Multilevel Iterative Methods

Chen-Song Zhang

Version 0.8, July 31, 2020

Copyright © Chen-Song Zhang, 2016-2020.

This work is licensed under a Creative Commons “Attribution- @@@@

NonCommercial-NoDerivs 3.0 Unported” license.

You can use this book free of charge for non-commercial purposes, in particular for studying and/or teaching.
You can print paper copies of the book or its parts using either personal printer or professional printing services.
Instructors teaching a class (or their institutions) can provide students with printed copies of the book and charge
the fee to cover the cost of printing; however the students should have an option to use the free electronic version.

See https://creativecommons.org/licenses/by-nc-nd/3.0/.

https://creativecommons.org/licenses/by-nc-nd/3.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/3.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/3.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/3.0/

Abstract

Over the past few decades, intensive research has been done on developing efficient it-
erative solvers for large-scale linear systems arising from PDEs. One particularly powerful
technique that has drawn a lot of attention in practice and theoretical analysis is the class
of multilevel iterative solvers/preconditioners. In this lecture note, we will focus on algo-
rithms and analysis of multilevel iterative methods, including the well-known geometric and
algebraic multigrid methods, for discrete problems arsing from partial differential equations.
The main content of this note is presented for the simple Poisson’s equation, but a few more
complicated applications of multilevel iterative methods are also discussed.

The lecture note is originally prepared for a semester-long course at the Academy of
Mathematics and Systems Science, Beijing. It is mainly based on Prof. Jinchao Xu’s short
courses at the Peking University in 2013 and at the Academy of Mathematics and Systems
Science in 2016, as well as Prof. Ludmil Zikatanov’s summer school lectures at the Academy
of Mathematics and Systems Science in 2015. Special thanks to Dr. Xuefeng Xu, Ms. Huilan

Zeng, and Ms. Wenjuan Liu for proof-reading this note.

- Version 0.1: March 18, 2016 — May 10, 2016
- Version 0.2: May 12, 2016 — May 26, 2016

- Version 0.3: June 08, 2016 — Aug 22, 2016

- Version 0.4: Aug 26, 2016 — Dec 31, 2016

- Version 0.5: Feb 01, 2017 — Jan 10, 2018

- Version 0.6: Sep 10, 2018 — Dec 20, 2018

- Version 0.7: May 28, 2019 — July 24, 2019

- Version 0.8: Jan 24, 2020 — July 31, 2020

Contents

Contents 1
I General Theory of Multilevel Iterative Methods 7
1 Introduction 8
1.1 The model equation e 10
Derivation and classical solution * L L. 10

Sobolev spaces * L L e 12

Weak formulation 14
Well-posedness of the weak problem ~ 14

A simple model problem L 18
High-frequency and locality 19

1.2 Discretization methods oL 20
Finite difference method Lo o o 21

Finite element methodo oo 23
Adaptive approximation 24

1.3 Simple iterative solvers L 25
Some examples e e e e e 25

A simple observation 27
Smoothing effect of Jacobi method » 29

1.4 Multigrid method in 1D L o 30
Nested grids o . o 30
Smoothers 30
Prolongation and restriction L Lo oL o 31
Multigrid algorithm L Lo 32

1.5 Tutorial of FASP % 34
1.6 Homework problems 35

CONTENTS 9

2 Iterative Solvers and Preconditioners 36
2.1 Stationary linear iterative methods oL 36
Preliminaries and notation Lo Lo Lo 37
Convergence of stationary iterative methods 39
Symmetrization oL 41
Convergence rate of stationary iterative methods 43

An example: modified G-S method « 44

2.2 Krylov subspace methods oo oo 46
Gradient descent methodo 46
Conjugate gradient method Lo 49
Effective condition number »o oo o oo 51
Generalizing KSM to Hilbert spaces, 52

2.3 Condition number and preconditioningo 54
Construction of preconditionerso oo 54
Preconditioned conjugate gradient method oo 55
Preconditioning v.s. iteration L Lo 56
Stopping criteria x 57

2.4 Domain decomposition methodso o o0 58
Divide and conquer Lo Lo 58
Overlapping DD methods 59
Classical convergence results of overlapping DDMs » 60

2.5 Homework problems 61
3 Twogrid Methods 62
3.1 Finite element methods L oL 62
Galerkin approximation 63
Finite element » L 65
Properties of finite element methods 67
Error analysis » oL oL L 69

3.2 Matrix representations L. Lo Lo Lo 70
Vector and matrix representations 70
Finite element matrices L Lo Lo 71
Matrix and operator forms of simple iterative methods 72

3.3 Smoothers and smoothing effecto o 0oL 74
A numerical example 74

Local Fourier analysis * 75

CONTENTS

11

3.4

3.5

3.6

Smoothing effect
Smoother as preconditioner
Twogrid methods
General twogrid methods
Convergence analysis of twogrid method . . .
Optimal coarse space *
Matrix representation of the twogrid method
Grid transfer operators in matrix form
Coarse problem in matrix form
Twogrid iterator in matrix form

Homework problems

Subspace Correction Methods

4.1

4.2

4.3

4.4

4.5
4.6

Successive and parallel subspace corrections .
Abstract framework for subspace corrections .
SSC and PSC methods
Expanded system and block solvers
Expansion of the original problem
Block solvers for expanded equation
Convergence of block solvers
Convergence analysis of SSC
A technical lemma
The XZ identity
Convergence analysis of PSC
Relating PSC to SSC
Condition number of PSC
Estimates of Ky and Ko
Auxiliary space method *

Homework problems

Examples of Multilevel Iterative Methods

Subspace Correction Preconditioners

5.1

Two-level overlapping DDM
Two-level space decomposition

Convergence analysis of DDM

78
80
80
81
82
86
87
88
89
89
90

92
92
93
95
96
96
98
100
101
101
103
105
105
106
107
109
110

111

CONTENTS 4

5.2 HB preconditioner L L L 114
Nested space decomposition Lo o 114
Telescope expansionso e 115
Hierarchical basis preconditioner 115
Strengthened Cauchy-Schwarz inequality 117
Convergence analysis of HB preconditioner 118

5.3 BPX preconditioner 120
Norm equivalence L 120
Convergence analysis for BPX preconditioner, 122
Matrix representation of BPX o000 123

5.4 Homework problems 124

6 Geometric Multigrid Methods 125

6.1 Geometric multigrid methodo oo oo 125
V-cycle multigrid method oo oo 126
Matrix representation of GMG L o 127
Anisotropic problems * 128

6.2 Nested iterations 130
V-cycle and its generalizations L L oo 130
Complexity of multigrid iterations 132
Full multigrid method * Lo 133

6.3 Convergence analysis of multigrid methods 134
Convergence analysis of GMG method, 135
Some historical remarkso 136

6.4 Two-grid estimates for multigrid analysis 139
From two-grid to multigrid Lo oo 139
Limitations of two-grid theory for GMG + 140

6.5 Implementation of multigrid methods 141
A sparse matrix data structure o 141
Assembling finite element matrixo L L L Lo 143
Matrix form of transfer operators 145

6.6 Homework problems L 147

7 Algebraic Multigrid Methods 148

7.1 From GMG to AMG e 148

General procedure of multigrid methods 148

Sparse matrices and graphs xo Lo Lo 150

CONTENTS

7.2

7.3

7.4

M-matrix and Delaunay triangulation +
Tarjan’s algorithm * L o
Motivations of algebraic multigrid methods
Algebraic convergence theory
Interpolation operators Lo Lo
Algebraic smooth error
Construction of coarse spaces v i it e
Classical algebraic multigrid methods
General AMG setup phase
Strength of connections Lo oo
C/F splitting
Construction of prolongation o o
Aggregation-based algebraic multigrid methods
Unsmoothed aggregation AMG
Smoothed aggregation AMGo

IIT Applications of Multilevel Iterative Methods

8 Fluid Problems

8.1

8.2

8.3

8.4

The Navier—Stokes equations * it i e
Flowmap e
Volume and mass conservation
Balance of momentum
Mathematical models Lo o
The Stokes-type equations
The time-dependent Stokes equation
The Brezzi theory
Well-posedness of the Stokes equation
Penalty method for the Stokes equation «
Mixed finite element methods
Well-posedness and convergence e
Some stable finite element pairs * Lo oo
Mixed methods for the Poisson’s equation *
Canonical preconditioners
Preconditioning the Stokes equation 0oL

Preconditioning the time-dependent Stokes equation x

151
153
156
156
159
160
162
164
164
165
166
170
174
174
175

178

CONTENTS

Preconditioning the heat equation *
8.5 Block preconditioners
Block diagonal and lower triangular

Augmented Lagrangian method . .

method

8.6 Multigrid methods for the Stokes equation

Braess—Sarazin smoother
Vanka smoother

8.7 Homework problems

9 Optimization Problems
9.1 Model problems
A model variational inequality . .
Finite element discretization for VIs

Error and residual

9.2 Nonlinear equation and unconstrained minimization

Nonlinear solvers
Newton—Raphson method

Full approximation scheme

Subspace correction methods for convex minimization

9.3 Constrained minimization

Projected full approximation method

Interior point method
Monotone multigrid method

9.4 Constraint decomposition method

Bibliography

196
197
198
199
201
201
201
202

204
204
204
206
206
207
207
208
209
210
210
210
211
212
213

214

Part 1

General Theory of Multilevel
Iterative Methods

Chapter 1

Introduction

Computer simulation has become an important tool in engineering and sciences. Many
physical problems in scientific and engineering computing can be reduced to the numerical
solution of certain partial differential equations (PDEs). Finding a viable solution to underlying
discretized systems is often expensive, generally consuming a significant portion of the overall
cost in a numerical solution procedure of PDEs. Various fast solution techniques, such as
adaptive mesh refinement (AMR), domain decomposition (DD) methods, and multigrid (MG)
methods, have been developed to address this issue. In certain sense, all these techniques involve

“multilevel” iterations.

A Physical Problem Computer System
Mathematical Model Computer Program

Analysis — Simulation — software

Development

/ Existence, \ / Linearization, \ / \

User interface,

unigueness, mesh generation, S
- . L code optimization,
stability, discretization, .
) . input/output,
regularity, solution, .
. . customer service,
conservation, parallelization,

Figure 1.1: Numerical simulation of a physical problem.

CHAPTER 1. INTRODUCTION 9

The above diagram gives a simple illustration of how a physical problem is “solved” via
numerical simulation in general. It is basically an interplay of modeling, mathematical analy-
sis, numerical analysis, scientific computing, and software engineering. A successful computer
simulation of complicated physical phenomena requires expertise in many scientific subjects.
Hence, nowadays it is difficult for one person to manage all these areas and close collaborations
of experts from different areas become crucial.

Effective linear solvers play a key role in many application areas in scientific computing.
There are many different types of algorithms for solving linear systems. In this lecture, we
focus on studying algorithmic and theoretical aspects of multilevel iterative methods, including
geometric multigrid (GMG) and algebraic multigrid (AMG) methods. The basic problem setting
for our discussion is: Given an invertible matrix A : RV*Y and a vector f e RV, find @ e RN

—

such that Aw = f. There are many features of linear solver that we desire in practice, including;:

Convergence — The method should converge to the solution for any initial guess.

Robustness — The method should behave similarly in different scenarios.

Optimality — The method can give a solution with O(N) computational cost.

Efficiency — The method can give a solution in “reasonably short” wall time.

Scalability — The method can scale well on modern parallel architectures.

Reliability — The method should converge to a solution with limited amount of time.

Usability — The method can be implemented and used relatively easily.

Here we do not mean to define these features rigorously and we will discuss some of them in
details later. These features sometimes contradict with each other and we have to find a good
balance in practice. There are many different solution methods available, including direct solvers
and iterative solvers. In this lecture, we will discuss several popular multilevel iterative methods,
including the overlapping domain decomposition methods with coarse space corrections, two-
grid methods, geometric multigrid methods, algebraic multigrid methods. And we will mainly

study the convergence theory of these methods using the subspace correction framework.

CHAPTER 1. INTRODUCTION 10

1.1 The model equation

Let Q = R? be an open and bounded domain with Lipschitz boundary and f € L?(Q). We
consider solution of the Poisson’s equation with Dirichlet boundary condition
—Au=f in Q,
u=20 on 0f).

(1.1)

This equation will be our main model equation in most part of this lecture.

Remark 1.1 (Diffusion equation in various applications). The Poisson’s equation, or more
generally the diffusion equation, appears in many areas of physics, for example, Fick’s law for
chemical concentration, Fourier’s law for temperature, Ohm’s law for electrostatic potential,

Darcy’s law for porous media flow. O

Derivation and classical solution x

The concept of diffusion is widely used in physics, chemistry, biology, sociology, economics,
and finance. It is the net movement of the object (e.g. molecules or atoms) from a region of
high concentration (or high chemical potential) to a region of low concentration (or low chemical
potential). This is also referred to as the movement of a substance down a concentration gradient.

Let u(z) be some diffusive quantity, like pressure, temperature, or concentration of a bio-
logical species. We define the operator V := (d1,...,04)". So the gradient of scalar function
u : € — R can be denoted by Vu. The Laplace operator can be written as Au = V- Vu. A

diffusive flux F is usually proportional to the gradient of u, i.e.,
F = —kVu. (1.2)

where k is the diffusivity (e.g., heat conductivity or permeability). Note that —Vu is the so-called
steepest descent direction. If a flow is controlled solely by diffusion, then the mass conservation

in any volume w with unit outer normal vectors ©/ can be written, in the integral form, as

afuda:z—f F.i7dS
ot w ow

or, in the strong form, as

0 _,
—u=-V-F. 1.
at" (13)

This can be seen by applying the Divergence Theorem

JV-Fdx—J F - 7dS. (1.4)
w ow

CHAPTER 1. INTRODUCTION 11

Now, by plugging (1.2) into (1.3), we obtain an equation

0
Fri V- (kVu). (1.5)

If we assume k = 1 or just a constant and there is a source/sink term f on €2, then we arrive at
the heat equation

;tu —Au = f. (1.6)

The steady-state solution of equation (8.44) satisfies the well-known Poisson’s equation
—Au = f. (1.7)

Remark 1.2 (Laplace equation). In case of the body force or source/sink term is zero, the

equation is usually referred to as the Laplace equation
—Au = 0. (1.8)
If ue C%(Q) and —Au = 0, the u is called a harmonic function. O
We have the fundamental solution of the Laplace equation

—% log |z|, d=2
O(z) := (1.9)
1 —d
e el d=3
where a(d) is the volume of the unit ball in R%. It is well-known that
u(z) = @ * f = f (z—y)fy)dy

Rd

satisfies —Au = f in R? and u € C%(R?); see Evans [53].
Theorem 1.3 (Strong Maximum Principle). If u € C?(Q) () C(Q) is harmonic in €2, then

max u(z) = max u(z).
zeQ) el

If the domain €2 is connected, then u = C if there exists xg € {2 such that
u(xg) = maxu(x).
e

Using the maximum principle, we can obtain uniqueness of the solution to the Poisson’s

equation:

Theorem 1.4 (Uniqueness of solution). If f € C(2), then there exists at most one solution

ue C2(Q)NCQ).

CHAPTER 1. INTRODUCTION 12

Sobolev spaces *

The standard L®-norm and L%mnorm will be denoted by || - | and | - |o, respectively. The
symbol L3() denotes a subspace of L?(f2) consisting of functions that have a zero average.
The bilinear forms (-,-) and {-,-) denote the classical L?-inner product and the duality pair,
respectively.

Given a natural number k € N and 1 < p < o0, we define the Sobolev spaces
Wr(Q) :={v:Q—R: Ve L’(Q), for all [a] <k}, (1.10)

where a = [, ..., aq] is a multi-index and Vv := 0g} - -- 0g9v is the weak derivative of order

a. The corresponding norm and semi-norm are then defined as follows: for 1 < p < o0,

1 1
lolws@ = (2 IV*0l0e)"s ohipa = (X 19°000)"s (L11)

la|<k |a|=k
and, for p = o0,
wlwe @) = |ST1P IV L), [vlwe @) = ‘Sl|lplC V| L (1.12)
CM\ (6%

Definition 1.5 (Sobolev number). Let Q R? be Lipschitz and bounded, k € N, and 1 < p < co.

The Sobolev number is defined by
K d
sob(W; () ==k — —. (1.13)
p
Remark 1.6 (Natural scaling). There is a natural scaling for the semi-norm | - |W5(Q)' For

h > 0, we apply the change of variable & = x/h : Q — Q). Then the following scaling result holds

0

- k-4 sob(W, Q)
WE(Q) ~ h p‘”’wg(=h ‘ ‘Wk(Q
This property is useful in scaling argument (or homogeneity argument) for finite element error

estimates. 0

If p = 2, the spaces W¥(Q) are Hilbert spaces and we denote them by H*(Q) for short. The

inner product is given by

(U, V)0 = (U, V) gr(q) = f V¥ V* dz.
la|<k
The induced norm of this scalar product is the W (Q)-norm. We denote the completion of
CP() in H*(Q) by HF(Q). We will also use the fractional Sobolev space Hyt7(Q) where
0 <o < 1. It is defined as the completion of C°(2) in the fraction norm:

1
ol sy = (10l + [0Emro)

CHAPTER 1. INTRODUCTION 13

where

1
. |Dv(x) — D(y)[? 2
‘U’HkJro(Q) = < 2 L JQ o — A+ dedy | .

laf=Fk
Before we discuss the Poisson’s equation in weak formulation, we introduce a few important
properties of the Sobolev spaces, which will become important in our later analysis for multigrid

methods.

Proposition 1.7 (Sobolev embedding). Let 0 < k < m. If sob(W;"(2)) > sob(Wf(Q)), then
the embedding W,*(€2) — WF(Q) is compact.

Proposition 1.8 (Sobolev embedding to Hoélder continuous spaces). Let 0 < m and 2 is
Lipschitz. If 0 < o < sob(W)™(R)), then W (Q) < C%*(2) < C°(Q).

Example 1.9 (Embedding to C%(Q2)). An example of particular interests is the relation between

H'(Q) and continuous functions C°(Q2) for @ = R%. From Proposition 1.8, we have
HY(Q) c C%(Q), if d = 1; and H(Q) ¢ C°(Q), if d > 1.

For example, if Q is the unit disk on R?, then u(z,y) = (—log(z% +?))"/? is not continuous but
in H'(9Q).

Proposition 1.10 (Poincaré-Wirtinger inequality). For any v € H'(£2), we have

Hv — Q! JQUCMHO,Q <C@Q)fv

1,0
Proposition 1.11 (Poincaré inequality). For any v € HZ(Q), we have

HUHO,Q < Cd|Q|1/d|U‘1,Q'

It is a special case of the more general Friedrichs’ inequality on Wf(Q) with zero trace and it is

sometimes referred to as the Friedrichs—Poincaré inequality.

Proposition 1.12 (Trace theorem). There exists a unique linear operator trace : H'(f2)
L?(08Y), such that trace(v) = v, if v e C°(Q) (" HY(Q), and

| trace(v)“mm <O, Yve HY(Q).
Moreover, if g € H%((?Q), there exists ¢ € H'(2) such that ¢|sq = g and

[8l1.0 < Clgl1 s0-

CHAPTER 1. INTRODUCTION 14

Weak formulation

Now we consider the Poisson’s equation in a weaker sense. A simple motivation is to convert

from a point-wise view to an average view:
u(z) =0, ae. < J wdzr =0, YveCy(Q).
Q

Similarly, we can write the Poisson’s equation in the weak form (i.e., the integral form). In the

one-dimensional case, it is easy to see that
—u" = f, ae <= —f (W + flvdz =0, Vove CP(Q).
Q

Let % be a Hilbert space with an inner product (-,-)¢ and its induced norm | - |4. Let ¥
be a Hilbert space with another inner product (-,)y and its induced norm | - |4. Denote by ¥’

the dual space of ¥ equipped with the norm

£y := sup (f,v)

, Vfev'.
ver |vlly

Definition 1.13 (Continuity). A bilinear form a[-,-] : Z x ¥ — R is called continuous if and

only if there exists a constant C, such that
alu,v] < Colulz|v]y, YueX,ve?. (1.14)

Consider a continuous bilinear form a[-,-] : x ¥ — R and f € ¥’. We formulate a model

problem: Find u € % such that Au = f in #’. Or in the weak form, find u € % such that
alu,v] = (f,v), Yve¥. (1.15)

Example 1.14 (The Poisson equation). The Poisson problem with homogenous Dirichlet bound-
ary was given in (1.1). In this case, we have Au := —Au and af[u,v] := (Vu,Vv). Ap-
parently, the bilinear form a[-,-] is continuous due to the Cauchy—Schwarz inequality and
U =Y = HQ). O

Well-posedness of the weak problem x

We denote the space of all linear and continuous operators from % to ¥ as £ (% ;7). Here

we review a few results on the inf-sup condition due to Necas [90].

Theorem 1.15 (Banach—Necas Theorem). Let a[-,-] : Z x ¥ +— R be a continuous bilinear

form with a norm defined as

lal-,] H = sup sup alu, v]
uEU veY H’LL

w|vly

CHAPTER 1. INTRODUCTION 15

(i) Then there exists a unique linear operator A € £ (% ;¥) such that
(Au,v)y = alu,v], Yue%,veV,

with the operator norm
HA”z(%;%) = [al- 1]

(ii) Moreover, the bilinear form al-, -] satisfies the inf-sup condition:

Ja > 0, such that «a|u|y < sup alu, U], Vue %, (1.16)
ver o]y
for any 0 # v e ¥, there exists u € %, such that a[u,v] # 0, (1.17)

if and only if A: % +— ¥ is an isomorphism and
A ey < @ (1.18)

Proof. (i) For any fixed v € %, the mapping a[u, -] belongs to the dual space ¥’. By the Riesz

representation theorem, there exists Au € ¥ such that
(Au,v)y = alu,v], Yve¥.

Since al-, -] is continuous, we obtain a bounded operator A € £ (% ;¥’). Furthermore,

— sup AUy _ (Au,v)y _afuv]
|All.z(vy = su = sup sup = sup sup -
wew |ulz wew vev |ulavly wew vev |ulla|v]»

Jal-,-1].

(11) = The inf-sup condition (1.16) guarantees that there exists a > 0 such that

aluly < sup LY _ gy AU e w (1.19)
vey HUHV/ VeV ”UH“I/

This implies that A is injective. Let {uk}zozo c % and v := Auy be a sequence such that
vy — v € Y. In order to show the range of A is closed, we need to show v € A(%). From the

inequality (1.19), we have
alug — ujlz < |Aug —uj)ly = [k — vj» — 0.
Hence, {uy};._, is a Cauchy sequence and uj, — u € % . Moreover,
v = I}LH;ka = I}LHSOAuk =Aue A(%).

Now we assume that A(%) # ¥. Since A(%) is closed, we can decompose ¥ as

Y =A%)®AX)*t

CHAPTER 1. INTRODUCTION

16

and A(%)t is non-trivial. That is to say, there exists 0 # v, € A(%)*, which contradicts the
condition (1.17). Hence the assumption A(%) # ¥ cannot hold, i.e., A is surjective. This, in

turn, shows that .4 is an isomorphism from % onto ¥". Moreover, (1.19) shows

al Ay < ully, Yve?.

This proves the inequality (1.18).
(ii) <= We have

_ alu, v] . (Au,v) | Aufy
inf sup————— = inf sup——F—7F— =
we? vey |ulla vl ue? vey |ullz o]y ue? |ullz
: [v]l» < [A]\~ —1y-1
= inf ——— = sup7> = |A _ > a.
A P A T Azt =

This is exactly (1.16). Since A is an isomorphism, for any 0 # v € ¥, there exists 0 # u € %,

such that Au = v and
alu,v] = (Au,v) = HUH?,/ # 0,

which is (1.17).

O]

Theorem 1.16 (Necas Theorem). Let a[-,-] : % x ¥ +— R be a continuous bilinear form. Then

the equation (1.15) admits a unique solution u € % for all f € ¥’ if and only if the bilinear

form a[-, -] satisfies one of the equivalent inf-sup conditions:

(1) There exists a > 0 such that

alw,v]

> alwly, Ywe#:
vy ol

and for every 0 # v € ¥, there exists w € % such that a[w,v] # 0.

(2) There holds

inf sup aw,] >0 and inf sup _afw.v]
we? vey |w]la |v]» vel wew |wla|v]y
(3) There exists a positive constant o > 0 such that
inf supM = inf sup M =«

vy e wew |wlalv]y

we yey W%

Furthermore, the solution u satisfies the stability condition

1
lula < = £l
«

(1.20)

> 0. (1.21)

(1.22)

CHAPTER 1. INTRODUCTION 17

Proof. Let J : ¥ — ¥ be the isometric Reisz isomorphism. According to Theorem 1.15, we
have A e Z(%; V), which is the linear operator corresponding to al-,-]. In this sense, (1.15) is

equivalent to

uE U : .Au=j_1f in?.

Assume the condition (1) holds. Then, A is invertible by Theorem 1.15. The other direction is
also easy to see.
Now the interesting part is to show the equivalence of the three conditions, (1), (2), and (3).

From the proof of Theorem 1.15, we have seen that

alw, v]

inf sup ———— = A7, ..
a3 ol ol ~ W o
Similarly,
A AT
inf sup _afw.v] = inf sup (Aw, v)y = inf sup (w, Alv)yy
ve? we |wla|v]» ve? wew |wla|v]y ve? wew |wla|v]»
—fy—1 —1—1
= ”-’4 THg(q/ﬂ/) = ”A H‘g(/y/;ag/)a
where A" denotes the adjoint operator. Furthermore, if the condition
inf sup M >0
ve? wew |w|a|v]y
holds, then for any v € ¥, we have
sap Ay
wew |wlla |[v]y
Hence there exists w € %, such that a[w,v] # 0. This completes the equivalence proof. O

From the proof of the last two theorems, we have the following observations:

Remark 1.17 (Existence and uniqueness). Solution of the equation (1.15) exists (i.e., A is

surjective or onto) if and only if

alw,v]

H > 0. existence or surjective
vl

inf sup
eV wey Hw

K4
Solution of (1.15) is unique (i.e., A is injective or one-to-one) if and only if

alw, v]

inf sup > 0. uniqueness or injective

we? yey |lwla|v]y
That is to say, A is bijective if and only if the inf-sup conditions (1.21) or its equivalent conditions

hold. In finite dimensional spaces, any linear surjective or injective map is also bijective. So we

only need one of the above inf-sup conditions to show well-posedness. O

CHAPTER 1. INTRODUCTION 18

Remark 1.18 (Optimal constant). The constant « in (1.22) is the largest possible constant
in (1.20). In general, the first condition in Theorem 1.16 is easier to verify than the third

condition. n

Corollary 1.19 (Well-posedness and inf-sup condition). If the weak formulation (1.15) has a

unique solution u € % for any f € ¥’ so that

lullze < C[flly,

then the bilinear form a[-, -] satisfies the inf-sup condition (1.22) with a > C~1.

