) 1.536 1.036
Number of iterations 6 38
Solve time (sec) 0.791 3.293
Time per iteration (sec) 0.132 0.087

Table 7.1: Solving 2D five-point stencil of the Poisson’s equation with 1 million DOF using
different coarsening methods in the classical AMG method (stopping criteria for PCG is the
relative residual smaller than 107%).

aggressive coarsening by considering strong connections of length £. Oftentimes a small ¢, for
example ¢ = 2, is used. However, A% is expensive to compute and we can apply the regular C/F
splitting twice—At the first pass, find C-variables among all variables using As; at the second
pass, apply the C/F splitting on the selected C-variables from the first pass using A% (but on C
only, we don’t need all entries of A2). O]

Example 7.21 (Anisotropic elliptic PDE). To illustrate the effect of the above C/F splitting

algorithm, we consider an anisotropic diffusion example in §6.1. The computational domain is

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 195

a unit square. Let us consider the anisotropic diffusion equation
—€Upy — Uyy = 0 (e >0).

Roughly speaking, we have €|uzy| ~ |uyyll. This means the solution is smooth in y-direction
(low-frequencies); but rough in z-direction (high-frequencies). We consider the five-point stencil.

The difference equation at the node (x;,y;) is

iy — Witl,j = Wim1yj 2Uij — Wij—1 — Uijit1

—€ — =0.
n2 n2
If é « %, then u; ; depends on u; j41 and w; ;—1 mainly. Thus if we apply the C/F procedure,

. l . l [L. %
[2 - <]

- - | — [— — — — — —
I - - al
. I | I . r. W

Figure 7.9: C/F splitting for the 2D elliptic problem with € = 1 (left) and € « 1 (right), where
the red points are C-variables and the black points are F-variables.

the coarsening will take place indeed in one direction only (semi-coarsening); see Figure 7.9. [

7.3.4 Construction of prolongation

After obtaining a C/F splitting, upon a reordering of indices, we can always assume that the
indices of the nodes in C is from 1 to ., and those in F are from N, + 1 to N. We can write

the stiffness matrix in the following block structure

(Ac,c AC,F><UC>:<fC>
Arc Afrfp up fr

Let el € R be a vector corresponding to the variables on the coarse grid. We now consider
how to prolongate it to e” € RV corresponding to the variables on the fine grid.
We first use the geometric multigrid method for linear finite element method on uniform

grids for the 1D Poisson’s equation as an example. Let {(b?}fil be the basis of the fine space V'

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 196

and {qﬁf }j\/:cl be the basis of the coarse space V.. From the geometrical multigrid point of view,
it is natural to expect
a(¢f,¢]) =0, jeC, ieF. (7.22)

It is trivial to see that, we should have (Pe'?); = ef, if j € C. Define

()

where Ic € RNeXNe jg the identity matrix and W € RW—Ne)xNe I the matrix form, the

condition (7.22) can be written as

0 0 AQC ACJ: Ic B 0
0 Ir Arc Arf 174 0/

That is to say, Arc + AF W =0or W = —AE}:AEC. It is easy to check that this prolongation
matrix P satisfies Assumption 7.15 if the row-sum of A is zero. However, this prolongation is
too expensive to compute in practice and there are many different ways to approximate W by

a simpler sparse matrix.

1) Direct interpolation scheme

For the smooth error component e € RV, we have

N
Afrf e}FZ + Afc e’é <1l = Z aivje? ~0, i€eF.
j=1
Motived by the above observation, we can assume
ai,ie,? + Z ame? =0, i€eF. (7.23)

JeN;
This would be an interpolation scheme itself if all points in N; are C-variables. Of course, it is
not always the case. Alternatively, we can throw out the entries that are not strongly negatively
coupled and obtain

ame? + Z ame? =0, 2€F. (7.24)
JES:

We approximate the above equation (7.23) with

Ejk N; %k .
ai,ie? + 2 ai,je? =0, o = Ze—y ieF.
jeN; N C keN; (€ Yick

If the i-th row has zero row-sum, then

Qg i

oG ="
ZkeNiﬂC Qi k

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 197

and we get an interpolation method

Wi s
ef = Z wijej and wi; = SN (e ik S (7.25)
jeN; N C keN; N C Qi k

In this case, the matrix form is just W = (diag(AF’cl))flAEc. It is straightforward to show
that Assumption 7.15 holds in this case.

We can make W more sparse by shrinking the support slightly. Define an interpolation set
(support) P; := S;()C for i € F. After further sparsifying the interpolation (by keeping the

strongly negatively coupled C-variables only), we get

a
ZkeN' i,k .
ame? + oy Z ai,je? =0, o=="——", VieF.

jeP; D kep, ik
If the i-th row has zero row-sum, then this gives the well-known direct interpolation

@
el = Z wi,jef and wij = 2L —. (7.26)
P, ZkePi gk

2) Standard interpolation scheme

In the equation (7.23), we can first eliminate all e;-l for j € S;(F, using the j-th equation,

by the approximation

1
6? = - E a; kellz.
a. . ’
25 keN;

This results in a new equation for ezh:

Gigel +). aijel =0, ieF,
jeN;

with N; = {j # i : a;j # 0}. Define a new interpolation set P, = (Ujes; N Si) UGN 0.
Then we apply the above direct interpolation for this new equation and arrive at the so-called

standard interpolation scheme.

3) Jacobi interpolation scheme

We can rewrite the equation (7.24) as
am-e? + Z CLZ'JG;H + Z CLZ'J‘@;-L =0, 1€eF.
jEPi jESZ\PZ

Therefore, in order to obtain an interpolation matrix @), we just need to approximately solve

the above equations for e? (1 € F). For example, we can just apply one Jacobi iteration using

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 198

h
a; ke
éh ~ ZkePi 0,kC

4 Sy A8 the initial guess of e?, j € F (4 #1). Then the prolongation can be defined as

el = el 1eC

. oh . oH o — ;
az,zei + Z]GPZ alde‘j + Z]GSZ\P»L az,] Z] — 0, 1€ F
keP; Qik

This is the so-called Jacobi interpolation method.

Remark 7.22 (Some simple alternatives). The biggest advantage of the above approach is that
it is simple and local: For the i-th entry, we only need the information on the i-th row of the ma-
trix. We can improve this prolongation matrix P using some straightforward modifications. For
example, the initial guess for the same entry can be different for different entries; an alternative

initial guess could be
Lk
oh A Zkepj @j,kC};
J L0
ZkEPJ‘ a.jzk

And a few more steps of Jacobi iteration might improve performance. O

jekF.

Remark 7.23 (Initial guess of weights). If the initial guess W) preserves constants, then we
get
k
Q-W® = (1-DitAre) (@ - W®),

Since both @ and W preserves constants, all improved weights W) also preserve constants

by iteration. O

7.4 Aggregation-based algebraic multigrid methods

In this section, we consider the aggregation-base AMG methods whose easy-to-implement
feature has drawn a lot of attention recently. The idea is to sub-divide the set of vertices into
non-intersecting sets (or aggregates), i.e., V = szl ..v. Cj- Each aggregate C; corresponds to

a coarser variable.

7.4.1 Unsmoothed aggregation AMG

There are several different sophisticated ways to form aggregates. In principle, any combina-
torial graph partitioning algorithms can be applied to form aggregation. We first give a simple
greedy algorithm to form such an aggregation based on the concept of maximum independent

set discussed in §7.1.

Listing 7.2: A greedy aggregation method

1 Ne —0, U<V;
2 for ie U

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 199

3 if N;<cU

4 Ne < N+ 1;

5 Cn, < {i}UN;, U<« U\Cq,;
6 end

7| end

It is possible to have some “left-over” vertices which do not belong to any aggregate after the
above procedure. We can, for example, add them to their neighboring aggregates with least

points.

C1 C2 C3 C4

AN

1 2 3 4 5 6 7

Figure 7.10: Aggregates and prolongation corresponding to (7.28).

Whence an aggregation is given, it is easy to define the prolongation matrix, for 1 <¢ < N
and 1 < j < N, by
1, ifieCy;

P). =
(P)s {o, if i ¢ C,.

With this interpolation, it is straight-forward to see that P1y, = 15. We now give an example

to explain P in one dimension. Let

e RV*Ne, (7.28)

Il
o o o o o o

o O O o O = O
o O B R = O O
= = O O O o O

Figure 7.10 shows the aggregation corresponding to the prolongation P in (7.28).
Of course, there are different ways to form aggregates and we give another approach here.
The algorithm to construct coarse grid and prolongation based on the concept of strong coupling

can be written as:

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 200

Listing 7.3: Another aggregation method

1 U<V;

2| for i1eU

3 Si<—{jeU:j is strongly coupled to i};

4 construct a column of prolongation P based on S;;

5 U< U\({i}US:);

6 end

7.4.2 Smoothed aggregation AMG

The unsmoothed aggregation methods are very simple but usually converge slowly. There
are two ways to improve their convergence behavior. One way is to employ a more complicated
multilevel iteration, like the K-cycle multigrid method discussed in §6.3. And the other way is
to enlarge the aggregates and smooth out the basis functions. The latter approach gives the
smoothed aggregation AMG methods, which is based on the idea of minimizing the energy of
the coarse basis functions among the set of all functions with same L?-norm.

Assume that all variables are partitioned into non-overlapping subsets {CZ}ZVZCI We further
assume that each C; has at least one interior point, i.e., there exists an index k; € C; such that

(A) kg = 0 for any j ¢ C;. Suppose that 1 is in the null space of A, namely, A1 = 0. Define a

1(z,), if jeC;
i) = { M IR0
0, otherwise.

vector for each aggregate:

Apparently, >, 1; = 1 and (Ali)k_ = 0.
We now smooth out these piecewise basis functions by, for example, one step of weighted

Jacobi iteration
Y = (I —wD™1A)1,.

Hence we have the partition of unity

2

Mp=(I—wDA) Y 1, =(I—wD'A)1=1.

Thus we can obtain

1(:6161) = Z¢](mkl) = Z(I - w‘DilA) 1Z($kz) = 1Z(xkz) —wD™'A 11(‘%‘/%‘1)’
J J

which implies that D14 1;(zy,) = 0 and ;(zy,) = 1.

We can define the prolongation

Psa i= (Y1,92,...,¥N,).

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 201

Define 1, := (1,...,1)T € RNe. Hence we have Psp1, = 1. Furthermore, the coarse level matrix
A, = PSTAAPS A satisfies that

Ac]-c = (PgAAPSA)].C = PSTAA]_ = 0.

By applying this definition recursively, we can finish the AMG setup for the smoothed aggrega-

tion method.

Listing 7.4: Smoothed aggregation method

1|U<—V;

2 |for 1€ U

3 Si<—{jeU:j is strongly coupled to i};

4 construct a column of prolongation P based on S;;

5 U< U\({i}US:);

6 | end

7 | Smooth the basis functions using the weighted Jacobi method PSA:(IwaflA)P;

Aggregation method SA [180] UA [180] Pairwise UA [150]

Number of levels 5 5 7
Operator complexity 1.364 1.264 1.332
Setup time (sec) 0.557 0.171 0.277
Number of iterations 16 21 12
Solve time (sec) 1.223 1.696 1.336

Table 7.2: Solving 2D five-point stencil of the Poisson’s equation with 1 million DOF using
aggregation-based AMG methods (stopping criteria for PCG is the relative residual smaller
than 1079).

We have mentioned in the previous subsection that there are different ways to form aggre-
gates. After forming aggregates one can apply UA or SA to give prolongation. Now we do
preliminary tests on aggregation methods for solving the 2D Poisson’s equation using the five-
point stencil; see Table 7.2. The AMG methods are applied as preconditioners of PCG. Note
that, for the SA method, we use the standard V-cycle multigrid in the solve phase; on the other

hand, for the UA methods, we use the K-cycle multigrid for better convergence behavior.

Part 111

Applications of Multilevel Iterative
Methods

202

Chapter 8

Fluid Problems

Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical
analysis and algorithms to solve and analyze fluid problems. Computers are used to perform
the calculations required to simulate liquids or/and gases with surfaces defined by boundary
conditions. The fundamental basis of most CFD problems are the Navier—Stokes (NS) equations,
which define single-phase fluid flows. These equations can be simplified by removing terms
describing viscous actions to yield the Euler equations. These equations can be simplified by
dropping the nonlinear convection term to yield the Stokes equation. In this chapter, we discuss

multilevel iterative methods suitable for problems arising from CFD.

8.1 The Navier—Stokes equations *

The Navier—Stokes equations describe the motion of viscous fluid substances. These balance
equations arise from applying the Newton’s second law to fluid motion, together with the as-
sumption that the stress in the fluid is the sum of a diffusing viscous term (proportional to the

gradient of velocity) and a pressure term.

8.1.1 Flow map

Let 9 be an open bounded set in R? (d = 2, 3). As a convention, we denote the location of a
particle in Qg by X = (X1,...,Xy). This is the configuration at time ¢ = 0, which is also called
the initial configuration. To describe movement of particles, we denote the current configuration
as) at any time ¢ > 0. The position of a particle at time ¢ is denoted by x = (x1,...,xq); see
Figure 8.1. The Lagrangian specification of the flow field is a way of looking at particle motion
where the observer follows an individual particle as it moves through space and time; see the

right figure in Figure 8.1. The Eulerian specification of the flow field is a way of looking at

203

CHAPTER 8. FLUID PROBLEMS 204

z(X,t)
Q0 /\ Q¢
X3 I3
// 4

/ ped

/ ’

O Xg (0] TIo

X1 I

Figure 8.1: From initial configuration 2y to current configuration €2;.

particle motion that focuses on specific locations in the space through which the fluid flows as
time passes; see the left figure in Figure 8.1.

For a vector-valued function f : €, — R, the divergence operator can then be written as
V. -f:= 2?21 0if;. The gradient tensor Vf with (Vf);; = 0;f;. Let a € R? be a constant
vector field and (a- V)f = (Z?:I a;0;)f. We define an inner product of two gradient matrices
Vf : Vg = Z?Zl Vf; - Vg;. Let u(-,t) : Q — R? be the velocity field at a fixed time t. The
gradient of u is denoted by Vu = (0;u;); ;. Furthermore, Vu is often divided into the symmetric
part and the anti-symmetric part. The symmetric gradient is denoted as e(u) := 3(Vu+ Vu?)
and it is the so-called strain rate.

We are ready to introduce an important concept to describe trajectory of particles, namely,
the flow map x(X,t), which is the trajectory of a particle X along time. We define that

T = dx(d)j,ﬂ =u(z,t) and z(X,0)=X. (8.1)

This simple one-dimensional ordinary differential equation (ODE) is called the characteristic
equation. Hence z(-,) is a mapping from the initial configuration €2y to the current configuration

Qy, or deformation. The deformation gradient and its determinant are then defined as
0
F= a—; and J = |F| = det(F), (8.2)
respectively. F' is also called the Jacobian matrix.

For any function f(-,¢) : Q; — R, we can easily derive that

. df ()
Ji= dt

=Vf-%+ft=ft+u‘Vf, (8.3)

CHAPTER 8. FLUID PROBLEMS

205

which is usually called the material derivative of f. Apparently, F' and J are functions of ¢.

Using the well-known Jacobi’s formula in matrix calculus, we can show that

J = Jtr(F7'F).
Hence we can immediately obtain
. 0X ox

This way, we get an ODE for J, i.e.

J=(V-u)J and J(0)=1.
In fact, we can also obtain the variation of the determinant of F,
§|F| = |F|tr(F~16F).
We can also derive similar results for the deformation gradient F' itself:
d 6 ox ot ou
=—(==) === === = VuF.
a'ax) " ax "ax -V

We can easily immediately see that

F,+u-VF=VuF and F(0)=1I.

8.1.2 Volume and mass conservation

(8.4)

(8.5)

(8.6)

(8.7)

(8.8)

A very useful trick for doing calculus in continuum mechanics is the pull-back (from € to

) and push-forward (from Qg to ;) argument. We first give an example:

d d
— flx,t)de = — flx(X,t),t)]dX
i), S i J, 7@

o, di
J (fet+u-Vf+ fV-u)JdX
Qo

if(x(X, 0,) JdX + | flz(X,t),6)JdX
Qo

= f+fVeoude = | fi+V-(fu)da. (8.9)
Qt Qt
This identity is often called the transport formula.
Lemma 8.1 (Transport formula). For a function f: Q; — R and u(z,t) := dz(d)t(’t), we have
d
— | f(z,t)dx = ft+V-(fu)d:L‘=J (ft+u-Vf+ fV-u)JdX.
dt Jo, o Q0

CHAPTER 8. FLUID PROBLEMS 206

For a domain 2 R?, we denote its volume (or area) as |©2|. We then find that
] = f | do - f JdX — J||
Q Qo
For incompressible fluids, we have that the volume preserving property
| = || or J(t)=1.

From the equation (8.6), we can derive that V - u = 0. This is the so-called divergence-free
condition.

Denote the density of the material occupying Q; by p(x,t). According to the equation (8.9),
for any region wy < €);, we have that

d

pn p(m,t)dxzf pt + V- (pu)dx

Wi

Since this identity holds for any w, we immediately see that
pt+V-(pu)=0 and p+pV-u=0, (8.10)

which is called the equation of mass conservation or the continuity equation.
It is clear that integrating the density over any domain w; gives the mass. Due to mass

conservation, we have that

| mxyix = | pwnae= | pacxo.000x.
wo we wo
Hence, we have the relation
X
pla(x,1),0) = 2, (8.11)

If the incompressible condition V - u = 0 holds, we obtain that p(x(X,t),t) = po(X).
If p = po is a constant, then (8.10) gives the divergence-free condition immediately. On the

other hand, if we assume incompressibility, we can get a simplified equation:
pe+(u-V)p=0 or p=0. (8.12)

Together with p(X,0) = pg being a constant, we can get p = pg for all time t € [0, T].

8.1.3 Balance of momentum

Now we consider the incompressible Newtonian fluids. Due to the Newton’s Second Law, we

have the balance of momentum

d
— | pudz = Force(Q). (8.13)
it Jo,

CHAPTER 8. FLUID PROBLEMS 207

The left-hand side of the above equation is the rate of change for the momentum. Using the

transport formula (Lemma 8.1), we derive that

d
— pud:czf (pt +u-Vpu+p(u +u-Vu)dX.
dt Qs Qo

Due to the mass conservation and incompressibility (8.12), we then have

4 pudx = J p(u; +u- Vu)dz. (8.14)
dt Q Q

On the other hand, the right-hand side of the Newton’s Second Law is the total force acting on
Q. We have, from the divergence theorem, that

Force(§2) :=J fd:n~|—f T -ndS=| f+V.-Tdx,
Q 0 o

where f is the total external body force (like gravity), T is the traction tensor on the boundary
of £, and n is the outer normal direction on the boundary 0€2;. The exact form of T depends

on the underlying constitutive laws. For Newtonian fluids, the traction can be defined as
T := —pl + 2ue(u), (8.15)

where p is the pressure and p is the viscosity.