Proof. Since (1.15) has a unique solution for all f € ¥’ the operator A : Z(%; V) is invertible
and A™' : Z(¥;%) is bounded. Due to the fact |ully < C|f|lyr, we have | A7 »(y.2) < C.
From the proof of the Necas theorem, we can immediately see the optimal inf-sup constant
a= A" Gy = O O

A simple model problem
Now we consider the simplest case where ¥ = % and A is coercive.

Definition 1.20 (Coercivity). A continuous bilinear form a[-,-] : ¥ x ¥ — R is called coercive
if there exists o > 0 such that

alv,v] = a|v|?, Yve¥. (1.23)
alv,w] alv,v]

[wlly = vl
Theorem 1.16. Hence, for any f € ¥’, the coercive variational problem (1.15) has a unique

We notice that sup,cy > av||y, which implies the first inf-sup condition in

solution and the solution w is continuously depends on f, i.e., |u|y < a™!|f|y. In this case,

Theorem 1.16 is reduced to the well-known Lax-Milgram theorem.

Corollary 1.21 (Lax-Milgram theorem). Let a[-,-] : ¥ x ¥ — R be a continuous bilinear form
which satisfies the coercivity condition (1.23). Then (1.15) has a unique solution u € ¥ for any

fe v and July <~V fy

Remark 1.22 (Energy norm). If the bilinear form al[-,-] : ¥ x ¥ — R is symmetric, then,

apparently, it defines an inner product on #. Its induced norm is also called the energy norm
1/2
vl == afv,v]".

Coercivity and continuity of the bilinear form al-, -] imply that

alely < Bel < Jal el = 4] g0 015

namely, the energy norm |[|-|| is equivalent to the | - |y-norm. We will denote the dual energy

norm by ||-[|,.. O

CHAPTER 1. INTRODUCTION 19

Remark 1.23 (Poisson is “well-conditioned”). We notice that the Poisson’s equation is well-
posed in the sense that —A : ¥ — ¥ is an isomorphism with ¥ = H}(Q) and ¥’ = H-}(Q).

There exist constants « (coercivity constant) and C, (continuity constant), such that

Yve V.

O‘H”H?// < afv,v] = (—Av,v) < CQHUH?,/,

Hence we have the “condition number” of the Laplace operator is bounded

Caq

K(—A) = H - A L) < E

f=a)"!

20

This means —A is well-conditioned, which is contradicting our experience in solving the Poisson’s
equation numerically. The problem here lies in that we are working on two different spaces ¥
and ¥’. If we consider —A : L?(Q)) — L?(Q) instead, then we lost boundedness. More general
theory has been developed in the seminar work by Babuska [4]. O

High-frequency and locality

Consider the eigenvalue problem for one-dimensional Laplace operator with the homogenous
Dirichlet boundary condition, i.e., —u"(z) = Au(z) for x € (0,1) and w(0) = u(1) = 0. It is easy

to see that the eigenvalues and the corresponding eigenfunctions are
e = (kmr)? and ug(z) = sin(krz), k=1,2,---

For other types of boundary conditions, the eigenvalues and eigenfunctions can be obtained
as well. We notice that larger eigenvalues (larger k) correspond to eigenfunctions of higher
frequency. Similar results can be expected for discrete problems which will be discussed later
on.

An important observation comes from the analysis to the local problem
—uf(z) = f(z), € Bs:= (xg— 8,20 +9) and us(xo — 6) = us(zo +0) = 0.

We can obtain the eigenfunctions of this local problem:

km

25(1‘—:@4—5)), kE=1,2---

us p(x) = Sin(

Define the error e := u — ugs in Bs. Hence e is harmonic in Bs. It is easy to construct a cut-off

function § € C{°(Bs), such that it satisfies the following conditions:

(i) 0(z) > 0; (ii) O(z) = 1, Vo € Byp; (iil) |0/ (2)] < §.

CHAPTER 1. INTRODUCTION 20

Thus we have
J ‘e’(a:)fdx < f 0%(x) !e’(m)‘zdx = —J ((02)’6’ + 026”>edx
Bsa Bs Bs
2C , 2C 12 3 2 3
< 5 5 |0c’e| dz < 5(135 0¢’| d:n) (JB(S le] daz) .

The first and last inequalities immediately imply that

<f35/2 ’e’(fv)’2 dm)é < <JB6 Hz(x)lel(x)‘de)% < 250<st |e[2da:>%. (1.24)

If we plug in the eigenfunctions usj to the above inequality, we can see that

krw 2C 4C
or k< —,

- < -
26 1) T
which suggests only low-frequency components are left in the error function e and oscillating

components in the distance d are accurately captured.

Remark 1.24 (High-frequencies). This simple result implies that the high-frequency part of u
can be estimated very well by the local solution u; for the model problems. Motived by (1.24), we

can define geometric high-frequency functions uy as those with relatively large |Vug|o.o/|uklo.0
ratio. Moreover, we also note that singularities are special forms of high-frequency. Many forms
of singularity can be resolved numerically through local mesh refinement. The reason why this
type of methods is able to work is such a local behavior of high frequencies. In the later chapters,

we will discuss more on this issue from geometric and algebraic perspectives. O

1.2 Discretization methods

Discretization concerns the process of transferring continuous functions, models, or equations
into their discrete counterparts. This process is usually carried out as the first step toward
making them suitable for numerical evaluation and implementation on modern computers.

Let Q € R? be an open domain and f € L?(2). We consider the following model problem

—Au=f in Q,
u=0 on 0f).

Many discretization methods have been developed, such as finite difference (FD) and the finite
element (FE) methods, each with specific approaches to discretization. After discretization, we

usually end up with a linear algebraic system of equations

—

Ai = f. (1.25)

CHAPTER 1. INTRODUCTION 21

Finite difference method

In one-dimensional case, without loss of generality, we can assume 2 = (0, 1) and the domain
is sub-divided into N +1 equally spaced pieces. So we get a uniform mesh with meshsize h = 7 5;

see the following figure for illustration.

o T1 X2 Ty TNyr

0 h 1

Figure 1.2: Uniform mesh in 1D.

Using the Taylor’s expansion, we can easily obtain that

u’(z;) = %[ul(ler%) - u’(a:l_%)] + 0(h?)
_ %[um_l) — 2u(e;) + u(wien) | + O(2).

Let u; ~ u(x;) be an approximate solution. Then the FD discretization of the Poisson’s equation

is

2 ~1 uy f(x1)
-1 2 —1 U9 f(lTQ)
1
= L= : . (1.26)
-1 UN—1 flen—-1)
-1 2 uUN f(%'N)

That is to say,

A= itridiag(—1,2,—1) and fi= (fi)jil = (f(q:l))N .

h? i=1
We need to solve the linear system Au = f in order to obtain an approximate solution to the
Poisson’s equation. It is worth noticing that the coefficient matrix A is symmetric positive

definite (SPD), sparse, as well as Toeplitz.

Remark 1.25 (An alternative form of the linear system). Sometimes, it is more convenient (for

implementation) to also include the boundary values in @ and write the linear system as

1 [0
-1 2 -1 uy i
3 —
-1 2 -1 un In
1 UN+1 0

Apparently this form is equivalent to the discrete problem above. O

CHAPTER 1. INTRODUCTION 22

Remark 1.26 (Eigenvalues of 1D FD problem). For simplicity we now assume h = 1. It is
well-known (see HW 1.3) that the eigenvalues of A := tridiag(—1,2,—1) are

km . 9 km
)\k;(A) =2 — 2cos (M) = 4Sln <2(]V--1)>

and the corresponding eigenvectors are

5k = (ﬁf)il e RY, with ff = sin (]\;kjl)

We note that the set of eigenvectors of A, 5 k= (Qk)i]\il, forms an orthogonal basis of RY.

Therefore, any E e RY can be expanded in terms of these eigenvectors:

Figure 1.3: Eigenvectors of 1D finite difference system for the Poisson’s equation.

easily see that the eigenvectors are “smooth” with small £ and are “oscillatory” with large k.

Hence the smoothness of { has a lot to do with the relative size of the coefficients ay. O

For two-dimensional problems, we can partition the domain uniformly in both z and y-
J

Tﬂ) and the Poisson’s

directions into n + 1 pieces (N = n?). We denote (z;,y;) = (ﬁﬂ’

equation is discretize using the five-point stencil

1

ﬁ[‘luz‘,j — (Wim1,j + Uig1y + U1 + Ui,j+1)] = f(wi,y5), 4,5=1,...,n.

CHAPTER 1. INTRODUCTION 23

Then we need to assign an order to the grid points in order to write the unknowns as a vector.
There are many ways to order the unknowns for practical purposes. For simplicity, we use the

Lexicographic ordering, i.e., p(j_1)n+i := (Zi,9;). Then we have

A I uy bil
I Ay -1 U f2
72 = :
—I A1 -1
oA, UN_1 v
un N

where the block diagonal matrices A; := tridiag(—1,4,—1), (i = 1,...,n) are tridiagonal. Define
C' := tridiag(—1,0, —1). Then it is clear that

I 1 1
A= ﬁtrldlag(—I,Al,—I) = ﬁI®A1 +ﬁC®I.

Remark 1.27 (Eigenvalues of the 2D FD problem). Again we assume h = 1. Similar to the

1D problem, we can get the eigenvalues

s g Lo dm .9 gm
~9 —4sin? " 4 4sin? 2T
nt1 P nta s 2(n+1) Fash 2(n+1)’

g . kim . Um
;= | sin sin .
I n+1 n+1

k,il=1,...n

J=1,...

Nij(A) =4 —2cos

with eigenvectors

O]

Remark 1.28 (Ordering). The shape of the above coefficient matrix A depends on the ordering
of degrees of freedom (DOFs). We will see that the ordering also affects the smoothing properties
of smoothers and parallelization. Finding the minimal bandwidth ordering is important for some

linear solvers, like the LU factorization methods. But it is NP-hard. O

Finite element method

Finite element method (FEM) is a Galerkin method that uses piecewise polynomial spaces
for approximate test and trial function spaces. The readers are referred to [46, 71, 17, 3§]
for more detailed discussion on construction and error analysis of the standard finite element
method.
The weak formulation of the model equation can be written as (see Example 1.14): Find
u € H}(Q), such that
L Vu - Vodr = L fvdr, Yve H}(Q).

CHAPTER 1. INTRODUCTION 24

In 1D, it is easy to explain the main idea of finite element method. Let Pg(7) be the space of

all polynomials of degree less than or equal to k on 7. Let
V= Vh = {1) € C(ﬁ) LV E Pl(a:i_l,a:i), U(O) = ’U(l) = 0}
Now we can write the discrete variational problem as: Find uj € V3, such that

a[uh, Uh] = (f, Uh), Vvh € Vh.

Furthermore, we use nodal basis functions ¢; € V},, i.e. ¢i(x;) = 6; ;. In this way, we can express
a given function uy, € V3 as up(z) = Z;V:I uj¢j(x). Hence we arrive at the following equation:

Foranyi=1,..., N,
N
Z algj, diluj = (f,¢i) or ZAi,jUj = fi
j=1 J

This is a system of algebraic linear equations

i = f, (1.27)
with (A).j = a, algs, ¢4, U = (Uz)z 1> and f= (fz)i\i = (<f ¢i))
)t

If we use the uniform mesh in Figure 1.2, then we have (see HW 1.4 :h

A::%tridiag(—l,Q,—l) and fi= (hf(z)i,.

Upon solving this finite-dimensional problem, we obtain a discrete approximation uy. The finite
element method has several appealing properties and it will be the main underlying discretization

used in this lecture; see §3.1 for more details.

Remark 1.29 (Discrete Poisson’s equation is ill-conditioned). Remark 1.23 has shown that the
Poisson’s equation has a bounded condition number. On the other hand, the discrete problems
from FD and FE are both ill-conditioned if meshsize h is small. Later on, we will see that this
will cause problems for many iterative methods. The convergence rates of these methods usually

depend on the spectrum of the coefficient matrix A. O

Adaptive approximation

We explain the idea of adaptivity with a simple 1D example. Let u : [0,1] — R be a
continuous function. Assume that 0 =29 <21 <---<any =1land h; := x; —x;_1. Let uny be a
piecewise constant function defined on this partition, i.e., uy(x) = u(xz;—1) for all z;_1 < = < ;.

Then we have

lu—un| = u(z) —u(zi1)| =

f u’(t)dt’<f |u’(t)|dt<hiﬂu/HLw(xi_wi). (1.28)
Ti—1

Ti—1

CHAPTER 1. INTRODUCTION 25

If the partition is quasi-uniform, then we have the approximation estimate

1
|lu—un|re) < NHUIHLOO(OJ)
if u is in W1 (0,1).
The question now is what happens if the function u is less regular (not smooth, singular,
rough)? We assume that u is in Wi1(0,1). In view of the inequalities in (1.28), we notice that we
actually need to bound |u'|

such that

(zi_1,0;)- Lhis motivates to give a special (non-uniform) partition

f [/ (t)| dt = N”’L/H[/l(&]_), fori=1,2,...,N.

Ti—1

On this partition, we can still obtain a desirable approximation estimate

1
lu —un|Lo,) < NHUIHLl(o,l)-
This motivates us that equidistribution of mesh spacing might not be a good choice when the
solution is not smooth. Instead, in such cases, we may seek equidistribution of error. Apparently,
this type of mesh is u-dependent and obtaining such a mesh is a nonlinear approximation

procedure; see more details in Devore [48].

Remark 1.30 (A very useful notation). We use some notations introduced by Xu [118]. The
notation a < b means: there is a generic constant C' independent of meshsize h, such that a < Cb.
Similarly, we can define “2” and “=~”. This is important because, in our future discussions,
we would like to construct solvers/preconditioners that yield convergence rate independent of

meshsize h. O

1.3 Simple iterative solvers

There are many different approaches for solving the linear algebraic equations results from
the finite difference, finite element, and other discretizations for the Poisson’s equation. For
example, sparse direct solvers, FF'T, and iterative methods. We only discuss iterative solvers in

this lecture.

Some examples

Now we give a few well-known examples of simple iterative methods. Consider the linear
system Au = f Assume the coefficient matrix A € R¥*V can be partitioned as A = L +
D + U, where the three matrices L, D,U € RV*¥ are the lower triangular, diagonal, and upper

triangular parts of A, respectively (the rest is set to be zero).

CHAPTER 1. INTRODUCTION 26

Example 1.31 (Richardson method). The simplest iterative method for solving Au = f might
be the Richardson method
gnew — gold + w(f_ Aﬁdd)_ (129)

We can choose an optimal weight w to improve performance of this method.]

Example 1.32 (Weighted Jacobi method). The weighted or damped Jacobi method can be
written as

@™ = g 4 wDTV(f — AaoY). (1.30)

This method solves one equation for one variable at a time, simultaneously. Apparently, it is a
generalization of the above Richardson method. If w = 1, then we arrive at the standard Jacobi
method. O

Example 1.33 (Gauss—Seidel method). The Gauss—Seidel (G-S) method can be written as
7 = 7o (D4 L)7L(F — AgoW).
We rewrite this method as
(D + L)@™" = (D + L)@ + (f — Az®) = f — Ua°.

Thus we have
qrev — o + D! (f_ Laghew _ (D + U){[Old> . (131)

Compared with the Jacobi method (1.30) (w = 1), the G-S method uses the most updated

solution in each iteration instead of the previous iteration.]

Example 1.34 (Successive over-relaxation method). The successive over-relaxation (SOR)

method can be written as
(D + wL)@™" = wf — (wU +(w— 1)D)a°1d. (1.32)

The weight w is usually in (1,2). This is in fact the extrapolation of @°'4 and #™*" obtained in
the G-S method. If w = 1, then it reduces to the G-S method. O

These preliminary iterative methods have been covered in standard textbooks of numerical
analysis. They can be constructed using a classical splitting approach. Here we employ a

modified version to give a better view. Let o = 0 be a real parameter and
A:=A1 + Ay = (A1 +aI) + (AQ —ozI).
This way we can split the original equation Au = f as

(A1 + Oé])’[[Z f— (Ag — Oé])’L_[.

CHAPTER 1. INTRODUCTION 27

This immediately motivates the standard splitting iterative method
@ = (A1 +al) (= (42 - an)a?). (1.33)
The method is equivalent to an alternative form, which is the notation we use in this note, as
qrew — gold B(f— Aﬂ»old)7

with B := (A1 +al)_1. Apparently, we can choose the splitting to obtain the above simple
iterative methods. For example, by setting A; = 0, (1.33) yields the Richardson method (1.29);
by setting v = 0 and Ay = 2D, (1.33) yields the weighted Jacobi method (1.30).

In this setting, the matrix
E:= (A +al) ' (Ag—al) = - BA (1.34)

is oftentimes called an iteration matriz for the iterative method (1.33). It is well-known that

the iterative method converges for any initial guess if and only the spectral radius p(F) < 1.

A simple observation

Many simple iterative methods exhibit different rates of convergence for short and long
wavelength error components, suggesting these different scales should be treated differently. We
now try to look into this more closely. Let Apnax and Apin be the largest eigenvalue and the
smallest eigenvalue of A, respectively, and E max- and E min he the corresponding eigenvectors.
One interesting observation many people made is: When we use the weighted Jacobi method
(1.30) with weight w = 2/3 to solve the problem A# = 0 with the initial guess just equal to
5 max - the convergence is very fast. On the other hand, if the weighted Jacobi iteration is used
to solve the same equation but with a different initial guess E min the convergence becomes slow.

See Figure 1.4 for a demonstration.

Note that the reason which causes this difference mainly relies on the fact that the error in
the first problem (corresponding to { max) g oscillatory or of high frequency but the error in the
second problem (corresponding to E min) j5 smooth or of low frequency. This makes one speculate
that the weighted Jacobi method can damp the high frequency part of the error rather quickly,
but slowly for the low frequency part; see Remark 1.24.

In Remark 1.26, we have seen that the eigenvalues of the simple finite difference matrix in

1D are
km
A)=2-2 .
Ai(A) COS<N+1>

CHAPTER 1. INTRODUCTION 28

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3

0.2

0.1

0 1 1 1 1 1 1
0 20 40 60 80 100 120

Figure 1.4: Error decay in | - [oo-norm for weighted Jacobi method with initial guess *.

Then it is easy to obtain the eigenvalues of the iteration matrix for the weighted Jacobi method

km 1 2 km
)\k(E)zl—w+wcos<N+1> :3+300S<N+1>'

From this equation, it is immediately clear that the eigenvalues are small [\;(E)| < # for larger

k(% < k < N). This suggests faster convergence behavior of the weighted Jacobi method for

larger k.

Now we can make this simple observation more formal by considering the simple iterative
method (1.29), i.e. the Richardson method (it is equivalent to the weighted Jacobi for simple

finite difference equations with a constant diagonal), and assume that
AR = 2\EF, k=1,...,N,

where 0 < A\; < -+ < Ay and we choose w = ﬁ for example. Since {¢*}I | forms a basis of

RV, we can write
N
a—a™ =Y af™Mer
k=1
as an expansion. In the Richardson method, we have
i — @™ = (I —wA) (i — ™) = = (I —wA)™ (i — i),

Hence it is easy to see that

N

N
Z a,im)ék = (I —wA)™ Z oz](fo)fk = Z a,go)(l — w)\k)mfk.

k=1 k=1 k=1

CHAPTER 1. INTRODUCTION 29

That is to say, we have

m Ak \™
o™ = (1 —wap)mal? = (1 - ﬁ) . k=1,... N (1.35)

From (1.35), we can see that the convergence speed is fast for high-frequency error components

(large k) and slow for low-frequency components (small k).

Smoothing effect of Jacobi method x

In view of Remark 1.26, based on the understanding of the relation between the smoothness
and the size of Fourier coefficients, we can analyze the smoothing property using the discrete
Fourier expansion. Let @ be the exact solution of the 1D FD problem on uniform grids and @ (™
the result of m-th iteration from the damped Jacobi method (or equivalently in this case, the
Richardson method). Then

S~
1
|
~
|
)
s
SN—
S
|
2
3
&
||
~
\.
E
s
_/
/\
:1
21
=

It is straightforward to see that

Me(I —wA) =1 —wA(A) = 1 — 4wsin? <2<J\l;7:_1)) .

Notice that A\ (I —wA) can be viewed as the damping factor for error components corresponding
to Fourier mode k; see Remark 1.26. We would like to choose w such that \;’s are small.

Consider the Fourier expansion of the initial error:

Then

Note that, for any polynomial p, we have p(A)E*F = p()\k)gk. By choosing w = % ~ m, we
obtain

N
U — 17: Zak 1_w>\km§k Zak N

k=

[y

where

The above equation implies

2m
(m) _ com (N —k+1m - N—-k+1m
YT kSR <N+1 2) S\ N+ 2)

CHAPTER 1. INTRODUCTION 30

which approaches to 0 very rapidly as m — oo, if k is close to N (high-frequencies). This
means that high frequency error can be damped very quickly. This simple analysis justifies the
smoothing property we observed in the beginning of this section.

We can apply the same analysis to the Jacobi method as well and the Fourier coefficient in
front of the highest frequency is as follows:

(m) .9 N7 m m [N7 m w2 "
— (1-2sin2 " - ~ () (1 -) an
ay < sin 2(N+1)> N = cos <N+1>O‘N - (2(N+1)2> o

This suggests that the regular Jacobi method might not have a smoothing property and should

not be used as a smoother in general.

1.4 Multigrid method in 1D

In this section, we first give a simple motivation and sneak-peak of the well-known multigrid
method, which is a representing example of multilevel iterative methods. The observations of
this section will be helpful for our later discussions; see the famous tutorial by Briggs et al. [44]
for a quick introduction to the multigrid methods. Consider the finite difference scheme (1.26)

for the Poisson’s equation in 1D, namely

> 1
Au = f with A = ﬁtridiag(—lﬂ, =1), fi = f(x;).

Nested grids

Multigrid (MG) methods are a group of algorithms for solving partial differential equations
using a hierarchy of discretizations. They are very useful in problems exhibiting multiple scales
of behavior. In this section, we introduce the simplest multigrid method in 1D.

Suppose there are a hierarchy of L + 1 grids with mesh sizes h; = (%)“r1 (l=0,1,...,L);
see Figure 1.5. Tt is clear that

h0>h1>h2>'-->hL=:h

and N = 2511 — 1. We call level L the finest level and level 0 the coarsest level.

Smoothers

We consider how to approximate the solution on each level using some local relaxation
method. Assume the 1D Poisson’s equation is discretized using the finite difference scheme

discussed in the previous section. Then, on each level, we have a linear system of equations

Ay = fi - with A; = h;? tridiag(—1,2, —1).

CHAPTER 1. INTRODUCTION 31

1=2 1 1 1 1 1 1 1 1 1 hQZ(%)s
=1 1 1 1 1 1 h1=(%)2
1=0 1 1 1 hO:(%)l

Figure 1.5: Hierarchical grids for 1D multigrid method.

For each of these equations, we can apply the damped Jacobi method (with the damping factor
equals to 1/2)

—(m —(m 1 — g —-(m
2™ = g)+§Dz 1<fl*AlUl(>) (1.36)

to obtain an approximate solution. This method is usually referred as a local relaxation or

smoother, which will be discussed later in this lecture note.

Prolongation and restriction

Another important component of a multigrid method is to define the transfer operators
between different levels. In the 1D case, the transfer operators can be easily given; see Figure 1.6.

In another word, we can also write the transfer operators in the matrix form, i.e.,

-0 > > O= -0 > > O=
n M A
I\ /A 7\ I\
I /A /A /A
R S (O P R N P Ao hood
R [z 3 3 2/3 1\ [P11 A L1 4 L
/ \ / \
/ v | \ / vy \
/ \ |/ \ p vy \
4 v/ \ / \l/ \
-0 O= =0 O

Figure 1.6: Transfer operators between two consecutive levels (Left: restriction operator; right:
prolongation operator).

CHAPTER 1. INTRODUCTION 32

R 1 1 21 4 P 1
Il-1 = 7 an -1, ‘= 5
4 1 21 2

—_— N =

(1.37)

— N

We notice that R = %PT. It is straight-forward to check that the coefficient matrices of two
consecutive levels satisfy

A1 =Ry 1 AiP—qg.
Multigrid algorithm

Let ﬁ be the right-hand side vector and ; be an initial guess or previous iteration on level

. Now we are ready to give one iteration step of the multigrid algorithm (V-cycle).
Algorithm 1.1 (One iteration of multigrid method). @ = MG(L, f;, @)

(i) Pre-smoothing: @ < 4 + %D;l (ﬁ — Alﬂ’l)

(ii) Restriction: 7j_; < Ry (ﬁ — Alﬂ'l)
(iii) Coarse-grid correction: Ifl =1, ¢} < Af_llﬁ_l; otherwise, €;_1 «— MG(l—1,7]_1, 61_1)
(iv) Prolongation: @ « u; + Pj_1,€1

(v) Post-smoothing:) <« u; + %D;l (ﬁ — Alﬁl)

Remark 1.35 (Coarse-grid correction). Suppose that there is an approximate solution (™).
Then we have
Ad—am) =7m .= f— Ag™

and the error equation can be written
Aem) = g(m), (1.38)

If we get €™ or its approximation, we can just update the iterative solution by @(m+1) —

@™ 4 &™) to obtain a better approximation of @. This explains the steps (iii) and (iv) in the

above algorithm. O

CHAPTER 1. INTRODUCTION 33

Remark 1.36 (Coarsest-grid solver). It is clear that, in our setting, the solution on level [= 0
is trivial to obtain. In general, we can apply a direct or iterative solver to solve the coarsest-level
problem, which is relatively cheap. Sometimes, we have singular problems on the coarsest level,
which need to be handled carefully. O

Algorithm 1.1 is one iteration of the multigrid method. We can iterate until the approxima-
tion is “satisfactory”. For example, we iterate until the relative residual |o/| f]o is less than
10~%; we will discuss stopping criteria later in this lecture. This multigrid algorithm is easy to
implement; see HW 1.6. In Table 1.1, we give the numerical results of Algorithm 1.1 for the
1D Poisson’s equation (using three G-S iterations as smoother). From the table, we find that,
unlike the classical Jacobi and G-S methods, this multigrid method converges uniformly with
respect to the meshsize h. This is, of course, a very desirable feature of the multilevel iterative

methods, which will be investigated in this lecture.