For incompressible fluids, we have V - u = 0. In turn, we can obtain (see HW 8.1) that

d d d
(V . (25(11)))]. = Z 81'(111'7]' + uM) = Z ajllm' + Z é’iuN- = Au]',

=1 i=1 i=1

which means

2V - e(u) = Au. (8.16)

This way we can get the momentum equation (balance of force) for incompressible Newtonian
fluids:
p(u; +u-Vu) = —Vp + pAu. (8.17)

If the density p is a constant, we further simplify the above equation (by modifying the definition
of p and p) to give
u +u-Vu=-Vp+ pAu. (8.18)

CHAPTER 8. FLUID PROBLEMS 208

8.1.4 Mathematical models

To summarize, we have derived the mathematical model for incompressible Newtonian fluids,

i.e., the Navier—Stokes (NS) equations:

(plus+u-Vu)—pAu+Vp = f, O balance of momentum;
pe+V-(pu) = 0, conservation of mass;
< Viu = 0, incompressibility; (8.19)
u = 0, o no-slip boundary;
uli—g = ug, initial condition.

If we assume the density p is a constant, then we can write (8.19) as follows:

w+u-Va—pAu+Vp = f, momentum equation;
V-u = 0 Q continuity equation;
3 t Yy €q) (820)
u = 0, o no-slip boundarys;
uli—p = ug, initial condition.

Now we have the mathematical model for incompressible viscous Newtonian fluids. If we
consider ideal fluids (viscosity p = 0) and assume that there is no external body force (f = 0),

then we get the incompressible Fuler equations:

(pluy+u-Vu)+Vp = 0, balance of momentum;
pe+V-(pu) = 0, conservation of mass;
{ V-u = 0, incompressibility; (8.21)
u-n = 0, no-flow boundary;
uli—p = ug, initial condition.

If the density p is a constant, then we have the following simplified form:

w+u-Va+Vp = 0, momentum equation;
V-u = 0, Q continuity equation;
' yed (8.22)
u-n = 0, Y no-flow boundary;
uli—p = ug, initial condition.

For numerical simulation of the Navier—Stokes and Euler equations, there are several tech-
nical difficulties. First of all, the incompressibility condition is a constraint on the velocity field
and appropriate finite element spaces need to be selected to discretize this mixed problem. Sec-
ondly, these equations have a nonlinear convection term; when the viscosity coefficient y is small

(corresponding to high Reynolds number), the convection is essentially dominant.

CHAPTER 8. FLUID PROBLEMS 209

8.2 The Stokes-type equations

For simplicity, we now focus on a linearized problem of the Navier—Stokes equation, namely

the Stokes equation.

8.2.1 The time-dependent Stokes equation
On an open bounded set Q < R?, we consider

w—pAu+Vp = £, Q
Veu = 0, @
u = 0, 0

uf;—g = ug, .

(8.23)

This set of equations is usually referred to as the time-dependent Stokes equations. After time

discretization, we need to solve the Stokes-like equations

(Z-eEAu+Vp = f, O
Vou = 0, O (8.24)
u = 0, 00

We can further simplify the discussion and only consider the following steady-state Stokes
equations, i.e.,
—Au+Vp = f,
V-u = 0, O (8.25)
u = 0, 0.
Let 7V := [Hé(Q)]d and 2 := L3(Q) = {q € L*(Q) : §, ¢ = 0}. The weak form of the Stokes
equation (8.25) can be written as: Find ue ¥ and p € 2, such that

QL e(u):e(v)de+(p, V-v) = (f,v), Vve?; (8.26)

(V-u,q) = 0, Vge 2.

The derivation is straightforward and hence leave to the readers; see HW 8.2.

Remark 8.2 (Constrained energy minimization). We can view the Stokes equations as a con-

strained energy minimization problem

min J e(v):e(v)dx —f f vdex,
veZ Jo Q

where 2 := {v € ¥ : V-v = 0} is the subspace of divergence-free functions. The equation
(8.26) is the first-order optimality condition of this constrained minimization problem and p is

the Lagrange multiplier. O

CHAPTER 8. FLUID PROBLEMS 210

8.2.2 The Brezzi theory

Let ¥ and 2’ be the dual spaces of ¥ and 2, respectively. Generally speaking, we can put
the Stokes problem in an abstract framework and consider the following saddle-point problem:

For any given (f,g) € ¥’ x 2', find a pair (u,p) € ¥ x 2, such that the following system holds
alu,o] +b[o,p] = (fv), Voe¥;

(8.27)
blu, q] = (9,9), VYqe 2.

Here a[-,-] : ¥ x ¥ — R and b[-,-] : ¥ x 2+ R are continuous bilinear forms, i.e.,

a[u,v] < CG«HUH"//”UH7/7 VU,U € %7

blu, p] < Coluly|ple, Yue?,pe2.
We can identify a linear operator A : ¥ +— ¥” such that
(Au,v) = alu,v], Yue¥, ve¥
and another linear operator B : ¥ — 2’ (or its adjoint B : 2 +— #") such that
(Bu,p) = <u,BTp> = blu,p], YueV¥, pe 2.
Hence (8.27) can be written in the following operator form
Au+ BTp = f,
Bu =g.

We now analyze under what condition(s) the weak formulation (8.27) is well-posed. We

define the kernel space of B as
Z =null(B) ={ve? :blv,q] =0, Vge 2} = V.
Because b[-, -] is continuous, Z is closed. Hence we can give an orthogonal decomposition
¥ = 2@+ = null(B) ®null(B)*.

For any u € ¥, we have u = ug + u, , with ug € null(B) and v, € null(B)*.
In order to solve Bu = g, we only need to solve Bu; = g. Using the inf-sup theory discussed
in §1.1.4, we can see that, if B is surjective, namely,

: blv, q]
inf sup ——— = > 0, 8.28
125 5 Tol v lal o (8.28)

CHAPTER 8. FLUID PROBLEMS 211

then u, exists. Furthermore, it is easy to see that u| is also unique'. Hence we have B : Z+ —
2" and BT : 2 — (Z*) are isomorphisms.

Now we only need to show the existence and uniqueness of the following problem: Find
ug € &, such that

alug,v] = (f,v) —aluy,v], YveZ.
According to the Necas Theorem 1.16, we know that the existence and uniqueness of wug is
equivalent to the following inf-sup conditions
alu,v]

inf sup ———— = inf sup M

, —a>0. (8.29)
we? yez |ulylvly ez wez [uly|v]y

With the conditions (8.29) and (8.28), we obtain a unique solution u = ug + u .

We can find the solution for the pressure variable by solving
Bp = f — Au. (8.30)
For any v € 2 = null(B), it is easy to see that
(f — Au,v) = <BTp,v> = (p, Bv) = 0.

Hence, f — Au e (ZY) = {we ¥ : (w,v) =0, Yo € Z}. Because BT : 2 — (Z1) is an
isomorphism, there is a unique solution to (8.30).

Hence we obtain the following well-posedness result [62, Theorem 1.1]:

Theorem 8.3 (Brezzi Theorem). For continuous bilinear forms a[-,-] and b[-, -], the saddle-
point problem (8.27) is well-posed if and only if (8.29) and (8.28) hold. Furthermore, the

solution (u,p) satisfies the stability condition

lully + lple < £y + l9l2-

Remark 8.4 (Inf-sup condition of the mixed formulation). Let 2" := ¥ x 2. We define a new
bilinear form a: " x 2" — R

al(u,p), (v,q)] := alu,v] + blv, p] + blu, q].
Then the saddle-point problem (8.27) is equivalent to finding (u,p) € 2" such that

CNL[(’LL,])), (U7q)] = <f,’U> + <ga Q>) V(’U, Q) eX. (831)

If both a[-, -] and b[+, -] are continuous, then a[-, -] is also continuous. If a[-,-] and b[-, -] satisfy
the standard Brezzi conditions (8.29) and (8.28), respectively, then a[-,-] satisfies the inf-sup

condition as well. O

!Suppose there is another solution @, , then B(uy —4y) = 0. In turn, we have uy — @y is in null(B). Due to
UL — UL enull(B)l, we find u; — @, = 0.

CHAPTER 8. FLUID PROBLEMS 212

8.2.3 Well-posedness of the Stokes equation

In view of the general theory developed in the previous subsection, we can define

alu,v] := 2J;; g(u):e(v)dx A:=-A (8.32)
blv,q] := —JQV -vqdx B:=-V, B .=V (8.33)

In this case, the inf-sup condition (8.29) is trivial since the coercive condition holds, i.e.,
| et e = ault, vae @)
Q
Hence we only need to check the inf-sup condition for b[-, -].

Lemma 8.5 (Inf-sup condition for divergence operator). For any ¢ € 2 = L(f2), there exists
veV =[H(Q)]? such that

Veveg and |vi < qlo.

So the inf-sup condition (8.28) holds.
Proof. This non-trivial result goes back to Nec¢as and a proof can be found in [95, 1I.3.1]. O

Remark 8.6 (Existence of solution). It has been shown in the above lemma that range(B) =
L?*(Q)/R = 2. Or equivalently, we have null(B7) (2 = {0}. O

Using the previous lemma and the Brezzi theorem, we can easily get the following result:

Theorem 8.7 (Well-posedness of the Stokes equation). There exists a unique solution (u,p) €
[HL(2)]? x LE(2) to the weak form of the Stokes equation (8.26) and

[ally + llplo < [£]-1-

8.2.4 Penalty method for the Stokes equation *

In general, there are two approaches to approximate the Stokes problem. The first one is to
approximate (8.26) directly. An alternative method is to formulate the original problem using

a penalty method as
Find ue 7 : 2f e(u):e(v)de+~y(V-u, V-v)=(f,v), Vve?. (8.34)
Q

The above equation can also be seen in the linear elasticity problems and it is known for
causing the locking phenomena? for many finite element methods when ~ is big. This is usually
caused by overly constraint on the velocity space. To cure such a problem, penalty methods
introduce selective or reduced integration procedures. It has been shown that penalty methods

are sometimes equivalent to mixed methods [126].

2The computed velocity is vanishing or unnaturally small for big .

CHAPTER 8. FLUID PROBLEMS 213

8.3 Mixed finite element methods

In this section, we consider conforming mixed finite element methods for the Stokes equations.
Let Vi, ¢ ¥ = [H}(Q)]? and Q) = 2 = LE(Q) be finite dimensional spaces. Find uy, € V}, and
P € Qp, such that

2fﬂs(uh) ce(vp)dx — (pp, V-vi) = (f,vp), Vvy €V},

(V-upn, qn) = 0, Y qn € Qn.

(8.35)

The existence of the discrete solution (uy,pp) is straightforward due to the conformity of the

approximation spaces.

8.3.1 Well-posedness and convergence

Let Zp, = null(By) be the kernel of the discrete divergence operator. In fact, the coercivity

of a[-, -] yields that
inf sup 7a[uh,vh]

=qyp > 0. 8.36
wi€Zn vyez, |unl1]vali (5:50)

If Z;, ¢ % and the coercivity condition holds, we have the following optimal approximation

property by the Céa’s lemma (Lemma 3.2):

Ju—uplly < = inf |u—v|y.
Qp VREZ

However, it is not easy to make the finite element kernel space Z;, ¢ Z. A sufficient condition
for this inclusion property is B(V}) € Qp, which suggests @, should be large enough for a fixed

space Vj,. In fact, we have
Byup =0, inQ, <= (Bupqn) =0, VYgy€Qp
Furthermore, we also have
Bu,=0, in2 <= (Bu,,q) =0 Vge2.

If uy, € Z, and ¢ € 2, then (Buy,q) = (Bup,q0 + q1) = (Bup,q) + (Bup,q1) = 0, where
q = qo+q1 with gg € Qp. Notice that (Buy,q;) = 0 because the inclusion condition B(V}) < Qp.

If Z;, & %, then there is a variational crime and we have following estimate:

Co\ . 1 alu—up,w
[u—uly < <1+J> inf |lu—v|y +— sup M
oy, / veZy, ap WEZh\{O} HWHV

For w € Z;,, we have

afu —uy, w] = afu, w] = (f,v) = —b[w, p] = —b[w,p — 4],

CHAPTER 8. FLUID PROBLEMS 214

for any ¢ € Q. Because b[-,] is continues, we find that
ja[u =y, w]| < Chlwly[p — dlle.
We can then conclude with the following best approximation result:

Lemma 8.8 (Quasi-optimality for velocity). Let V}, ¢ ¥ and Qp < Z. If the bilinear form

al-, -] is coercive, then we have

Cuy . Chy .
Ju—wily < (1+52) inf fu—vly+ 2 inf [pglo.
Oéh VEZh Oéh qEQh

We have the identity

(Bhufu Qh) = b[uh7qh] = (Buhv Qh)a vq}l € Qh'

In the other words, Bxuy, is the L2-projection of Buy, onto Q. If null(Bg) is not trivial, then
range(By,) is strictly included in Q. This could lead to ill-posed problems. For a fixed Qp, the
velocity approximation space V}, should be rich enough in order to guarantee the discrete inf-sup
condition:

b
inf sup b0V, an) = B > 0. (8.37)

0€Qn vyev, [Valllgnlo
The condition null(BY) = {0} is necessary for the inf-sup condition above. If null(B}) is non-
trivial, then the numerical solution pj is not unique, namely, p, + sp is also a solution when
Sp € null(BE). In this case, we usually find the computed pressure is oscillatory and, hence,

null(Bg) is often referred to as the space of spurious pressure modes.

Theorem 8.9 (Quasi-optimality). Let V;, < # and Q, < £2. If the bilinear form al-,-] is

coercive and the inf-sup condition (8.37) holds with £, = Sy > 0, then we have

lu—wply + |p—prle < inf Ju—v|y + inf |p— q|e.
VEZy, q€Qh,

8.3.2 Some stable finite element pairs

From the above discussions, we conclude that: To balance computational efforts and conver-
gence rates for the velocity in [H}(€2)]¢ and the pressure in L2(€2), it is better to use (k + 1)-th
degree of polynomials for V}, and k-th degree of polynomials for Qp,.

Remark 8.10 (Constraint ratio). An empirical approach has been used to check the balance

between velocity and pressure approximation spaces. The so-called constraint ratio is defined as
Cr = dimQh/dith.

Apparently, if C, > 1 then number of constraints exceeds the number of variables, which will
usually cause locking. On the other hand, if C) is too small, then divergence free condition is

not approximated accurately enough. O

CHAPTER 8. FLUID PROBLEMS 215

The easiest and seemingly natural choice for the mixed finite element spaces is the pair of
the lowest order polynomials P;’O—P}? . Unfortunately, this pair does not satisfy the discrete
inf-sup condition and we have to either enlarge velocity field finite element space or restrict the
pressure space. There are many possible stable pairs; see the survey paper [32] and references

therein for more details. Here we just name a few:

o [PFO]-PF10 for k > 2, Taylor-Hood

P,? Y@ 53]37]31,—17 Crouzeix-Raviart

P;,Nc]df P}?, non-conforming Crouzeix—Raviart
P:’O]Qf PF 57 for k = 4, Scott—Vogelius

QE P for k> 2

b
h Az -
-
8] (] O Lo] Q Lo] 8] O
ST TOTOTOTOTo T |
f&yI o [e[o] o[l e[]] e[{] e [[1e [[] [o
AN Fa A AN Ay AN AN Ay
W N L4 W L% L7 W W
o [l o[] o [[] o [[] «[]] «[[] ® [[]e [|[|] « [o
P P &y L P N P FaX w
W v S W W W W M
o [] e[d] e[[] [l o[l «[[] e [[]e [[] [o
Fay Ny s Fan Fad Fan Fay an
g W W W W W W W e
X o] «[] «[[]] o] «[J]e [[]e [[]] o
L A A A A Al oA A A
i W W W W W W W A
a (] O O a O 8] O T

Figure 8.2: A sample discretization using the MAC scheme

Constructing stable finite difference schemes for the Stokes equation lacks of theoretical

guidance like the Babuska—Brezzi condition discussed above. However we can expect that the

CHAPTER 8. FLUID PROBLEMS 216

standard five-point stencil does not work for the Stokes equation. This is because the five-point
stencil can be viewed as Q,ll’o — ,11’0 finite element with a specific quadrature rule. If we change
the pressure discretization to the center of cells, then it yields Q,ll’o — Qg’_l. And, apparently,
both finite element pairs are not stable. The main idea of the Marker-and-Cell (MAC) scheme is
to place the degrees of freedom for velocity and pressure at different locations. More specifically,
the pressure p is defined at the cell centers, the velocity component u; is defined at the middle
points of vertical edges, and the velocity component us defined at the middle points of horizontal

edges; see Figure 8.2. This method is same as the RTy finite element on rectangular grids.

8.3.3 Mixed methods for the Poisson’s equation x

Mixed finite element methods have been applied to our model problem, the Poisson’s equa-
tion, as well. By introducing an artificial variable p, a general mixed formulation of the Poisson’s

equation can be written as

u—-Vp = f, in{;
V-u = g, inf (8.38)

u-n = 0, on df
In this section, we use this model problem to further explain how to construct preconditioners
arising from the saddle-point problems.

Sometimes the mixed formulation of the Poisson’s equation is used for numerical treatment:

Find (u,p) € Ho(div, Q) x L2(Q) such that

(w,v)+ (p, V-v) = (f,v), VveHydiv,Q);
(8.39)
(V-u,q) = (9,9, VqeL§().

Here H(div,Q) consists of all functions in [L?(Q)]¢ with divergence in L?(Q2) and Hy(div,Q)
contains the H (div,)-functions with vanishing normal components on the boundary 0€2. Define
an inner product

(ua V)Ho(div,Q) = (uv V) + (v -4, A V)' (840)
This problem corresponds to the mixed formulation of the Poisson’s equation with the Neumann
boundary condition.
If u e 2 is divergence free, then |u| g, (giv,0) = |ufo,o- Hence we can easily verify the Brezzi
conditions hold for this problem. As a consequence, the operator

) T —grad
Ao = (; gga) Ho(div, Q) x L2(Q) — Ho(div, Q) x L2(Q)
1v

CHAPTER 8. FLUID PROBLEMS 217

is an isomorphism. The canonical preconditioner is a block diagonal isomorphism

(1) ((z—graddiv)—l 0
0

) : Ho(div, Q) x LE(Q) — Hy(div, Q) x L(Q).
There is an alternative mixed formulation for the Poisson’s equation: Find (u, p) € [L(22)]% x
(HY(Q) N LE()) such that
(u,v) = (Vp,v) = (f,v), Vvel[Ll*(Q)]%

—(u,Vq) = {g,q, VqeH'(Q)NLFQ).