#Levels #DOF #lIter Contract factor

) 31 4 0.0257
6 63 4 0.0259
7 127 4 0.0260
8 255 4 0.0260
9 511 4 0.0261
10 1023 4 0.0262

Table 1.1: Convergence behavior of 1D geometric multigrid method.

Now it is natural to ask a few questions on such multilevel methods:

How fast the method converges?

When does the multigrid method converge?

How to generalize the method to other problems?

How to find a good smoother when solving more complicate problems?

Why the matrices R and P are given as (1.37)? Are there other choices?

And we will mainly focus on these questions in this lecture.

CHAPTER 1. INTRODUCTION 34

1.5 Tutorial of FASP *

All the numerical examples in this lecture are done using the Fast Auxiliary Space Precon-
ditioning (FASP) package. The FASP package provides C source files' to build a library of
iterative solvers and preconditioners for the solution of large-scale linear systems of equations.
The components of the FASP basic library include several ready-to-use, modern, and efficient
iterative solvers used in applications ranging from simple examples of discretized scalar partial
differential equations (PDEs) to numerical simulations of complex, multicomponent physical
Systems.

The main components of the FASP basic library are:

Basic linear iterative methods;

Standard Krylov subspace methods;
Geometric and Algebraic Multigrid (G/AMG) methods;

Incomplete factorization methods.

The FASP distribution also includes several examples for solving simple benchmark problems.
The basic (kernel) FASP distribution is open-source and is licensed under GNU Lesser General
Public License or LGPL. Other distributions may have different licensing (contact the developer

team for details on this). The most updated version of FASP can be downloaded directly from
http://www.multigrid.org/fasp/download/faspsolver.zip

To build the FASP library for these operating systems. Open a terminal window, where you
can issue commands from the command line and do the following: (1) go to the main FASP di-
rectory (we will refer to it as $ (faspsolver) from now on); (2) modify the “FASP.mk.example”

file to math your system and save it as “FASP.mk”; (3) then execute:

> make config

> make install

These two commands build the FASP library/header files. By default, it installs the library
in $(faspsolver)/1ib and the header files in $(faspsolver)/include. It also creates a file
$ (faspsolver)/Config.mk which contains few of the configuration variables and can be loaded
by external project Makefiles. If you do not have “FASP.mk” present in the current directory,
default settings will be used for building and installation FASP.

Now, if you would like to try some of the examples that come with FASP, you can build the

“tutorial” target and try out the tutorial examples:

'The code is C99 (ISO/IEC 9899:1999) compatible.

http://www.multigrid.org/fasp/download/faspsolver.zip

CHAPTER 1. INTRODUCTION 35

> make tutorial

Equivalently, you may also build the test suite and the tutorial examples by using the “local”

Makefile in $(faspsolver)/tutorial.

> make -C tutorial

For more information, we refer to the user’s guide and reference manual of FASP? for techni-
cal details on the usage and implementation of FASP. Since FASP is under heavy development,
please use this guide with caution because the code might have been changed before this docu-

ment is updated.

1.6 Homework problems

HW 1.1. Prove the uniqueness of the Poisson’s equation. Hint: You can argue by the maximum

principle or the energy method.

HW 1.2. Let zg and § > 0 are fixed scales. Find eigenvalues and eigenfunctions of the following

local problem
—uj§(z) = Asus, € (w9 — 5,70+) and us(zo — 9) = us(xo + 0) = 0.

HW 1.3. Prove the eigenvalues and eigenvectors of tridiag(b, a,b) € RV*" are

. NEkr \T
),...,Sln(N+1)> ,

)\kza—2bcos<k77r) and gkz(sin(

N +1 N +1

respectively. Apply this result to give eigenvalues of the 1D FD matrix A. What are the

eigenvalues of tridiag(b, a,c) € RV*N?

HW 1.4. Derive the finite element stiffness matrix for 1D Poisson’s equation with homogenous

Dirichlet boundary condition using a uniform mesh.

HW 1.5. Derive 1D FD and FE discretizations for the heat equation (8.44) using the backward

Euler method for time discretization.

HW 1.6. Implement the geometric multigrid method for the Poisson’s equation in 1D using
Matlab, C, Fortran, or Python. Try to study the efficiency of your implementation.

HW 1.7. Suppose we need to solve the finite difference equation with coefficient matrix A :=

tridiag(—1,2, —1) € RV*N_ Plot the eigenvalues of the weighted Jacobi iteration matrix F for

2

w=1,35,and % You can use different problem size N’s to get a better view.

2 Available online at http://www.multigrid.org/fasp. It is also available in “faspsolver/doc/”.

http://www.multigrid.org/fasp
faspsolver/doc/

Chapter 2

Iterative Solvers and Preconditioners

The term “iterative method” refers to a wide range of numerical techniques that use succes-
sive approximations {u(m)} for the exact solution u of a certain problem. In this chapter, we
will discuss two types of iterative methods: (1) Stationary iterative method, which performs in
each iteration the same operations on the current iteration; (2) Nonstationary iterative method,
which has iteration-dependent operations. Stationary methods are simple to understand and
implement, but usually not very effective. On the other hand, nonstationary methods are a

relatively recent development; their analysis is usually more difficult.

2.1 Stationary linear iterative methods

In this section, we discuss stationary iterative methods; typical examples include the Jacobi
method and the Gauss—Seidel method. We will discuss why they are not efficient in general but
still widely used. Let V' be a finite-dimensional linear vector space, A : V +— V be a non-singular

linear operator, and f € V. We would like to find a w € V, such that
Au = f. (2.1)

For example, in the finite difference context discussed in §1.2, V = RY and the linear operator
A becomes a matrix A. We just need to solve a system of linear equations: Find % € RY, such
that

—

Al = f. (2.2)
We will discuss the linear systems in both operator and matrix representations.

Remark 2.1 (More general setting). In fact, we can consider iterative methods in a more
general setting. For example, let V' be a finite-dimensional Hilbert space, V’ be its dual, and
A : V — V' be a linear operator and f € V'. A significant part of this lecture can be generalized

to such a setting easily. O

36

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 37

A linear stationary iterative method (one iteration) to solve (2.1) can be expressed in the

following general form:
Algorithm 2.1 (Stationary iterative method). u™*"% = ITER(u°)

(i) Form the residual: r = f — Au°!

(ii) Solve or approximate the error equation: Ae =r by é = Br

(iii) Correct the previous iterative solution: u"*V = u°d + ¢
That is to say, the new iteration is obtained by computing

u™ = 2 4 B(f — AuC'Y), (2.3)

where B is called the iterator. Apparently, B = A~! for nonsingular operator A also defines an
iterator, which yields a direct method.
Preliminaries and notation

The most-used inner product in this lecture is the Euclidian inner product (u,v) := §, uv dx;
and (u,v) := ZZ]\L Luv; if V =RY. Once we have the inner product, we can define the concept
of transpose and symmetry on the Hilbert space V. Define the adjoint operator (transpose) of

the linear operator A as A’ : V +— V| such that
(ATu,v) := (u, Av), Yu,veV.
A linear operator A on V is symmetric if and only if
(Au,v) = (u, Av), Vu,v € domain(A) < V.
If A is densely defined and A7 = A, then A is called self-adjoint.

Remark 2.2 (Symmetric and self-adjoint operators). A symmetric operator A is self-adjoint
if domain(A) = V. The difference between symmetric and self-adjoint operators is technical;
see [128] for details. O

We denote the null space and the range of A as

null(4) = {veV : Av =0}, (2.4)
fu=Av : veV}. (2.5)

range(.A)

Very often, the null space is also called the kernel space and the range is called the image space.

The subspaces null(A) and range(A”) are fundamental subspaces of V. We have

null(AT)* = range(A) and null(AT) = range(A)*.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 38

Remark 2.3 (Non-singularity). If null(A) = {0}, then A is injective or one-to-one. Apparently,
A : V — range(A) is surjective or onto. If we consider a symmetric operator A : null(A)*+ —

range(.A), then A is always non-singular. O

The set of eigenvalues of A is called the spectrum, denoted as o(A). The spectrum of any
bounded symmetric matrix is real, i.e., all eigenvalues are real, although a symmetric opera-
tor may have no eigenvalues'. We define the spectral radius p(A) := sup {|A| : X € o(A)}.

Furthermore,

Amin(A) = min (Av,v) and Amax(A) = max M
veV\{0} [v]? ve\{o} vl

An important class of operators for this lecture is symmetric positive definite (SPD) oper-
ators. An operator A is called SPD if and only if A is symmetric and (Av,v) > 0, for any

v € V\{0}. Since A is SPD, all of its eigenvalues are positive. We define the spectral condition

number or, simply, condition number k(A) := ’;ma"((ﬁ)) , which is more convenient, compared with

spectrum, to characterize convergence rate of iterative methods. For the indefinite case, we can

use
SUPjeq(A) A

—infaep(a) Al

k(A

More generally, for an isomorphic mapping A € .Z(V; V), we can define

K(A) = [Al 2@ AT 2w

And all these definitions are consistent for symmetric positive definite problems.
If A is an SPD operator, it induces a new inner product, which will be used heavily in our

later discussions

(u,v) 4 = (Au,v) Yu,v e V. (2.6)

It is easy to check (+,-) 4 is an inner product on V. For any bounded linear operator B : V +— V,
we can define two transposes with respect to the inner products (-,-) and (-,-)4, respectively;

namely,

(BTu,v) = (u, Bv),

(B*u> U)A = (ua BU)A-
By the above definitions, it is easy to show (see HW 2.1) that

B* = A7'BTA. (2.7)

! A bounded linear operator on an infinite-dimensional Hilbert space might not have any eigenvalues.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 39

Symmetry is a concept with respect to the underlying inner product. In this chapter, we
always refers to the (-, -)-inner product for symmetry. By definition, (B.A)* = BT A; see HW 2.2
for this equality. If BT = B, we do not necessarily have (B.A)” = B.A; however, we have a key
identity:

(BA)* = BT A = BA. (2.8)

Remark 2.4 (Induced norms). The inner products defined above also induce norms on V' by
1
|v| = (v,v)% and |v|4 := (v,v)%. These, in turn, define the operator norms for B : V — V,

ie.,

1B
vevvior vl

|Bula
venvior)4

18] = and [[B.4:=

O

It is well-known that, for any consistent norm || - |, we have p(B) < |B|. Furthermore, we

have the following results:

Proposition 2.5 (Spectral radius and norm). Suppose V' is Hilbert space with an inner product
(+,+) and induced norm | - ||. If A: V +— V is a bounded linear operator, then
1
— : m
p(A) = Tim | A5

Moreover, if A is self-adjoint, then p(A) = |A|.

From this general functional analysis result, we can immediately obtain the following rela-

tions:

Lemma 2.6 (Spectral radius of self-adjoint operators). If BT = B, then p(B) = |B]. Similarly,
if B* = B, then p(B) = |B| 4.

Convergence of stationary iterative methods

Now we consider the convergence analysis of the stationary iterative method (2.3). A method

is called convergent if and only if u(™) converges to u for any initial guess u(%),

ld and

Notice that each iteration (2.3) only depends on the previous approximate solution u°
does not involve any information of the older iterations; in each iteration, it basically performs

the same operations over and over again. It is easy to see that
u—u™ = (I - BA) (u— u(m_l)) = =(Z-BA™(u-— u(o)) =& (u— u(o)),

where Z : V +— V is the identity operator and the operator £ := 7T — BA is called the error

propagation operator (or, sometimes, error reduction opera,tor)g.

2Tt coincides with the iteration matrix (1.34) or the iterative reduction matrix appeared in the literature on
iterative linear solvers.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 40

Lemma 2.6 and (2.8) imply the following identity: If A is SPD and B is symmetric, then
p(T — BA) = |T — BA|.. (2.9)
Hence we can get the following simple convergence theorem.

Theorem 2.7 (Convergence of Algorithm 2.1). The Algorithm 2.1 converges for any initial
guess if the spectral radius p(Z — B.A) < 1, which is equivalent to lim,, 4 (Z — BA)™ = 0. The

converse direction is also true.

If both A and B are SPD, the eigenvalues of BA are real and the spectral radius satisfies
that
p(T — BA) = max (AmaX(BA) 11—)\min(BA)>. (2.10)

So we can expect that the speed of the stationary linear iterative method is related to the span

of spectrum of BA.

This convergence result is simple but difficult to apply. More importantly, it does not provide
any direct information on how fast the convergence could be if the algorithm converges; see the

following example for further explanation.

An iterative method converges for any initial guess if and only if the spectral radius of the
iteration matrix p(E) < 1. However, it is important to note that the spectral radius of E only

reflects the asymptotic convergence behavior of the iterative method. That is to say, we have

le® D)

only for very large k.

Example 2.8 (Spectral radius and convergence speed). Suppose we have an iterative method

with an error propagation matrix

0 1 0

g | [em
. .
0 - v 0

and the initial error is €(©) := 7 —7©) = (0,...,0,1)T € RN. Notice that p(E) = 0 in this exam-
ple. However, if applying this error propagation matrix to form a sequence of approximations,

we will find the convergence is actually very slow for a large N. In fact,

EO = D]y =+ = |6V D=1 and e, 0.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 41

Hence, analyzing the spectral radius of the iterative matrix alone will not provide much useful

information about the speed of an iterative method. O

An alternative measure for convergence speed is to find out whether there is a constant
§ € [0,1) and a convenient norm | - | on RY, such that |€(™+D| < §|e™)| for any €@ e RV,
However, this approach has its own problems because it usually yields pessimistic convergence

bound for iterative methods.

Remark 2.9 (Convergence rate of the Richardson method). The simplest iterative method for
solving Au = f might be B = wl, which is the well-known Richardson method in Example 1.31.
In this case, the iteration converges if and only if p(I —wA) < 1, i.e., all eigenvalues of matrix A
are in (0, 2). Since A is SPD, the iteration converges if w < 2Ag1, (4). If we take w = AL (A),

max max
then

_ Amin(4) 1
— 1 — 1 Amn\y 1
p(I — Apax(A)A) =1 N () 1-— Ay
. . . _ 2
In fact, the optimal weight is wopy = Mo (A) + o (A) and
2Amin(4) k(A)—1

P(I - WoptA) = 1 —wopt A =1~ Amax (A) + Amin(A) B w(d) +1

We can see that the convergence is very slow if A is ill-conditioned. O

Symmetrization

In general, the iterator B might not be symmetric and it is more convenient to work with

symmetric problems. We can apply a simple symmetrization algorithm:
Algorithm 2.2 (Symmetrized iterative method). u™*" = SITER(u°)
wmts) =y m) B(f - .Au(m)), (2.11)
WM+ = g mty) BT(f - Au<m+%>). (2.12)
In turn, we obtain a new iterative method
w—u™) = (T — BT AT — BA)(u — u™) = (T — BA)*(T — BA)(u — u'™).
If this new method satisfies the relation
u—u™H) = (T = BA)(u —ul™),
then it has a symmetric iteration operator

B:=B"+B-BTAB=B"(BT +B' - A)B =: BTKB. (2.13)

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 42

Lemma 2.10 (Error decay property). We have, for any v € V, that
ol = 1@ = BAY[, = (BAv,v) .

or equivalently,

= 2
((Z - BA)v, v)A = |(Z - B.A)’UHA.
Proof. Notice that, by the definition of symmetrization,
BA=B"(B"T + B! - ABA.
This immediately gives

(BAv,v)a = (BT +B'—A)BAv,BAv) = (BAv, Av) + (Av, BAv) — (ABAv, BAv)
= ((27 - B.A)’U,B.AU)A

and the first equality follows immediately. The second equality is trivial. O

Remark 2.11 (Effect of symmetrization). We notice that B = B and (I -BA)* =T - BA.

Furthermore, Lemma 2.10 shows that ((Z — BA)v, v)A = |(Z — BA)v|?%, Yve V. Since T — BA

is self-adjoint w.r.t. (-,+)4, we have |Z — BA|4 = p(Z — BA). And as a consequence,
|Z~BA|a= sup ((Z—BAw,v),= sup |(Z—BAw[;=|T—BA%. (2.14)

A
lvll.a=1 [vla=1

This immediately gives
p(T —BA) = |T = BA|4 = |Z— BAJ, > p(T — BA)*.

Hence, if the symmetrized method (2.11)—(2.12) converges, then the original method (2.3) also
converges; the opposite direction might not be true though (see Example 2.13). Furthermore,

we have obtained the following identity:

r %l —E v,V
12— Blla= pT—Bd) = sup \E-BA)

——A. (2.15)
veV\{0} lv]%

O

For the symmetrized iterative methods, we have the following theorem.

Theorem 2.12 (Convergence of Symmetrized Algorithm). The symmetrized iteration, namely,

Algorithm 2.2, is convergent if and only if B is SPD.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 43

Proof. First of all, we notice that
T-BA=(T-BTA(T-BA) = A 2(T - A2BTA2)(T — A2BA2) Az,

which has the same spectrum as the operator (Z —A%BTA%)(I —A%BA%). Hence, all eigenvalues
of Z — BA are non-negative, i.e., A < 1 for all A € o(BA).

The convergence of Algorithm 2.2 is equivalent to p(Z—B.A) < 1. Since 0(Z—BA) = {1-\ :
) € o(BA)}, it follows that Algorithm 2.2 converges if and only if o(BA) < (0,2). Therefore,
the convergence of (2.11)-(2.12) is equivalent to o(BA) < (0,1], i.e., BA is SPD w.r.t. (-,-)4.
Hence the result. O

We can also easily obtain the contraction property in a different way. In Lemma 2.10, we

have already seen that

Iz~ B, = [off, ~ (Bav, 4v).

Hence,

7 — B.AHA < 1 if and only if B is SPD.

Example 2.13 (Convergence condition). Note that even if B is not SPD, the method defined

by B could still converge. For example, in R?, if

10 1 -2 0 2
A= , B= , and I — BA= ,
01 0 1 0 0
then we have
— 1 0 — 00
B = and [—BA= .
0 -3 0 4
Hence p(I — BA) = 0 < 4 = p(I — BA). Apparently, the iterator B converges but B does
not. O

Convergence rate of stationary iterative methods

Remark 2.14 (Contraction property). The stationary iterative method defined by B is a con-
traction if |Z — BA| 4 < dp < 1. Apparently, it is equivalent to say

lel? = @ = BAYe’ = (1=) [e|5 >0, Vero0.

Lemma 2.10 indicates that § := |Z — BA||4 < 1 if and only if B is SPD. The constant § is called
the contraction factor of the iterative method. From this point on, we can assume that all the
iterators B are SPD; in fact, if an iterator is not symmetric, we can consider its symmetrization

instead.

Based on the identity (2.15), we can prove the convergence rate estimate:

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 44

Theorem 2.15 (Convergence rate). If B is SPD, the convergence rate of the stationary iterative
method (or its symmetrization) is

_ 1 —
IT —BA|% =|Z-BA|s=1-—, with ¢;:= sup (B 11),1}).
“ lvfl.a=1

Proof. The first equality is directly from (2.14). Since ((Z — BA)v,v)4 = [v|%} — (BAv,v) 4, the
identity (2.15) yields

_ — 1
IZ-BA|4 =1~ inf (BAv,v)4=1—Anin(BA) =1— —,
lvll.a=1 1
where
1 = Amax((BA)™) = sup ((E.A)_lv,v)A = sup (Eilv,v).
lvlla=1 [v]l.a=1
This in turn gives the second equality. O

Example 2.16 (Jacobi and weighted Jacobi methods). If A € RV*Y is SPD and it can be
partitioned as A = L + D + U, where L,D,U € RV*¥ are lower triangular, diagonal, upper
triangular parts of A, respectively. We can immediately see that B = D~! yields the Jacobi

method. In this case, we have
B=B"BT+B'-AB=D"D-L-UD"

If Kjacobi := D—L—U = 2D — A is SPD, the Jacobi method converges. In general, it might not
converge, but we can apply an appropriate scaling (i.e., the damped Jacobi method) B, = wD ™.
We then derive

Bl +B' —A=20"'D - A

The damping factor should satisfy that w < ﬁ in order to guarantee convergence. For
the 1D finite difference problem of the Poisson’s equation, we should use a damping factor
0<w< 1 O

An example: modified G-S method *

Similar to the weighted Jacobi method (see Example 2.16), we define the weighted G-S
method B, = (w™'D + L)~!. We have

BT +B'—-A=(w'D+L)T +(w'D+L)—(D+L+U)= (2w ' =1)D.

The weighted G-S method converges if and only if 0 < w < 2. In fact, w = 1 yields the standard
G-S method; 0 < w < 1 yields the SUR method; 1 < w < 2 yields the SOR method. One
can select optimal weights for different problems to achieve good convergence result, which is

beyond the scope of this lecture.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 45

Motived by the weighted G-S methods, we assume there is an invertible smoother or a local
relaxation method S for the equation Ad = f, like the damped Jacobi smoother S = wD™!
(0 <w < 1). We can define a general or modified G-S method:

B:=(S'+L)"h (2.16)

This method seems abstract and not very interesting now; but we will employ this idea on block
matrices for multilevel iterative methods later on.

We can analyze the convergence rate of this modified G-S method using the same technique
discussed above. Since K = BT + B~! — A is a symmetric operator and we can write (2.13)
as B = BTKB. If B is the iteration operator defined by (2.16), we have

K=6ST+U0)+ (S +L)-(D+L+U)=5T+5'1-D.

Furthermore, from the definition of K, we find that B~' = K + A — B~T. Hence we get an

explicit form of B! by simple calculations:
B'=(K+A-B)K" K+A-BY=A+(A-B K (A-B™).

This identity and the definition of B yield:
(E*a@:4Aam+Qr%D+U—54w4D+U—S*w) Vi e RV,

Now we apply Theorem 2.15 and get the following identity for the convergence rate:

Corollary 2.17 (Convergence rate of Modified G-S). If K = S~7 + S~! — D is SPD, then the
modified G-S method converges and
2 e 1 : _1 1y |2
[~ BA = | -BAJa=1— ——, mmcm:sq>Wf4D+U—s)
1+« [5]a=1

This simple result will motivate our later analysis for subspace correction methods in Chap-

ter 4.

Example 2.18 (Solving 1D Poisson’s equation using G-S). If we apply the G-S method to the
1D FD/FE system (1.26) for the Poisson’s equation discussion in §1.2. For simplicity, we first
rescale both sides of the equation such that A := tridiag(—1,2,—1) and fi= (th(xi))?il.
this case, S = D~ and K = D in the above modified G-S method. Corollary 2.17 shows that

the convergence rate of the G-S iteration satisfies that

In

1 LD~ Uw, v
Il - BA|} =1— ——, with ¢g= sup #
L+c¢o FeRN\{0} 1911%

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 46

The positive constant can be further written

cg= Ssup -—————> = sup ————>= sup ===,
U

(D~'U%,U%) HUw,Uw) DL
gerRN\(0} (AT, D) gerM\(0} (AT, 7) gerN\{o} (AT,

Because we have the eigenvalues of this discrete coefficient matrix A of FD (see Remark 1.26),

we can estimate the denominator

(A%,)

WV

o . ™ o
Amin(A)[7] = 4sin® <m)”””2~

Hence, asymptotically, we have the following estimate

3171°

cp < sup ~(N+1)2=h2

TeRN\{0} 4 sin? (m) ||17H2

Hence

Il — BA|a ~V1—Ch2~1—Ch2

Similarly, for the FE equation, the condition number also likes O(h~2) and convergence rate will

deteriorate as the meshsize decreases. O

2.2 Krylov subspace methods

Nonstationary iterative methods are more popular for standard-alone usage. Krylov subspace
method (KSM) is a well-known class of nonstationary methods [64]. Let A : V +— V be an
invertible operator. By the Cayley—Hamilton theorem (see HW 2.3), there exists a polynomial
of degree no more than N — 1, q,_, (\) € Py_1, such that A~! = ¢, _, (A). Hence the solution
of the linear system has the form v = ¢, _,(A)f. Krylov subspace methods construct iterative

approximations to u in

Km::Span{f7~’4f7~/42f7'")Amilf}” m:1’2""

Gradient descent method

Let A:V — V be an SPD operator. Consider the following convex minimization problem:
1
min F(u) := i(Au,u) — (f,u). (2.17)

Suppose we have an initial approximation u° and construct a new approximation

new __ uold

U +ap

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 47

with a fixed search direction p € V' and a stepsize «. In order to find the “best possible” stepsize,

we can solve an one-dimensional problem (i.e., the exact line-search method):

. 1
Iofglelﬂg]:(a) = i(u‘)ld + ap,u + ap)A — (f,u” + ap).

By simple calculation (HW 2.4), we obtain

1 1
Fla) = §a2(Ap,p) —a(f — Au, p) + §(Au°1d,u°1d) — (f,u®Y),

and the optimal stepsize is

_ g0l old
(F = Awp) _ (75p) gy ol p g (2.18)

Gort = T Ap, p) (Ap,p)’

In the previous chapter, we have discussed the Richardson method. A nonstationary version

of the Richardson method can be given as:
™) — (M o, (f - Au(m)),

which can be viewed as the gradient descent or steepest descent (SD) method with exact line-

search for the above convex minimization problem.

Remark 2.19 (Richardson and steepest descent method). If A is a SPD matrix, then Ad = f

is equivalent to the unconstrained quadratic minimization problem

argmin - | A7 — fTU.
ueRN
We immediately notice that the search direction in the Richardson method is exactly the same

as the steepest decent method for the above minimization problem. O

This method is easy to implement and cheap in computation (each step only requires 1
matrix-vector multiplication and 2 inner products). Unfortunately, the SD method usually

converges very slowly. See the following algorithm description of the SD method:

Listing 2.1: Steepest descent method

1|%% Given an initial guess uw and a tolerance ¢;

r— f— Au;

(V]

3 |while |r|>e

4 o — (r,r)/(Ar,r);
5 U<—u-+ar;

6 r—r—aAr;

7 |end

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 48

Example 2.20 (Line-search and the G-S method). Let V = RN, A = (a; ;) € RV*¥. Suppose
we choose the natural basis as the search directions, i.e., p = & := (0,...,0,1,0,...,0)T e V.

Let @99 = 7(© be an initial guess. Then the above method yields the iteration:

(F(i_l)vﬁ) — —(3—1) (F(i_l)v él) -

7@ — 701 57— g1 — :
Uy’ =u +ap=u + = p=u + €.
(Ap,p) (Aej,e)
So we get
R N Y
@ = (-1 4 fi ZJ=1 @ij U &
Qi i
This means that only one entry is updated in each iteration:
N (i—1)
- fi— 20 Qi us 1
e =Y 4 = ekl —(fi= Dy = Y aigui™). (2.19)
Bii isi j<i J>i

After N steps (i = 1,2,...,N), we obtain a new iteration @™V, which is exactly the G-S

iteration. 0

Remark 2.21 (The G-S method and Schwarz method). Based on (2.19), we can write the G-S

error propagation matrix in a different form
I —BA= (I —Iyay'yIZA) - (I — Lay 1T A) = (I —Tly) -+ (I —1Iy), (2.20)

where I; is the natural embedding from span{é;} to R and II; = I; A; 'IF A. This form of G-S
will be further discussed later in the framework of Schwarz method and subspace correction
method. O

Theorem 2.22 (Convergence rate of steepest descent method). If we apply the exact line-search

using the stepsize
r\"m oy

(r(m), 7))

then the convergence rate of the SD method satisfies that

k(A —1\™
-l < (S50 51) u= vl (2.21)

Proof. The exact line-search stepsize is easy to obtain by 1D quadratic programming. At the

m-th iteration, the energy satisfies that
1
F™Dy = Ful™ + a,r™) = Fu™) — ap, (r0 M) 4 §a3n(Ar(m), rm),

By plugging the expression of «,, into the right-had side of the above equality, we obtain that

(T(m)7 r(m))2

m m 1
Fu™) = Flu))_im-

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 49

This implies that

(m) ,.(m)y2
(myy ("™ rimyE
]-"(u(mﬂ))—]-'(u) _ F ™) 2(Ar(m),r(m)) Flu)
Flulm) — F(u) F(ulm) — F(u)
_ (r(m),r(m))Q _ 1
(Ar(m)jT(m))(A—lr(m) T(m)) ' I5}

2
By the Kantorovich inequality, we know £ < (’\ij\"‘;fif\'“m) So it follows

f(u(m+1)) - .F(U) =1 l <1-— 4 A maxAmin o ()\max -)\min)Q _ (H("LU — 1>2
f"(u(m)) - f(u) - 6 h ()‘max +)\min)2 a ()‘max +)‘min)Q - K“('A) +1 ‘
Hence the result. O

Conjugate gradient method

Now we consider a descent direction method with search direction p(™, i.e.

wmD = () g, pm), (2.22)

In this case, the “optimal” stepsize from the exact line-search is

(m)_p(m)
- W. (2.23)
(p P)A

We notice that the residual after one iteration is

1) o m) g g,

In order to keep the iteration going, we wish to construct a new search direction which is

orthogonal to the previous search directions. This motives us to define
ptmHD = pm+D g p(M) - such that (p(m),p(m+1))A =0.

By simple calculations, we get the weight

(Arm1)_plm)

(2.24)

This is basically the so-called conjugate gradient (CG) method.

Lemma 2.23 (Properties of conjugate directions). For any conjugate gradient step ¢, we have

following identities:

1. (@, p®) = (+, r®),

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 50

2. (T‘(j),p(i)) =0, 7>
3. (P, p0) =0, j#is
4. (T(j),r(i)) =0, J # .

This lemma is very simple but important; see HW 2.5. It guarantees we can apply a short

recurrence iteration procedure while keep all directions are orthogonal to each other.

Lemma 2.24 (Stepsizes for CG). For the conjugate gradient method, we have following iden-

tities:
(r(m) p(m) (r(mHD) p(mtD)y

(A p(m) (-, 70

The previous lemma may look like some trivial transformations, but it is essential for CG

and B =

Ay =

implementation, which is described as follows:

Listing 2.2: Conjugate gradient method

1[%% Given an initial guess u and a tolerance g;
2 |r—f—Au, p—r;

3 |while |r|>e

4 o — (r,r)/(Ap,p);

5 U <—u+ap;

6 7 «—1r — aAp;

Tl B mR/);

8 p—T+0Bp;

9 Update: u<«1u, 1< 7, p<p;

10 | end

Remark 2.25 (Computational complexity of CG). We find that, in each iteration of the CG
method, the complexity is only 1 matrix-vector multiplication and 2 inner products, with a few

vector additions. O

The CG method converges much faster than the steepest descent in practice. In fact, we

have the following theorem

Theorem 2.26 (Convergence rate of CG). The convergence rate of the CG iteration satisfies

the following estimate:

Ju—u™], <2 (~A) = 1) Ju— @ . (2.25)

VE(A) +1

Proof. We only give a sketch of proof here. From Lemma 2.23, the residual (™) is orthogonal

to
Kn = Span{T(O),AT‘(O), el Am_lr(o)},

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS ol

namely
(A(u —ul™),v) = (r™ v) =0, YveKn.
This implies
((u— ul®) — (um — u(O)),U)A =0, Yvek,.

The above A-orthogonality gives

Hu — ™ H = min |u—u® — wH = min |u—u® — gp_1(A)r® H
A wem, A qm—1 A
= pin (A== min fan (A=)

The desired estimate can then be obtained by choosing appropriate Chebyshev polynomials; see

HW 2.6 as a guideline to complete the proof. O

Remark 2.27 (Minimum residual method). If A : V +— V is a symmetric isomorphism mapping
and it is indefinite, we can apply the minimum residual (MINRES) method characterized by

ul™ = argmln If — Av|?.
Ve m,

We can derive analytically that (see, for example, [64])

min maX lgm ()‘HT(O)HO

(m)
ey < min

In this case, the following crude convergence estimate holds

r(A) — 1\ r(A
Il = At =)], <2 (S4) A - u), =2 (B) O, @29

If all the eigenvalues are positive, we can get sharp convergence estimate using Chebyshev
polynomials. Unfortunately, it is not easy to get a general yet sharp estimate for indefinite

problems. O

Effective condition number =

If the spectrum of A is uniformly distributed in the interval [Amin, Amax], then the upper
bound in (2.25) is sharp. In fact a few “bad eigenvalues” have almost no effect on the asymptotic
convergence of the method. In this case, this bound is not sharp any more. Instead, the
asymptotic convergence rate can be estimated by the effective condition number |2, 3].

If the spectrum of A can be decomposed into two parts, o(A) = oeg(A) | 0iso(A), with

my isolated eigenvalues in ois(.A). In this case, the above convergence estimate for CG can be

— u(m) 1\
lu=u™]a o (v/b/a=1 C m>m (2.27)
Jlu —ul®] 4 Vbja + 1

modified as

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 52

where the constant C' := maxXyeq q(4)] | e

in general; and, in particular, C < 1 if gj5, contains only isolated large eigenvalues.

(A) ’1 — %’ It is easy to see that C' < (rk(4) —1)™°

Hence we can define the effective condition number as

b MAax Oeff
Reff (-A) =—=——
a min oeg

and use the effective condition number to estimate the rate of convergence of the Krylov subspace

methods instead.

Generalizing KSM to Hilbert spaces

It is important to note that the above convergence estimates (2.25) and (2.26) do not depend
on the finite dimensionality N. Hence the Krylov subspace methods (KSMs) can be applied for
operators A : ¥ — ¥, where ¥ is a separable Hilbert space3. In view of Remark 1.23, we have

H-AHZ(“//#/) = sup (AU,QU) _ CL[U,;] <,
' VeV HUHV ey HUHV/

and the inf-sup condition (1.16) gives
o Al (Av, u)

= inf sup —————— = inf sup —————
vt oy v ey [ullyluly ver uey oy luly ~

alv, u]

A2)

Hence the condition number x(A) < C,/a, which is bounded.

However, in order to employ KSMs for the continuous equations that we are interested in, like
the Poisson’s equation, we have to consider A : ¥ — #', where ¥ and # are both separable
Hilbert spaces. Typically, # > ¥ and most likely # = ¥’. For simplicity, we consider a
symmetric isomorphism A € Z(¥;7"), i.e.,

(Au, vy = {Av,uy, u,ve Y,
where (-, -) is the duality pair. Since ¥’ ¢ ¥, KSMs are not well-defined in this case. The
question is how we can apply a KSM method in such a setting.
We need to construct an isomorphism B mapping #” back to #. We assume that the map B

is symmetric and positive definite, namely {-, B-) defines an inner product in #”. We immediately

notice that B could be a Riesz operator®: For any given f € ¥,

(Bf,v)y ={f,v), YveV.

As a consequence, (B71.,-) is an inner product on ¥, with associated norm equivalent to | - | .

This leads to a so-called preconditioned system

BAu = Bf

3% might not be finite dimensional.
4We note that, here, B is inner product dependent.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 93

and BA is an isomorphism from ¥ to itself. The Krylov subspace methods can be applied to
this preconditioned system and B is called a preconditioner.

Note that BA: ¥ — ¥ is symmetric with respect to (-,-)y, i.e.,
(BAu,v)y = (Au,v) = alu,v] = (u, BAv)y, u,veY.

The last equality follows from the symmetry of the bilinear form a[-, -]. Furthermore, due to the

continuity of a[-,-] (1.14), we obtain

[(BAv,v)y| alv,v
IBAlLyyepy = sup (BRI gy aloo]
veY HUHV vey ”UHW
and the inf-sup condition (1.16) gives
BA b BA } y . I
||(BA)_1||P;,1(7/,7/) = inf IBAv)y _ inf su (BAv,w)y inf supM > a.
Ty ol e ey [ulylully ver ey [vlyfully

This discussion directly follows the work by Mardal and Winther [83].

Example 2.28 (Poisson solver as a preconditioner). As an example, we consider a second-order

elliptic operator A : H} (Q) — H~1(2). We need to define

(BfaU)Hg(Q) = (VBf, Vv)oo = (f,v).

In this sense, we can choose B = (—A)~! as a preconditioner. We note that other inner products
can be used, which will yield different preconditioners. As long as the above continuity condition

and the inf-sup condition hold, the preconditioned system is well-conditioned. O

Now we summarize the above discussion on how to construct a “natural” preconditioner:

1. Define an appropriate inner product (-,-)y;

alu,v]

oly > allully for any u e ¥;

2. Establish the inf-sup condition sup, ey

3. Define B as the Reisz operator, i.e., (Bf,v)y = (f,v) for any v e ¥;
4. The preconditioned system B.A is symmetric with respect to (-,)y and well-conditioned;
5. Construct a discretization which satisfies the corresponding discrete inf-sup condition;

6. Define a spectrally equivalent B}, as a preconditioner.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS o4

2.3 Condition number and preconditioning

The convergence rate of an iterative method depends greatly on the spectrum of the coef-
ficient matrix. Hence, iterative methods usually involve a second matrix that transforms the
coefficient matrix into one with a more favorable spectrum. The transformation matrix is called
a preconditioner. A good preconditioner B improves the convergence of the iterative method
sufficiently and is relatively cheap to compute, in order to overcome the overhead (extra cost)
of constructing and applying the preconditioner. There are a few different ways to apply pre-

conditioners, for example:

BAu = Bf Left preconditioning
ABv = f u = Bv Right preconditioning
BrABrv = B f u = Bgrv Split preconditioning

Although convergence behavior of iterative methods is not governed by the condition number
alone, it provides useful information for a variety of methods. For example, we would hope that
k(BA) « k(A), if we apply a Krylov subspace method to solve a preconditioned linear system.
Construction of preconditioners

It is desirable to have an effective preconditioner which satisfy most, if not all, of the following

properties:

e The preconditioned linear systems have improved convergence behavior. Furthermore,
the spectral condition number of B.A should be bounded independently of the size of the

problem.

e The preconditioner is relatively easy to setup and cheap to apply. The computational cost

of Br should be proportional to the size of the problem.

e The preconditioner should be robust on different domain shapes, mesh types, jumps in

coefficients, etc.

e The preconditioner can be implemented easily and efficiently.

We first introduce a few simple facts that could be helpful when we need to estimate the

condition number k(BA).

Lemma 2.29 (Estimation of condition number). If g and p; are positive constants satisfying

po (Au, u) < (B_lu,u) < p (Au,u), VueV, (2.28)

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 95

then the condition number

M1
BA) < —.
#(BA) Ho

Proof. By change of variable u = A_%v, we have U(A_%BAA_%) c [uo,,ul] and, hence,
o((BA)™Y) < [po, 1] O

Sometimes, it is more convenient to use some equivalent conditions of (2.28) to analyze
condition number; see the following lemma. Proof of the following lemma is left to the readers

as an exercise; see HW 2.7.

Lemma 2.30 (Some equivalent conditions). If A and B are symmetric positive definite operators

on a finite-dimensional space V', then we have the inequalities (2.28) are equivalent to

po(Bu,u) < (A u,u) < pi(Bu,u), YueV, (2.29)

or
pt (Au,u) < (ABAu,u) < pgt(Au,u), YueV, (2.30)

or
1yt (Bu,u) < (BABu,u) < pg*(Bu,u), YueV. (2.31)

Remark 2.31 (Another equivalent condition). If A and B are symmetric positive definite
operators on a finite-dimensional space V, @ > 0 and 0 < < 1, then it is easy to verify the

following two conditions are equivalent:

—a(Au,u) < (A(Z — BA)u,u) < 0(Au,u), YueV (2.32)

and
(1+) H(Au,u) < (B u,u) < (1—8)"HAu,u), YueV. (2.33)
O

Preconditioned conjugate gradient method

Before we talk about preconditioned KSMs, the first question to answer is why and how CG
can be applied to the preconditioned system BAu = Bf. We have mentioned B.A is usually not
symmetric w.r.t. (-,-) but symmetric w.r.t. (-,-) 4. Similarly, we can define a new inner product

(-,)g-1 := (B7L.-). Then
(BA-,)g-1 =(A,-) = BAisSPD w.r.t. (-,")5-1,

which means CG can be applied to BAu = Bf with the new inner product.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 56

Lemma 2.32 (Stepsizes of PCG). For the preconditioned conjugate gradient method, we have
the following identities:
(Brim+D)_p(m+1))

(Br(m) 7 r(m))

(Brm) p(m)
(Ap(™ ™)

We notice that B~! is cancelled out in the above inner products. With the help of this

and Bm =

Uy =

lemma, we can write the pseudo-code of PCG with left preconditioner (compared with regular

CG, it just requires one more matrix-vector multiplication):

Listing 2.3: Preconditioned conjugate gradient method

1 (%% Given an initial guess u and a tolerance g;
2 |r« f—Au, p< Br;

3 |while |r|>e

4 o« (Br,r)/(Ap,p);

5 U<—u+ap;

6 7 «—1r — aAp;

7 B — (Br,7)/(Br,r);

8 D — Bi + Bp;

9 Update: u<«u, r <7, p<p;

10 | end

Preconditioning v.s. iteration

Let B be a symmetric iterator of the SPD operator .A. We have seen that a sufficient

condition for the iterative method to be convergent is that
p(Z—-BA) <1

In this case, p := |Z — BA|4 < 1. The method is not only converging but also a contraction,
ie., Ju—u™|q < p™u—u®|4 — 0as m — +oo. Similar argument as Theorem 2.12 shows

that B must be SPD. Furthermore, by definition, we have
(A= 24BA+ ABABAYu, u) < p(u,u) 4.
Changing variable v = A'/2u, we obtain
((I— Al/QB.Al/z)zv,v> < pP(v,v) — ’((I— Al/zBAl/g)v,v)’ < p(v,v)
— ’((.A - AB.A)U,U)‘ < p(Au,u), YueV.
Hence Remark 2.31 shows (see HW 2.9) that the condition number is uniformly bounded, i.e.,
ﬂ

k(BA) < =,

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS o7

In fact, the above estimate can also be easily obtained from p(Z — BA) = p < 1.
We use the same notation B for the preconditioner and the iterator, apparently for a reason.
Indeed, the convergence rate of the preconditioned CG method (2.25) is equal to

w/ﬁ(B.A)—1< %Z_l 1—4/1—p?

= < p.

C T JRBA +1 i p

The last inequality holds true when 0 < p < 1. Hence, for any convergent stationary linear

iterative method, a preconditioner can be found and its convergence can be accelerated by
PCG. Of course, it comes with the extra cost of applying the preconditioners. Preconditioning

is so important for practical problems and KSMs are sometimes referred as accelerators.

Stopping criteria »

When an iterative method is employed, sometimes it is hard to determine when to stop the
iteration process. Ultimately we would like to have the error ™ = 4 — w(™) in certain norm
(e.g. the energy norm) to be small enough, i.e., (e(m),e(m))é1 < e. However, the error is not
usually computable. Norms of the residual (™) = f — Au(™) which is not only computable but
also naturally available in the iterative process, are used instead. According to the standard

perturbation analysis, we have

Ju — wt™] =)
— < K .
Jull 11
In fact, A(u —u(™) = f — Aul™ = r(™) Hence |u—u(™]|| < |A~Y|r™|. On the other hand,
it is easy to see that ||f| < |Al||u|. By combining the last two inequalities, we can obtain the

desired estimate (2.34). We notice that the right-hand side of (2.34) is the relative residual (with

(2.34)

initial guess equals zero) and the left-hand side is just the relative error. Hence this inequality
shows that, even if the relative residual is small, the relative error could be still very large,
especially for the ill-conditioned problems.

is a better quantity to

ol

Although L2?-norm of (™) is usually used in practice, (r(m),r(m))

monitor for convergence. We notice that
(), 1 g = (Ae™), Ae(™) o = (ABAe™ (™).

, if and only if B is a good

pNESIE

is equivalent to (e(m), e(m))

ol

According to Lemma 2.30, (r(m), r(m))
preconditioner.

Another comment is that we have been using the residual of the original equation instead of
the preconditioned equation in PCG. In practice, there might be situations that left part of the

preconditioner changes the residual of the equation a lot, which will cause trouble for users to

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS o8

design stopping criteria. The preconditioned equation has a residual rg = Br = B(f — Au) and

|rg|| might be a lot different than ||r||. Thus it is usually not good to use rg instead of r.

2.4 Domain decomposition methods

In the field of numerical methods for partial differential equations, domain decomposition
methods (DDMs) make use of divide and conquer techniques by iteratively solving subprob-
lems defined on smaller subdomains. It is a convenient framework for the solution and, more
importantly, preconditioning of heterogeneous or multiphysics problems. It can be used in the
framework of many discretization methods (e.g., FD and FE) to make their algebraic solution
efficient, especially on parallel computers. Roughly speaking, there are two ways of subdividing
the computational domain, overlapping and non-overlapping. We will only discuss overlapping

domain decomposition methods here.

Divide and conquer

We consider the model boundary value problem

Au = f in Q
u = 0 on 0f2

Overlapping domain decomposition algorithms are based on a decomposition of the domain €2
into a number of overlapping subdomains. To introduce the main ideas of DDMs, we consider
the case of two overlapping subdomains €21 and 25, which form a covering of Q and ; () Q2 # ©;
see Figure 1. We let I'; (i = 1,2) denote the part of the boundary of €2;, which is in the interior
of Q.

Figure 2.1: Overlapping domain partition with two sub-domains.

If we already have an approximate solution u(™, we can construct a new approximation by

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 99

solving the following two equations:

Augmﬂ) = f in Q,
ugmﬂ) = (™ onI'y,
ugmﬂ) = 0 on 0Q\I'y,

and)

.Auémﬂ) = f in Q,
ugmﬂ) = g(m) on I'y,
ugm+1) = 0 on 6QQ\I‘2

\
Here we have not specified how to choose the right boundary condition ¢(™. There are two
approaches to apply these two subdomain corrections—the additive approach and the multi-
plicative approach. In the additive approach, we take g(m) = u(™ and carry out the two

ungrl)

corrections simultaneously. In the multiplicative approach, we take ¢(™ = and use the

most up-to-date iterative solution. We then define the new iteration as

(m+1) £ e O
u(erl) (.T) — u?erl)? 1 z 25
uy , if x € Q\Qo.

Overlapping DD methods

With the above motivation in mind, we are ready to introduce the standard overlapping

domain decomposition method in matrix form:
Ai=f, V=R

Suppose we have an one-dimensional domain partitioning of €2; see Figure 2.2. Of course, we

can use more general partitioning strategies as well.

A~

Qy

0 0y Q3 Qy Q

BH

Figure 2.2: Overlapping domain partition with four sub-domains.

Denote the set of grid point indices as G := {1,2,..., N} and it is partitioned into n subdo-
mains. Let G; be the index set of the interior points of ;, and N; := |G;| be the cardinality of

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 60

G;. Apparently, we have
GZGlUGQU”'UGn and N <Ny + Ny +---+ N,,.
In the matrix form, the injection matrix (natural embedding) I; € RY*¥i is defined as

(@), if keGy

(Livi)k = R (2.35)
0, if ke G\Gz
It is natural to define sub-problems as A; := IT Al; (i = 1,...,n). If we solve each sub-problem
exactly, then we have B; := IZ-Ai_lIiT.
We can define an additive Schwarz method (ASM) as

n n
Basi= Y| Bi= Y LA 'IT, (2.36)

i=1 i=1

which generalizes the block Jacobi method. Similarly, a multiplicative Schwarz method (MSM)

is then defined by the following error propagation operator

I — BugA = (I — ByA)---(I — B1A) = ﬁ([— B;A). (2.37)

i=n
This is a generalization of the block G-S method (with overlapping blocks). In practice, the
sub-problem solver A;l could be replaced by an approximation, like the ILU method.

Classical convergence results of overlapping DDMs x

These DD methods, especially the ASM version, are usually applied as preconditioners for
parallel computing. Its convergence has been analyzed in [49, 50] and we only show the results

for the additive version here.

Theorem 2.33 (AS DD preconditioner). The condition number of AS domain decomposition

method is independent of the mesh size h and satisfies
K(BasA) S H2(1 4+ 572),
where H is size of domain partitions and SH characterizes size of the overlaps.

The DD preconditioner (2.36) performs very well in practice. But the convergence rate still
depends on H and the condition number could be large if H is very small. A simple approach
to get rid of this dependence on H is to introduce a coarse space Vy < V and a corresponding
coarse-level solver, i.e.

n
Bas i= IoAy'I§ + >, LAIT,
i=1
where Iy : Vo — V is the injection matrix and Ag is the coarse space problem. We then have

the following estimate on the condition number:

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 61

Theorem 2.34 (Two-level AS DD preconditioner). The condition number of AS domain de-

composition method is independent of the mesh size h and satisfies
K(Bas2A) <1+ 7%

The above theorem shows the dependence on meshsize can be removed by introducing an
appropriate coarse-level correction. We will construct and analyze two-level and, more generally,

multilevel iterative methods in the following chapters.

2.5 Homework problems

HW 2.1. Show the identity (2.7).
HW 2.2. If BT = B, show that (BA)* = BT A = BA.

HW 2.3. Let A € RV*N and ¢()) := |A] — A] be the characteristic polynomial of A. Show the
Cayley-Hamilton theorem, i.e., ¢(A) = 0.

HW 2.4. Show the optimal stepsize (2.18) for general descent direction method.
HW 2.5. Prove Lemmas 2.23 and 2.24.

HW 2.6. The Chebyshev (or Tchebycheff) polynomial of first kind on [—1,1] can be defined
recursively as
To(z) =1, Ti(z) =z, Thi(z)=20Ty(z)— Th-1().
Show that
Tu) = 5 (4 Va2 = 1)+ (o~ Va2 —1)")

and |Tn(x)| < 1 for any x € [—1,1]. Let 0 < Apin < Amax. Define

Su(\) = {TR<M>}‘1TTL(AW 20y

)\max -)\min)\max -)\min

and we have

Tn (Amax + Amin

>\max - Amin

)| =15 etnd = 8 [5lrn

where P, is the set of polynomials of degree less than or equal to n.
HW 2.7. Prove Lemma 2.30.
HW 2.8. Show that (2.32) and (2.33) are equivalent to each.

HW 2.9. Let A be SPD and B be a symmetric iterator. If p = |Z — BA|4 < 1, then B is also

SPD and

1+ p

Chapter 3

Twogrid Methods

In the previous chapter, we have seen several simple iterative solvers and preconditioners for
solving the linear algebraic system (2.1). The convergence rate of these methods deteriorates
when meshsize h approaches zero, except for the two-level overlapping domain decomposition
method with coarse-grid correction. This motivates our discussions on multilevel iterative meth-
ods in the following chapters. In this chapter, we will discuss the twogrid (or more generally,
two-level) method for the discrete Poisson’s equation:

—Au=f in{, .
= Au=f.
u=0 on 0.

In Chapter 1, we have briefly discussed the finite element approximation for this model
problem. From now on, we will mainly discuss in the context of finite element discretizations.
Throughout this chapter, we use the standard notations for Sobolev spaces introduced in Chap-
ter 1: H"(Q) denotes the classical Sobolev space of scalar functions on a bounded domain
Q = RY whose derivatives up to order k are square integrable, with the full norm | - ||, and the
corresponding semi-norm | - |.. The symbol H{(£2) denotes the subspace of H!(2) whose trace
vanishes on the boundary 0f2. We will also discuss the corresponding spaces restricted to the

subdomain of 2.

3.1 Finite element methods

We now take a little detour and say a few more words about the finite element discretizations;

see [38] for more details. The linear operator A : ¥ — ¥ is defined by

(Au,v) := alu,v] = j VuVvdz, YveV
Q

62

CHAPTER 3. TWOGRID METHODS 63

and f € ¥ is a function or distribution. Suppose that A is bounded (1.14), i.e.,
alu,v] < Coluly|vly, Vuve?

and coercive (1.23), i.e.,

alv,v] = a|v|?, Yve¥.

We would like to find u € ¥ such that Au = f or in the weak form
alu,v] = (f,v)y, Yve¥ (3.1)

which is well-posed. And we have seen that this problem is well-conditioned in Remark 1.23.

Galerkin approximation

The Galerkin method exploits the weak formulation (3.1) and replaces the underlying func-
tion space by appropriate finite dimensional subspaces. We choose a finite dimensional space
Vn (trial/test space), which is an approximation to the space ¥ with dim(Vy) = N. When no
confusion arises, we shall just drop the subscript and denote the space as V = V. Then we

arrive at the Galerkin discretization:
Finduy e V: alun,vn] = (f,on), VonyeW (3.2)

Equation (3.2) yields the so-called Galerkin discretization. If the bilinear form al-, -] is symmetric
and coercive, it is called the Ritz—Galerkin discretization. In the finite-dimensional setting, we
can identify the dual space V' and V; this way, the duality pair (-,-) becomes the [*>-inner
product (-,).