(8.41)

The Brezzi conditions can be verified using the Poincaré’s inequality. Hence A is also well-defined
on [L*(Q)]4 x (HY(2) (N L&(2)). And in this case, the canonical preconditioner is

Dy = () (AO)—l) L@ < (@) 25() — (L@ x (H(@)) 15(©).

Apparently, this preconditioner is significantly different than the one given in the previous
subsection. As a result, different choices of approximation space and its norm can yield very

different solution methods.

8.4 Canonical preconditioners

In this section, we discuss how to construct canonical preconditioners for the saddle-point
problems, like the Stokes equation and the time-dependent Stokes equation. The basic idea
follows the discussion in §2.2.

8.4.1 Preconditioning the Stokes equation

We notice that the corresponding operator of the Stokes system

A (—A —grad)
div 0

is an isomorphism mapping from [H}(Q)]¢ x L2(Q) onto [H~1(22)]? x L3(£2). A natural precon-

ditioner would be the classical block diagonal preconditioner

This observation immediately motivates the classical block diagonal preconditioner [43].

CHAPTER 8. FLUID PROBLEMS 218

Similar to the continuous case, we can construct natural preconditioners based on the map-
ping properties. Let {X}} be a family of finite element spaces and it is conforming in the sense
that X;, ¢ 2 := [H}(Q)]¢ x LE(Q). Consider the discrete Stokes problem: Find (us,pp) € Xp,
such that

al(un, pn)s Vi, qn)] = (fsva) s Y(Va, qn) € X

The corresponding linear map Ay, : Xj, — X ,, 1s given by
(Apz,y) = alz,y], Vz,ye X,

Note that, in this case, @ is not positive definite and the system A, can be singular.
According to Remark 8.4, the stable discretizations can be characterized by a discrete inf-sup
condition: There exists a constant «g, independent of h, such that

inf sup alz.)

N T) (8.42)
weXn yex, |22 llyll2

This condition does not follow from the corresponding continuous inf-sup condition. Similar to

the continuous case, we can define a preconditioner Dy, : X n — Xn by

(bhfay)ﬁ/ = <f7 y>7 vy € Xh-

That is to say

i (—Ap)~t 0
Dy, = < oh e) (8.43)

Apparently, if Ay, is symmetric, Dy, Aj, is symmetric with respect to (-,-)2 and

IDr Al 2(x,x) < Car [(DrAr) Hz(xx0) < 0 -

Hence the condition number n(ﬁh.flh) is uniformly bounded.

8.4.2 Preconditioning the time-dependent Stokes equation

Now we are in position to develop preconditioners for the time-dependent Stokes prob-
lem (8.23). Like in many other applications, it is crucial to get robust or parameter-independent
performance for problems with small or large parameters. One of the useful technique is to define
proper parameter-dependent spaces and norms, such that the operator-norms of the coefficient
operator can be bounded uniformly with respect to the parameters [132].

According to the classical theory of intersections and sums of Hilbert spaces [23], we can
introduce the norms for 27 () 22 and 27 + 23 as

1
2 2
)

ulai s = (Jul; +

CHAPTER 8. FLUID PROBLEMS 219

and

1
. 2
[ulaieay = int (lul; +lualb;).

=u1+u2
uleﬂﬁ ,UQEE%Q

If 21() 23 is dense in both 27 and 253, then

(21()22) = 21+ 2 and (21 + 22) = 2/() 25,
It F e £(21; %) (L (22 %), then

Feg((22 %) () L(2 + 2% + %).

For our purpose, we assume that 27 and 25 are real separable Hilbert spaces and 2> < 27.
Hence it is natural to assume |u|2; < |u|2,. For a real positive parameter € > 0, we consider

the norm for the space 27 (€23 and its dual, respectively, by

[NIES

1
o 2 21,02)2 o : 2 -2 2
lul 73 ez = (lul +€luls) s I lagserag = dnt (1A% +e1R15)
f1eZY, foe 2,

Apparently, 2. := 21()eZ%> is the same as 25 as a set. Furthermore, as e tends to zero, the
norm of %2, approaches the norm of || - || ;. Similarly, 27 := 2] + ¢ 1.2, as a set, is the same
as 23 and its norm approaches || - | 5 when € tends to zero.

Consider preconditioning the time-dependent Stokes problem (8.24) where the coefficient

~ T —€e2A —grad
A - € gra
div 0

For this problem, we shall construct a preconditioner which is uniformly convergent with respect
to both h and e.
@D In view of §8.3.3, we know that Ay is bounded from Hy(div,) x L3(Q) into its dual

space. Hence we consider the operator A, on

operator is defined as

L= (Ho(div, Q) ﬂe[Hg(Q)]d) xLj(Q2) and 27 := (Ho(div, Q)+ [H ‘1(9)]d) x L ().

In this case, the two Brezzi conditions holds and A, is an isomorphism. In turn, the canonical
preconditioner is of the form
PO (Z — graddiv —€2A)~1 0 '
0 z
(2) We have seen that Ay is also bounded on [L2()]¢ x (H*(Q2) () L3(2)) into its dual space.
Furthermore, in order to guarantee the inf-sup condition, the proper norm for the pressure
unknown is [130, 131]:
(qv V- V)

sup o = |Va|lp2r1m-1 ~ lla|grpere.
verri e IvIez qemn

CHAPTER 8. FLUID PROBLEMS 220

Motivated by these observations, we can consider

7= 2@ b @] > (B @ L3©) + L)

and
2 = [L2(Q) + e’lﬂ’l(Q)]d x ((Hl(Q) ﬂLg(Q))’ﬂeLg(Q)).

This choice of spaces gives a preconditioner of the form

5O _ (Z —)t 0
‘ 0 (—A)" '+ €T)

Along this line, we can construct discrete block diagonal preconditioners for the time-

dependent Stokes problem [85, 41].

8.4.3 Preconditioning the heat equation x

In order to introduce a uniform preconditioner for the time-dependent Stokes equation, we

)

still need to give a reasonable solver for Z — €A in 259 . And this problem is in fact much more
general. For example, it also appears in a simpler scalar time-dependent problem—the heat

equation:
u—Au = f, Q
u = 0, 0 (8.44)
uli—o = wug, K
We discretize the first equation in (8.44) using the Backward Euler method for the time
variable to obtain that
Uy, — Upy—
tm — Ym—ol Aty = fin,
tm — tm—1
where u,, and f,, are approximations to v and f, respectively, at time level t,,. Since wg is

given, we can iteration over m to obtain approximate solutions {um, }m=o.1,.. to u(tm,), namely
(T — EA)uy, = f,. (8.45)

In this case, €2 := t,, —t,,_1 equals the time step-size and f/, := w1+ (tm —tm—1) fm is known.
So we need to find out how to construct a preconditioner for operators like A, := T — ¢2A
corresponding to the reaction-diffusion equation.

In particular, in order to solve the reaction-diffusion equation Acu = f in and u|sg = 0 in

the previous subsection, we have
Ze=LQ)(\eHy(Q) and 27 = L*(Q) + e "H Q).

As € goes to zero, both norms approaches the L?-norm and A, also tends to the identity.

CHAPTER 8. FLUID PROBLEMS 221

In this setting, we have

(T =E0)) =T -EA) T~ D) (T-EA)TH)
=((Z-E0)7 T -E0)THH = AT -EA)THL (T -EM)TH
= | follg + ¢ 1 f1]21,

where fo := (T — 2A)71f and f1 := —€2A(Z — 2A)~!f. Furthermore, we can get (cf. [132,
Example 4.1])
HfHQ%E’ = <f7 (I - 6QA)ilf> = <(I - EZA)U,U,>.

We can easily see the natural norm is

1
2

Jull 2, = el z2 ey = (lulf + I Vul?)
Hence, it is clear that
lull 2. = [f]2:.
Although Z — €?A is norm preserving from the above analysis, it is not yet clear how to
construct a practical algorithm to solve it. We notice that the above semi-discrete problem or
temporal discrete problem resembles our model problem—the Poisson’s equation. In order to

construct an efficient preconditioner for this equation, we can use the BPX preconditioner (5.19)

in §5.3. In view of (5.18), on level [, we wish to have a smoother S; behaves like

h2
(Sw,v) = h?ieQ (vjv), YoveV.

This smoother then defines the corresponding BPX preconditioner for the semi-discrete prob-
lem (8.45). Such a simple example shows how to handle a new problem from geometric point of

view and it can be used as a component when solving the time-dependent Stokes problem.

8.5 Block preconditioners

In the previous section, we discussed how to construct canonical (natural) preconditioners
based on the mapping property of the continuous Stokes equation. Now we shall consider the
discrete Stokes problem arising in the mixed finite element method (such as the Taylor-Hood

finite element method) in algebraic setting, i.e.,

A(“):<f> and A::(ABT>. (.40
p g B 0

Suppose A € R"*" B e R™*" 4 € R", and p € R”. Let N = n 4+ m. Assume that A is SPD
and B has full rank. It is well-known that the coupled system A is symmetric, indefinite, and

non-singular.

CHAPTER 8. FLUID PROBLEMS 222

8.5.1 Block diagonal and lower triangular method

If we consider the block diagonal preconditioner given in the previous section, the precondi-

D:= (Aol MO_1) , (8.47)

p

tioner can be written as

where M, is the mass matrix corresponding to the pressure approximation space and, hence, it
is well-conditioned; see Remark 3.24. It is easy to check that (8.47) is exactly the algebraic form
of (8.43). Because both A and M,, are symmetric positive definite matrices, the preconditioner

is well-defined.

Remark 8.11 (Block factorizations). We can apply the following block factorizations to the

matrix A such that
A BT\ I, 0 A0 I, A'BT
B 0 BA™Y I, 0o S 0 -I,
(A0 I, A7'BT\ I, 0 A BT
B S 0 -, BA™' -1, o s)
where the matrix S := BA~'B” is the Schur complement. In fact, D in (8.47) can be viewed

as an approximation of diag(A~!, S~1). O

Remark 8.12 (Schur complement). Since the A is SPD, the Schur complement S = BA~! BT
is symmetric and positive semi-definite. Moreover, if B has full rank, S is also SPD and we can
apply the CG method to solve the Schur complement equation. However, generally speaking,
S~1p cannot be computed efficiently with acceptable computational cost. Hence the Schur
complement S should be approximated by some approximation S. There are many different

ways based on approximation of the Schur complement; see the survey paper [19]. O

We can also use the block lower triangular matrix to construct a preconditioner

-1
~ A0
7o (g > ' (8.48)

In particular, if we replace A by its diagonal part D in the LU decomposition of Remark 8.11,
then we get the so-called SIMPLE preconditioner

-1 -1
. I, D7'BT A 0
TsivpLe = o . (8.49)
0 I, B BD'B

The name comes from the widely-used SIMPLE method for fluid problems.

CHAPTER 8. FLUID PROBLEMS 223

8.5.2 Augmented Lagrangian method

One of the most well-known iterative method for solving (8.46) is probably the Uzawa

method. As the last decomposition in Remark 8.11, we can factorize the coefficient matrix

A BT B I, 0 A BT
B 0 BA™' —I, 0o S)

This means the original linear system can be rewritten as

()G Catiey)

As discussed in Remark 8.12, the pressure Schur complement equation might be too expensive

as

to be solved exactly. We can apply an iterative method to solve it. For example, we can apply

the Richardson’s iteration for the second equation in the above system, i.e.,
prev — pold +w(BA’1f _g— Spold) _ pold _w(g _BA7'f BAABTpold)
Hence we can write the above iteration as an alternative direction method
AtV = f— BTpold - prew — gold (g — Bu®v). (8.50)

The method (8.50) is called the Uzawa iteration and it is just the Richardson iteration for
the Schur complement equation. As we have discussed in §2.1, the method converges with an
appropriate scaling factor w but the convergence rate is usually very slow. One way to speedup

the convergence is to apply the Augmented Lagrangian method (cf., for example, [93]):
(A + 6fl‘BTB)unew _ f + EilBTg _ BTpold7 pnew _ pold . Eil(g . BuneW)‘ (851)

Remark 8.13 (Uzawa method and Augmented Lagrangian method). It is easy to see that the
Augmented Lagrangian (AL) method is just the Uzawa method for the modified equation

_ +¢e1BT - A+¢e¢'BTB BT
A) = fre g , where A := ‘ . (8.52)
p g B 0

Furthermore, the damping factor w is chosen to be e~ 1.]

Theorem 8.14 (Convergence rate of Augmented Lagrangian method). Let (u(9), p(©)) be a given
initial guess and (u("™, p(™)) be the iterates obtained via the Augmented Lagrangian method (8.51).

Then we have

m € m
=2l < (5) o=l

m—1
Ju =™, < Velp ="y < Ve(55) " oo

07

where \; is the minimal eigenvalue of S = BA~™'BT.

CHAPTER 8. FLUID PROBLEMS 224

Sketch of proof. From (8.51) and (8.52), we have
(A+e'B"B)(u—u™) = BT (p— ptm=1)

and
p— p(m) = (I — B(eA + BTB)_IBT) (p — p(m_l)).

By the Shermann—Morrison—-Woodburry formula, we have
Z:=B(eA+ BBy 'BT =5, —S.(I+S)7 'S, S.:=e'BA'BT.
It is easy to verify that
I-B(eA+B"B) 'BT =T - S+ S.(I +S.)7*S. = (I +S.)~ .

The above equality shows p(Z) < 1 and p—p™ = (I + S.)~ ! (p —p(m_l)). So the first estimate

follows immediately. The second estimate is obtained by observing
|u— ul™ Hi = ((A +e!'BTB—¢'BTB) (u— u(m)),u - u(m))
<e(Z(p—p™ V), p—pmY)
and then applying the first estimate. O

According to Theorem 8.14, we can make the convergence as fast as we want by adjusting
the parameter e. However, the price to pay is that, in each iteration, we have to solve a nearly-
singular system with coefficient matrix A + ¢ BT B, which was discussed in [123]. We can also

apply the Augmented Lagrangian method as a preconditioner

_ A+e'BTB 0
Tap, = ‘ , (8.53)
B el

which is often referred to as the AL preconditioner [20].
The method is closely related to the grad-div stabilization [63] of the Stokes (or Navier—
Stokes) problem:
(I —pAu—eVV-u+Vp =f, Q;
V-u =0, & (8.54)
u =0, o0
In this modified problem, the coercivity condition automatically holds on the discrete level for
the Hy(div)-norm defined by (8.40). After discrezation by some mixed finite element method, we
obtain discrete systems in the form of (8.51). We can apply the block preconditioners discussed
in the previous subsection to solve the resulting discrete problems; see the survey and numerical

experiments by He and Vuik [108].

CHAPTER 8. FLUID PROBLEMS 225

8.6 Multigrid methods for the Stokes equation

Using a general multilevel iterative procedure, we can construct coupled geometric multigrid
methods for the saddle-point problem (8.46) as well. For the transfer operators, by applying the
similar ideas as in multigrid methods for scalar equations, we can construct prolongations and
restrictions for velocity and pressure variables separately. Coarse-level solvers can also apply the
same multilevel cycles as in §6.3. So we only discuss smoothers for the Stokes system. Analysis
and numerical experiments using different smoothers have been reviewed in the survey by Larin
and Reusken [121]. Apparently, the block preconditioners discussed in the previous section can
also be applied as smoothers for coupled multigrid methods. In this section, we discuss two

other widely-used smoothers in practice.

8.6.1 Braess—Sarazin smoother

The Braess—Sarazin smoother was introduced in [39] and can be written as

u(m+1) u(m) wD BT - f A BT u(m)
sy |\ T B o\ o)\ pm)| B

where w is a positive parameter. This method mimics the damped Jacobi smoother for the
Poisson’s equation.

We need to solve, in each smoothing step, the following the linear system
(wD BT) < (™) (f— Au(m — BTp(m))
B 0 opm) —Bu™ ‘
The second equation ensures the discrete divergence free condition, i.e.,
Bu™*) = B(u™ 4 5u™) =0, m=12,...
Apparently, the Braess—Sarazin smoother can be reduced to an auxiliary pressure equation
(BD™'BT) 6p'™ = wBul™ + BD7!(f — Aul™ — BTp(m).

The coefficient matrix S := BD BT is similar to a scaled discrete Laplace operator on the

pressure space. In practice, we can solve it approximately using an iterative method for example.

8.6.2 Vanka smoother

Next we introduce a smoother originally proposed by Vanka [181]. In the context of finite
element methods, the Vanka-type smoothers are just block Gauss—Seidel (or Jacobi) methods.

Fach block contains degrees of freedom in an element or a set of elements. One of the popular

CHAPTER 8. FLUID PROBLEMS 226

variant of Vanka-type smoothers is the so-called pressure-oriented Vanka smoother for continuous
pressure approximations. We only discuss this special case of Vanka smoother here.

For each pressure variable indexed by i (1 < i < m), let the set of velocity indices that are
“connected” to ¢ as

Sii={1<j<n:b;+#0}

where b; ; is the (i, j)-entry of the matrix B. So we can define an injection to the set of variables

{uj (] € 52)7 pz}a lea
IZ' _ Iu,i 0 c R(|S¢|+1)X(n+’m)7
0 I;

where I, ;p = p; and I, ;u = (uj)jes, are the corresponding injection matrices for velocity and
pressure, respectively.

We can then apply a multiplicative Schwarz method (or the so-called Full Vanka smoother):

I— ,fF\/'amkaH21 = H <I - I;TA;lle>7 (856)
i=1
where
. T
A = LAIT - Ai Bi O\ gUsid+Dx(si+1).
B, 0

We can also use a simplified version (i.e., the Diagonal Vanka smoother):
~ ~ m ~ ~
I~ Tovawad = [[(1 17 D7 1;A), (8.57)
i=1
where

. T
b= P B crisitnxisiey,
B, 0

In this case, due to the special nonzero pattern of D;, it can be solved very efficiently.

8.7 Homework problems

HW 8.1. Show the equation (8.16). Hint: In R?, taking divergence of the symmetric gradient,

we get

5%U1 + %52(6211,1 + 61u2)
V-eg(u) =
6§u2 + %51 (51UQ + 82u1)

%(8%1 + 5%1“) + %(91 ((31U1 + 82u2) 1 1
%(0%1@ + 6§u2) + %82(811“ + 62u2)

CHAPTER 8. FLUID PROBLEMS 227

HW 8.2. Derive the weak form (8.26) of the Stokes equations (8.25).

HW 8.3. Give the complete proof of Theorem 8.14.