For conforming discretizations, the bilinear form a[-,-] is well-defined on V' x V. If the

bilinear form af[-, -] is coercive, then we have
alun,vn] = aylon|?, YuneV.

Since coercivity is inherited from ¥ to its subspace V, we can see that the constant ay is
bounded from below, i.e.,

Ny =0, VN

As a consequence, the discrete inf-sup condition holds!. It is easy to show the following simple

optimality approximation properties.

Tn general, the continuous inf-sup condition does not imply the discrete one.

CHAPTER 3. TWOGRID METHODS 64

Remark 3.1 (Galerkin Orthogonality). Assume V < ¥. The weak formulations of the exact

and discrete solutions satisfy
CL[U,’U]=<f,U>, VUEﬂf/;
(I[UN,’UN]:<f,UN>, VUNEV
Taking v = vy in the first equation and simply subtracting the two equations gives the Galerkin

orthogonality, i.e.,
a[u — UN,UN] = 0, V’UN eV. (33)

If a[-, -] is symmetric and coercive, then (3.3) means the error u — uy is orthogonal to V' in the
induced inner product by the bilinear form a[-,-]. Apparently, IT yu := uy is a projection from

¥ to V with respect to (-,) 4-inner product. It is oftentimes called the Ritz projection.]

Lemma 3.2 (Céa’s Lemma). If the bilinear form a[-,-] is continuous and coercive, then the

Galerkin approximation uy satisfies
Cq
lu —unly < —lu—wvnly, VoneV.

More generally, we have the following quasi-optimality or quasi-best-approximation of the

finite-dimensional Galerkin approximation.

Proposition 3.3 (Quasi-Optimality). Suppose a[-,] : ¥ x ¥ — R is continuous. The fi-
nite dimensional subspace V in the Galerkin approximation satisfies the discrete inf-sup condi-
tion (1.22) with an > 0. Let v and uy be the exact solution of (1.15) and the Galerkin solution

of (3.2), respectively. Then the error
Al .
lu —un|y < u min ||u —wy|y.
N

Proof. For all wy € V, applying (1.20) and (3.3), we have

aluy — wy, vN] _ alu —wn,vN]
aylluy —wn|y < sup = sup ———————
uneV lon |y ovev only

< Al u = wx

Y.

Then simply applying the triangular inequality gives the estimate.

Al + oy
< I TN
H”V\ o

N

lu —un min |u —wy|y.
eV

Note that this constant in the upper bound is still not sharp. The desired constant in this

Proposition was obtained by Xu and Zikatanov [123]. O

Remark 3.4 (Stability). In view of Theorem 1.16, we can see that the Galerkin solution depends

on the data continuously, i.e.,

1
lunlly < =[fll-
a

CHAPTER 3. TWOGRID METHODS 65

Finite element *

The finite element method (FEM) has a long history in practical use and is widely applied
to lots of problems in physics and engineering. It has been proved to be very successful in
many areas, like structural mechanics. After decades of extensive development, the subject of
classical (conforming) finite element method has become a well-understood and successful area in
scientific computation. The most attractive feature of the FEM is its ability to handle complex

geometries, boundaries, and operators with relative ease.
Definition 3.5 (Finite element). A triple (K, P,) is called a finite element if and only if
(i) K < R? be a bounded closed set with nonempty interior and piecewise smooth boundary;
(ii) P be a finite-dimensional space of functions on K;
(i) N = {MN1,...,Ni} be a basis of P’.

We usually call K the element domain, P the space of shape functions, and N the set of

nodal variables.

Definition 3.6 (Nodal basis). Let (K,P,N) be a finite element. The basis {¢;};—1,. of P
dual to NV, i.e., Nj(¢;) = d;; is called the nodal basis of P.

Example 3.7 (1D Lagrange element). Let K = [0,1], P be the set of linear polynomials, and
N = {Ni,Na} where N1 (v) = v(0) and Na(v) = v(1). Then (K,P,N) is a finite element and it
is the well-known P;-Lagrange finite element discussed in Chapter 1. The nodal basis functions
are ¢1(x) =1 —z and ¢a(z) = =. O

Remark 3.8 (Set of nodal variables). If P is a k-dimensional space and {Ni,...,Ni} < P

Then condition (#7i) in Definition 3.5 is equivalent to the unisolvence: For any v € P,

Ni(v)=0, i=1,....k = ov=0. O

d+1)

Remark 3.9 (d-dimensional simplex). Let 2zl are d + 1 points in R?. Suppose that

these points do not lie in one hyper-plane. That is to say, the matrix

3651) xgz) x§d+1)

xél) xgz) o xéd-i—l)
S = : : : :

xgl) xff) . xédﬂ)

1 1 1 1

CHAPTER 3. TWOGRID METHODS 66

is non-singular. The convex hull of the d + 1 points

d+1 ' d+1
T::{x:z:)\ix(’) : 0</\i<1,i=1:d+1,2)\i=1}
i=1 1=1
is called a geometric d-simplex generated (spanned) by the vertices =M, 2D Given any
point z € R%, we have
d+1 d+1

x = Z Ai(z)z®, with Z Ai(x) = 1.
i=1 i=1

Here the numbers Ay, ..., A\g11 are called the barycentric coordinates of x with respect to the

simplex 7. O

Now we describe the main steps of discretization using the (K, P, N)-finite element:
Step 1. Domain partitioning: Choose K to be a simplex in R%. So we first partition the
physical domain into simplexes. We discretize a polygonal domain) into small triangles or
tetrahedrons 7. Let h, := \Tﬁ be the diameter of 7 € M and h(x) be the local meshsize, that
is the piecewise constant function with h|; := h, for all 7 € M. The collection M of elements
is called a mesh or triangulation. We call My, := M quasi-uniform if there exists a constant h
independent of 7 such that
h<h:<h, V7teM.

We will only consider conforming meshes, i.e., the intersection of any two elements in M is
either an edge (d = 2) / a face (d = 3), vertex, or empty (see Figure 3.1 for an example). We
denote by G(M) the set of all grid points (vertices) in the mesh M. And G(M) = G(M)
is the set of vertices except those on the Dirichlet boundary. Here we use the subscript h to
describe the discrete nature and this does not imply the underlying meshes are quasi-uniform

with meshsize h. In the future discussions, we will focus on uniform conforming meshes only.

Figure 3.1: A polygonal domain 2 with conforming partition.

CHAPTER 3. TWOGRID METHODS 67

Remark 3.10 (Number of geometric entities). We now briefly discuss the relations among the
numbers of vertices, edges, faces, and elements in a triangular or tetrahedral partition. We will
denote these numbers as #V, #E, #F, and #7 respectively. As a convention, #F = #7 in 2D.
In 2D, we can consider the term of half-edge, which is defined as a pair of an edge and a face it
borders. We can easily see that the number of half-edges is 2 #E or 3 #F. Therefore, we have
2 #E = 3#F. Furthermore, according to the famous Euler—Poincaré formula, in any polyhedron,
we have that #V — #E + #F = 2. Hence we can obtain that #F ~ 2#V and #E ~ 3#V. In 3D,
we have the following relations asymptotically #F ~ 12 #V, #E ~ 7T#V, and #7 ~ 6 #V. [

Step 2. Finite-dimensional approximation: Let V, < ¥ be the space of continuous
piecewise polynomials over a quasi-uniform conforming mesh Myp, which satisfies appropriate

conditions on the boundary I' := Q\Q, i.e.,
Vi i={veC(Q) : v|; € P, for allTe./\/lh}ﬂ”f/. (3.4)

We notice that there are many ways to approximate the continuous test function space. Different
choices will then result in different numerical methods. In this section, we shall focus on the
simplest case—linear finite element method on triangles or tetrahedronms, i.e., v|; is a linear
polynomial on each 7 € M. The weak form of the finite element approximation reads: Find

uy, € V3, such that

alun,vn] = {f,vn), Y v € Vi, (3.5)

or, equivalently,
Apup, = fp. (3.6)
Step 3. Assembling the finite-dimensional problem: Using the finite element definition

(K,P,N), we can give a basis of the finite dimensional approximation space V},. Suppose {¢;}¥,

be a basis of the N-dimensional space V};,. Then (3.6) can be written as an linear algebraic
equation

Apup, = fh. (3.7)

We are going to discuss this notation later in §3.2.

Properties of finite element methods

There are a few important properties of finite element space and method that will become

crucial for our later analysis for multilevel iterative methods.

Proposition 3.11 (Interpolation error). Let M, be a uniform mesh and Vj, be a C* (a > 0)

finite element space on My,. The interpolant Jj, : W (Q2) — V}, satisfies

o — jhv”wg(g) < hmkaUHW;n(Q)’ Voe W' (), 0 <k <min{m,a + 1}.

CHAPTER 3. TWOGRID METHODS 68

Proposition 3.12 (Inverse estimate). Let M, be a uniform mesh and P < W} (K) (\W(K)
and 0 < m < k. If V}, is a finite element space for (K, P,N) on M, then we have

1 . .
(T;h [olf) B0 (T;h [n) s Vo

Using Proposition 3.12, we can easily see that, for any v € Vj,

4
o] Lo) € B 7] e, p € [1,0);
10l s) < 2] 220, s€[0,1];
[v| ey S 0l i), ae€(0,5).

Moreover, there is a discrete Sobolev inequality at the bottom-line case (when d = 2) which is

worthy for special attention.

Proposition 3.13 (Discrete Sobolev inequality [29]). The following inequality holds
|vllze) < Ca(h)|v]gr (), VveVh,
where Cy(h) = 1, Co(h) = |log h|/2, and Cy(h) = h™z.

Proposition 3.14 (Weighted estimate for L? projection [29]). Define Qy, : L?(2) — V}, by, for
any v € L2(€), it holds that
(Qpv,w) = (v,w), VYwe V.

Then we have the following weighted L?-estimate

[v—Qnoly + [Quol, < hlvl,, Voe Hy(®).

17
Remark 3.15 (Simultaneous estimate). From the above weighted L2-estimate, we can easily
show the so-called simultaneous estimate

inf (o —wly+ Ao —w],) S Aol Voe H)Q).

’LUGVh

O

Remark 3.16 (Spectral radius and condition number of A). Suppose that we have a uniform
partition with meshsize h. It is clear, from the Poincaré inequality and the inverse inequality,
that

[o]§ < [IVulg = (Anv,v) < [0l S A2, Yo e Vi

In fact, we have p(Aj) = h=2 and x(Ap) = h=2 O

CHAPTER 3. TWOGRID METHODS 69

Error analysis »

We now briefly introduce standard error estimates for the continuous linear finite element;
see [46, 38] for details. For standard finite element approximation of elliptic equations, the most

important property is the following Galerkin orthogonality property (see Remark 3.1)
alu —up,vp] =0, Yo,eV.

Using the definition of the energy norm ||| := a[-,-]"/?, the Galerkin orthogonality (3.3),

and the Cauchy-Schwarz inequality, we have
llu = wnll* = afu = up,u — un] = afu = up,u = o] < Jlu = un] u = vall, Vo € V-
Hence, we obtain the optimality of the finite element approximation, i.e.,
Ju— il < ot fJlu=vs] (3.8)

This means wy, is the best approximation of u in the subspace V. In general, it is not true for

finite element approximations.

Theorem 3.17 (H'-error estimate). If u e HJ' () (1 < m < 2), its P;-Lagrange finite element
approximation uy, € Vj, € ¥ = H} () satisfies

Ju— “hH1,Q S hm_l‘“’m,ﬂ'
If m = 2, then we have |u —up|1.0 < thHOQ.

Theorem 3.18 (L2-error estimate). If u € H3(2), its P;-Lagrange finite element approximation
up € Vi © ¥ = HE(Q) satisfies

Ju— “hHo,Q < hlu— uh’l,Q S h2’“}2,9 S hQHfHO,Q'

Remark 3.19 (A posteriori error analysis). A posteriori error estimation relies on the following

error equation (or residual equation):
alu — up,v] = afu,v] — alup,v] = (f,v) — afup,v] = (f — Aup,v), YveV.
Hence, by the Cauchy-Schwarz inequality, we obtain (see HW 3.1)
If = Aupll, < flu = wnll < If = Ausll, - (3.9)

Here |||, is the dual norm of |-||. Notice that, on the right-hand side, we only have the data
f and the discrete solution up. This upper bound does not depend on the unknown solution w.
Of course, to make the upper bound useful in adaptive algorithms, we need it to be local and

computable. O

CHAPTER 3. TWOGRID METHODS 70

3.2 Matrix representations

In the previous chapters, we have written the discrete problem simply as
At = f.
We will see that, in some sense, it is an abuse-of-notation. Now we would like to clarify (especially
for finite element methods) the relation between the general operator form Apuy, = fj, and its
often-used matrix form (3.7), i.e., fih% = ﬁ Sometimes we can drop the subscript h for

simplicity.

Vector and matrix representations

Assume that {¢;};—1. n is a basis of the finite-dimensional space V. Any function v € V
can be represented as
N
v=Y v
i=1

and the vector representation (coefficient vector) of v is defined as

U

v
2 |erY. (3.10)

|
i

Un

It is not hard to notice that there is another natural and easier-to-compute vector representation

<y
Il
S

I

U=] and (3.11)

(1}7 ¢N)
where M € RM*N with M; ; := (¢}, i) = (¢4, ¢;) is the mass matriz. v and ¥ can be referred

to as the primal and dual vector representations of v, respectively. Apparently, we have

(Q717) (Q,'U)lQ :QTMQ: (U,'U)V.

Suppose W is another finite-dimensional linear space with a basis {1;},=1, . In general, W
could be of different dimension than V', namely, N’ # N. For any linear operator A : V — W,
we give a matrix representation (the so-called primal representation), A € RV "*N such that it

satisfies that Zf\il (A)ijz/}z' =A¢; (j=1,...,N), ie,

(Y1, oN)A = A(d1, ..., dN). (3.12)

CHAPTER 3. TWOGRID METHODS 71

On the other hand, the dual representation (the stiffness matriz) corresponding to A is denoted
by A e RVN*N with entries (.,Zl)w = (Agj, di).
It is not difficult to check the statements in the following identities; see HW 3.2.

Lemma 3.20 (Matrix representations). If A,B8:V +— V and v,u € V, we have the following

results:
1. AB = AB;
2. Av = Av;

6. (u,v) = (Mu,v).

Example 3.21 (Identity operator). Let Z : V — V be the identity operator. Its stiffness and
mass matrices are equal to each other, i.e., 7 = M. Hence Z = M~'Z = I. Note that this

relation is independent of the choice of basis functions. As a consequence, we have

I=Z=AA"'=AA4""

which gives the equality A1 = A~L. O

Example 3.22 (Finite difference matrices). For the finite difference methods, we can simply

let A :RY — RY be a matrix and the canonical basis ¢; = &; := (0,...,1,...,0)T € RV, then
we have A = A. Generally speaking, if A: V — V and {¢:}I¥, is an orthonormal basis of V,
then we have M = I and A = A. O

Finite element matrices

We now use a few simple examples to demonstrate how to apply these notations. Suppose
that V' =V}, is the piecewise linear finite element space and {¢;};—1,.. n are the basis functions.
Let A be the resulting coefficient matrix of (3.2) with (A);; = a;; := a[¢s, ¢;]. By definition,
A = A e RNV i the stiffness matrix corresponding to A. Since we are going to focus on the
finite element discretization from now on, we will not distinguish A and A, when no ambiguity

arises.

Let u = (ul)f\il e RY be the vector of coefficients of uy, namely up. Let f = (fi)fil

{< 7, ¢1>}f\i1 Then u satisfies the linear system of equations:

A~ —

u=f o Au=f

CHAPTER 3. TWOGRID METHODS 72

Upon solving this finite-dimensional linear system, we are able to obtain a discrete approximation

N
Up = Z @quz
i=1

The main algebraic properties for the stiffness matrix includes: A is sparse with O(N)
nonzeros, symmetric positive definite (for Dirichlet or mixed boundary condition problems) or
symmetric positive semi-definite (for Neumann boundary condition problems). We now summa-
rize this brief introduction of finite element matrices with a few comments. The following results
are valid for a large class of finite elements for second-order elliptic boundary value problems in

general domains.

Remark 3.23 (Spectrum of mass matrix). Suppose that we have a uniform partition with
meshsize h. An often-used matrix is the mass matrix M € RV*N in which M;; = (¢, ¢;). In

fact, we know that
(Mv,v) Zvlv] (¢, 0j) = (v,v) = f x)dr = hdZv ~ hi(v,v) (3.13)

It is consistent with the well-known facts that the mass matrix is also SPD and well-conditioned,
ie.,

rAEd s et ME < hY¢d, YEeRN.
]

Remark 3.24 (Spectrum of stiffness matrix). Suppose that we have a uniform partition with

meshsize h. It is also well-known that the stiffness matrix A is SPD and, from Remark 3.16,
W < €7 AE < MR, Ve RN,
Hence the spectral radius p(A) = k%2 and the condition number x(A4) =~ h=2. And it has been

observed that the CG method becomes slower when h decreases. O

Matrix and operator forms of simple iterative methods

Now we consider the solution of the standard finite element (say the P;-Lagrange element)
for the Poisson’s equation, i.e., Au = f The simplest iterative solver for this finite element

equation is probably the well-known Richardson method:
uev — @old + w(f'_ Agold>_ (3‘14)

It is equivalent to

CHAPTER 3. TWOGRID METHODS 73

That is to say, the Richardson method, can be written in the operator form as
eV = uold +B (f . Auold)
- w

with an iterator B,,, whose matrix representation is B, = wM. Therefore, it is easy to check

(HW 3.3) that the operator form of the Richardson method is
N
Z)b, YoeV <« B,=wM. (3.15)

In general, a smoother or local relaxation is just a linear stationary iterative method
RV — uold + S(f _ Auold)
and its matrix representation is

w — 0 L S(MLF — ML A = w0+ SM(F = Au). (3.16)

The above equality indicates that, we shall define a smoother in the matrix form as

S:=SM™' e, S=SM. (3.17)

Example 3.25 (Matrix form of the Richardson iteration). If we consider the above Richardson

method (3.15) as an example, i.e. Sg := B, then
Sgp=SrM ' =B,M ' =wl
This coincides with the algebraic form of the Richardson method (3.14). O

Now we discuss another important concept for our analysis, the matrix form of the sym-

metrization. Let w := STu. Then we have
N R
a=((8"69). (Zu (8%050). = (Dus0556)). = (6w
J

This immediately gives

In turn, it shows

ST =M (MS)" = M8 M = 5T M. (3.18)

By definition of the primal matrix representation of an operator, we have

S(¢la"'a¢N):(¢17"'7¢N)§ and S_l(qsl,...,ng)=(¢1,...,¢N)57_1,

CHAPTER 3. TWOGRID METHODS 74

Using Example 3.21, it is easy to see that

-1

St=(8) = (sM) =Mmtsh (3.19)

Using the definition of symmetrized operator (2.13) and (3.17)—(3.19), we can define the

matrix form of the symmetrization

S = SM' = STMM ST+ M - M A) SMM !
= ST(sT+571-A)s, (3.20)

which is formally consistent with the definition of symmetrization (2.13).

3.3 Smoothers and smoothing effect

The methods discussed by far, for example the damped Jacobi and Gauss—Seidel methods,
are mostly local relaxation methods. The name “local relaxation” comes from the fact that
these methods just correct the residual vector locally, one variable at a time; see Example 2.20.
Although these methods are not very efficient as a solver by themselves, they are key ingredients
of modern multilevel iterative methods. These methods can be applied to reduce high-frequency
error components; see §1.3. Other methods like the SOR method and incomplete factoriza-
tions have similar effects too. In this section, we analyze their smoothing effect using different

approaches.

A numerical example

The damped Jacobi and Gauss—Seidel methods are often called local relaxations and such
relaxation procedures are effective to the error components that are local in nature. Therefore,
it is not surprising that both the damped Jacobi and the Gauss—Seidel methods can damp
out non-smooth components more easily. These methods are inefficient for relatively smoother
components in the error since they are more globally related.

We have observed that the basic stationary linear iterative schemes converge rather fast in the
very beginning but then slows down after a few step; see Figure 1.4 for the convergence behavior
of the damped Jacobi method. Moreover, these methods not only converges fast in the first few
steps, but also smooth out the error function very quickly. In other words, the error becomes a
much smoother function after a few iterations. This property of the iterative scheme is naturally
called smoothing property and any iterative scheme possessing such smoothing property is called
a smoother.

Figure 3.2 is a pictorial example for applying multiplicative overlapping domain decomposi-

tion method with four subdomains. We can see that, after one iteration, the method smoothes

CHAPTER 3. TWOGRID METHODS 75

out the high frequency part and leaves the lower frequency part behind. In fact, basic linear

INITIAL GUESS FIRST SUBD. SOLVE

(a) Initial Guess (b) A quarter of the domain relaxed
FIRST HALF SOLVED AFTERA SMOOTHING
| 2 i = Ik p 0018
::.= %& 1 A (il ! B i 001
ot Y A 8 ¥ ' 005
o2
o-le i o
:j: 1 -0.008 4 " & Tt
s o
137 3 > . i A %
Ly : i e
o8 — < i
0.5 : ; e o8) = 08 e : L 0B '
a4 e o es B4 e B e e
LTI e 02 \(,/-”‘:z o
o o o 0
(c) First half relaxed (d) After smoothing

Figure 3.2: Iterative method in the viewpoint of subdomain relaxation.

relaxation schemes, such as the Richardson, Jacobi, and Gauss—Seidel iterations, are local and
can only capture high frequency (local) part of the error, but do not work well on low frequency

(global) part.

Local Fourier analysis

Local Fourier analysis (LFA) or local mode analysis [30, 105, 32] is a very powerful technique
to understand and predict the convergence speed of geometric multigrid (GMG) methods. It is
well-known that, for model problems on rectangular domains with periodic boundary conditions,
LFA can yield the exact convergence rate of GMG; see detailed discussions in, for example, [33,
110, 117]. More recently, LFA has been shown to be applicable to more realistic situations like
the Dirichlet boundary condition case—It was proved that, if the problem is compatible to a
periodic boundary condition problem, LFA yields rigorous convergence rate of the multigrid
schemes [101].

LFA has been developed for multigrid algorithms for very general problems, including prob-

lems with nonconstant or nonlinear coefficients. The LFA technique can be applied to different

CHAPTER 3. TWOGRID METHODS 76

discretization methods (like finite difference methods, finite volume methods, etc) as long as
the resulting discrete problems can be represented in a stencil form. This is restrictive for its
application on finite element methods due to their grids are typically not structured. Here, for
simplicity, we analyze the simple smoothers using LFA, just to give the readers some flavor on
this powerful tool. For more details, the readers are referred to the practical guide on LFA by
Wienands and Joppich [117].

In order to analyze the local behavior of iterative methods, we consider the 2D Poisson’s
equation with homogenous Dirichlet boundary condition on the unit square discretized with a
uniform triangulation; see §1.2. We begin with the damped (weighted) Jacobi method as an

example. Using the local Fourier analysis, we have the following observation:
1. The standard FD stencil can be written as
Quij — (wic1g + wigry + wigo1 +uigr1) = 2 fiz, 4,j=1,...,n

and the damped Jacobi (or Richardson) method for the above equation reads

new _ old old old old old W2 C
up G = (1 —w)ug; + 4(uz 1 Ui Sy Fufs) +Zh fij, Gi=1,...,n
2. Define the discrete error function e7'5" := w;; — ;5" and efljd = U — U] , for 4,5 =
1,...,n. It is clear that the error function satisfies the local error equation
new old old old old old T
eri = (1—weds + 4(6Z 1; T €1 +ej- 1+€”+1) i,j=1,...,n.

3. Apply the discrete Fourier transformation:

eij= 3 ageVIi0+it)

0eB,,
and N o
2 T T
On = {(00,02) - 01 =27 0, = 2 k1 [y, mal,

where m; = n/2—1,my = n/2, if nis even and m; = mg = (n—1)/2, if n is odd. Plugging

new
1,5

amplification factor of the local mode er(wlﬂ%)

the discrete Fourier transforms of e}'S" and eOId to the above error equation, we get the

AO) = aild _ 1—w<1— cos(ﬁl);cos(92)> <l
Qg

Furthermore, A\(#) — 1 when |#] — 0 (low-frequency components).

CHAPTER 3. TWOGRID METHODS 7

4. Asymptoticly, m; ~ ma ~ §. So we can define a smoothing factor (i.e. maximal amplifi-

cation factor corresponding to high-frequency local modes) by
pi= sup{’)\(e)’ : g < |0kl <7, k= 1,2}.
[%
By plugging in the end points, we get the the smoothing factor for the damped Jacobi

1—§w‘}.
2

Remark 3.26 (Optimal damping factor for smoothing). We notice that, if w = 1 (the Jacobi

method is

1
1— —w

= max{‘l — Qw’,
2

pJacobi)

method), then p, .. = 1. This confirms the result we obtained in the previous subsection.

Apparently, the “best” weight that minimizes the smoothing factor is w = 4/5, which leads to
ﬁJacobi = 3/5 D

Remark 3.27 (What is high-frequency error). In the above analysis, we have specify the high-
frequency part to be corresponding to § < || < 7. As pointed in Remark 1.24, high-frequencies
can be approximated accurately by local behavior. On the contrary, the low-frequencies are
those which can be represented well on the coarser grids. Hence this definition is not universal.
We have to adjust it to fit the coarsening algorithm under consideration. For example, semi-
coarsening or red-black coarsening will lead to different definitions of high-frequency; see, for
example, [110]. Later on, we will also discuss how to define this concept from an algebraic point

of view. O

It is natural for us to imagine that the G-S method should be better than the Jacobi method
in terms of smoothing property. Using the same steps as above, we have the following LFA

analysis:

1. The G-S method in lexicographical order reads

1 1
new __ new old new old 2 .
ui,j = Z (uifl,j + u’i+1,j + u’i,jfl + ui,j+1) + zh fl,ja 1,] =].7 ceeyn.
2. The discrete error function satisfies
new __ 1 (new + old + new + old) =1
67/7‘7' —_— 4 61_1"7 6Z+1,J 617‘7_1 617]_;'_1) /I/’j —_— PRI 7n-

3. Apply the discrete Fourier transform and compute the amplification factor

)\(9) o agew B 6\/—191 + 6\/—192
T agld o 4 — e—\/—lel _ e—\/?16’2 ’

4. One can show the smoothing factor for the G-S method is
1

Pas = ‘)\(g,arccos(él/f)))‘ =3

CHAPTER 3. TWOGRID METHODS 78

Remark 3.28 (Anisotropic problems and smoothing effect). Notice that the above analysis only
works for uniform partition and isotropic coefficients. When we solve an anisotropic problem,
it is important to note that the G-S method (and other point relaxation methods) yields not as
good smoothing factor as the isotropic case. In fact, the smoothing factor goes to 1 when ratio

between small and large coefficients goes to 0; see Chapter 6 for details. O

Remark 3.29 (Ordering and G-S smoother). For the G-S method, ordering is important.
When using the red-black ordering instead of the lexicographical ordering above, one can show
the smoothing factor ppp.g 1S % [105, 110]. This means the smoothing effect of the red-black
ordering for G-S is better. O

Smoothing effect

Considering the Richardson method (3.15), then we have B,v = w Zf\i 1(v, @) ¢i. This implies

(Mv)? = w(Mv, Mv) = w(M?v,v).

=

N
(Byv,v) = w Z(v, $i)? = w
i=1

1

(2

Since M is SPD, we get

lle

(M?v,v) = (MM3zv, M2v) = h(M2v, M3v) = h'(Mu, v).
The estimate (3.13) implies that
(Bov,v) = whi(v,v). (3.21)

Now we choose the weight of the Richardson iteration to be w = h?2~% i.e.,
N
Spv = Byv = h*>"") (v, ¢i)¢i, VveV. (3.22)
i=1

In view of (3.21) and using the fact that the spectral radius of the FE operator is p(A) =~ h~?2
(see Remark 3.16), we find

(Srv,v) = h?(v,v) =

Roughly speaking, Sg behaves like A~! in the high-frequency regime. This is a natural property

we will ask for from a smoother later on:

(Sv,v) = (3.23)

1
m(v, v).

In fact, such conditions are only needed in the range of S.

CHAPTER 3. TWOGRID METHODS 79

Apparently, the damped Jacobi method also satisfies this condition. In fact, using the

standard scaling argument on each element, we can see that

hT2(€,6) < (D€,€) < h72(€,€).
Hence, using (3.17), we have the Jacobi smoother

(Syv,v) = (MSyv,v) = (MDD Mu,v) = h*2(v,v) = h?(v,v) = (v,v).

1
p(A)
Next, we shall show a more interesting fact that the G-S method behaves in a similar way

as in the Jacobi method.

Lemma 3.30 (Smoothing property of G-S in matrix form). Let A be the stiffness matrix and
A=A=D+L+U. Then the G-S method satisfies

(D + L)¢|, = | D€, = h*2%[€lo, VEeRYN.
Proof. Locality of the nodal basis functions leads to sparse matrix L; in turn, this gives
|(D + Lye|, < [Dg]y < h2[€]o.
The other direction follows from
hI72ENR < (DE,€) < (D + A)E,€) = 2((D + L)¢,€) < (D + L)Efo [€]o-

We then get the desired estimates with simple manipulations. O

Similar results for Sgg follows directly as in the Jacobi method. Now we consider the

symmetrized G-S method.

Lemma 3.31 (Smoothing property of SGS). Let S : V — V be the symmetrized G-S (SGS)
iterator. Then we have

(Sv,v) = h*(v,v) = —— (v,). (3.24)

Proof. The matrix form of SGS can be written as
S=SM=(D+U)"'D(D+ L)' M.
Let v be the primal vector representation of v € V. Then we have
(Sv,v) = (MSuv,v) = (MSw,v) = |[D3(D + L)' Mu|?.
Hence to show the lemma is equivalent to prove that

DY+ L) Muf? = B2 (M),

CHAPTER 3. TWOGRID METHODS 80

By changing of variable ¢ := (D + L)"'Muv € RY and the fact M =~ h¢, we can obtain the above

equality using
h2(DE,€) = WD) = (D + L)¢|y = (Mu, Mv), VEeRY,

which is true due to Lemma 3.30. O

Smoother as preconditioner

From the property (3.24) which is satisfied by all the aforementioned popular smoothers, we
can easily see that
P (0.0) 5 (Sv,0) < p7 (v,0), (3.25)

where p, = p(A). In this note, we call it the smoothing property, which basically means
the smoother S behaves like A~! on the high frequency regime. Other forms of conditions or
assumptions for smoothers have been discussed in the literature, interested readers are referred to
the paper by Bramble and Pasciak [24] (general smoothers defined as additive and multiplicative
Schwarz methods) and the references therein.

From this property, we have a lower bound for the minimal eigenvalue p;l < Amin(S). If the
smoother is also symmetric, then the above property indicates that the smoother is SPD. That
is to say, the symmetrized version S is apparently SPD and can be used as a preconditioner as
well. In view of Remark 3.16 (i.e., [v[3 < (v,v)4 < pa|v|?3), with simple manipulations, we can
derive

pgl(v,v)A < pzl(Av,Av) < (SAv,v) 4 < p}l(.Av,.Av) < (v,0) 4. (3.26)

Due to Lemmas 2.29 and 2.30, (3.26) indicates that x(SA) < p(A) = k(.A), which means these
smoothers, when applied as preconditioners, might not improve the condition number. Hence,
to make a reasonable preconditioner requires a lot more than to be a good smoother, which will

be the main topic for the rest of this note.

3.4 Twogrid methods

From the analysis in §3.3, we have found that local relaxation methods (smoothers) can damp
the oscillatory components of the error rather quickly. Motivated by the two-level DD method
in §2.4, we can introduce coarser levels to take care of the smooth components which cannot be
treated efficiently by local relaxation methods. A natural idea is then, after a few smoothing
steps, to approximate the resulting problem on a coarser grid and continue the iteration with a

“coarse version” of the problem. This way, we can resolve the high frequency part of the error

CHAPTER 3. TWOGRID METHODS 81

with relaxation schemes and leave the low frequency part to the coarse levels. Before we discuss
multilevel methods, we first investigate a much simpler case—the twogrid method.

First of all, we present a simple observation which heuristically explains why the solution on
a coarse grid can give a good approximation for smooth error. In fact, smooth functions can
be represented on the coarse grid rather accurately. This is the last missing piece of ideas that
motivate multilevel iterative methods. We only give a sketch of the proof here and leave the

complete proof to the readers (see HW 3.5).

Remark 3.32 (Low frequency error). Let uj, and ug be the finite element solutions on V3, and

Vu < Vy, respectively. Then we immediately have
alup, —ug,vg] =0, Yvge Vg,
Using the Aubin-Nitsche’s argument, we consider a boundary value problem
—Aw = wup—ug in €,
w = 0 on 0f).

Assume that we have full elliptic regularity. Then |w|2 < Cllup — un|o is bounded. For any

wy € Vg, we get
lun —unl§ = alw,up —up] = afw —wy, up, —un] < Jw —wul fun = wel S Hlwlz Jup, — .
Hence the following inequality holds

lun —umlo < H [lup —unll < H [Junl- (3.27)

That is to say, if uy is relatively smooth (small first derivatives), then u; can be well approxi-

mated by ug. Compare with Remarks 1.24 and 3.27. O

General twogrid methods

Let V}, be fine grid finite element space and Vy be the coarse gird space (usually it is a

subspace of V},.) The twogrid method for equation (3.2) can be described as
Algorithm 3.1 (General twogrid method). Given an initial guess u(%) € Vj,.

(i) Pre-smoothing: Apply a few relaxation steps to smooth 49 in the fine space to obtain

a new approximation u e Vi,

(ii) Coarse-grid Correction: Find ey € V by solving (exactly or approximately) the error
equation

(.AGH,UH) = (f — Au(l),vH), VUH € VH

in the coarse space, and then set u(? =) + ep;

CHAPTER 3. TWOGRID METHODS 82

(iii) Post-smoothing: Apply a few more relaxation steps to smooth 1@ in the fine space to

obtain u(®) € V.

A more concrete algorithm based on the above abstract algorithm can be introduced. Let
V be the fine space associated with meshsize h and V. < V be the coarse space associated with

meshsize H. Let Z. : V. — V be the natural embedding (injection), i.e., Z,v. = v., Vv, € VL.

Remark 3.33 (Embedding and projection). By the definition of embedding Z. : V. — V and
the fact

(ICTU, we) = (v, Zow,) = (v,w.), YveV,w.eV,,

it is easy to see that Ig = Q. is the (+,-)-projection from V to V.. And the coarse-level operator
can be defined by the Galerkin relation

Ao =TT AT, = Q.AT,.

Suppose that S is a smoother and B, is a solver or iterator for the coarse-grid problem.
Algorithm 3.2 (Twogrid method). Given an initial guess u(®) € V.
(i) Pre-smoothing: u(!) = u(9) + S(f — Au®);
(ii) Coarse-grid Correction: u(?) = u() + (Z.B.ZI)(f — AuV);
(iii) Post-smoothing: u(® = u® + ST(f — Au®).

We note that this algorithm is very similar to the multigrid algorithm discussed in Chapter 1.
It mainly contains two processes: the smoothing steps and the coarse grid correction (CGC).
When these two parts are complement to each other, we may except high effectiveness of the
resulting algorithm. That is to say, we may choose S, V., and B. to make the method efficient
for the equation. The twogrid method is defined in the hope of capturing the high-frequency
components of error on the fine grid, and leaving the low-frequency components to the coarser
grid. The effect of coarse grid correction is illustrated in Figure 3.3. Note that these two pictures

have different scales.

Convergence analysis of twogrid method

In this section, we will estimate convergence rate of twogrid methods. We now give a few
simple lemmas. The first lemma is on the norm of oblique projections (also known as the
Kato’s lemma) which has been proved and reproved in several different fields; see the paper by
Szyld [106] for details.

CHAPTER 3. TWOGRID METHODS 83

AFTER SMOOTHING AFTER COARSE GRID CORRECTION
x 10
0015 B4 :
001 h
31 oy .-""-.:J'-.
0.005 | 24 il p
0 0l 5
-0.005 | R T ;
o o 3 : v
L= " 'y v v
1T~ 1
oe : o 1 o8 5 5
05 ™~ e " o 06 e e 0.8
o4 e BB o4 e 1]
et o [} = ——— [
02 w7 pe2 02 "~ " a2
¢ o ¢ o

Figure 3.3: After coarse-grid correction, global low frequency is replaced by local high frequency.
Lemma 3.34 (Norm of oblique projections). If I is a continuous projection onto a Hilbert
space ¥ and IT is neither Z nor 0 , then

|| = |2 — 1.

Proof. Let u € ¥ be arbitrary and |u| = 1. From the assumption on II, we can take = := I[Tu €
range(II) and y := (Z — II)u € null(I]). Then we have

1= Jul® = [z]? + Iyl + 2 (z,3).

If x = 0ory = 0, then we have ITu = 0 or |ITu| = 1, respectively. And, in turn, |Hu| < |Z—I1]|.

If both x and y are nonzero, we define w := & + ¢ € ¥, where

5= Mx erange(lI) and g:= My € null(17).

] |yl

Then |w| = [z]? + [y|* + 2 (z,y) = 1 and

=T - M| <|T-1| = [I]|<|T- 1]

HTul = |z = {g]
The other direction can be shown in a similar way and the lemma can be proved. O
Proof of the next two lemmas are straightforward and left to the readers; see HW 3.4.

Lemma 3.35 (Iterator of twogrid method). The twogrid method has a corresponding iterator

Brg : V! — V defined as
Bra =8 + (T — STA)L.BIL (T - AS), (3.28)

where S = ST + S — ST AS is the symmetrization of the smoother S.

CHAPTER 3. TWOGRID METHODS 84

Lemma 3.36 (Error propagation of twogrid method). The error propagation operator Erg =
I — Brg A for twogrid method is

Erq = (T —STAT — B.AIL)(T — SA), (3.29)

where II. is the (-,) 4-orthogonal projection onto V.. If the coarse-level solver is exact, namely,
B. = A-!, then we have

Erq = (I —STA(Z - 11)(T - SA). (3.30)

The explicit formula for the projection operator 1. can be written as II, = Z.A'ZF A. In
the above equation (3.30), we observe that it is essential for performance to reduce the norms
of the coarse-level correction operator Z — II. as well as the error reduction operator Z — SA.
Moreover, from Lemma 3.34, analyzing the exact coarse-level correction operator ||Z — I | 4 is

equivalent to analyze the behavior of | II.| 4.

Notice that Il is the A-projection from V to V.. So there is an implicit natural embedding

operator Z. in front of II. in the above equality.

We now present a theorem which gives the convergence rate of a simplified twogrid method

(Algorithm 3.3) in terms of approximability of the coarser space V.
Algorithm 3.3 (Simplified twogrid method). Given an initial guess u(9) € V.
(i) Coarse-grid Correction: u(!) = u(® + (Z.B.ZT)(f — Au®);
(ii) Post-smoothing: u® =« + S(f — AuD).

Assume that S is SPD. In the twogrid method analysis below, we need the following notation

T=Ts:=8SA:V V. (3.31)

With the above notation, we can define the inner product

(U,’U)g—l = (T_lu, ’U)A,

the accompanying norm | - |5-1, and (-,-)g-1-orthogonal projection Qz—1 : V > V.. The

S
convergence rate of the twogrid method is obtained in the following theorem; compare this

result with the convergence rate of stationary iterative method in Theorem 2.15.

CHAPTER 3. TWOGRID METHODS 85

Theorem 3.37 (Convergence rate of the twogrid method). The convergence rate of the twogrid
method, Algorithm 3.3, with the exact coarse-level solver is given by

1

Eraly=1— —— 3.32
lercl = 1- (3.32)
where
@ Qi o~ ol
c1(Ve) := sup 5 =sup inf ———=>— (3.33)
veV lv]% veV ve€Ve lv]%

This theorem can be obtained from the X-Z identity; see Theorem 4.15. Here we present a

direct proof originally given in [124].

Sketch of the proof. (1) It follows from (3.29) that the simplified TG method has the following
error propagation operator
&ra = (I -SA)Z - IL).

Hence, we can immediately obtain

Z—SA)(T - IL)v|? T — SAW|?
€x6]% = sup It (=Mool o IE = S Al
veV HUHA UEVCLA ”UHA

Using the definition of (-,-) 4-projection II., we can show that

Z—T)v, T, T —I.)Tv,
|€ra)Z = sup w:1_ inf wzl_ nf (() vv)A.
veV; A [0l % vevia (v,v)a veViA (v,v)4
(2) Define
e L e (3.34)

and it is easy to check that X is self-adjoint with respect to (-,-) 4. A key observation is that

the inverse of X' can be explicitly written as
Z=T NT—-Q5)

Since (1.7 (T — Qg—l)U,’U)A = (T7'T- Qg—l)U,’U)A = ((Z - Qs-1)u, v)gq = 0 for any
U € Vclf‘ and v € V., we have II.Z = 0, which implies that Z : VCLA — VCLA. Furthermore, by

the definition of projections, we get
XZ=(T—-I)T—-Qg1)=I—1T.=TI onV;A

(3) Consequently Amin (X) = Amax (£) "', Finally,

—1 T —0__, T_0_, .
Amax (Z) = sup (7T« Qg5-1)0,0)4 — swp ((Qs)v,v)s
veV; A (v,0)4 veVHA (v,v)a
T—Q-1)v|%, T—0__, zﬂ
= sup ! s s sup | = Q5o = a(V).

veVCLA (’U, U)A veV ”UH?L\

CHAPTER 3. TWOGRID METHODS 86

The last identity holds because 7 — Q<1 = (Z — Qz-1)(Z — II.) and we can then take the

supremum back over all v € V' (similar to the argument in the very beginning of this proof). [

Note that, in this theorem, we have only discussed the simplest case where the coarse problem
is solved exactly. In practice, the coarse problem is rarely solved exactly. We can also obtain
convergence estimates for the inexact twogrid method based on convergence factor of the exact
twogrid method; see [93, 126]. This will be discussed later in §6.2.

Optimal coarse space *

Now we discuss how to choose the coarse space to maximize the convergence speed, which
will become handy later for developing algebraic multigrid methods (AMGs). We will show
that the space spanned by the eigenvectors of SA corresponding to small eigenvalues gives the
“best” coarse space. Here the term “best” refers to the fact that this coarse space minimizes
the convergence rate.

Theorem 3.37 provides an estimate on the convergence rate of a twogrid method in terms of
¢1(Ve). For a given method, a smaller bound on ¢ (V,) means faster convergence. In particular,
the twogrid method is uniformly convergent if ¢;(V.) is uniformly bounded with respect to
meshsize. However, one problem for applying Theorem 3.37 is that it is sometimes difficult to
work with S~ .

A natural approach to overcome such a difficulty is to introduce a simpler but spectrally

equivalent SPD operator D, such that

YvelV.

2 2 2
Crlolp < o5 < Culolp

Similar to the definition of ¢1(V,), we can introduce the quantity

2
T — Opv
c1(Ve, D) = sup w = sup inf 5
veV H’U”A veV VeEVE H’UHA

I

)

v — ve

where Qp : V +— V. is the (-, -)p-orthogonal projection. Hence
Crc1(Ve,D) < e1(Ve) < Cy 1 (Ve, D).
It is straight-forward to derive the following estimates:

Theorem 3.38 (An estimate of convergence rate of TG). The convergence rate of the twogrid

method (3.28) with exact coarse-level solver is given by
1 1 1

l—-————— <€ <l — <1 ——, 3.35
Craop) < Erelast =g wp) <!~ G0 (3.35)
where C' is an upper bound of ¢;(V,, D), i.e.,

inf v —ve|5 < Cloly, VveV. (3.36)

veeVe

CHAPTER 3. TWOGRID METHODS 87

The following theorem characterizes the optimal choice of coarse space V. with a fixed

smoother S:

Theorem 3.39 (Optimal coarse space). Given a smoother S, the best coarse space of dimension
N, is given by
. Nc
VPt = argmin |Erq(V.)|4 = span {20 (3.37)

dim V=N,
where {&c}gil are the eigenfunctions corresponding to the smallest eigenvalues \; of SA.

Proof. Recall that &g = (Z — STA)(Z — I1.)(T — SA). Since Erg depends on V. we write

Era (V) and using the same argument as in the proof of Theorem 3.37, we have

. (SAv,v)4
Era(Vala = 1-— min SARUA
vevia vl
Thus,
SA
“min_ [Era(Ve)|la=1— max min %
dim V=N, dimVe=Ne yepta)5

By the well-known Courant minimax principle [47], we have

S
max min M

dmVe=Ne yeyta o% T

and the equality holds if V, = V" as given in (3.37). O

Remark 3.40 (Lower bound of contraction factor). Since the coarse space which minimizes
the convergence rate is the coarse space which minimizes also ¢1(V,), we have the following

inequalities

1 1
- >
1—|lfrcla = An.+1

c1(Ve) or |€rala=1—-ANn.q1,

which is a lower bound of the contraction factor in terms of size of the small eigenvalues (low

frequencies) of SA. O

Since the eigenvalues of S.A are expensive to compute, the practical value of Theorem 3.39 is
limited. But it will provide useful guidance in the design practical algebraic multilevel methods
in §7.1.

3.5 Matrix representation of the twogrid method

In practice, we have to understand the matrix representation of an abstract algorithm before
we can actually implement it. In particular, we wish to answer the questions raised at the end
of §1.4. We now explain the matrix representation of the twogrid method in the finite element

context.

CHAPTER 3. TWOGRID METHODS 88

Grid transfer operators in matrix form

Let {¢;} be the basis of a finite element space V on the fine-grid. Then the stiffness matrix
A reads

("21)” = a[¢i, ¢;]-

Let {¢;} be the basis functions of the coarse-grid subspace V. < V' and the stiffness matrix on

the coarser space is denote by A, with (Ac) ol = al¢f, ¢f]. Then ¢f can be expressed as
N
¢ = 2 (P)i,l¢i
i=1

or

(d)i?(;s?\k) = (¢1,...,¢N)P

which defines a prolongation matrix P € RV*Ne By definition, this implies that P = Z.

Remark 3.41 (Cannonical prolongation operator). Let 1y := (1,1,...,1)7. Since the basis

functions form the partition of unity, it follows that

N Ne¢
(1, - ’¢N)1N:Z¢i: 1:Z¢f:(€ NN, = (61, ,oN)P 1y,
=1

=1

Hence we have that the prolongation matrix preserves constant away from the boundary, i.e.,
Ply, =1y.
O

It is important to note that ﬁ = Q. # &T, i.e., the matrix representation of adjoint
operator is not equal to the transpose of the matrix representation. If we take any v € V, then

we have
= Q. and ve = (@7, .., dN.) Ve

On the other hand, with straightforward calculations, we obtain that

N, N N . N, .
— . C . _ .
Ve = ((vc,aﬁk))k:l = (() (§: (¢4, 01)k = (jE_lvj(Ic M)M)k:1 =T, M.
In turn, we can obtain the matrix representation of the L?-projection

Qv =ve =M "= M'Z"Mv = I!=Q.=M"'Z,"M=M"P"'M (338)

CHAPTER 3. TWOGRID METHODS 89

Coarse problem in matrix form

Since the coarse-level operator is defined as A, = ICT AZ., we obtain its matrix representation

Ac=Q. AL, = A.=M.A.=M.Q.AL.= PTMAP = PTAP. (3.39)

Then the coarse stiffness matrix satisfies
A, = PTAP. (3.40)
Therefore, the algebraic form (3.40) of the coarse level problem is equivalent to the matrix

representation of the operator form.

In the above equality, we observe that, the L?-projection Q. is not needed for implementation.

Instead, we only need to use a restriction matrix R := PT.

Remark 3.42 (Finite difference case). Notice that, here, for the finite element stiffness matrices,
the restriction matrix is just R = PT. However, we have already noticed that R # P for the
finite difference method in (1.37). In fact, many books (see [44] for example) states R = aPT.
This difference comes from the scaling effect caused by h. In the 1D FD example, the coefficient

matrices on fine and coarse levels are A = h™1 A and A, = H~ 1A, respectively. Hence we get

A.=PTAP — A, = (IZPT) AP =: RAP.

This remark explains how we can obtain such the constant « in general. O

Twogrid iterator in matrix form

From (3.28), we have that the twogrid method with exact coarse solver is
Brg =S+ (T-STA)T.A'ZIE (T - AS).
We can then write the above equation in matrix form
Brc =S + (Z - STA)TA;'T] (Z - AS).
So we define
Brg i=BrgM ' =SM '+ (Z-STA)T.A'TH(Z - AS)M .

Using the matrix form the symmetrization, inversion, and transpose derived earlier, we can

easily get

Brg =S+ (I —STA)PAT'PT(I — AS) = § + (I — STA)P(PTAP) ' PT(I — AS).

CHAPTER 3. TWOGRID METHODS 90

Now we are ready to introduce the matrix representation of the twogrid method for solving
the linear system Au = f We describe the twogrid method as a preconditioner action Byg(-).
For any given vector (usually it is the residual vector) 7€ RY, we can compute Brq(7) in the

following steps:

Listing 3.1: A twogrid method

1 |%% Given any vector 7;
2 |Pre-smoothing: ¥ « ST;
3 | Coarse-grid correction: W « ¥+ P(PTAP)™'PT(¥ - Av);

4 |Post-smoothing: BrcF « @ + ST (7 — Aw);

Similarly, from (3.30), we have matrix form of the iteration matrix

Erg =&rg = (I — STA)I — PA'PTA)(I - SA)
= (I - STA(I -T1L.)(I — SA), (3.41)
where Il := II. = PAc_lPTA is the matrix form of the coarse-level correction; see HW 3.8.

In [56], an algebraic analysis of the twogrid method has been given and the convergence rate

of the TG method can be written as

p(Erg) =1 —inf v

where II, := A%HCA_% = A%PAglPTA%. This algebraic form is explicit and might be easier

to understand compared with Theorem 3.37.

3.6 Homework problems

HW 3.1. Show the a posteriori error bounds (3.9).

HW 3.2. Prove the statements in Lemma 3.20.

HW 3.3. Show the operator form and matrix form (3.15) of the Richardson method.
HW 3.4. Prove Lemma 3.35 and Lemma 3.36.

HW 3.5. Give a complete proof of Remark 3.32.

HW 3.6. Write the 1D multigrid method in §1.4 as a twogrid method (Algorithm 3.2) called

recursively and modify your implementation in this way.

CHAPTER 3. TWOGRID METHODS 91

HW 3.7. Give the detailed proof of Theorem 3.37. Hint: First show that
|Z=SAZ -1yl _ NZ=SAT-H)ols (T = SA[;

)

sup = =
veV [vl vev [(Z = eolZy + [HTevl i lvl%

Then prove that X' defined in (3.34) is self-adjoint with respect to (-,)4-inner product.

HW 3.8. Derive the primal matrix representation of II. and Erg respectively.

Chapter 4
Subspace Correction Methods

In the previous chapters, we have introduced several iterative solvers for the linear equation

Au = f, (4.1)

where A : V — V is SPD. A linear stationary iterative method can be written as
u" = % 4 B(f — Au°Y). (4.2)

In Chapter 2, we have seen that: If B is an SPD operator, with proper scaling, the above iterative
method (4.2) converges; Furthermore, B can be applied as a preconditioner of Krylov subspace
methods, like PCG.

In this chapter, we present a theoretical framework for analyzing linear iterative methods
and/or preconditioners in terms of space decomposition and subspace corrections. This gen-
eral framework can be used to establish convergence theory for various methods, including the
multigrid method, the domain decomposition method, and the twogrid method discussed in the

previous chapters.

4.1 Swuccessive and parallel subspace corrections

Suppose we have a subspace decomposition of the solution space
J
V=>V, and V,cV (j=1,....J)
j=1

For any v € V, we can write it as v = ijl v; with v; € V;. Notice that this representation
is not unique as there could be redundancy in the subspace decomposition. Later on, it will

become clear that such redundancy is crucial for constructing optimal multilevel methods.

92

CHAPTER 4. SUBSPACE CORRECTION METHODS 93

Abstract framework for subspace corrections

We first define a few operators which have already been used at different places in the

previous chapters.

Definition 4.1. Let V be a finite-dimensional Hilbert space with inner product (-,-) and V; < V'
be a subspace. We define

subspace problem A;:V;—Vj, (Ajvj,wj) = (Avj,w;), Vo, wje Vi
(-,-)-projection Q;: V=V, (Qju,wj) = (v, w;), Vw; € Vj;
(+,)a-projection II; : V — Vj, (ILjv,wj) 4 = (v,wj)a, YwjeV.