Chapter 9
Optimization Problems

Mathematical optimization (mathematical programming or optimization) is the selection
of a “best” element (with regard to certain criterion) from some set of available alternatives.
Many optimization problems can be written as variational inequalities (VIs); for example, many
problems in economics, operations research, and transportation equilibrium problems. In this
chapter, we discuss multilevel iterative methods for solving finite-dimensional variational in-

equalities.

9.1 Model problems

VlIs arise from a wide range of application areas, like mechanics, control theory, engineering,
and finance. After several decades of development, this subject has become very rich on both
theory and numerics. For a general discussion on the existence and regularity, we refer the
interested readers to [116]. For a comprehensive discussion on numerical methods for VIs, we

refer to Glowinski [97].

9.1.1 A model variational inequality

Let a[-,-] and f(-) be a symmetric bilinear form and a linear form, respectively, and x €
H} () be an admissible obstacle (for simplicity, we assume the zero boundary condition). Con-
sider the following elliptic variational inequality (or the obstacle problem): Find v € K, := {v e
HE(Q) : v = x}, such that

alu,v —u] = f(v—u), Vovek,. (9.1)

After transformation w := u—y, we arrive at a new problem with a simple inequality constraint:
Find w € Ko := {v e H}(Q) : v > 0}, such that

alw,v —w] = fo(v —w) = flv—w) —a[x,v—w], VveKp. (9.2)

228

CHAPTER 9. OPTIMIZATION PROBLEMS 229

For problem (9.1), the Lagrange multiplier can be defined as o1 such that
(o1(u),) == flp) —alu,¢], ¥ ¢e Hy(Q). (9.3)
On the other hand, for (9.2), notice, for any ¢ € H}(2), that

(o2(w), p) = folp) — alw, o] = f(p) — alu, @] = (o1(u), ¥) .

It is easy to see that

(o1(u),v—u) <0, Yvell, (9.4)
or
(o2(w),v —w) <0, VY wveKkp.
On the other hand, if o is the Lagrange multiplier of (9.1), we have
(0(v) = o(u),) = —a[v —u,¢], ¥ e H(Q).
Hence,

(o(0) = o(w),v —w) = —a[v —w,v—u] = — o —ul?, VovueH(Q). (95)
Hence, we have (o(v) — o(u),v — u) < 0, for any v,u € H}(Q2), i.e., o is a monotone operator.
Remark 9.1 (Uniqueness of solution). Notice that if both u; and wuz are solutions of the

variational inequality (9.1), by the monotonicity of o, |Ju; — uz|| = 0 and then we obtain the

uniqueness.

As before, we assume that A : H}(Q) — H1(Q) be the operator corresponding to al-,].
An frequently equivalent formulation of (9.1) is the so-called linear complementarity problem
(LCP): Find a solution u € H}(£2) such that

Au—f =0
u—x=0 (9.6)
<-/4U—fau—X>:0

The last equation is the so-called complementarity condition.
Proof. If u is a solution of LCP (9.6), then for any v € H(2) and v > x we have
(Au— fiu—v) = (Au— f,x —v) <0,

in view of the complementarity condition and the sign condition of Au — f. On the other hand,
if u is solution of (9.1), it is trivial to see that u satisfies the first two conditions of LCP. The

complementarity condition is obtained by taking v = u + (u — x) and v = Y. O

CHAPTER 9. OPTIMIZATION PROBLEMS 230

9.1.2 Finite element discretization for VIs

As discussed in §3.1, the domain € is partitioned into a quasi-uniform simplexes of size h;
this mesh is denoted by Mj,. Let V}, < VVO1 *(2) be the continuous piecewise linear finite element
space associated with Mj,. The obstacle problem (9.2) can be approximated by a finite element

function uy, € Ko [V3 satisfying:
alup,vp —up] = fo(vp —up), Y op € Ko ﬂVh. (9.7)

As before, we denote all the interior nodes of the partition Mp by G(Mp). Let {¢Z}zeé(Mh)
be the canonical linear finite element basis of the mesh M,;,. Let u = v = Zzeé(Mh) Uy Py
and u = (“Z)zeé(M, the discrete solution and its nodal value vector (primal vector form),

respectively. Hence we have the following linear system
(w—u)T(Au—fo) =0, YVu=0, (9.8)

where A is the corresponding stiffness matrix of the bilinear form and f_}; is the dual vector form
of fo.

Remark 9.2. One can prove (see for example [54]) that the [?>-error between the exact solution

u of (9.8) and any approximation solution v satisfies that

lv = ullo < |(fo = Av)+]o,
where the vector (ﬁ) — Aw) is defined element-wise by

(fT(;—AQ)i if v, >0

fo — Av)s ; = 7
(fo V), { min{(fo — Av);, 0} if v; = 0.

9.1.3 Error and residual

As usual, we define the energy functional as following
F(v) = %a[v,v] — f(v).
Then it follows that
Flw) = Flu) = o —ul? = (0,0), Vveky (9.9)

Consider finite element solutions, u, and wy, for problems (9.1) and (9.2), respectively. The
differences, in terms of energy, between the finite element solutions and the exact solutions can

be written as)

Fun) = Fu) = 5l — wl® = (o0, —)
1 (9.10)
Flun) = F(w) = 5 lwn —wl? = (o, w5 —w).

CHAPTER 9. OPTIMIZATION PROBLEMS 231

It is easy to see that the variational inequality (9.2) can be written as the following quadratic
minimization problem:

min %a[w,w] — fo(w). (9.11)

wE’Co

For finite element approximation, we compute the finite dimensional minimization problem

1
. L _ . 9.12
wh,EI‘r/thrl] Ko 2 a[wh? wh] fo (U}h) ()

Suppose Wy, is an approximate solution of the above minimization problem. Then the defect
ey, := wp, — Wy, satisfies
1

. . . . 1 .
~ min —alwy + ep, wp, + ex] — fo(wn + en) = =alen, en] — folen) + alwn, en] + C,
wp,+epeVy (Ko 2 2

ie.,
1
min —alep, ep| — (o(wy), en) 9.13
ol 2 len, en] — (o(@n), en) (9.13)
Notice that it is in the same form as (9.12) but replacing fo by o (). Hence the above problem
can be viewed as the error problem; compare this with the error equation in the linear case (1.38).

Whence we have ej, we can update wp = wp, + e, as in the linear case.

9.2 Nonlinear equation and unconstrained minimization
We first consider the unconstrained optimization problem

u = argmin F(v). (9.14)
vey

If F: 7 — R is a convex function, then the problem is called a convex optimization (or
convex programming). If F is differentiable, a minimizer satisfies the well-known first-order
optimization condition

G(u) := F'(u) =0, (9.15)

where G : ¥ +— R is the Frechet derivative of F. If F is convex, then (9.14) is equivalent
for solving the nonlinear equation (9.15). In particular, if F is quadratic, then the problem is
called a quadratic optimization. Apparently, if F is a convex quadratic functional, then the

problem (9.14) is equivalent to our model problem (2.1), Au = f, with an SPD operator A = G'.

9.2.1 Nonlinear solvers

In general, the problem (9.14) is much more difficult to solve than (2.1) due to its non-

linearity. We can employ a nonlinear iterative solver to linearize (9.15) to obtain a linear

CHAPTER 9. OPTIMIZATION PROBLEMS 232

(differential) equation, i.e., linearization then discretization. For example, we may use the stan-
dard approaches, like the Picard method or the Newton—Raphson method. Another strategy is

to discretize the continuous problem (9.14) or (9.15) in order to obtain a nonlinear algebraic

problem
u = argmin F(v) (9.16)
veRN
or
G(u) =0. (9.17)

The idea of coarse-grid correction used in Algorithm 3.1 does not apply any more here because the
classical residual equation is linear. There are basically two approaches to apply the multilevel
idea on this problem—The first approach is to linearize the problem and then apply multigrid
methods to linear problems; The second one is to apply multigrid directly to the nonlinear

problem using the so-called Full Approxzimation Scheme (FAS).

9.2.2 Newton—Raphson method

There are different ways to linearize a nonlinear problem like (9.15). For simplicity, we
now only consider discrete version of the nonlinear equation, i.e., # = RY. The most popular
approach is the so-called Newton—Raphson (or Newton) linearization. We apply second-order
Taylor expansion to approximate the objective function near the current iteration u®) € RN,
ie.,

]—"(u(k) " e) ~ f(u(k)) + (V-F<U(k))v e) + %(VQF(UUC))& e).

In order to find a good incremental correction step, we can consider

e®) = argmin é(v2}'(u(k))e, e) + (VF(u®),) = —[V2F (™)' VF(u®).

eeRN

This is the Newton—Raphson iteration
w1 = (k) — [VQJ:(u(k))]_IV]:(u(k)). (9.18)
In the above iteration step, we need to solve a linear system, the Jacobian equation:
Ae®) .= [V2F(u®)]et) = —vF@u®) = 1K), (9.19)

We can employ the methods discussed in the previous chapters to solve such equations.

Listing 9.1: Newton—Raphson method

1 |Given an initial guess u€ ¥ and set r <« —VF(u);
2 |while |r| >e

3 solve the Jacobian equation VZF(u)e =r;

CHAPTER 9. OPTIMIZATION PROBLEMS 233

4 find a good stepsize a>0;
5 u—u+ae; r——VF(u);
6 | end

The Newton-Raphson method converges very fast (second-order convergence) if the initial
guess is close enough to the exact solution. So if a good initial guess is available, the main
computation cost of the above algorithm is assembling the Jacobian systems and solving it to
acceptable accuracy. If we apply a multigrid algorithm to solve the Jacobian systems, then this
method is usually called Newton-Multigrid method. Similarly, another wide-used approach to
apply a domain decomposition preconditioned Krylov method to solve the Jacobian systems,
then this method is called Newton-Schwarz-Krylov method. Note that we might not need to

assemble the Jacobian system explicitly; instead, we can use a Jacobian-free scheme.

9.2.3 Full approximation scheme

For the nonlinear equation (9.15), the residual corresponding to an approximate solution v

can be defined as

r:=—G(v)=G(u) —G(v) (9.20)

However, because G is not linear, r # G(u — v). In FAS, instead of considering the residual
equation as in the linear case, the full equation is solved on the coarse grids.

We now use the following two-grid method to demonstrate the basic idea of FAS. Let u()
be an approximate solution on the fine grid after several steps of relaxation. On the coarse grid,

according to (9.20), we need to solve the following nonlinear equation
gc(ugl)) -G (ICTu(l)) =re=Tlr= —Izg(u(l)). (9.21)

This means, on the coarse level, a problem similar to the original problem (with different right-
hand side) should be solved

Ge(ul) = Ge(ZTuW) — 776 (uM). (9.22)

Usually the right-hand side of the above equation is denoted as 7.(u(!)) and is called the tau
correction. Note that the coarse-level equation G. can be obtained from the discretization on

the coarse grid. We can also use the Galerkin method
Ge(ue) := I;‘Fg(l'cuc).
Once the problem (9.22) is solved, we correct the approximation as

u® =M 4 Ic(u‘(:l) — ICTu(l))- (9.23)

CHAPTER 9. OPTIMIZATION PROBLEMS 234

Apparently the above idea can be applied recursively as we discussed in §6.3. Because the
coarse-grid problem is solved for the full approximation, rather than the error, the method is
named as the Full Approximation Scheme. In this algorithm, evaluating the nonlinear function
is usually the most expensive part computationally. We summarize the two-grid FAS algorithm

as follows:

Listing 9.2: Full Approximation Scheme

1 |Given an initial guess uwe ¥;
2 | Solve the nonlinear equation Ge(uc) = Q'C(ICTu) — ICTg(u);
3 u<—u+Ic(uc—IcTu);

9.2.4 Subspace correction methods for convex minimization

Apparently, the idea of subspace correction methods can be easily extended to unconstrained
convex minimization problems here. The convergence analysis of SSC and PSC methods has
been given by Tai and Xu [177].

9.3 Constrained minimization
In this section, we consider multilevel solvers for constrained minimization problems

u = argmin F(v) := %a[v,v] — f(v), (9.24)

’UEIC()

which is equivalent to the variational inequality (9.2).

9.3.1 Projected full approximation method

Since the the above problem is nonlinear, we can apply the Full Approximation Scheme
introduced in the previous section to solve this problem. And this is the so-called Projected
Fully Approximation Scheme (PFAS) by Brandt and Cryer [54].

As we have discussed in the previous chapters, we first need to find a relatively simple iterative
procedure which is able to dump the high-frequency part of the error quickly. In order to obtain
a smoother for (9.24), we can employ the simple iterative methods discussed in §2.1 and then
apply a projection step to ensure the new iteration stays in the feasible set. For example, if 1!
is the previous iteration and u®S is the iteration after one or several Gauss-Seidel sweeps, then

new = max{0, u®S} € K is the new iteration. This method is naturally called the Projected

u
Gauss-Seidel (PGS) method.
At some point PGS will not reduce error efficiently any more, we then apply FAS to approx-

imate the error on a coarser level and continue this procedure until the coarsest level where the

CHAPTER 9. OPTIMIZATION PROBLEMS 235

nonlinear problem can be solved quickly and accurately. To ease the notation, we explain the
idea using a two-grid algorithm for now. We first solve the general LCP problem on a fine level

with a given right-hand side f;

= f
uz=0
(Au — f,u) = 0.

using the PGS method or some other smoother to obtain an approximate solution u(*). Then

we solve the above LCP on a coarse level with the right-hand side

for=T0 (f — AuM) + A 2T D
(1)

to obtain an approximation u¢s ’. In turn, an improved approximation is given by

u® =M 4 Ic(u((}) — I;‘Fu(l)).

9.3.2 Interior point method

For simplicity, we now consider the constrained minimization problem (9.2) on the finite

dimensional space RY, that is to say

1
u= argmin F(v):= -vT Av — flv. (9.25)
v=0,veRN 2
In this case, the Lagrange multiplier 0 € RV satisfies that ¢ = —G(u). Then we have the

first-order optimality condition

o+ G(u) =0, o <0,
Uo =0, u = 0.
Here we use a convention often employed in the literature U := diag{uq,...,uy}; similarly, we

will denote ¥ := diag{o1,...,0n}.

The condition Uo = 0 (or equivalently, u;o; = 0 for any i = 1,..., N) is usually called the
complementarity condition. We now try to relax this condition such that Uo = ul, where u is
a positive penalty parameter and 1 is an all-one vector. At the same time, we try to maintain
the iterative solution (u, o) strictly in the primal-dual feasible set, i.e., u > 0 and o < 0. Hence

we need to solve a system of nonlinear equations:

O'"‘g(u) = 07
Uoc—pul = 0.

We apply the Newton’s method for this system and obtain an iterative method

Adu + do —0 —G(u) o A T ou f—Au—o
r = .
uwl—Uco ¥ U oo ul—Uco

You+ Udo

CHAPTER 9. OPTIMIZATION PROBLEMS 236

Upon solving this linear system, we can obtain a new iteration. Furthermore, in the above
system, I, X3, and U are all known diagonal matrices, we only need to solve the Schur complement
problem

(A—U'S)ou = pU 1 + f — Au. (9.26)

Moreover, since o < 0 and u > 0, the above equation is well-defined and the coefficient matrix
is SPD. We can then apply a multilevel iterative method discussed in the previous chapters to

solve it efficiently; see [15] for details.

9.3.3 Monotone multigrid method

Now suppose we hierarchical meshes, {M?, ... ,M{L} and let A;, b, [= 0,...,j are the
stiffness matrices and right-hand-side vectors corresponding to the partition Mﬁl, respectively.
As usual, M{L is the finest mesh. We denote the linear finite element space by V,f associated
with mesh /\/llh

We need two kinds of orthogonal projections onto the finite element space V,f. The L*-

projections @ : V}f — V,i are defined by

(Quon, &1) = (v, 1), 1€ Vi, (9.27)

and the energy projections 11 : V}Z — V}f by

a[vy, ¢1] = alvw, &1], ¢1 € Vi (9.28)

We first define multigrid methods recursively. For a given initial guess w](p) € V}Z N Ko. A
coarse grid correction is performed: computing the approximate defect eg(i)l = II;_q(wp _w(o)) €

V}Z ~! as the solution of the quadratic programming problem

1
salel, el] — (o), e, (9.29)

- in sale; e
e;ojleV,f_17 w§-0)+e§-(i)1 N Ko

Then let w§1) = w](-o) + 62»0_)1. Then we apply m steps of post-smoothing scheme, like projected
SOR to obtain w](-m+1). For the coarse correction step, instead of solving the problem on the
coarser level 7 — 1 exactly, we can solve it by the same multigrid procedure described here. In
this way, we obtain a recursive multigrid V-cycle. If we perform coarse grid correction twice at
each level, then we get a W-cycle.

One problem with this procedure is that e;_; and w; are in different levels. To avoid this
difficulty, we propose the following coarse grid correction scheme instead of (9.29):

. 1
o omin o sald? dP] = o), dP). (9.30)
djflev}{ ﬂ’CO

CHAPTER 9. OPTIMIZATION PROBLEMS 237

And then wj(-l) = w](-o) + d\? | which is always in Ky because both wj(o) and d¥

i1 -1 are in o by

definition. It is easy to check that the local obstacles in this method are monotone in the sense
of Kornhuber [119]. Then we get the similar V-cycle or W-cycle multigrid method as for linear

problems expect we need to add a projection step to project the iterates to ICp.

Remark 9.3. This method is shown to be not very good by Tai’s test example. The reason
is that the coarse grid correction only works when the current approximation is less than the

exact solution in the method.

9.4 Constraint decomposition method

It is known the general V-cycle can be written as a successive subspace correction method.
For a sequence of search directions {¢;})¥, such that V}f := span{¢;}}¥.,. We can construct

a numerical method for find the minimizer of (9.12) as a sequential quadratic programming

method. Starting from an initial guess wj(O) € V,f () Ko, at each iteration, we solve

1
*a[w]('o) + agr, wj(-o) +ag1] — fo(wj(-o

min)+ agy). (9.31)
w§0)+a¢1eV}fﬂlCo 2

Similar to the discussion in the previous section, we need to solve a discrete problem

1
min ~a[o1, p1]a? — <U(w§-0)), o1y (9.32)
w§0)+a¢leV£ﬂKo 2
Then the new iterate is obtained by wj(-l) = w](-O) + . Similarly, we start from w](-l) and search

in the direction ¢2 to obtain wj(?), and so on.

If we choose span{qﬁi}f\il as the canonical nodal basis of th , then it is just usual nonlinear
or projected Gauss-Seidel method. To take advantage of multilevel basis, it is natural to choose
span{¢;}V | = {d)j,...,¢jj,¢{_1,...,¢§€il,...,gzﬁ%,...,gb}vl}. It falls into the category of ez-
tended relaxation methods. The problem with this procedure is that ¢; might not be in the finest
level j, which costs extra computation effort to enforce the constraints wlY + ag; € V}f M Ko.