Using Definition 4.1, we have the following elementary results:
Lemma 4.2 (Relation between projections). The following equalities hold:

LIl = Q;, IF = II;;

2. Q;A = Al
Proof. (i) By definition, for any u € V,v; € V;, we have

(Qju,vj) = (u,v5) = (u, Zjv;) = (I} u, vy),
(ITju,vj) 4 = (u,vj) 4 = (u,Zjv;) 4 = (I;u, Vi) A-
(ii) For any u € V,v; € V;, we have
(AjITju,vj) = (ITju, v5) a4 = (u,v;)a = (u, Zjvj) a4 = (Au, Zjvy) = (QjAu, vj),

which gives the second identity. O

Remark 4.3 (Matrix representation of the A-projection). Let u, := [T.u. Since I, : V — V,

V is the A-orthogonal projection operator, for any u € V', we have
alue, ve] = a[llu,v.] = alu,ve], Yv.e V..
Using the matrix representation notations introduced in §3.2, we have, for any v. € V., that
alue, ve] = (Aue, ve) = ETACE, YVu. € Vg (4.3)
alu,ve] = (Au,v.) = (Zwe) " Au = v PTAu, YueV. (4.4)
From (4.3) and (4.4), we can derive the matrix representation of the Galerkin projection on the

coarse grid

A~

A, = PTAy = I,

<

= ll.u=u.= AC_IPTAQ.

CHAPTER 4. SUBSPACE CORRECTION METHODS 94

Hence, we obtain the matrix representation of the A-projection operator
I, = A1 PTA. (4.5)
One can compare this equation with the matrix form of the L2-projection in (3.38). O
Remark 4.4 (Subspace problems). From the definition of A;, we get
A = I]TAI]' = Q;AZ; = Qj.AQ]T.

With the help of Lemma 4.2 and simple calculations, we can immediately obtain the error

equation on each subspace Vj:
Ae=r = QjAe=Qr = Ajllje=0Q;r =— Aje;=r;,
where r; = Q;r and e; = Ilje. O

The main idea of method of subspace corrections (MSC), namely divide and conquer, has
already been discussed in the domain decomposition method. We first describe the idea of
subspace correction in the following abstract algorithm', which is just a generalization of Algo-

rithm 2.1:

Algorithm 4.1 (Method of subspace corrections). u™% = SC(u°'?)
(i) Form residual: r = f — Au°
(ii) Solve error equation on Vj: Aje; =r; by e; ~ é; = Sjr;j

(iii) Apply correction: u™®" = u°d + ¢;

Notice that, instead of constructing an iterator for the whole system, Algorithm 4.1 only con-
siders one subproblem on the subspace Vj. It is still not clear how to taking all subspaces into

account. In fact, the ordering of subspace corrections plays a key role in algorithm construction.

Remark 4.5 (Subspace solvers). It is well-known that

1
uj = argmin F(v) := = (Av,v) — (f,v)
veVj 2
is equivalent to

’U/] = argmin H'LL — ’UHA
VEV;

'Note that this procedure is not really an algorithm as it does not specify how to combine the corrections é;’s
from different subspaces.

CHAPTER 4. SUBSPACE CORRECTION METHODS 95

We notice that the solution of the subspace problem Aje; = r; = er‘)ld satisfies that

F(u + ¢;) = min F(u + e).

eeVj

In order to provide an effective yet practical subspace solver, we should pay attention to the

dimension of the subspace and choose an appropriate problem size.]

SSC and PSC methods

Algorithm 4.1 does not specify how to combine the corrections é;’s from different subspaces.
There are two basic approaches: the successive subspace correction (SSC) and the parallel
subspace correction (PSC). SSC can be viewed as the multiplicative Schwarz method (2.37) and
PSC can be viewed as the additive Schwarz method (2.36). We now give descriptions of the SSC
and PSC algorithms.

Algorithm 4.2 (Successive subspace corrections). u"*V = SSC(u°'?)

(i) v = u°M
(i) v=v4+8;9;(f —Av), j=1,...,J
new

(iii) ue™ = v

Remark 4.6 (Relaxation for subspace solvers). In the above algorithm, we can introduce a

relaxation parameter in each subspace correction step
v=v+ijij(f—Av), j=1...,J

Good relaxation parameters are difficult to obtain in general, but they can improve convergence
if optimal values can be found. We will not discuss this modified subspace correction though

because w; can always be absorbed in ;.]
Algorithm 4.3 (Parallel subspace corrections). u™*" = PSC/(u°)

(i) r=f— AuM

(i) & =S;Qr, j=1,...,J

(iif) wre = w0l 4377 ¢

From the above algorithms, it is immediately clear why they are named as PSC and SSC,

respectively. As in (3.31), we define an operator

Tj=Ts; = S8jQjA = SjA;ll; : V = Vj.

CHAPTER 4. SUBSPACE CORRECTION METHODS 96

Apparently, if we restrict the domain to Vj, then we have
Tj="Ts; = SjA; : Vi = Vj.

We shall now assume all the subspace solvers (smoothers) S; are SPD operators. As SjT =S;
the operator 7; = S;A; : Vj — Vj is symmetric and positive definite with respect to (-,-)4. If

S = Aj_l, i.e., the smoother is the exact solver on each subspace, then we have T; = II;.

e The SSC method satisfies:
u—u" = (Z — BgscA)(u — u"ld) =Z-T5)--Z-T)(u— uOId). (4.6)

If J = N and each subspace V; = span{¢;} (j = 1,...,N) and S; = Aj_l, then the
corresponding SSC method (4.6) is exactly the G-S method; see (2.20).

e For the PSC method, the iterator (or, more often, the preconditioner) satisfies

J J J J
Bpsc = ».8;Q; = >\ 1;5,Q; and BpscA=) S;QA= DT, (4.7)

Jj=1 Jj=1 j=1 j=1
If Sj’s (j =1,...,J) are all SPD, then the preconditioner Bpgc is also SPD; see HW 4.2.
If each subspace V; = span{¢;} (j = 1,...,N) as before, then the resulting PSC methods
with S; = w(:, ¢5)¢; and S; = A;l correspond to the Richardson method and the Jacobi

method, respectively.

So far, we have not mentioned any multilevel structures in the above methods. In order to intro-
duce multilevel iterative methods in the subspace correction framework, we will need multilevel

subspace decompositions.

4.2 Expanded system and block solvers

Recall that, back in §2.1, we discussed a modified block Gauss—Seidel method. In this
section, we discuss an expanded system of (4.1) and its block iterative solvers. Moreover, we
will show how these block solvers are related to the subspace correction methods for the original
linear system (4.1). This relation will become important in the next section for deriving the XZ

identity, which gives the convergence rate of SSC.

Expansion of the original problem

Suppose that the finite dimensional vector space V' can be decomposed as the summation of
linear vector subspaces (might not be linearly independent), Vi, Va,..., Vs, ie., V = Z;]:l Vi.
We define a new vector space

V=VixVox---xVj.

CHAPTER 4. SUBSPACE CORRECTION METHODS 97

Define an operator IT : V — V such that ITu = >/

T .
j—1Uj, Where u = (u1,...,uy)" € V with

each component u; = u; € V;. From the definition, it is easy to see that II is surjective. This

operator can be formally interpreted as
II=(Zy,...,Iy),
where Z; is the natural embedding from V; to V. Hence, we obtain

u1

J J
HLI:(Il,...,IJ) :EIjUjZEUj'
j=1 j=1
uJj
So we have
r o
n’ = = :
7 Q

Note that TITI” # T in general.
Define A : V > V such that A;; = A;; := IZTAZ; : V; — V;. And we denote A; := A;;

(j =1,...,J). Hence we can write the operator A in a matrix form
Arg - Ay
A = HT.AH = (Ai,j) = : :
JIxJ
A1 - Ay
Given any right hand side function f € V, we define
' f
f=T1"f = ©|ev.
Irf

In this setting, we consider the following problem: Find u € V, such that
Au=Tf. (4.8)

This system is called the expanded equation of the original linear equation (4.1). We will see
how the solution of these two problems are related. If A is SPD, then A is a symmetric positive
semidefinite (SPSD) operator. Note that A is usually singular due to its nontrivial null space,
null(IT). However, its diagonal entries A; (j = 1,2,...,.J) are non-singular. We can define a

semi-norm for B: V—V

B
IB|a := sup H V”A.
Iviazo [via

CHAPTER 4. SUBSPACE CORRECTION METHODS 98

Block solvers for expanded equation

As before, we denote the lower, upper, and diagonal part of A as L, U, and D, respectively.
We can immediately see that the stationary iterative methods discussed in §1.3 can be easily
adapted to solve (4.8). The linear stationary iterative methods for (4.8) can be written in the
following abstract form

u™" = w4 B(f — Au®), (4.9)

where the iterator B : V — V. If B = D~! then we have the block Jacobi method for (4.8); if
B = (D + L)™!, then we have the block Gauss—Seidel method.
Motivated by (2.16), we can generalize the block Jacobi and G-S methods. Assume there is

a non-singular block diagonal smoother (or relaxation operator) S: V — V| ie.,
S = diag(Sl,SQ,...,SJ), with Sj : ‘/j = V}',] = 1,2,...,J.

We define modified block Jacobi method by B = S and the modified block Gauss—Seidel method
by B=(S"'+ L)

Theorem 4.7 (Solution of expanded and original systems). The linear stationary iteration (4.9)

for the equation (4.8) reduces to an equivalent stationary iteration (4.2) with the iterator
B=TIBII"

for the original equation (4.1). Moreover, these two methods have the same convergence speed,

namely,

|Z — BAJa = [T—BA[a.
Proof. The linear stationary iterative method
w'eY = uold 4 B(f — Auld)
is equivalent to
uj" = u?ld + Z Bj <I,€Tf - Z A,wufld)
k 7
= u?ld + Z Bj,kaT (f — Z AIZ-u?ld> = u;?ld + Z BMI,? (f - Au°1d>,

k i k

Therefore, we have

utev — Z_’Zju;lew _ uold + ZIij,kI]? (f _ Auold) _ uold + B(f _ AuOId).
j j7k

This proves the equivalence of (4.9) and (4.2).

CHAPTER 4. SUBSPACE CORRECTION METHODS 99

A key observation is that
(BAv,v)a = (ABAv,v) = (T ATIBTI? ATlv,v) = (ABATIv,TIv) = (BATIv,TIv) 4.

The contraction factor can be written

I - BA)| v,0)4 — (B + B — BTAB) Av, v
- BAR = suplE =BG _ (v,0)4 — (()Av,v)
v#0 H”HA v#£0 (v,v)4
(v, IIv) 4 — ((B” + B — BT AB) Allv, IIv)
= su
HV?IZO (HV, HV)A
(v.v)a— ((B' + B - BTAB)Av.v),
= sup .
[v]a#0 ||VHA
= |I-BAJ;.
Hence we get the desired result. -

Example 4.8 (Block Jacobi method and PSC). We now apply the block Jacobi method for the
expanded system (4.8), i.e.,
utev — uold + D—l(f . AUOId).

We notice that D™'A = D~IIT AII, which is spectrally equivalent to TID™'TI” A because
a(BA)\{0} = o(AB)\{0}. In fact, from Theorem 4.7, we can see that the above iterative method

is equivalent to

J
utew — uold + HD—lHT(f - Auold) _ uold + Z IJA]—IZJT (f o A'LLOld).
j=1

We immediately recognize that this is the PSC method (or the additive Schwarz method) with

exact subspace solvers. O

Example 4.9 (Block G-S method and SSC). Similar to the above example, we can get the block
G-S method is just the SSC method (or the multiplicative Schwarz method) for the original
problem. We now apply the block G-S method for the expanded system (4.8), i.e.,

u"" = u’ 4 (D + L) H(f — Aul).
We can rewrite this method as
(D + L)u™" = (D + L)u®® 4 (f — Au®Y).

Hence we have

DuteV = Duold +f — Lu™v — (D + U)uold;

CHAPTER 4. SUBSPACE CORRECTION METHODS 100

in turn, we get
utew — uold + D! (f — Lu"ev — (D + U)uold))

For j =1,...,J, the block G-S method can be written as

W — a4 A (T f = Y T AT — Y T AT ™).

J
1<j =]

We define iteration

u% Zuilew + Zu?ld _ Zziu;lew + ZIiu?Id,] _ 1’ - .,J,

i<j i>j i<j i>j

By this definition, we can see that
j+1

W' o= + Zjui™ — Ijugld —u7 + IjAJﬂIf(f — Au7).

Here the term f — Au% is sometimes called the dynamic residual, which is the residual at an
inner iteration of the G-S method. From the above equation, we notice that the block G-S
method is just the SSC method with exact subspace solvers §; = A;l for the original linear

equation (4.1). O

Convergence of block solvers

Motived by the weighted Jacobi and G-S methods, we assume that there is an invertible
smoother or local relaxation S for solving Au = f. Similar to the method presented in §2.1, we

define a general or modified block G-S method:
B:=(S'+L)" (4.10)

We analyze the convergence rate of this method. Let K := B™7 + B~! — A be a symmetric

operator and the symmetrization operator as B = BTKB. Then we get
(B7'v.v) = (BT'K'Bv,v) = (S + LK (ST + U)v,v), WeV (411)
By the definition of K, it is clear that K is diagonal and

K=(S"+U)+(S'+L)— (D+L+7U)
=S 7T+8!'-D=57(sT+s-8"DS)s .

Hence, its inverse matrix is also diagonal and

K ' =8(8" +s-s"Ds) !s”. (4.12)

CHAPTER 4. SUBSPACE CORRECTION METHODS 101

Using the definition of K, we can obtain that B! = K + A — B~7. Hence we have a represen-

tation of B " by simple manipulations:
B ' =(K+A-B K K+A-BH=A+A-B K '(A-B™)
The last equality and (4.10) immediately yield another important identity:
(E_lv, v) — (Av,V) + (K—l(D +U-S v, (D+U- S_l)v>, YveV. (4.13)

Now we apply a modification of Theorem 2.15 (i.e., general convergence rate estimate for

SPD problems?) and get the following convergence result:

Theorem 4.10 (Convergence rate of modified block G-S). If K := S~ + S~! — D is SPD,
then the modified block G-S method converges and

1 2
HI — BAH% =1 m, Wlth Cp ‘= Sup HK_%(D + U — S_l)VH .

[via=1
4.3 Convergence analysis of SSC

In the previous section, we have found that the SSC method for the original equation is
equivalent to the block G-S method for the expanded equation using the same subspaces {Vj};]:l
Now we try to analyze the convergence rate of the block G-S method for the expanded system.
In this way, we can give a convergence analysis for the successive subspace correction method.

The proof here follows the discussion in [45].

A technical lemma

Suppose V = Zj;l Vj. It is clear that IT : V — V is surjective and ITu = Z}']:1 Zju;. We

have the following simple but useful lemma:

Lemma 4.11. If the iterator B in (4.9) is SPD, then B = IIBII' is also SPD and

(B v, v) = in‘f’ (B7'v,v), VYoeV.
ve
IIv=v

Proof. 1t is clear that (Bv,v) = 0 for any v € V' due to positive definiteness of B. Furthermore,

we have

0=(Bv,v) = (B o, lI"v) — MTv=0 =— venull(II”) = range(Il)*,

2In order to apply the convergence rate estimate Theorem 2.15 for stationary iterative methods to a symmetric
positive semi-definite problem, we can restrict the domain of operator A inside the subspace, range(A). This way
the operator A is still non-singular.

CHAPTER 4. SUBSPACE CORRECTION METHODS 102

Since IT is surjective, we have v = 0. This proves the iterator B is SPD.

Define v, := BII”B~1v. It is easy to see that
v, =OBII'B v =BB"lv=v, YveV,

and
(B7 vy, w) = (1B v, w) = (B~ 1o, TIw).

If w € null(TI), then (B~!v,,w) = 0. This ensures that, for any vector v € V, there exists a

B~ !-orthogonal decomposition v = v, + w with w € null(IT). Hence, we get

B~ lv,v) = (B_l(V* + W),V + w) = (B_lv*,v*) + (B_lw,w).

Thus
r‘Ii,‘rell\f/v(Blv,v) = (Bflv*,v*)—i-werilill{(n) (Bflw,w)
= (B7lvi,vi) = ("B, BB 1) = (B7'w,v).
Hence the result. O

Remark 4.12 (Minimizer for the expanded problem). From the above proof, we can easily see

v, = BIT? B! is actually the minimizer for infﬁ,ev (B~lv,v). O
V=v

Remark 4.13 (Auxiliary space method). The above lemma for relation between the expanded
problem and the original problem can also be extended to the auxiliary space lemma: For two
vector spaces V and V and a surjective I : V — V| if the iterator B : V' — V is SPD, then
B =1BM07 is also SPD and
(B™lv,v) = inf (B719,7), YveV.
veV
IIo=v

See more discussion on this topic in §4.5. 0

We can then derive the following expression for the inverse of the PSC preconditioner, which
can be found in [116, 119, 65, 124].

Lemma 4.14. Assume that all S;’s are SPD. Then

J
(BP_’SICU>U): inf Z(S-_lvj,vj), YveV.

T J
25V _vj=1

CHAPTER 4. SUBSPACE CORRECTION METHODS 103

The XZ identity

We now give the well-known XZ identity originally proved by Xu and Zikatanov [122] which

gives the exact convergence rate of the SSC method.

Theorem 4.15 (XZ Identity). Assume that B is defined by Algorithm 4.2 and, for j = 1,...,J,

w; = A;1l; Zizj v — Sj_lvj. If Sj_T + S]-_l — A; are SPD’s for j = 1,...,J, then
1 1
T—-BAA=1- —1- =, 4.14
IT-BAf =1 =1 (114)
where
cp = sup _ inf Z HSTw]Hz,l (4.15)
Jvlla=1 245 Vi=v ;=
and
J o 2
¢y = sup _ inf HS-S-_lv- + S-Tw-H77 . (4.16)
fola=1s VJ—v; s

Proof. (1) By applying Theorem 2.15 and Lemma 4.11, we know

-1 -1
IZT - BA|% =1— (sup (B_lv,v)> =1- (sup _inf (B_lv,v)> : (4.17)

lvla=1 o] 4=1TIv=0

From (4.13), we have, for any v € V, that
(E‘lv, v) — (Av,v) + (K*l(D +U-SY)v, (D+U- S*l)v).
By simple calculation, we get

(D+mv::(ZQM%MyZQM%%w“Y

j=1 j=2

(Z AILZ;v g, Z A Il Zivj, - .>T

j=1 §=2

(./41]71 Z v, Aally Z vy,)T

j=>1 j>2

Hence we can denote

(D +U- S_l) v = (wi,wa,...,wy), with W, = .AjUjZVi —S;lvj.

i>j

Due to (4.12) and the fact that K is diagonal, we have

7717

(K_I(D+U—S_) D+U-8"!) ZJ:(‘SJ'SJISJ‘TWJ"WJ) i‘

CHAPTER 4. SUBSPACE CORRECTION METHODS 104

where S := SjT + S5 — SjTAij is the symmetrization of ;. We then obtain, for any v € V,
that

J
. =1 . T 2
sup inf (B "v,v) =14+ sup _inf Siwill__,.
Iv= ’ Mv= J V|1
lvlla=172V=Y [vlla=1"2V=Y 525 S;

This gives the desired estimate for the constant cg.

(2) On the other hand, from (4.11), we have

(E_lv, v) = (K_1 (S_T + U)v, (S_T + U)v)

2

J 1
- 2 H(Sj_l + Sj_T —Aj)? (SJ-_TV]‘ + Z Q,;AL;v;) (4.18)
j=1

1>7]
We notice that
Sj_TVj + 2 Q;ALiv; = S]-_TV]‘ + A;II; Z Vi = (SJ_T + Sj_l - ‘Aj)vj + W
i>j i>j

= Sj_ngSj_lvj +w; = SJ_T (ngj_lvj + SJTW])

Plug this into the previous identity, we get
J

(RO

Jj=1

2

< o1 T
Sij v+ Sj W

Hence the estimate for the constant c;.]

Remark 4.16 (An equivalent form). We have introduced operators 7; := S;A; : V; — V.
Hence ng =8 A =T, + T —T;T; and we can rewrite the above estimate (4.16) in a slightly
different form. Notice that, in (4.18),

J

S7TV; + 2 QAT = Ay (STA) vy + AL Y vi = A (T7) v+ 11 Y vi

1>] i>j oy
and
- - -1 - - -1 _
(871 + 87T =) Ay = (T4 () =) = T
Thus we have
eo= sup inf DT (v T Y vi) (4.19)
lola=12;vi=v iy Il 27 = A
O

Example 4.17 (Linear stationary iterative method). One-level linear stationary iterative method

utev — uold + g(f _ .A’LLOld),

CHAPTER 4. SUBSPACE CORRECTION METHODS 105

can be viewed as a special subspace correction method with only one subspace V. Hence,

using (4.19), we immediately have

c1 = sup HTE_%UH?A: sup ((gA)_lv,v)Az sup (S_lv,v),

lvll.a=1 lvll.a=1 lvll.a=1

which is exactly the convergence rate derived in Theorem 2.15. 0

Example 4.18 (Twogrid method). Theorem 3.37 can be viewed as a special case of the XZ
identity in the case of space decomposition with two subspaces, i.e., V = V. + V. Suppose we
use A ! and S as subspace solvers, respectively. According to (4.19), we get

. — 1
c1 = sup inf v, + HCvHi‘ + [(SA) 2v|\?4.

wla=t L5 bet

V€V, veV
We can prove that
1
-3 2
€1 = sup ||7-g (T ngl)vHAv
lvlla=1

which is consistent with (3.33) in Theorem 3.37. For a complete proof of this result, we refer to
Zikatanov [133]. O

When we solve each subspace problem exactly, the X7 identity is substantially simpler since

T; = 1I; in this case. This special case of the XZ identity is given in the following corollary.

Corollary 4.19 (SSC with exact subspace solvers). If an exact subspace solver S; = Aj_l for

each subspace is used, then we have, in (4.14), that

J

2
cp = sup _ inf Z HHJ Z Vi (4.20)
lola=12vi=v i TS A
and
J 2
cp = sup _ inf Hﬂj Zvi . (4.21)
o] a=12; ViTvliz1 i>j Aj

4.4 Convergence analysis of PSC

In this section, we estimate the condition number of the PSC method. In general, PSC
might not converge as an iterative method, but we can show that it is uniform convergent as a
preconditioner under certain conditions.

Relating PSC to SSC

The following theorem shows the relation between the PSC and SSC methods.

CHAPTER 4. SUBSPACE CORRECTION METHODS 106

Theorem 4.20 (PSC and SSC). If §; = A;l for all j and V; are subspaces of V, then there
exists a constant ¢, depends only on topology of the overlaps between the subspaces such that

%(Bgslcv,v) < (Egslcv,v) < cy (B;SICU,U), VoelV.

Proof. Given v = Z}]=1 v; with v; € Vj. It follows that

J J J J J
o4 = Z (g, v5) A Z Uk,vk)A—l—QZ(vk,vj)A=22(vk,vj Z Uk, Vk) A
kj=1 k=1 j>k j=k k=1
Hence, since Il is a A-projection, it follows that
J J J J J
D lvel% <2 (Uk, Dl) 2> (Uk;, I,) vj>A
k=1 k=1 j=k k=1 j=k
J . J J o\
2 2
2(3 Inl2)* (X 1 Y wil)
k=1 k=1 j=k

In turn, it gives Zk Lokl < 4Zk L[Z] i v]HA Together with Lemma 4.14, Corollary 4.19,
and (4.17), it gives the first inequality. The second one is also easy; see HW 4.5. O

This shows that, if the SSC method works well as an iterative method, then the PSC method
based on the same space decomposition also works as a preconditioner. Next, we give direct

analysis of the condition number of the PSC method.

Condition number of PSC

To obtain estimates on the condition number of the preconditioned problems, we first give

the following assumptions:
Assumption 4.21 (Convergence assumptions for MSC). We assume that

1. For any v € V, there exists a decomposition v = Z‘]

=1 V) with v; € V; such that

J
2 (Sj_lvj,vj) < Ki(Av,v); (4.22)

j=1

2. For any u,v eV,

N|=

_/
=

Z (Tiw, Tjv) 4 <K2<ZJ: Tiu, u))

(6.3) i=1

J
(Z (4.23)
Theorem 4.22 (Condition number of PSC). If Assumption 4.21 holds true, the PSC method
(4.7) satisfies

K/(B.A) < KlKQ.

CHAPTER 4. SUBSPACE CORRECTION METHODS 107

Proof. (1) For any v € V, suppose that v = ijl

condition of Assumption 4.21. It is easy to see that

v; is a decomposition, which satisfies the first

J J J J
(v,v)4 = Z (vj,v Z (vj, jv) 4 = Z(vj,Ajva) = Z (S. %’UJ,S A; Hv)
j=1 j=1 j=1 j=1
J 1 1 J 1 1 1
< 2 S vj,vj 2 (SjAjHj’U,AjUj'U)2 = Z (Sj_ U],vj)2 (S A ILv v)f4
=1 j=1

N
[NIE

< (i (S vjjv]> <g(7;v

Consequently, we have the lower bound

v)A> < VK HUHA (BAv,v)?.

1

—(v,v)4 < (BAv,v)4, VvelV.
K,

(2) From the second assumption, we have

J
|BAv|% = > (Tiv, Tyv) , < Ka(BAv,v) 4 < Ko BAv|alv]a.

1,j=1

So we obtain the upper bound
(BAv,v) 4 < Ko(v,v)4, YveV.
Thus Lemmas 2.29 and 2.30 yield the desired estimate. O

According to Theorem 4.22, if we can find a space decomposition and corresponding smoothers
with uniform constants K; and K5, then we are able to construct a uniformly convergent pre-

conditioner using the PSC framework. Similar results can obtained for SSC as well.

Remark 4.23 (Similar estimate for SSC). In fact, with the same assumptions (Assump-
tion 4.21), we can also show that the SSC method also converges with

2—-W1

IT-BAA<— s

and wi := max p(S;A4;) = max p(7;).
J J

Because a sharp result has been given in §4.3, we will just leave the proof to the readers (cf., for
example, [118]). O

Estimates of K; and K,

Assumption 4.21 is not easy to verify directly. So we now give a few useful estimates for
the constants in these conditions. We first give a straight-forward estimate of K, which clearly

separates the condition on space decomposition part and smoother part.