J
We refer to the paper by Tai [176] for details.

Chapter 10
Robustness and Adaptivity

The efficient and robust solution of linear algebraic systems is one of the main bottlenecks
in large-scale numerical simulation. In this report, we review some old and new techniques for
improving the robustness of iterative solvers for large-scale sparse linear equations. In particular,
we will focus on methods based on machine learning to automatically select solver components
in order to get better overall simulation performance. Deep learning techniques, which have
gained popularity in many application areas of machine learning, can also be used to enhance

this automatic selection procedure.

10.1 Robustness of linear solvers

Due to the fact that, for many applications, a significant portion of simulation time for
transient problems is spent in linear solvers, a lot of efforts have been directed to the research on
solution methods for linear systems, which result in plenty of solution algorithms and software
packages [4]. Oftentimes practitioners without “proper” training might find themselves in a very
difficult position to choose a good solver or its parameters from excessive number of options.
More frustratingly, for a complex physical problem, there might not exist a universally best
solver for all linear systems over the course of simulation. Actually, performance of linear solvers
are largely affected by stage of evolution of physics, characteristics of discretization methods,

requirement of accuracy, closeness to solution, limitation in computing resources, and so on.

10.1.1 Why robustness is important

Simulation-based scientific discovery and engineering design have been the main driving

force for developing high-performance computers and algorithms. As we entered the multi-

238

CHAPTER 10. ROBUSTNESS AND ADAPTIVITY 239

petaflop! era, frequency of a single CPU core does not increase beyond certain critical value.
On the other hand, the number of computing cores in supercomputers is growing exponentially,
which results in higher and higher system complexity [3]. More processing cores competing for
various levels of memory resources widens the speed gap between computations and memory
accesses. It has become increasingly important for algorithms to be well-suited to the emerging
parallel hardware architectures of extreme scale. This trend also affects how one would choose
a solver for a particular problem. In this sense, complexity and different choices of hardware
architectures pose more difficulties in the choosing solutions methods for domain scientists. Co-
design of hardware, software, algorithm, and application is crucial to the success of scientific or
engineering computing to achieve exascale? performance [138, 5, 75].

Direct methods are popular in practice due to their robustness for a large class of problems.
Some specialized direct solvers, like fast Poisson solvers based on FF'T, are very efficient and
readily useable at different hardware and software platforms (see [94, 133] for example). But
these methods can only be applied for specific equations or special discretizations, which restricts
their applications in complicated engineering problems. Some direct methods, like general-
purpose sparse direct solvers [167], can be employed as a black-box solver and be plugged into
user-domain simulation programs easily. The sparse direct solvers are robust and effective for a
large class of discrete problems. More importantly, they require little human intervention and
are especially efficient for relatively small problems with around a million unknowns. Larger
problems, on the other hand, tend to require a large amount of memory as well as computational
time.

If applied successfully, direct methods can provide solution to nonsingular systems as accurate
as floating accuracy and condition number allow; see [70, 71] for example. However, this also
means that direct methods might give non-necessarily “high accuracy” for some applications. In
fact, accuracy is rarely the only property we ask for linear algebraic solvers. Efficiency, scalability,
cost-effectiveness, robustness, and reliability are important properties and we need to balance
between them in practice. There is no universal criteria for choosing solution methods and it all
depends on what we want to achieve and what cost we are willing to pay. For example, in order
to accelerate simulation when solving Jacobian systems arsing from Newton linearization, we
might use different types of iterative methods to different levels of accuracy in different stages
of nonlinear iteration [24]. Direct methods usually fail to provide enough flexibility for users to
tune and iterative methods are usually employed in such situations.

Ever increasing practical demand to solve very large linear systems and requirements on ap-

plicability suggest considering iterative methods as an alternative. Iterative methods can be used

110'® floating-point operations per second.
210*® floating-point operations per second.

CHAPTER 10. ROBUSTNESS AND ADAPTIVITY 240

as general-purpose or specialized solvers due to their cost-effectiveness and memory-efficiency;
see, for example, [118]. The most successful example of iterative methods is the so-called Krylov
subspace method (KSM), like the conjugate gradient (CG) method and the generalized minimal
residual (GMRES) method [166]. Since properties of linear systems can be very different in a
single simulation run, robustness of solution methods is an important, if not the biggest, con-
cern. However, the biggest weakness of iterative methods is arguably robustness, which refers
to the ability of iterative methods to resist perturbations or changes to the underlying physical
equation. Hence, to design a solver package based on iterative methods as a replacement of the
state-of-the-art direct solvers, the issue of robustness has to be resolved [170]. Indeed, a robust
general iterative solver is still hard to obtain, especially in industrial applications, and might be

the biggest dream for many engineers.

10.1.2 Robustness of linear solvers

Generally speaking, the robustness of a system can be viewed as the property of being strong
and healthy in the constitution. Most iterative solution methods can converge in a timely manner
for a variety of simple model problems, but slow down considerably or even fail to converge when
applied to more complex cases. For solution methods of linear algebraic systems, the definition

of robustness is twofold:

e First of all, the method should be breakdown-free and provide a reliable solution. This
basically says that we would like the simulation to run without unexpected interruptions

caused by the linear solver.

e Secondly, the robustness refers to the ability of solution methods to handle most problems
arising from simulations in a highly efficient manner. That is to say, the performance of the
solution method should be resistant to perturbations of physical as well as discretization

parameters and it gives reasonably accurate solutions in reasonable turn-back time.

Definition 10.1 (Robustness of a linear solver). A linear solver S is robust for a class of prob-

lems P if and only if the following property

max |S(Fa)| < &,

where | - || is a performance measure and ¢ is acceptance tolerance.
The performance measure and tolerance are usually problem-dependent and can be deter-

mined by the end users. Unfortunately, oftentimes we could not find a single solver good for all

different problem parameters. Hence we can weaken the condition and call a class of solvers S

CHAPTER 10. ROBUSTNESS AND ADAPTIVITY 241

is robust if

agirgn max |1Sa(Pa)| < e.

10.2 Robustness of Iterative Solvers

Consider the large-scale sparse system of linear algebraic equations arising from a partial
differential equation. As we pointed out earlier, performance of solution methods could be
affected by properties of the physical problem as well as its discretization methods, let alone
parameters of the solution methods. Usually, these properties can be characterized by simple
parameters, like temperature, diffusion coefficient, spatial mesh size, etc. There are also cases
when we can not or would not characterize those properties as parameters for cost concerns,
like heterogenous coefficients, unstructured grids, etc. These properties will eventually enter
the coefficient matrices A and usually handled in a purely algebraic manner. There are several
strategies to improve robustness of iterative solvers and we can categorise them into three types

described in this section.

10.2.1 Constructing preconditioners not sensitive to parameters

Preconditioners based on incomplete factorization of A, like the Incomplete LU (ILU) meth-
ods, are undoubtedly among the most popular methods in engineering [166]. ILU methods are
purely algebraic and are widely applied as subproblem solvers in the domain decomposition
(DD) methods for parallel computing. A related type of methods is the so-called Approximate
Inverse (AINV) preconditioners [21, 18] which is based the approximated factorizations of A1,
Incomplete factorizations can fail for a general SPD matrix due to the so-called pivot breakdown
and could be improved by shifting or modification of A. A more robust remedy for poorly con-
ditioned linear systems is the breakdown-free versions of ILU [33, 22, 34, 157]. Sometimes, ILU
methods might yield a relatively high complexity in order to obtain good convergence behavior,
especially in 3D.

Algebraic multigrid (AMG) is another type of popular preconditioning technique [55, 56, 165]
and it is, in some sense, more robust compared with GMG methods [164]. Problems with
anisotropic coeflicients on regular meshes, or problems with isotropic coefficients on anisotropic
meshes, will cause troubles for geometric multigrid methods. While GMG essentially relies on
the availability of robust smoothers, AMG takes a different approach by focusing on constructing
suitable coarse space. Following the seminar work by Brandt et al. [55, 56, 51] on the convergence
analysis applicable to AMG methods, there have been a lot of discussions on the AMG theory;
see [165, 60, 172, 88, 89, 183] for example. The readers are referred to the recent survey papers on
theoretical development [125, 151, 195] as well as applications and parallelization [199] of AMG

CHAPTER 10. ROBUSTNESS AND ADAPTIVITY 242

methods. For the development on non-symmetric problems, we refer to [127, 149, 129, 128]; for

analysis based on aggregation-type AMG algorithms, we refer to [180, 182, 61, 139, 143, 59].

10.2.2 Combining iteration, precondition, and decoupling strategies

It is known that the ILU methods can be employed as smoothers to improve robustness
of the multigrid methods [115, 185, 188]. A simple and transparent framework for combining
preconditioners like ILU or additive Schwarz preconditioners with AMG or any another norm-
convergent iterative method has been proposed by Hu et al. [111] for SPD problems. In such a
combined preconditioner, the component provided by the norm-convergent iterative method need
not be very effective when used alone. Such a framework has been applied to solve the systems
arising from the porous media flow problem [111] and extended to nonsymmetric problems in the
radiation diffusion problem [209, 210]. Another related strategy by combining different methods
to construct a more powerful solver for nonsymmetric problems can be found in [72].

For systems of partial differential equations, besides iterative solvers and preconditioners
and their combinations, it is sometimes beneficiary to apply extra decoupling steps to weaken
the strength of coupling between different physical variables. By combining decoupling methods
with appropriate solution methods, we can improve solver efficiency and robustness for many
complex problems arising from discretization of coupled (nonlinear) PDE systems; for example,
for semiconductor device simulation [11] and for compositional model in reservoir simulation [120,
156]. In particular, Qiao et al. [156] discussed the conditions when a preconditioner is suitable
for a particular decoupling strategy.

For transient problems, it is very often that no single iterative solver, preconditioner, or
decoupling is able to work very well for all linear systems arising during simulation. In order
to minimize solver failure possibility and maximize robustness, a natural idea is to combine
various solvers or preconditioners during simulation. One possible approach is the so-called
poly-iterative method, which applies various solvers or preconditioners with similar structure
simultaneously [17, 101]. An alternative approach is the composite method, which relies on a
composition of multiple iterative solvers to improve reliability [29, 26, 28, 27]. Although these
multi-method solvers are viable approaches to improve robustness in practice, especially for
large-scale problems, they tend to have a non-negligible overhead (i.e., extra computational

work during application); see a summary recently given by Sood [171] for more details.

10.2.3 Empolying an automated solver-selection procedure

Besides the methods mentioned above, an adaptive or automatic solver selection procedure

can be constructed to assist users to choose free parameters (see Figure 10.1) based on the

CHAPTER 10. ROBUSTNESS AND ADAPTIVITY 243

@
H
s 3
I-E=) Method 2
2=
o
o
Method 3

Composite
Method

w

- Failed or aborted methods
Method 1

Working methods
Adapiive BN woring
ooml|Method2 | ;

Selection Method 2 - Void methods

Module
Selection procedure
T] p

Adaptive Method

Figure 10.1: Different ways of combined multiple solvers to improve robustness

given feature parameters in order to get robust performance; see, for example, [158, 136, 200,
201]. The general algorithm selection problem in an abstract setting has been proposed by
Rice [159]. Since then this problem has discussed by many research groups and a software
package (ASLib) for benchmarking algorithm selection methods has been recently developed [31].
A software framework (SALSA) has been suggested for self-adapting linear algebra and linear
solution algorithms [77, 78, 73, 76, 83]. One may use analytical or empirical information to

design adaptive strategies for selecting solvers or their parameters for different problems; see
Figure 10.2.

Ty
Determine how fast
an iterative solver Free

| will converge Parameters

ps

Feature
Parameters

+ Analytical estimates * Explicit models
+ Empirical experiments * Machine-learning models

Figure 10.2: Typical procedure for constructing adaptive iterative solvers

This approach has been shown to be effective in many fields. In our experience, there are

several key components to make this approach efficient for a particular problem:

1. choosing a general enough solution procedure which is efficient or even optimal for simple

cases and can be adjusted for more difficult cases;

2. providing a small set of feature parameters which affect solver performance the most;

CHAPTER 10. ROBUSTNESS AND ADAPTIVITY 244

3. constructing a performance model based on analytical convergence factor estimates or

empirical experiments which can predict how efficient the solver might be;

4. having an efficient procedure to train a performance model based on actually simulation

runs, in case an analytical performance model is hard or not possible to be obtained.

10.3 Robustness of ILU Preconditioners

It is well-known that direct solvers have better robustness properties and can be usually
applied as a blackbox solver. In this section, we briefly discuss the robustness of LU and ILU
factorizations. They are not only important general-purpose solvers, but also can be combined

with multilevel iterative methods in various ways.

10.3.1 LU factorization

LU factorization and Gaussian elimination (GE) are well-known methods for solving linear
systems, especially for problems with general dense coefficient matrices. For simplicity, we do
not consider numerical stability and pivoting here. For a nonsingular matrix A € RV*N | we

RNXN RNXN such

need find a lower triangular matrix L € and an upper triangular matrix U €
that

A=LU.

Since we can require the main diagonal of L to an all-one vector, the two factors L and U can
be saved in a compact way in the original matrix A. So we give the GE algorithm implemented

as an in-place algorithm (the i-th row of A is overwritten by the i-th row of L and U).

Listing 10.1: Gaussian elimination — KIJ variant

1|for k=1,2,...,N -1

2 for i=k+1,...,N

3 ik < Qik/Qkk;

4 for j=k+1,...,N
5 Qij < Qij — AikQkj;
6 end

7 end

8 |end

The following theorem first proved by Fan [90] is important to analyze the procedure of
Gaussian elimination. This theorem makes sure the procedure can always continue and will not

break down. This is an important robustness property for linear solvers.

CHAPTER 10. ROBUSTNESS AND ADAPTIVITY 245

Theorem 10.2 (Fan Theorem). Let A be an M-matrix and A; be the matrix obtained from
the first step of Gaussian elimination. Then A; is also an M-matrix. The (N —1) x (N — 1)

sub-matrix of Ay by removing its first row and first column is also an M-matrix.

Although the above algorithm (the KIJ variant) is usually used to explain the Gaussian elim-
ination algorithm, it is rarely employed in practice due to performance consideration, especially
for sparse problems stored in certain data structures like CSR discussed in §6.5. Next we give a
more useful (or efficient) implementation of the same algorithm, which is referred to as the the

Gaussian — IKJ variant.

Listing 10.2: Gaussian elimination — IKJ variant

1|for 1=2,...,N

2 for k=1,...,1—1
3 ik < Qik/Akk;
4 for j=k+1,...,N

ot

Aij < Q35 — QikQkj 7
end

end

0w N O

end

10.3.2 Incomplete LU factorization

Incomplete LU factorization can be viewed as an inaccurate LU factorization and provides
an approximation to LU. In general, we need find a lower triangular matrix L € R¥*V and an

upper triangular matrix U € RY*Y such that
R=LU—-A, A:=A+R,

in which R € RN*¥ has certain static or dynamic zero pattern. For simplicity, we only discuss
methods with static zero pattern. Equivalently, we can specify, for the approximation matrix
A, a fixed zero pattern

Z:={(i,j)|i #j,1<i,j < N}.
Note that, with this definition, we require that the diagonal entries of A to be nonzero. Whence
the zero or nonzero pattern of the factorization is given, we can modify the LU methods to the
corresponding ILU (with static zero pattern) methods. For example, ILU(0) is a method with
Z which has the same zero pattern as the coefficient matrix A.

Listing 10.3: ILU with static zero pattern — KIJ variant

1|%% Given a zero pattern Z
2 | for (4,5) € Z, aij < 0;
3 |for k=1,2,... N—-1

CHAPTER 10. ROBUSTNESS AND ADAPTIVITY 246

4 for i=k+1,...,N && (i,j)¢ Z

ot

Aik “— Qik/Akk;
for j=k+1,...,N ss& (i,5) ¢ Z
Qij <= Qij — AikQkj;

end

© o N o

end

10 | end

Similar to the LU methods discussed previously, we can also construct an IKJ variant of the
above ILU method.

Listing 10.4: ILU with static zero pattern — IKJ variant

1|%% Given a zero pattern Z

2 | for (4,j) € Z, ai; < 0;

3 |for 1=2,...,N

4 for k=1,...;i—1 && (4,j)¢ Z

5 ik < @ik /Akk;

6 for j=k+1,...,N ss& (i,5) ¢ Z
7 Ajj < Qi — QikQkj;

8 end

9 end

10 | end

10.3.3 Robustness of ILU factorization

Definition 10.3 (Regular splitting). Let A, M, N be three given matrices satisfying A = M—N.
The pair of matrices (M, N) is a regular splitting of A, if M is nonsingular and M~! and N

are nonnegative.

We now consider the factorization method in Algorithm 10.3. Here, we use the subscript k
to denote the k-step of factorization. So A; € RV*N ig the matrix after first step of the Gauss

elimination. Then

Ay = A + Ry,

where A1 € RV*N ig the result of the first step of ILU. According to the definition of Z, the
dropped entries are nonpositive and R; is nonnegative.
By Theorem 10.2, we find that A; is an M-matrix. It can be proved that A; is also an

M-matrix; see HW 10.2. In this sense, the algorithm will not break down and it can further

0 T
ek. .
Aps1:Nk

produce
1

(k)
a](i‘k’)

Ay = LyAp_q, Lp:=1-—

CHAPTER 10. ROBUSTNESS AND ADAPTIVITY 247

Hence, at the k-th step, we obtain that
Ay = Ag + Ry, = L A1 + Ry,
Applying the above relation recursively, we get
An_1 = (Ln-1Ln—2-+-L1)A+ (Ly—1Ly—2++-LoR1 + -+ + Ly_1Rn_2 + Rn_1).
Define

U:=An_1,

~1
L:=(LyoLy—o---L1) ",
S:=Lyx_1Ly_9---LosRi+---+Ly_1Rny_2+ Rn_1.

Notice that, at the k-th step, entries dropped only appear in the (N — k) x (N — k) lower

sub-matrix of Ag. So the first k£ rows and columns of Ry are zero. As a result, we have
Ly 1Ly Lpy1R =Ly 1Ln_2--- L1 Ry.
Then it is easy to see that
S=Ly1Ly—g- Li(Ri+Ry+---+Ry)=L'R,

where R := Ry + Ro + --- + Ry. This gives LU = A + R and the result can be summarized in

the following theorem.

Theorem 10.4 (Robustness of ILU). Let A be an M-matrix and Z be a given zero pattern.

Then Algorithm 10.3 does not break down and produces an incomplete factorization
A= LU - R,

which is a regular splitting of A.

10.4 Workflow for Selecting Solvers

Along with the development of machine learning and deep learning theories, data-driven
algorithms have been used in a variety of ways for automatically selecting solvers and their pa-
rameters. Most traditional ML-based methods train a supervised classifier to predict appropriate

parameters for unknown linear systems [109, 24, 84].

CHAPTER 10. ROBUSTNESS AND ADAPTIVITY 248

10.4.1 Automatic classifiers for linear solvers

The key point of these methods is very similar. Firstly, one has to create a database and
split it into a training set and a test set (sometimes, a validation set as well). Every entry in

the database consists of
e input parameters:

— feature parameters, e.g., symmetry of the coefficient matrix, size of the coefficient

matrix;

— free parameters, e.g., type of preconditioner, number of computing nodes.
e output labels, e.g., whether the iterative method converges, how many iteration needed.

Secondly, using the training set to train the classifier. Finally, using the test set to verify the
effectiveness of the trained classifier.

In [109], neural networks with a single hidden layer were used as a classifier to divide 260
matrixes which is randomly selected from Florida Sparse Matrix Collection, combining with
72 iterative methods, into two categories (convergent and non-convergent). In [24], alternation
decision trees were applied to do the classification, but the output label is not a simple criteria
to reflect convergence but compared with a specific baseline solver. More specifically, only if the
iterative method is at least p time faster than the baseline method (the GMRES method with
block ILU preconditioner), it will be labeled as 1, otherwise —1. In [84], the authors suggested
that the multi-label classifiers outperform single-label classifiers in almost every simulation. And
in the lighthouse project [137], a variety of classification methods like LibSVM, BayesNet, KNN,
and so on were compared in terms of accuracy.

A common conclusion that can be drawn from the previous studies is that the number of input
parameters is not proportional to the classification effectiveness. This suggests that reducing
the number of parameters can decrease the overhead of computing attributes of matrix without
significantly influencing the accuracy of classification. Bhowmick et al. [30] studied feature set
reduction and ordering; and they demonstrated that the training time could be reduced by a

factor of 125 on average.

10.4.2 General methodology

e The workflow contains two steps: the offline step trains a model for selecting “optimal”
free parameters with human experts; the online step, on the other hand, select parameters

automatically based on the trained model.

CHAPTER 10. ROBUSTNESS AND ADAPTIVITY 249

Select input -, Obtain features
parameters for a problem

Free Distinguish Feature Find variables
parameters different types of parameters —> usingthe ML <——
input parameters model
Train a model for Reinforced
automatically learning to
setting variables improve model
Offline Online

Figure 10.3: Workflow for selecting solver parameters

e The solver and application experts should work together to choose an efficient solution
method which provides enough generality for the simulation problem at hand. Experts
should also choose a reasonable set of free parameters in order to improve performance of

training.

e We focus more on reinforced learning and transfer learning to obtain a better model and

prevent over-fitting.

e Which training algorithm to use is probably of secondary importance as the training is

done offline.

I. Offline step

1. For a given simulation problem, we need to determine what input parameters (including
both feature and free parameters) should be considered based on the given objective; This

step is mainly by human experts.

2. We then select feature and free parameters to obtain an input set with small number
of most important solver parameters; This step can be done by experts with help from

machines.

3. Choose a machine learning model based on the size of input set as well as the amount of

training data we have at hand; This step can be done by experts with help from machines.

CHAPTER 10. ROBUSTNESS AND ADAPTIVITY 250

4. Train the model; This step is done by machines.

II. Online step

1. For a specific linear systems during a simulation run, we extract features requested by

Step 2 of the office step.
2. Obtain free parameters based on the trained model.

3. Collect the result data to improve offline model later on.

10.5 Robustness of Multilevel Iterative Methods

A lot of effort has been devoted to improve robustness of iterative methods. One particularly
powerful technique is combining various Krylov subspace methods with proper preconditioners.
When combined with suitable preconditioners, Krylov subspace methods are efficient for linear
systems arising from partial differential equations. For example, geometric multigrid (GMG)
methods [107, 65, 179], although by themselves can be used as efficient solution methods, are
usually applied as preconditioners for KSMs. These methods are uniformly efficient with respect
to discretization scales and can be equipped with weighted smoothers (like damped Jacobi and
SOR methods [204]) to yield more robust convergence behavior for some partial differential
equations. On the other hand, such a solver framework also introduces many parameters and
an adaptive selecting procedure to choose solvers and parameters is critical for end users [17,
136, 26, 28, 79].

Machine learning (ML) techniques can naturally be applied to construct an adaptive or
automatic procedure to choose good solver parameters in practice. There are several algo-
rithms based on machine learning for classifying or selecting linear solvers [140]. Some focus
on constructing models or selecting parameters for training [24, 109, 30, 25, 169]; some focus
on learning algorithms to enhance performance [84, 137]; and, more recently, some focus on
automatically constructing iterative methods using machine learning [100, 110, 124, 114]. We
propose a two-step workflow for engineers to build adaptive linear solvers based on multilevel

methods accelerated by KSMs:

e In the offline step, we determine a set of parameters based on simulation goals; select
feature and variable parameters for a suitable machine learning model; and then train an

initial model for selecting appropriate variable parameters.

CHAPTER 10. ROBUSTNESS AND ADAPTIVITY 251

e During the online step, we extract feature parameters based available problem information;
obtain input parameters based on trained model and plug them into the solution procedure;

and, finally, collect the resulting data for improving the offline model further.

10.5.1 Adaptive multilevel iterative solvers

Multilevel preconditioners like GMG and AMG might be, sometimes, too costly or, some
other times, not robust with respect to physical parameters. Such solution strategy also intro-
duce several parameters, like KSM method type, smoother type, smoother ordering, coarsening
type, interpolation type, and so on. For a practical simulation problem, there could be many
other parameters for describing underlying physics, mathematical model, discretization method,
solution procedure, and available computing resource.

For the properties that can be parameterized, we can divide them into two groups: feature
parameters and free parameters. Feature parameters or features include task characteristics
(physical, discretization, solver, resource, etc) that are considered fixed for a specific simulation
run. On the other hand, free parameters are the properties that can be adjusted by hand or
automatically for solving different problems. Here the term,free parameters, is a general concept,
which might be restart number of GMRES, type of preconditioner, number of smoothing steps
in AMG, number of CPU cores to used, and so on.

Traditionally, when facing a particular problem, domain scientists need to choose a fixed
preconditioner with an appropriate multigrid method using a-priori information. In some cases,
local Fourier analysis (LFA) or local mode analysis can be applied to predict asymptotic conver-
gence factor of multigrid algorithms [53, 179]. Moreover, approximations of convergence factor
based on LFA can be obtained using automated procedures [187, 117, 113], it makes selecting a
good multigrid method possible. Numerical software packages for carrying out LFA automati-
cally [187, 2, 1] and optimizing multigrid parameters [153, 168, 66] are also available. However,
it is usually difficult, if not impossible, to select the “best” method in advance; especially in the

purely algebraic setting, as in most of the practical applications.

10.5.2 Constructing multigrid based on machine learning

Recently, more advanced deep network models are involved in the process of auto-tuning
the iterative methods. The main feature of these methods is that advanced machine learning
algorithms are applied to construct specific components of some iterative methods, like the
prolongation and smoothing operators in multigrid methods [174, 168, 100, 124]. In [168],
evolutionary algorithms were employed to choose the faster solver by adjusting the type of

smoother, the number of smoothing steps, as well as the relaxation factor in each coarse level.

CHAPTER 10. ROBUSTNESS AND ADAPTIVITY 252

Both [124] and [100] focused on the prolongation operator in AMG—The first one used graph
convolution neural networks to learn the weight coefficients in prolongation matrix P and the
second one used ResNet considered previously in [174].

One particularly useful trick demonstrated in these papers is that we do not have to use the
same type of data in the training set and test set. In fact, due to generality of neural networks,
we can use the data with certain properties that is easy to calculate (for example small in size)
in the training set, while using the data from difficult problem in test set. For example, the
error propagation matrix of a two-level AMG with prolongation P and smoother S can be given
by

E=(I-STA)I—-PPTAP)'PTA|(I — SA).

In general, the spectral radius of E is not easy to estimate for large-scale systems and we can
construct, in the training set, matrices A with special structures that are relatively easy to
calculate the spectral radius of the corresponding matrix E.

Furthermore, deep neural networks are also used as optimization techniques. Based on
the existed methods, researchers utilize neural networks to optimize the parameters in those
methods, in order to achieving better performance, and result in new methods which is different
from the methods mentioned above. In [114], steps in GMG are considered as an analogy of
layers in deep neural networks. Since the prolongation matrix P, restriction matrix R and
the damping coefficient w is differentiable in each step, therefore backpropagation approach in
neural networks can be used to optimize P, R and w. A method called DMG (Deep MultiGrid
method) is derived after training, but one shortcoming of the method is for every new matrix,
the whole process of training has to be re-run, which may be impractical. In [110], a variant of
Jacobi iterative method generated by CNN(Convolutional Neural Network) [122] or U-Net [163]

is illustrated using 2-D Poisson equation.

10.6 Homework problems

HW 10.1. Try to implement the KIJ and IKJ variants of the Gaussian elimination method and
design numerical tests to compare their performance. Are there other implementation strategies?

Please specify.

HW 10.2. Suppose that M and N are two matrices which satisfy that M < N and N(i,7) <0
for all ¢ # j. If M is an M-matrix, then N is an M-matrix.

Bibliography

[10]

[11]

[12]

aLFA, https://gitlab.com/nilskintscher/alfa.

LFA Lab, https://github.com /hrittich/Ifa-lab.

HPC Top500 list, https://www.top500.org/lists/2019/11/, 2019.

Freely available software for linear algebra, Last updated in September, 2018.

D. Abts, J. Thompson, and G. Schwoerer. Architectural support for mitigating DRAM

soft errors in large-scale supercomputers. Technical report, 2006.

O. Axelsson. A survey of algebraic multilevel iteration (AMLI) methods. BIT Numerical
Mathematics, 43:863-879, 2003.

O. Axelsson and G. Lindskog. On the eigenvalue distribution of a class of preconditioning
methods. Numerische Mathematik, 48(5):479-498, 1986.

0. Axelsson and G. Lindskog. On the rate of convergence of the preconditioned conjugate
gradient method. Numerische Mathematik, 48(5):499-523, 1986.

I. Babuska. Error-bounds for finite element method. Numerische Mathematik, 16(4):322—
333, 1971.

N. S. Bakhvalov. On the convergence of a relaxation method with natural constraints
on the elliptic operator. USSR Computational Mathematics and Mathematical Physics,
6(5):101-135, 1966.

R. E. Bank, T. F. Chan, W. M. Coughran Jr, and R. K. Smith. The alternate-block-
factorization procedure for systems of partial differential equations. BIT Numerical Math-

ematics, 29(4):938-954, 1989.

R. E. Bank and T. Dupont. An optimal order process for solving finite element equations.
Mathematics of Computation, 36(153):35-51, 1981.

253

BIBLIOGRAPHY 254

[13]

[14]

[15]

23]

[24]

[25]

R. E. Bank and T. F. Dupont. Analysis of a two-level scheme for solving finite element

equations. Technical report, 1980.

R. E. Bank, T. F. Dupont, and H. Yserentant. The hierarchical basis multigrid method.
Numerische Mathematik, 52(4):427-458, 1988.

R. E. Bank, P. E. Gill, and R. F. Marcia. Interior methods for a class of elliptic variational
inequalities. In L. T. Biegler, M. Heinkenschloss, O. Ghattas, and B. van Bloemen Waan-
ders, editors, Large-Scale PDE-Constrained Optimization, pages 218-235. 2003.

R. E. Bank and H. Yserentant. Multigrid convergence: A brief trip down memory lane.
Computing and Visualization in Science, 13(4):147-152, 2010.

R. Barrett, M. Berry, J. Dongarra, V. Eijkhout, and C. Romine. Algorithmic bombard-
ment for the iterative solution of linear systems: a poly-iterative approach. Journal of
Computational and applied Mathematics, 74(1-2):91-109, 1996.

M. Benzi, J. K. Cullum, and M. Tuma. Robust approximate inverse preconditioning for
the conjugate gradient method. SIAM Journal on Scientific Computing, 22(4):1318-1332,
2000.

M. Benzi, G. H. Golub, and J. Liesen. Numerical solution of saddle point problems. Acta
Numerica, 14:1-137, May 2005.

M. Benzi and M. A. Olshanskii. An Augmented Lagrangian-based approach to the Oseen
problem. SIAM Journal on Scientific Computing, 28(6):2095-2113, 2006.

M. Benzi and M. Tuma. A sparse approximate inverse preconditioner for nonsymmetric
linear systems. SIAM Journal on Scientific Computing, 19(3):968-994, 1998.

M. Benzi and M. Tuma. A robust incomplete factorization preconditioner for positive
definite matrices. Numerical Linear Algebra with Applications, 10(5-6):385-400, 2003.

J. Bergh and J. Lofstrom. Interpolation spaces: an introduction, volume 223. Springer
Science & Business Media, 2012.

S. Bhowmick, V. Eijkhout, Y. Freund, E. Fuentes, and D. Keyes. Application of machine
learning to the selection of sparse linear solvers. Int. J. High Perf. Comput. Appl, 2006.

S. Bhowmick, V. Eijkhout, Y. Freund, E. Fuentes, and D. Keyes. Application of alternating
decision trees in selecting sparse linear solvers. In Software Automatic Tuning, pages 153—
173. Springer, 2011.

BIBLIOGRAPHY 255

[26]

[27]

[32]

S. Bhowmick, L. McInnes, B. Norris, and P. Raghavan. The role of multi-method linear
solvers in pde-based simulations. In International Conference on Computational Science

and Its Applications, pages 828-839. Springer, 2003.

S. Bhowmick, L. Mclnnes, B. Norris, and P. Raghavan. Robust algorithms and software
for parallel pde-based simulations. In Proceedings of the Advanced Simulation Technologies
Conference, ASTC, volume 4, pages 18-22, 2004.

S. Bhowmick, P. Raghavan, L. Mclnnes, and B. Norris. Faster pde-based simulations
using robust composite linear solvers. Future Generation Computer Systems, 20(3):373—
387, 2004.

S. Bhowmick, P. Raghavan, and K. Teranishi. A combinatorial scheme for developing
efficient composite solvers. In International Conference on Computational Science, pages
325-334. Springer, 2002.

S. Bhowmick, B. Toth, and P. Raghavan. Towards low-cost, high-accuracy classifiers for
linear solver selection. In International Conference on Computational Science, pages 463—
472. Springer, 2009.

B. Bischl, P. Kerschke, L. Kotthoff, M. Lindauer, Y. Malitsky, A. Fréchette, H. Hoos,
F. Hutter, K. Leyton-Brown, K. Tierney, et al. Aslib: A benchmark library for algorithm
selection. Artificial Intelligence, 237:41-58, 2016.

D. Boffi, F. Brezzi, and M. Fortin. Finite elements for the Stokes problem. In Mized Fi-
nite Elements, Compatibility Conditions, and Applications, pages 45—-100. Springer Berlin
Heidelberg, 2008.

M. Bollhofer. A robust ilu with pivoting based on monitoring the growth of the inverse
factors. Linear Algebra and its Applications, 338(1-3):201-218, 2001.

M. Bollhofer. A robust and efficient ilu that incorporates the growth of the inverse trian-
gular factors. STAM Journal on Scientific Computing, 25(1):86-103, 2003.

F. Bornemann and H. Yserentant. A basic norm equivalence for the theory of multilevel
methods. Numerische Mathematik, 64(1):455-476, 1993.

D. Braess. The contraction number of a multigrid method for solving the poisson equation.
Numerische Mathematik, 37(3):387-404, 1981.

BIBLIOGRAPHY 256

[37]

[44]

[45]

[46]

[47]

D. Braess. Finite elements. Cambridge University Press, Cambridge, second edition, 2001.
Theory, fast solvers, and applications in solid mechanics, Translated from the 1992 German

edition by Larry L. Schumaker.

D. Braess and W. Hackbusch. A new convergence proof for the multigrid method including
the V-cycle. SIAM journal on numerical analysis, 20(5):967-975, 1983.

D. Braess and R. Sarazin. An efficient smoother for the Stokes problem. Applied Numerical
Mathematics, 23(1):3-19, feb 1997.

J. Bramble. Multigrid methods. Pitman research notes in mathematics series. Longman
Scientific & Technical, 1993.

J. Bramble and J. Pasciak. Iterative techniques for time dependent Stokes problems.
Computers Math. Applic., 33:13-30, 1997.

J. H. Bramble and J. E. Pasciak. New convergence estimates for multigrid algorithms.
Mathematics of computation, 49(180):311-329, 1987.

J. H. Bramble and J. E. Pasciak. A preconditioning technique for indefinite systems
resulting from mixed approximations of elliptic problems. Mathematics of Computation,

50(181):1, jan 1988.

J. H. Bramble and J. E. Pasciak. The analysis of smoothers for multigrid algorithms.
Mathematics of Computation, 58(198):467-488, 1992.

J. H. Bramble and J. E. Pasciak. New estimates for multilevel algorithms including the
V-cycle. Mathematics of computation, 60(202):447-471, 1993.

J. H. Bramble, J. E. Pasciak, J. P. Wang, and J. Xu. Convergence estimates for multigrid
algorithms without regularity assumptions. Mathematics of Computation, 57(195):23-45,
1991.

J. H. Bramble, J. E. Pasciak, J. P. Wang, and J. Xu. Convergence estimates for product
iterative methods with applications to domain decomposition. Mathematics of Computa-
tion, 57(195):1-21, 1991.

J. H. Bramble, J. E. Pasciak, and J. Xu. Parallel multilevel preconditioners. Mathematics
of Computation, 55(191):1-22, Jul. 1990.

J. H. Bramble and J. Xu. Some estimates for a weighted L? projection. Mathematics of
Computation, 56:463-476, 1991.

BIBLIOGRAPHY 257

[50]

[51]

[52]

[55]

[57]

[58]

A. Brandt. Multi-level adaptive solutions to boundary-value problems. Mathematics of
Computation, 31(138):333-390, 1977.

A. Brandt. Algebraic multigrid theory: The symmetric case. Applied Mathematics and
Computation, 19(1-4):23-56, jul 1986.

A. Brandt. Rigorous Quantitative Analysis of Multigrid, I. Constant Coefficients Two-
Level Cycle with Lo-Norm. SIAM Journal on Numerical Analysis, 31(6):1695-1730, 1994.

A. Brandt. Multigrid guide. Technical report, 2011.

A. Brandt and C. W. Cryer. Multigrid algorithms for the solution of linear complemen-
tarity problems arising from free boundary problems. SIAM J. Sci. Statist. Comput.,
4(4):655—684, 1983.

A. Brandt, S. McCormick, and J. Ruge. Algebraic multigrid (amg) for automatic multi-
grid solutions with application to geodetic computations. Report, Inst. for computational
Studies, Fort collins, colo, 1982.

A. Brandt, S. McCormick, and J. W. Ruge. Algebraic multigrid for sparse matrix equa-
tions. In D. Evans, editor, Sparsity and its Application, pages 257-284. Cambridge Uni-
versity Press, 1984.

S. Brenner. Convergence of the multigrid V-cycle algorithm for second-order boundary
value problems without full elliptic regularity. Mathematics of Computation, 71(238):507—
525, 2002.

S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods,
volume 15 of Texts in Applied Mathematics. Springer-Verlag, New York, second edition,
2002.

M. Brezina. An improved convergence analysis of smoothed aggregation algebraic multi-
grid. Numerical Linear Algebra with Applications, 19:441—-469, 2012.

M. Brezina, A. J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones, T. A. Manteuffel, S. F.
Meccormick, and J. W. Ruge. Algebraic multigrid based on element interpolation (AMGe).
SIAM J. Sci. Comput., 22:1570-1592, 2000.

M. Brezina, R. Falgout, S. MacLachlan, T. a. Manteuffel, S. Mccormick, and J. Ruge.
Aggregation (aSA) Multigrid. SIAM Review, 47(2):317-346, 2005.

BIBLIOGRAPHY 258

[62]

73]

F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising
from lagrangian multipliers. ESAIM: Mathematical Modelling and Numerical Analysis -
Modélisation Mathématique et Analyse Numérique, 8(R2):129-151, 1974.

F. Brezzi, M. Fortin, and L. D. Marini. Mixed finite element methods with continuous
stresses. Mathematical Models and Methods in applied sciences, 3(02):275-287, 1993.

W. L. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid Tutorial. Siam, 2000.

W. L. Briggs, V. E. Henson, and S. F. McCormick. A multigrid tutorial. Society for
Industrial and Applied Mathematics (STAM), Philadelphia, PA, second edition, 2000.

J. Brown, Y. He, S. MacLachlan, M. Menickelly, and S. M. Wild. Tuning multigrid methods
with robust optimization. arXiv preprint arXiv:2001.00887, 2020.

L. Chen. Deriving the XZ identity from auxiliary space method. In Domain Decomposition

Methods in Science and Engineering XIX, pages 309-316. Springer, 2011.

P. G. Ciarlet. The Finite Element Method for Elliptic Problems, volume 4 of Studies in
Mathematics and its Applications. North-Holland Publishing Co., Amsterdam-New York-
Oxford, 1978.

R. Courant and D. Hilbert. Methods of Mathematical Physics. Number v. 1 in Methods
of Mathematical Physics. Wiley, 1991.

T. A. Davis. Direct methods for sparse linear systems, volume 2. STAM, 2006.

T. A. Davis, S. Rajamanickam, and W. M. Sid-Lakhdar. A survey of direct methods for
sparse linear systems. Acta Numerica, 25:383-566, 2016.

B. A. de Dios, A. T. Barker, and P. S. Vassilevski. A combined preconditioning strategy
for nonsymmetric systems. SIAM Journal on Scientific Computing, 36(6):A2533-A2556,
2014.

J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet, R. Vuduc, R. C. Whaley,
and K. Yelick. Self-adapting linear algebra algorithms and software. Proceedings of the
IEEE, 93(2):293-312, 2005.

R. a. DeVore. Nonlinear approximation. Acta Numerica, 7:51, nov 2008.

J. Dongarra, P. Beckman, T. Moore, P. Aerts, G. Aloisio, J.-C. Andre, D. Barkai, J.-Y.
Berthou, T. Boku, B. Braunschweig, F. Cappello, B. Chapman, a. Choudhary, S. Dosanjh,
T. Dunning, S. Fiore, a. Geist, B. Gropp, R. Harrison, M. Hereld, M. Heroux, a. Hoisie,

BIBLIOGRAPHY 259

[76]

[77]

78]

[79]

[80]

K. Hotta, Y. Ishikawa, F. Johnson, S. Kale, R. Kenway, D. Keyes, B. Kramer, J. Labarta,
a. Lichnewsky, T. Lippert, B. Lucas, B. Maccabe, S. Matsuoka, P. Messina, P. Michielse,
B. Mohr, M. S. Mueller, W. E. Nagel, H. Nakashima, M. E. Papka, D. Reed, M. Sato,
E. Seidel, J. Shalf, D. Skinner, M. Snir, T. Sterling, R. Stevens, F. Streitz, B. Sugar,
S. Sumimoto, W. Tang, J. Taylor, R. Thakur, a. Trefethen, M. Valero, a. van der Steen,
J. Vetter, P. Williams, R. Wisniewski, and K. Yelick. The International Exascale Software
Project roadmap. International Journal of High Performance Computing Applications,
25(1):3-60, Jan. 2011.

J. Dongarra, G. Bosilca, Z. Chen, V. Eijkhout, G. E. Fagg, E. Fuentes, J. Langou,
P. Luszczek, J. Pjesivac-Grbovic, K. Seymour, et al. Self-adapting numerical software
(sans) effort. IBM Journal of Research and Development, 50(2.3):223-238, 2006.

J. Dongarra and V. Eijkhout. Self-adapting numerical software and automatic tuning
of heuristics. In International Conference on Computational Science, pages 759-767.
Springer, 2003.

J. Dongarra and V. Eijkhout. Self-adapting numerical software for next generation applica-
tions. The International Journal of High Performance Computing Applications, 17(2):125—
131, 2003.

J. Dongarra, S. Tomov, P. Luszczek, J. Kurzak, M. Gates, I. Yamazaki, H. Anzt, A. Haidar,
and A. Abdelfattah. With extreme computing, the rules have changed. Computing in
Science & Engineering, 19(3):52-62, 2017.

M. Dryja and O. Widlund. Additive schwarz methods for elliptic finite element problems in
three dimensions. In Fifth International Conference on Domain Decomposition Methods.
STAM, 1992.

M. Dryja and O. B. Widlund. Some domain decomposition algorithms for elliptic problems.

In Iterative Methods for Large Linear Systems. Academic Press Professional, Inc., 1989.

M. Dryja and O. B. Widlund. Additive schwarz methods for elliptic finite element problems
in three dimensions. In Parallel Algorithms for Partial Differential Equations Proceedings,

Kiel 1990. New York University. Courant Institute of Mathematical Sciences., 1991.

V. Eijkhout, E. Fuentes, N. Ramakrishnan, P. Kang, S. Bhowmick, D. Keyes, and Y. Fre-
und. A self-adapting system for linear solver selection. In Proc. Ist int’l workshop on
automatic performance tuning (iWAPT2006), pages 44-53, 2006.

BIBLIOGRAPHY 260

[84]

[96]

[97]

P. R. Eller, J. R. C. Cheng, and R. S. Maier. Dynamic linear solver selection for transient
simulations using multi-label classifiers. In Procedia Computer Science, volume 9, pages
1523-1532. Elsevier B.V., 2012.

H. C. Elman, D. J. Silvester, and A. J. Wathen. Finite elements and fast iterative solvers:

with applications in incompressible fluid dynamics. Oxford University Press, USA, 2005.
L. C. Evans. Partial Differential Equations. American Mathematical Society, 1998.

R. D. Falgout and J. B. Schroder. Non-Galerkin coarse grids for algebraic multigrid. STAM
J. Sci. Comput., 36:C309-C334, 2014.

R. D. Falgout and P. S. Vassilevski. On generalizing the algebraic multigrid framework.
SIAM J. Numer. Anal., 42:1669-1693, 2004.

R. D. Falgout, P. S. Vassilevski, and L. T. Zikatanov. On two-grid convergence estimates.
Numerical Linear Algebra with Applications, 12(5-6):471-494, 2005.

K. FAN. NOTE ON M-MATRICES . The Quarterly Journal of Mathematics, 11(1):43-49,
01 1960.

R. P. Fedorenko. A relaxation method for solving elliptic difference equations. USSR
Computational Mathematics and Mathematical Physics, 1(4):1092-1096, 1962.

R. P. Fedorenko. The speed of convergence of one iterative process. USSR Computational
Mathematics and Mathematical Physics, 4(3):227-235, 1964.

M. Fortin and R. Glowinski. Augmented Lagrangian methods: applications to the numerical

solution of boundary-value problems, volume 15. Elsevier, 2000.

M. Frigo and S. G. Johnson. The design and implementation of FFTW3. Proceedings of
the IEEFE, 93(2):216-231, 2005. Special issue on “Program Generation, Optimization, and
Platform Adaptation”.

G. P. Galdi. An introduction to the mathematical theory of the Navier-Stokes equations:
Steady-state problems. Springer Science & Business Media, 2011.

A. Gibbons. Algorithmic graph theory. Cambridge university press, 1985.

R. Glowinski. Numerical methods for nonlinear variational problems. Springer-Verlag,
New York, 1984.

BIBLIOGRAPHY 261

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

R. Glowinski, T.-W. Pan, and J. Periaux. A fictitious domain method for dirichlet problem
and applications. Computer Methods in Applied Mechanics and Engineering, 111(3-4):283—
303, 1994.

G. H. Golub and C. F. Van Loan. Matrix Computations, Third Edition, volume 10 of
Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press,
1996.

D. Greenfeld, M. Galun, R. Kimmel, I. Yavneh, and R. Basri. Learning to Optimize
Multigrid PDE Solvers. arXiv preprint arXiv:1902.10248, feb 2019.

C. Greif, T. Rees, and D. B. Szyld. Gmres with multiple preconditioners. SeMA Journal,
74(2):213-231, 2017.

M. Griebel and P. Oswald. On the abstract theory of additive and multiplicative Schwarz
algorithms. Numerische Mathematik, 180:163—-180, 1995.

F. Gustavson. Finding the block lower triangular form of a sparse matrix. In Sparse matriz

computations, pages 275-289. Elsevier, 1976.

W. Hackbusch. Ein iteratives verfahren zur schnellen auflésung elliptischer randwertprob-

leme. Technical report, 1976.

W. Hackbusch. Multi-grid convergence theory. In Multigrid methods, pages 177-219.
Springer, 1982.

W. Hackbusch. Multi-grid methods and applications. Springer, 1985.
W. Hackbusch. Multi-grid methods and applications. Springer Verlag, 1985.

X. He and C. Vuik. Comparison of some preconditioners for the incompressible Navier-
Stokes equations. Numerical Mathematics: Theory, Methods and Applications, 9(02):239-
261, 2016.

A. Holloway and T.-Y. Chen. Neural Networks for Predicting the Behavior of Precondi-

tioned Iterative Solvers. Technical report, 2007.

J.-T. Hsieh, S. Zhao, S. Eismann, L. Mirabella, and S. Ermon. Learning Neural PDE

Solvers with Convergence Guarantees. jun 2019.

X. Hu, S. Wu, X. Wu, J. Xu, C. Zhang, S. Zhang, and L. Zikatanov. Combined pre-
conditioning with applications in reservoir simulation. Multiscale Modeling & Simulation,
11(2):507-521, 2013.

BIBLIOGRAPHY 262

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

C. Johnson. Numerical Solution of Partial Differential Equations by the Finite Element
Method. Cambridge University Press, Cambridge, 1987.

K. Kahl and N. Kintscher. Automated local fourier analysis (alfa). BIT Numerical Math-
ematics, pages 1-36, 2020.

A. Katrutsa, T. Daulbaev, and I. Oseledets. Black-box learning of multigrid parameters.
Journal of Computational and Applied Mathematics, 368:112524, 2020.

R. Kettler. Analysis and comparison of relaxation schemes in robust multigrid and pre-
conditioned conjugate gradient methods. In Multigrid methods, pages 502—-534. Springer,
1982.

D. Kinderlehrer and G. Stampacchia. An introduction to variational inequalities and their
applications, volume 88 of Pure and Applied Mathematics. Academic Press Inc. [Harcourt
Brace Jovanovich Publishers], New York, 1980.

N. Kintscher. Automated Local Fourier Analysis (aLFA) and geometric multigrid for
graphene. PhD thesis, Universitat Wuppertal, Fakultat fiir Mathematik und Naturwis-
senschaften ..., 2019.

D. A. Knoll and D. E. Keyes. Jacobian-free newton—krylov methods: a survey of ap-
proaches and applications. Journal of Computational Physics, 193(2):357-397, 2004.

R. Kornhuber. Monotone multigrid methods for elliptic variational inequalities. I. Numer.
Math., 69(2):167-184, 1994.

S. Lacroix, Y. V. Vassilevski, and M. F. Wheeler. Decoupling preconditioners in the
implicit parallel accurate reservoir simulator (IPARS). Numerical linear algebra with ap-

plications, 8(8):537-549, 2001.

M. Larin and A. Reusken. A comparative study of efficient iterative solvers for generalized
Stokes equations. Numerical Linear Algebra with Applications, 15(November 2007):13-34,
2008.

Y. LeCun, Y. Bengio, et al. Convolutional networks for images, speech, and time series.
The handbook of brain theory and neural networks, 3361(10):1995, 1995.

Y. Lee, J. Wu, J. Xu, and L. Zikatanov. Robust subspace correction methods for nearly
singular systems. Mathematical Models and Methods in Applied Sciences, 17(11):1937—
1963, 2007.

BIBLIOGRAPHY 263

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

133

[134]

[135]

[136]

I. Luz, M. Galun, H. Maron, R. Basri, and I. Yavneh. Learning Algebraic Multigrid Using
Graph Neural Networks. arXiv preprint arXiv:2003.05744, mar 2020.

S. P. MacLachlan and L. N. Olson. Theoretical bounds for algebraic multigrid performance:

review and analysis. Numerical Linear Algebra with Applications, 21(2):194-220, 2014.

D. S. Malkus and T. J. Hughes. Mixed finite element methods—reduced and selective
integration techniques: a unification of concepts. Computer Methods in Applied Mechanics
and Engineering, 15(1):63-81, 1978.

J. Mandel. Multigrid convergence for nonsymmetric, indefinite variational problems and
one smoothing step. Appl. Math. Comput., 19(1-4):201-216, 1986. Second Copper Moun-

tain conference on multigrid methods (Copper Mountain, Colo., 1985).

T. A. Manteuffel, S. Miinzenmaier, J. Ruge, and B. S. Southworth. Nonsymmetric
reduction-based algebraic multigrid. SIAM J. Sci. Comput., 41:5242-S268, 2019.

T. A. Manteuffel, J. Ruge, and B. S. Southworth. Nonsymmetric algebraic multigrid based
on local approximate ideal restriction (¢AIR). SIAM J. Sci. Comput., 40:A4105-A4130,
2018.

K.-A. Mardal and R. Winther. Uniform preconditioners for the time dependent stokes
problem. Numerische Mathematik, 98(2):305-327, 2004.

K.-A. Mardal and R. Winther. Erratum: Uniform preconditioners for the time dependent
stokes problem. Numerische Mathematik, 103(1):171-172, 2006.

K.-A. Mardal and R. Winther. Preconditioning discretizations of systems of partial dif-
ferential equations. Numerical Linear Algebra with Applications, 18(1):1-40, Jan 2011.

P.-G. Martinsson and V. Rokhlin. A fast direct solver for boundary integral equations in

two dimensions. Journal of Computational Physics, 205(1):1-23, 2005.

S. F. McCormick. Multigrid methods for variational problems: general theory for the
V-cycle. SIAM Journal on Numerical Analysis, 22(4):634-643, 1985.

S. F. McCormick. Multigrid methods. SIAM, 1987.

L. MclInnes, B. Norris, S. Bhowmick, and P. Raghavan. Adaptive sparse linear solvers for
implicit cfd using newton-krylov algorithms. In Proceedings of the Second MIT Conference
on Computational Fluid and Solid Mechanics, volume 2, pages 1024-1028, 2003.

BIBLIOGRAPHY 264

137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

P. Motter, K. Sood, E. Jessup, and B. Norris. Lighthouse. In Proceedings of the 3rd
International Workshop on Software Engineering for High Performance Computing in
Computational Science and Engineering - SE-HPCCSE 15, pages 16-24, New York, New
York, USA, 2015. ACM Press.

S. Mukherjee, J. Emer, and S. K. Reinhardt. The soft error problem: An architectural per-
spective. In Proc. 11th Int’l Symp. on High-Performance Computer Architecture (HPCA),
2005.

A. C. Muresan and Y. Notay. Analysis of aggregation-based multigrid. SIAM Journal on
Scientific Computing, 30(2):1082-1103, 2008.

K. Naono, K. Teranishi, J. Cavazos, and R. Suda. Software automatic tuning: from

concepts to state-of-the-art results. Springer Science & Business Media, 2010.

A. Napov and Y. Notay. Comparison of bounds for V-cycle multigrid. Appl. Numer. Math,
60(3):176-192, 2010.

A. Napov and Y. Notay. When does two-grid optimality carry over to the V-cycle? Nu-
merical linear algebra with applications, 17(2-3):273-290, 2010.

A. Napov and Y. Notay. Algebraic analysis of aggregation-based multigrid. Numerical
Linear Algebra with Applications, 18(3):539-564, 2011.

J. Necas. Sur une méthode pour résoudre les équations aux dérivées partielles du type
elliptique, voisine de la variationnelle. Annali della Scuola Normale Superiore di Pisa-

Classe di Scienze, 16(4):305-326, 1962.

S. Nepomnyaschikh. Decomposition and fictitious domains methods for elliptic boundary
value problems. In Fifth International Symposium on Domain Decomposition Methods for
Partial Differential Equations, pages 62—72. Philadelphia: STAM, 1992.

M. Newman. Kantorovich’s inequality. Journal of Research of the National Bureau of
Standards Section B Mathematics and Mathematical Physics, page 33, 1960.

R. Nicolaides. On the £2 convergence of an algorithm for solving finite element equations.
Mathematics of Computation, 31(140):892-906, 1977.

Y. Notay. Convergence analysis of perturbed two-grid and multigrid methods. SIAM
journal on numerical analysis, 45(3):1035-1044, 2007.

Y. Notay. Algebraic analysis of two-grid methods: The nonsymmetric case. Numerical
Linear Algebra with Applications, 17(1):73-96, jan 2010.

BIBLIOGRAPHY 265

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

158]

159

[160]

[161]

[162]

Y. Notay. An aggregation-based algebraic multigrid method. Electronic transactions on
numerical analysis, 37(6):123-146, 2010.

Y. Notay. Algebraic theory of two-grid methods. Numerical Mathematics: Theory, Meth-
ods and Applications, 8(2):168-198, 2015.

Y. Notay and P. S. Vassilevski. Recursive Krylov-based multigrid cycles. Numerical Linear
Algebra with Applications, 15(July 2007):473-487, 2008.

C. W. Oosterlee and R. Wienands. A genetic search for optimal multigrid components
within a fourier analysis setting. SIAM Journal on Scientific Computing, 24(3):924-944,
2003.

P. Oswald. On discrete norm estimates related to multilevel preconditioners in the finite
element method. In Constructive Theory of Functions, Proc. Int. Conf. Varna, pages
203-214, 1991.

S. Pissanetzky. Sparse matriz technology. Academic Press Inc. [Harcourt Brace Jovanovich
Publishers], London, 1984.

C. Qiao, S. Wu, J. Xu, and C.-S. C.-S. Zhang. Analytical Decoupling Techniques for Fully
Implicit Reservoir Simulation. Journal of Computational Physics, 336:664—681, 2017.

A. Rafiei and M. Bollhofer. Robust incomplete factorization for nonsymmetric matrices.
Numerische Mathematik, 118(2):247-269, 2011.

J. R. Rice. On the construction of polyalgorithms for automatic numerical analysis. In
Symposium on Interactive Systems for Experimental Applied Mathematics: Proceedings of

the Association for Computing Machinery Inc. Symposium, pages 301-313, 1967.

J. R. Rice. The algorithm selection problem. In Advances in computers, volume 15, pages
65—118. Elsevier, 1976.

S. Rippa. Minimal roughness property of the Delaunay triangulation. Comput. Aided
Geom. Design, 7:489-497, 1990.

C. Rodrigo, F. J. Gaspar, and L. T. Zikatanov. On the validity of the local Fourier analysis.
arXiw:1710.00408, 2017.

F. J. Rodrigo, CarmenGaspar and L. T. Zikatanov. On the validity of the local fourier
analysis. Journal of Computational Mathematics, 37(3):340-348, 2018.

BIBLIOGRAPHY 266

163

[164]

[165]

[166]

167]

[168]

169

[170]

[171]

[172]

[173]

[174]

[175]

[176]

O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In International Conference on Medical image computing and

computer-assisted intervention, pages 234—241. Springer, 2015.
J. Ruge and K. Stiiben. Algebraic multigrid. Multigrid methods, 3:73-130, 1987.

J. W. Ruge and K. Stiiben. Algebraic multigrid. in Multigrid Methods, Frontiers Appl.
Math., STAM, Philadelphia, 3:73-130, 1987.

Y. Saad. [lterative Methods for Sparse Linear Systems. SIAM, second edition, 2003.

O. Schenk and K. Gértner. Solving unsymmetric sparse systems of linear equations with

PARDISO. Future Generation Computer Systems, 20(3):475-487, 2004.

J. Schmitt, S. Kuckuk, and H. Kostler. Optimizing geometric multigrid methods with
evolutionary computation. arXiv preprint arXiv:1910.02749, 2019.

W. M. Sid-Lakhdar, M. M. Aznaveh, X. S. Li, and J. W. Demmel. Multitask and transfer
learning for autotuning exascale applications. arXiw preprint arXiv:1908.05792, 2019.

J. Slotnick, A. Khodadoust, J. Alonso, D. Darmofal, W. Gropp, E. Lurie, and D. Mavriplis.
Cfd vision 2030 study: a path to revolutionary computational aerosciences. Technical

report, 2014.

K. Sood. Iterative Solver Selection Techniques for Sparse Linear Systems. PhD thesis,
University of Oregon, 2019.

K. Stiiben. An introduction to algebraic multigrid. In Multigrid by U. Trottenberg, C.
QOosterlee, and A. Schiiller, pages 413-532. 2001.

K. Stiiben and U. Trottenberg. Multigrid methods: Fundamental algorithms, model prob-

lem analysis and applications. 1982.

C. Szegedy, S. Toffe, V. Vanhoucke, and A. A. Alemi. Inception-v4, inception-resnet and the
impact of residual connections on learning. In Thirty-first AAAI conference on artificial

intelligence, 2017.

D. B. Szyld. The many proofs of an identity on the norm of oblique projections. Numerical
Algorithms, 42(3-4):309-323, 2006.

X.-C. Tai. Rate of convergence for some constraint decomposition methods for nonlinear

variational inequalities. Numerische Mathematik, 93:755-786, 2003.

BIBLIOGRAPHY 267

[177]

178

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

187]

[188]

[189)]

[190]

X.-C. Tai and J. Xu. Global and uniform convergence of subspace correction methods
for some convex optimization problems. Mathematics of Computation, 71(237):105-124,
2002.

R. Tarjan. Depth-first search and linear graph algorithms. SIAM journal on computing,
1(2):146-160, 1972.

U. Trottenberg, C. Oosterlee, and A. Schiiller. Multigrid. Academic Press, 2001.

P. Vanék, J. Mandel, and M. Brezina. Algebraic multigrid by smoothed aggregation for
second and fourth order elliptic problems. Computing, 56(3):179-196, Sep 1996.

S. P. Vanka. Block-implicit multigrid solution of Navier-Stokes equations in primitive
variables. Journal of Computational Physics, 65:138-158, 1986.

P. Vanék, M. Brezina, J. Mandel, et al. Convergence of algebraic multigrid based on
smoothed aggregation. Numerische Mathematik, 88(3):559-579, 2001.

P. S. Vassilevski. Multilevel Block Factorization Preconditioners. 2008.

F. Wang and J. Xu. A crosswind block iterative method for convection-dominated prob-
lems. SIAM Journal on Scientific Computing, 21(2):620-645, 1999.

P. Wesseling. Theoretical and practical aspects of a multigrid method. SIAM Journal on
Scientific and Statistical Computing, 3(4):387-407, 1982.

O. B. Widlund. Some schwarz methods for symmetric and nonsymmetric elliptic prob-
lems. In Fifth International Symposium on Domain Decomposition Methods for Partial
Differential Equations, number 55, page 19. STAM Philadelphia, PA, 1992.

R. Wienands and W. Joppich. Practical Fourier analysis for multigrid methods. CRC
press, 2004.

G. Wittum. On the robustness of ilu smoothing. STAM journal on scientific and statistical
computing, 10(4):699-717, 1989.

J. Xu. Iterative methods by space decomposition and subspace correction. SIAM Review,
34:581-613, 1992.

J. Xu. A new class of iterative methods for nonselfadjoint or indefinite problems. SIAM

journal on numerical analysis, 29(2):303-319, 1992.

BIBLIOGRAPHY 268

[191]

[192]

193]

[194]

195
[196]
[197]

198

[199]

[200]

[201]

[202]

203

[204]

J. Xu. The auxiliary space method and optimal multigrid preconditioning techniques for
unstructured grids. Computing, 56:215-235, 1996.

J. Xu and L. Zikatanov. A monotone finite element scheme for convection-diffusion equa-
tions. Mathematics of Computation, 68(228):1429-1446, 1999.

J. Xu and L. Zikatanov. The method of alternating projections and the method of subspace
corrections in Hilbert space. Journal of The American Mathematical Society, 15:573—-597,
2002.

J. Xu and L. Zikatanov. Some observations on Babuska and Brezzi theories. Numerische
Mathematik, 94(1):195-202, mar 2003.

J. Xu and L. Zikatanov. Algebraic multigrid methods. Acta Numer., 26:591-721, 2017.
J. Xu and L. T. Zikatanov. Algebraic multigrid methods. ArXiv e-prints, Nov. 2016.
S. Xu and Q. Jiang. Siz Lectures on Matriz Computation. Higher Education Press, 2011.

X. Xu. Algebraic Theory of Multigrid Methods. PhD thesis, University of Chinese Academy
of Sciences, 2019.

X. Xu. Parallel algebraic multigrid methods: State-of-the art and challenges for extreme-
scale applications. Journal on Numerical Methods and Computer Applications, 40(4):243—
260, 2019.

X. Xu, Z. Mo, and H. An. An adaptive amg preconditioning strategy for solving largescale
sparse linear systems. SCIENCE CHINA Information Sciences, (010):1411-1420, 2016.

X. Xu, Z. Mo, X. Yue, H. An, and S. Shu. asetup-amg: an adaptive-setup-based parallel
amg solver for sequence of sparse linear systems. CCF Transactions on High Performance

Computing, online first, 2020.

X. Xu and C.-S. Zhang. On the ideal interpolation operator in algebraic multigrid methods.
SIAM J. Numer. Anal., 56:1693-1710, 2018.

X. Xu and C.-S. Zhang. Convergence analysis of inexact two-grid methods: A theoretical
framework. STAM J Numer Anal, 60:133—-156, 2022.

S. Yang and M. K. Gobbert. The optimal relaxation parameter for the sor method applied
to the poisson equation in any space dimensions. Applied Mathematics Letters, 22(3):325—
331, 2009.

BIBLIOGRAPHY 269

205

206]

[207]

208]

[209]

[210]

[211]

212]

K. Yoshida. Functional Analysis. Springer-Verlag, 1971.

H. Yserentant. On the multi-level splitting of finite element spaces. Numerische Mathe-
matik, 49(4):379-412, 1986.

H. Yserentant. Two preconditioners based on the multi-level splitting of finite element
spaces. Numerische Mathematik, 58(1):163-184, 1990.

H. Yserentant. Old and new convergence proofs for multigrid methods. Acta Numerica,
2(1993):285-326, 1993.

X. Yue, S. Shu, X. Xu, and Z. Zhou. An adaptive combined preconditioner with ap-
plications in radiation diffusion equations. Communications in Computational Physics,
18(5):1313-1335, 2015.

X. Yue, X. Xu, and S. Shu. Jasmin-based two-dimensional adaptive combined precondi-
tioner for radiation diffusion equations in inertial fusion research. Fast Asian Journal on
Applied Mathematics, 7(3):495-507, 2017.

X. Zhang. Multilevel schwarz methods. Numerische Mathematik, 63(1):521-539, 1992.

L. T. Zikatanov. Two-sided bounds on the convergence rate of two-level methods. Numer.
Linear Algebra Appl., 15(5):439-454, 2008.

Index

Algebraic high-frequency, 186 Fictitious domain lemma, 132
Algebraic low-frequency, 185 Fictitious space lemma, 132
Algebraic smoothness, 185 Full multigrid, 161

AMLI-cycle, 159
Arnoldi method, 53

Auxiliary space lemma, 124

Galerkin orthogonality, 83

Gauss—Seidel method, 28

Gauss—Seidel smoother, 28
Auxiliary space method, 124, 132

Geometric high-frequency, 26
Banach—Necas theorem, 16

BPX preconditioner, 143

Hierarchical basis preconditioner, 138

Ideal interpolation, 185

CGC, 102 Independent set, 174

C -grid ti 102 . .
oarse-gric correction, Interpolation error estimate, 87

C ivity, 19 i
oercivity, Inverse equality, 87

1 i iti 22
Complementarity condition, 229 Tteration matrix, 29

Complementarity problem, 229

Condition number, 41 K-cycle, 159
Conjugate gradient method, 56 Kato’s lemma, 102
Cycle index, 158 Krylov matrix, 51

Krylov sequence, 51

Discrete Sobolev inequality, 87 Krylov subspace, 51

Duality argument, 88 Krylov subspace methods, 50

Effective condition number, 58 Lanczos method, 54

Error propagation operator, 42 Laplace equation, 12
9y

Error reduction operator, 42 Lax-Milgram theorem, 19

Expanded equation, 119 Lemma of oblique projections, 103

Expanded system, 119 Local Fourier analysis, 157

F-cycle, 161 M-matrix, 175

270

INDEX

Matrix representation, 90
Maximum independent set, 174
Method of subspace corrections, 114
MG-cycle, 158

Multigrid method, 34

Necas theorem, 17

Non-singular operator, 40
Operator complexity, 188

Poincaré inequality, 14

Poisson’s equation, 11

Richardson method, 28
Richardson smoother, 28

Ritz projection, 83

Smoothing factor, 96

Sobolev embedding theorem, 14
Sobolev number, 13

Sobolev space, 13

SOR method, 28

SOR smoother, 28

Spectral radius, 40

Strong approximation assumption, 183

Strongly n-coupled, 190
Strongly negatively coupled, 190

Symmetrized iteration, 44

Textbook multigrid efficiency, 157
Trace theorem, 15
Twogrid method, 101

Unisolvence, 84

V-cycle, 149
Variable V-cycle, 160

Weak approximation assumption, 183

271

Weak approximation property, 188
Weighted Jacobi method, 28
Weighted Jacobi smoother, 28

X7 identity, 125

	Contents
	General Theory of Multilevel Iterative Methods
	Introduction
	The model equation
	Derivation and classical solution
	Sobolev spaces
	Weak formulation
	Well-posedness of the weak problem
	A simple model problem

	Discretization methods
	Finite difference method
	Finite element method
	High-frequency and locality
	Adaptive approximation

	Simple iterative solvers
	Some examples
	An observation on smoothing effect
	Smoothing effect of Jacobi method

	Multigrid method in 1D
	Nested grids
	Smoothers
	Prolongation and restriction
	Multigrid algorithm

	Tutorial of FASP
	Homework problems

	Iterative Solvers and Preconditioners
	Stationary linear iterative methods
	Preliminaries and notation
	Convergence of stationary iterative methods
	Symmetrization
	Convergence rate of stationary iterative methods
	Gradient descent method

	Krylov subspace methods
	Arnoldi method
	Lanczos method
	Conjugate gradient method
	Some variants of CG method
	Minimal residual methods
	Biconjugate gradient methods
	Generalizing KSM to Hilbert spaces

	Preconditioning techniques
	Construction of preconditioners
	Preconditioned conjugate gradient method
	Precondition v.s. iteration
	Stopping criteria

	Domain decomposition methods
	Divide and conquer
	Overlapping DD methods
	Convergence of overlapping DDMs

	Homework problems

	Twogrid Methods
	Finite element methods
	Galerkin approximation
	Finite element
	Properties of finite element methods
	Error analysis

	Algebraic representations
	Vector and matrix representations
	Finite element matrices
	Algebraic forms of simple iterative methods

	Smoothers and smoothing effect
	A numerical example
	Local Fourier analysis
	Smoothing effect
	Smoother as preconditioner

	Twogrid methods
	General twogrid methods
	Convergence analysis of twogrid method
	Optimal coarse space

	Algebraic representation of twogrid methods
	Grid transfer operators in matrix form
	Coarse problem in matrix form
	Twogrid iterator in matrix form

	Homework problems

	Subspace Correction Methods
	Successive and parallel subspace corrections
	Abstract framework for subspace corrections
	SSC and PSC methods

	Expanded systems and block solvers
	Generalized G-S method
	Expansion of the original problem
	Block solvers for expanded systems
	Convergence of block solvers

	Convergence analysis of SSC
	A technical lemma
	The XZ identity

	Convergence analysis of PSC
	Relating PSC to SSC
	Condition number of PSC
	Estimates of K1 and K2

	Auxiliary space method
	Homework problems

	Examples of Multilevel Iterative Methods
	Subspace Correction Preconditioners
	Two-level overlapping DDM
	Two-level space decomposition
	Convergence analysis of DDM

	HB preconditioner
	Nested space decomposition
	Telescope expansions
	Hierarchical basis preconditioner
	Strengthened Cauchy-Schwarz inequality
	Convergence analysis of HB preconditioner

	BPX preconditioner
	Norm equivalence
	Convergence analysis for BPX preconditioner
	Matrix representation of BPX

	Homework problems

	Geometric Multigrid Methods
	Geometric multigrid method
	V-cycle multigrid method
	Matrix representation of GMG
	Anisotropic problems

	Convergence analysis of multigrid methods
	Convergence analysis of GMG method
	Some historical remarks

	Nested iterations
	V-cycle and its generalizations
	Complexity of multigrid iterations
	Full multigrid method

	Two-grid estimates for multigrid analysis
	From two-grid to multigrid
	Limitations of two-grid theory for GMG
	LFA ladder

	Implementation of multigrid methods
	A sparse matrix data structure
	Assembling finite element matrix
	Matrix form of transfer operators

	Homework problems

	Algebraic Multigrid Methods
	From GMG to AMG
	General procedure of multigrid methods
	Sparse matrices and graphs
	M-matrix and Delaunay triangulation
	Tarjan's algorithm

	Motivations of algebraic multigrid methods
	Algebraic convergence theory
	Interpolation operators
	Algebraic smooth error
	Construction of coarse spaces

	Classical algebraic multigrid methods
	General AMG setup phase
	Strength of connections
	C/F splitting
	Construction of prolongation

	Aggregation-based algebraic multigrid methods
	Unsmoothed aggregation AMG
	Smoothed aggregation AMG

	Applications of Multilevel Iterative Methods
	Fluid Problems
	The Navier–Stokes equations
	Flow map
	Volume and mass conservation
	Balance of momentum
	Mathematical models

	The Stokes-type equations
	The time-dependent Stokes equation
	The Brezzi theory
	Well-posedness of the Stokes equation
	Penalty method for the Stokes equation

	Mixed finite element methods
	Well-posedness and convergence
	Some stable finite element pairs
	Mixed methods for the Poisson's equation

	Canonical preconditioners
	Preconditioning the Stokes equation
	Preconditioning the time-dependent Stokes equation
	Preconditioning the heat equation

	Block preconditioners
	Block diagonal and lower triangular method
	Augmented Lagrangian method

	Multigrid methods for the Stokes equation
	Braess–Sarazin smoother
	Vanka smoother

	Homework problems

	Optimization Problems
	Model problems
	A model variational inequality
	Finite element discretization for VIs
	Error and residual

	Nonlinear equation and unconstrained minimization
	Nonlinear solvers
	Newton–Raphson method
	Full approximation scheme
	Subspace correction methods for convex minimization

	Constrained minimization
	Projected full approximation method
	Interior point method
	Monotone multigrid method

	Constraint decomposition method

	Robustness and Adaptivity
	Robustness of linear solvers
	Why robustness is important
	Robustness of linear solvers

	Robustness of Iterative Solvers
	Constructing preconditioners not sensitive to parameters
	Combining iteration, precondition, and decoupling strategies
	Empolying an automated solver-selection procedure

	Robustness of ILU Preconditioners
	LU factorization
	Incomplete LU factorization
	Robustness of ILU factorization

	Workflow for Selecting Solvers
	Automatic classifiers for linear solvers
	General methodology

	Robustness of Multilevel Iterative Methods
	Adaptive multilevel iterative solvers
	Constructing multigrid based on machine learning

	Homework problems

	Bibliography
	Index