CHAPTER 4. SUBSPACE CORRECTION METHODS 108

Lemma 4.24 (Estimates of K7). Assume that, for any v € V, there is a decomposition v =

Z}le vj with vj € Vj:

(i) If the decomposition satisfies that

J
2 Ujavj (U’U)fb
‘7:

then we have
K, < Ci/wy, where wp:= mln {)\mm (S;A;j)}

]_

(ii) If p; := p(A;) and
J

Z pj(“j? vj) < él(vﬂ V) A,

then we have

K < C’l/djo, where @y 1= ‘I?in{]{pj)\min(Sj)}.
=

Proof. (i) By the definition of wy and the fact that A(S 1/2A 81/2) = A(S;Aj), we have

R E P LR N S R
Note that
J 1/2 1/2 o—1/2 12, g S
Z /«45/ /UJvS] / Z ‘AUJ’UJ Z v]’vj Cr(v,v) 4-
i1 j=1 j=1
We then have
J J
5 S
; Uj"uj .AU U ; U]7U_] WO (AU U)

which implies that K3 < &

(ii) Similar to the previous part, from the definition of &y, we have

pj(Uj,’Uj) (S S 172],S 1/2Uj) = @o(S;lvj,Uj), j=1,...,J

Hence, we have

<

Clogv) < 7 pi(vg,05) < Cr(v,v) 4,
j=1

nMg

which implies that K; < % 0
0

CHAPTER 4. SUBSPACE CORRECTION METHODS 109

We introduce a nonnegative symmetric matrix
S = (04;) e R7*, (4.24)
where each entry o; ; is the smallest constant such that
(’ﬁu, 7}U)A < w10; (’ﬁu,u)%4 (7}1},1})%4, Vu,veV. (4.25)
It is clear that 0 < 0;; < 1. Moreover, o; ; = 0, if I;1I; = 0.

Lemma 4.25 (Estimate of K»). The constant Ky < wip(X). Furthermore, if 0; ; < fy'i*j‘ holds
for some parameter 0 < v < 1, then p(X) < (1 —)~} in this case, the inequality (4.23) is the

well-known strengthened Cauchy-Schwarz inequality.

Proof. From the definition of ¥ as in (4.24), it is immediately clear that Ko < wip(X). Fur-
thermore, because the matrix ¥ is a real symmetric matrix and p(X) < max;j—1_ s ZiJ=1 Tij, We

have

J J
. |
¥) < Sy T < —.
p(%) 1r£]agji_§]1(fz,g ;7 =

Hence the result. O

4.5 Auxiliary space method x*

Sometimes, we cannot apply subspace correction methods directly due to difficulties in ob-
taining an appropriate space decomposition. In this case, we can introduce an auxiliary or
fictitious space V for assistance. Suppose IT : V — V is surjective and satisfies the following two

conditions:

o Firstly,
8] 4 < palt] 4, VOV,

e Secondly, for any v € V, there exists v € V such that II5 = v and

polv 5 < [v].a, VieV.

Under the above assumptions, if B is a SPD preconditioner for A, then B = IIBIIT is SPD and

2
K(BA) < <’“> K(BA).
Ho
This suggests that we can construct a subspace correction method on V instead of the original
space V. This result is also known as the Fictitious Space Lemma or the Fictitious Domain

Lemma; see [91, 120].

CHAPTER 4. SUBSPACE CORRECTION METHODS 110

The fictitious domain method is a large class of methods which is usually for problems in
geometrically complex, and most likely moving, domains. By embedding the original physical
domain in a larger artificial domain, we can discretize the partial differential equations on a
more structured grid and, hence, solve the resulting linear algebraic systems more quickly. Of

course, the boundary conditions have to be handled with great care; see [63] for details.

4.6 Homework problems

HW 4.1. Prove the statements in Remark 4.5.
HW 4.2. If S; (j = 1,...,J) are all SPD, then the preconditioner B = 23'1:1 §;9Q; is also SPD.

HW 4.3. Show that the block G-S method for the expanded system is just the SSC method

for the original problem.
HW 4.4. Prove Theorem 4.10.

HW 4.5. Prove Theorem 4.20. What is the constant c4?

Part 11

Examples of Multilevel Iterative
Methods

111

Chapter 5
Subspace Correction Preconditioners

In Chapter 4, we have discussed stationary iterative methods in the framework of method of
subspace correction (MSC). In this chapter, we give a few examples of multilevel methods and

their convergence analysis based on the framework of subspace corrections.

5.1 Two-level overlapping DDM

In this section, we will investigate the two-level overlapping domain decomposition method
(DDM) presented in §2.4 using the MSC framework.

Two-level space decomposition

Based on the previous discussions, it is now easy to understand that the additive and mul-
tiplicative Schwarz domain decomposition methods can be considered as PSC and SSC, respec-
tively. For proof-of-concept, we use the Poisson’s equation on 2 as an example. In this case,
Y = H(Q), Q = szl Qj, and ¥; := {v e ¥ : suppv C QJ} c ¥; see Figure 2.2. Sup-
pose we have a finite-dimensional coarse space Vy < ¥ on a quasi-uniform mesh of meshsize

H = diam();). Apparently, this way, we have a space decomposition
V=VW+N+---+7].

The SSC method based on this space decomposition with exact subspace solvers on each sub-
domain as well as on the coarse space gives an abstract multiplicative Schwarz DDM method!.

We first define a partition of unity function ; € C'(Q) (j = 1,...,J) such that

(1) 0<6;<land Y}/ ,0; =1

Tt is an abstract algorithm because we did not discretize each sub-domain problems.

112

CHAPTER 5. SUBSPACE CORRECTION PRECONDITIONERS 113

(2) suppf; = Q;
(3) max |V0;| < Cg/H, where Cz depends on the relative overlap size f3.
This way, for any function v € ¥, we can define a decomposition
v=v+v+---+0y,

where
veVo and wvj:=0;j(v—wv)e¥, j=1,...,J

Convergence analysis of DDM

Based on the above decomposition, we have ijl v; = v — vy and

J J J J J 5
Z’ Z v; :Z‘ 2 v—vo‘ ‘Uov—v()’ +Z‘Hj 2 9,;(1)—1)0)’.
7=0 i=j+1 j=0 i=j+ j= i=j+1 1

Since II;’s : ¥ — ¥; (j = 1,...,J) are A-projections, it is easy to see that |Ijw|; < |w|;.

Furthermore,
J 2 J 2
m % o6, = | 3 so-mf < | 3 o,
i=j7+1 i=j+1 i=j+1
2
< H 20 (v — o) —|—HV(26’1‘)(’U—UO)H R

< Jo—wol{q, + CBH v — volgq,-

By summing up all the terms, we have

Eln 3o

J J
< v —voﬁ + Z }fu _Uo‘iﬂj + C%H*2 Z Hv — v
=1

j=1
2 _ 2
< ool + C3H 2 —wol?,
where the constant in the last inequality depends on the maximal number of overlaps in domain

decomposition. Because vy could be any function in V{, in view of Proposition 3.14 or the

so-called simultaneous estimate in Remark 3.15, we can obtain

Sl 3% o

1=7+

< ol

Using the X-Z identity (Corollary 4.19), we can get the following uniform convergence result.

CHAPTER 5. SUBSPACE CORRECTION PRECONDITIONERS 114

Proposition 5.1 (Uniform convergence of two-level DDM). The abstract domain decomposition

method with coarse space correction converges uniformly.
We leave the full proof to the interested readers; see HW 5.16.

Remark 5.2 (DDM without coarse space). From the above analysis, we immediately see the
importance of having the coarse space Vy. In fact, with a similar proof, one can show that the

convergence rate depends on H~2 if not applying the coarse space correction. O

5.2 HB preconditioner

In the previous section, we have seen a two-level domain decomposition method in the setting

of subspace correction. Now we investigate a multilevel example.

Nested space decomposition

We consider the Poisson’s equation on a sequence of nested meshes M; (I =0,...,L) gen-
erated from an initial mesh Mg by uniform regular refinements. Hence meshsize h; of M; is
proportional to 42! with v € (0,1). For example, in Figure 1.5, there is a hierarchy of grids with
hy = (1/2)*1 (1=0,1,...,L). Clearly,

ho > h1 > ho>--->hp =:h.
Define continuous piecewise linear finite element spaces on the mesh M; as
Vii={ve? : v, ePi(r), VT e M}. (5.1)
This way, we build a nested subspaces
VocVic---cVp=Vc¥=H)).

The set of interior grid points on the [-th level is denoted as z;; € G(Ml) (t=1,...,n;). The
subspace V; is assigned with a nodal basis {¢;;};,, where n; := |G(Ml)| The space V; can be
further decomposed as the sum of the one-dimensional subspaces spanned with the nodal basis
Vii:=span{¢y;} (i =1,...,n).
We then define
Wy={veV, :v(z)=0,Vze é’(./\/ll,l)} (5.2)

and obtain a multilevel space decomposition

V=We@W,® - dW,. (5.3)

CHAPTER 5. SUBSPACE CORRECTION PRECONDITIONERS 115

Let J; : V — V; be the cannonical interpolation operator and define J_; := 0. It is easy to see
that

W= —-J-0)V=Z-T-1)V;, 1=0,...,L.

For level [=0, ..., L, we define a nodal basis function
Yri(e) = gri(w), for mp; € GM)\G(Miy) and i =1,...,my :=n; —my.
Apparently, ZZL=0 my = ny, = N. This basis

{Yri(x) -i=1,...,my, 1=0,...,L} (5.4)

is the so-called hierarchical basis.

Notice that the decomposition (5.3) is a direct sum and there is no redundancy in this decom-

position at all.

Telescope expansions

Using notations in Definition 4.1, we have

A Vi W (Apug, v) = alug, v], Yug,v € Vi
Ql : L2 = Vz (QZU,’UI) = (U,’Ul), vvl € ‘/lv (55)
I : v — 'V (Iu,v) = alu,v], YuveW.

We introduce a new notation i A j := min(s, j). It is trivial to see
QiQj = Qinj, LI = II; 5, (5.6)
and
(Qi — Qi1)(Qj — Qj—1) = (I — 1) (IT; — II;—1) =0, Yi#j. (5.7)
If we define Q_1 = II_1 = 0, we have the following possible decompositions

(I — I —1)v. (5.8)

L
=0

L

v= Z(Ql — Qv =
1=0 !

Hierarchical basis preconditioner

We now use the Richardson iteration discussed in §3.3 as the subspace solver, i.e.,

51 Q1v = h%_d(Ql,an Vi) Vi = h?_d(v, Vi) Y-

CHAPTER 5. SUBSPACE CORRECTION PRECONDITIONERS 116

The PSC method based on the space decomposition (5.3) can then be written

N L my
Bupr = Z S;jQjr = Z (hIQd Z(Tv ¢l,i)¢l,i> . (5.9)

j=1 1=0 i=1

And this is the explicit form of the well-known hierarchical basis (HB) preconditioner proposed
by Yserentant [129].
We shall now analyze this preconditioner in the framework of PSC in §4.4. In order to do

that, we need a few important estimates.
Lemma 5.3 (H!-stability of interpolation). We have
H(jl — ‘71_1)11”(2) + h%|$v|f < cd(l)h%\vﬁ, YveV,
where ¢1(1) =1, ¢3(1) = L — 1, and ¢3(1) = v~20=D,
Proof. Using Proposition 3.11, we have
(T = Ti-1)vlo = [Tiw = Ti-1Tv]o < | Tivls.

Let 7 € M; and v, := |7|7! STvd:): be the average of v on 7. Using the standard scaling
argument for |- |1 7, the discrete Sobolev inequality Proposition 3.13, and the Poincaré inequality

Proposition 1.10, we can obtain that

|k7lv|1,T = |%U - UT|1,T < H:]lv - UTHOO,T < HU - UT”OO,T < CdHU - UT| 1,7 < C’d|v|1,7"
Hence the desired result follows by summing up terms on all elements in M;.]

Remark 5.4 (Condition number in hierarchical basis). The above lemma suggests that, if

ve W, for any 0 <! < L, we have
e (DR (v,v) < afv,v].

Compare this with the general Poincaré inequality in Proposition 1.11. Furthermore, from the

inverse inequality Proposition 3.12, we always have
2 —21, 12 -2
alv,v] = vl < b 7[v]g = hy (v, v).

Hence the operator A; is “well-conditioned” up to a constant c4(l); compare this property with

the standard Lagrange finite element basis case in Remark 3.16. O

CHAPTER 5. SUBSPACE CORRECTION PRECONDITIONERS 117

Strengthened Cauchy-Schwarz inequality

Lemma 5.5 (Inner product between two levels). If i < j, we have
alu,v] < ’yjfih;1|u]1|\v\|g, YueVi,veV.

Proof. We first restrict our attention to an element 7; € M;. For v € M, there is a unique
function v1 € V, such that v; vanishes on 07; and equals to v at all other grid points. Let
vo := v — v1. Because u € W; is a linear function on 7;, we have ST. VuVuv; = 0.
Define T := UTjeMjfjmaTﬁﬁg 7j. Then |T| = (E) hi = hi”"h; and suppvg < T. We
have
2 dp—2,2 d—2 2 =21, 112
[Voollor, s 20 M@ = X hgTRew) S bRl
CEEGQ(MJ‘)H@TZ‘ xEé(Mj)ﬂﬁTi

Since Vu is a constant on 7;, we have

1/2
7|1/ hd—1p. .
IVulor = (i IVelor = \ 75 | IVulos =0l

Combining the above two inequalities, we have

J Vu-Vov = f Vu- Vg < yjfihjfllu‘lm /UHO,T,L" V1, € M;.
Ti Ti
By the Cauchy-Schwarz inequality, we obtain the estimate:
alu,v] = Z f Vu-Vu < 'y];ih;l Z |u’1 v }0 7_,
TZ‘EMZ' Ti TZ'EMZ' T ’Z
o 9 \1/2 9 \1/2 o
< (Y i) (D Iels) T = R el
TEM,; TEM;
Hence the result. O

Lemma 5.6 (Strengthened Cauchy-Schwarz inequality for interpolations). If u,v € V, let u; :=
(Ji — Ji—1)u, and v; := (J; — Jj—1)v, then we have

alu, 0] £ A i ylug] 4

Proof. If j = i, we have v; = vj — Jj—1vj. So |vjllo = [lv; — Tj—1vjllo < hj|vj|.a follows from
Proposition 3.11. If ¢ > j, we can argue in a similar way. Hence the result follows directly from

Lemma 5.5. O

Lemma 5.7 (Estimating K»). Assume that 7; = S;A;II; and the subspace smoother S; : V; —

V; satisfies
il < o7t (Ajv,0), VoeV,

CHAPTER 5. SUBSPACE CORRECTION PRECONDITIONERS

where p; := p(A;). Then, if ¢ < j, we have

118
(ui, Tiv)a < 77wl alv]a, YuieVi,veV. (5.10)
For 0 < 4,j < L, we have the strengthened Cauchy-Schwarz inequality
. 1 1
(Tow, Tiv) a4 < A~V (Tiu, u)y (Tjv,v)%, Vu,veV. (5.11)
Proof. By applying Lemma 5.5, we get

(s, Tjv)a = alug, Tv] < 775 uil 4l Tjvlo

Furthermore, we have

1/2
[Tvllo = 1S54 Lwllo < byl A2 Hjwlo < byl o] 4 < hyllv] a.
This proves the first inequality (5.10)

First consider the case when j > i.
ity (5.10), we get

By the Cauchy-Schwarz inequality and the inequal-

(Tiw, Tiv)a < (TiTiw, Taw) 3 (Tjo,v)% <

1
VIR Tl 4 (Ti0,0) 4
1
Also observe that (T;u, Tiu)a < | Tiu|a(Tiu, u)% and the second inequality (5.11) follows imme-
diately.

O
Convergence analysis of HB preconditioner

Theorem 5.8 (Convergence of HB preconditioner). The multilevel PSC preconditioner Byp
defined in (5.9) satisfies

k(BapA) <

Ca(h),
where C1(h) =1, C2(h) = |log h|?, and Cs(h)

=h1l
Proof. We choose a decomposition v = >};_, v

o= 2o -
careful calculations, Proposition 3.12 and Lemma 5.3 (]

Z ol <

On the other hand, we know &

Ji—1)v, where J_1 = 0. With
= II; in 1D) yield

Z hy 2 g = Z pullvrll§ < Ca(h)vl%-

(5.12)
= minl pl)\mm(Sl) S 1.

Therefore K1 < Cy(h) due to
Lemma 4.24. The strengthened Cauchy-Schwarz inequality (5.11) and Lemma 4.25 give that

Ky < 1. The convergence result then follows directly from the general theory in Theorem 4.22

O]

CHAPTER 5. SUBSPACE CORRECTION PRECONDITIONERS 119

This theorem shows the HB preconditioner converges very fast when combined with some
Krylov subspace method. However the conditioner number still depends on the meshsize h,
especially in 3D. Now we discuss a little bit on how to remove such dependency.

Define an operator ‘H : V — V such that
L
(Hv,w) Z 3 B2 (T = Few) (@), (Jiw = Tiaw) (@))
1=0 2, G(M)\G(M_1)
Hence we get
L 2
(Hv,v) Z hfl_Ql(jw —J—1)(x)|, YveW.

2, €G(M)\G(M_1)

This operator is in fact the inverse of the HB preconditioner, i.e., H = BHB, see [130]. In fact,

in the proof of Theorem 5.8, we have shown the following norm equivalence result:

L
[olZ < (Ho,0) = 3 0 20T = Tia)ollg < Ca(h)|of4 (5.13)

=0

Since II; is the (-,) 4-projection from V to Vj, it is easy to check that
CL[(]L -]Yi—l)v7 (H] -]Yj—l)v] =0, Vi#j.

We can then obtain that

H Eﬁﬁiz > allf = Iy, (I — Iy)]

0<i,j<L

L L
=Z — 1)v, (I — I —1)v Z‘ — 1)

ol
‘ 2

Notice that this is corresponding to the telescope sum of the Ritz-projections in (5.7). Motivated
by the above norm equivalence and (5.13), one can easily construct another multilevel PSC

method
J
=). 811
j=1

However, II; is not good for computation in general except for d = 1 in which II; = J; is just

the interpolation?.

In the next section, we explore the idea of telescope expansion using the
L2-projection (5.7) instead of the interpolation or the Ritz-projection. And it turns out to give

rise to the well-known BPX preconditioner.

2Note that this is equivalent to the HB preconditioner in 1D.

CHAPTER 5. SUBSPACE CORRECTION PRECONDITIONERS 120

5.3 BPX preconditioner

In the previous section, along with the hierarchical basis decomposition, we have also ob-

tained a natural multilevel space decomposition

L L
vyi-y
=0 =0

which contains a lot of “redundancy”. Heuristically, one might want to avoid such redundancy

n
Vi, (5.14)
=1

i

in their algorithms. However, it turns out these extra subspaces are not redundant for optimal
convergence.

Using the multilevel space decomposition (5.14), we can construct multilevel subspace cor-
rection methods. Among them, the most prominent (multilevel) example of PSC methods is the

BPX preconditioner [28] based on the multilevel subspace decomposition (5.14):

J L
B=>18Q; with J= lzgnl, (5.15)

j=1
which is computationally more appealing and converges uniformly. The HB and BPX precon-

ditioners both belong to the class of multilevel nodal basis preconditioners.

Norm equivalence

Now we shall show why the BPX preconditioner is “better” than the HB preconditioner.
We notice that the HB preconditioner is not optimal for higher dimensions than 1D due to the
H'-stability property of the interpolations. Now we can expect it should be better for the L?

projections.

Lemma 5.9 (Telescope sum of L?-projections). For any v € V, we have
(Q1 — Qui—1)v|, = b M [(Q — Qi1)v|,,-
Proof. Using the inverse inequality, Proposition 3.12, we get
(Q1 — Qi—1)v|, < b [(Q = Q1o
Proposition 3.14, together with the trivial equality
(Q—Qr1)v=(T—Q-1)(Q —Qi1)v,

gives the other direction. O

CHAPTER 5. SUBSPACE CORRECTION PRECONDITIONERS 121

Lemma 5.10 (Strengthened Cauchy-Schwarz inequality for L2-projections). If u,v € V, let
i = (Qi — Qi—1)u, and v; := (Q; — Q;_1)v, then we have
alus, v;] 5 A ui| alloj] -

Proof. If j > i, Lemma 5.9 shows that |vj]o < hj|vjll4a. Hence the desirable result follows

directly from Lemma 5.5. If 7 > j, we can argue in a similar way. O

Lemma 5.11 (Norm equivalence). For any v € V, we have

L
Q- Qo = ol
=0

Proof. (i) Since Q; is a L?-projection, we have |Qv[o < |v|o, Vv € L?*(). Furthermore, using
Proposition 3.14, we obtain
Qw1 < vf1, Vve?.

By space interpolation, we have, for any o € (0, %), that
Qo < [vls, Yve?.
Let a € (%, 1). If I, : ¥ — Vj is the standard H'-projection, the finite element theory gives

v = o], < hfo

L Yue?. (5.16)

Let v; := (II; — II;_1)v. Note that p; = p(A4;) = hl_Q. It is easy to show, with help from the
inverse inequality (Proposition 3.12) and (5.16), that

(@ = @yl = 2 l(Q = Qunoili_, < il < i ol = ppnie ol

Using this inequality and the Cauchy-Schwarz inequality, we can derive that

ing
DIV = Q1) V(Q — Qi) ZZ — Q11)vi, V(Q — Q1))
I 1,7 1,J I=1
ing L
< D2 et he S il < Eﬂwho‘ha\vz‘\h\\vj\\l < Y il o).
4,7 =1 %,]

Note that here [, 7, and j are all level indices and we can apply summation by parts.

We can show that },; ; Y=l v 1 vjlle € X2 [vill} = o]}, which, in turn, gives

S - Qo < ol
l

CHAPTER 5. SUBSPACE CORRECTION PRECONDITIONERS 122

(ii) On the other hand, using Lemma 5.10, we obtain

ol = > (V(Q = Q1)v, V(Qm — Q1))
Im
< ZV'FWH(QZ — Q)| [(Qm — Qm-1)v|, < Z (i — qu)qu.
Im 1
Hence we get the norm equivalence using Proposition 1.11. O

Remark 5.12 (Fractional norm). We have shown the norm equivalence in H'-norm. In fact,
similar results also hold for H*(Q) with § < o < 3. O

Convergence analysis for BPX preconditioner

All subspaces in (5.14) are one-dimensional and, thus, the subspace problems are very easy
to solve. We can write the subspace solver (exact solver on each one-dimensional subspace) as

follows:
ny ny

SPv =Y (A, ¢13) " (v, b1) bri = Y (Vori, Vor) ™ (v, 1) b

i=1 i=1
Since we are now considering the uniform refinement for the linear finite element discretization,

we can use an approximation of SZO , for example a local relaxation method:

ny
S = Z hi (v, 1) b (~ SPv). (5.17)
=1

This simplification helps us to reduce the cost of computation as well as implementation. Ap-
parently, we have

(S, v) = b~ (7,7) = hi (v,v). (5.18)
We have seen that the Richardson method, the damped Jacobi method, and the G-S method

all satisfy such a condition; see (3.23).

Remark 5.13 (Behavior of the smoother). Note that the method (5.17) is just the Richardson

method with a weight w = A7~ on level [. O

Using the above space decomposition and subspace solvers §;, the PSC method yields the

well-known BPX preconditioner

L L L
B=Y89 =Y 108 =) LSI] (5.19)
=0

=0 =0

in operator form [28].

Theorem 5.14 (Uniform convergence of BPX). The BPX preconditioner (5.19) is uniformly

convergent, i.e., K(BA) < 1.

CHAPTER 5. SUBSPACE CORRECTION PRECONDITIONERS 123

Proof. We take a decomposition v = ZZL:O vy = ZlL:o(Ql — Q;_1)v, where Q_; = 0. Then we

can obtain, from Lemmas 5.11 and 5.9, that

L L L
(Av,v) = Z Ql_l)vﬁ = N0 (Q — Qia)v]§ = (Z — Q1) U)-
=0 =0 =0

Define A := Zf:o h;?(Q;— Qi—1). Apparently, (Av,v) = (Av,v), Yv € V. Using (5.6) and (5.7),
we can easily verify that (see HW 5.17)

L
=) hi(Q - Qi)
=0
Hence
L
2 hi (Quv,v) 2 (Qi_1v,v) = h2(Qrv,v) + Z(l —)R (Qv,).
1=0 1=0 =0
Namely, (A0, v) = (Bv,v). That is to say, (Av,v) = (Av,v) = (B~'v,v). Hence it gives the
uniform convergence result by Lemma 2.29. 0

Remark 5.15 (Multilevel decomposition according to frequencies). From the above analysis,

we find that, for any v e V,
(Q = Q-)oly = 7 (Q = Qi-a)v]y = [Vurllo ~ 1A uufo-

This fact draws close comparison with the Fourier expansion. That is to say v = ZZL:O v is a
multilevel decomposition to different frequencies. Hence A can be viewed as a multi-resolution
expansion of A and k(A~1A) < 1. O

Matrix representation of BPX

Using the matrix representation notations introduced in §3.2 and §3.5, the equation (3.38)

in particular, we immediately obtain the matrix representation of the BPX method:

L L L
Bu=Bu=Y L8 Qu=) Pk M) (M 'P'M)u= 3 hi ‘PP Mu
=0 =0 =0

In view of (3.16), we get the matrix form of the BPX preconditioner

L
B:=BM ' =) PP (5.20)
1=0
This is the matrix form of the BPX preconditioner when we implement it. To improve efficiency,

we can use prolongation between two consecutive levels to obtain P;.

CHAPTER 5. SUBSPACE CORRECTION PRECONDITIONERS 124

5.4 Homework problems

Problem 5.16. Give the complete proof of the uniform convergence of the two-level domain
decomposition method (Proposition 5.1). What will happen if we do not include the coarse-level

correction (Remark 5.2)7?
Problem 5.17. Let A:= 3 7 2(Q; — Q;_1). Show that A~ = 32" [h?(Q) — Q1_1).

Problem 5.18. Implement the BPX preconditioner for the Poisson’s equation on a uniform

grid. You can choose your favorite discretization method.

Chapter 6

Geometric Multigrid Methods

Multigrid methods are a group of algorithms for solving differential equations using a hierar-
chy of discretizations. The idea of multigrid was proposed initially by Fedorenko [57] in 1962 for
2D finite difference systems arising from the Poisson’s equation. It accelerates the convergence of
a basic iterative method (known as a relaxation or smoother) by global corrections from time to
time, accomplished by solving a coarse problem approximately. The coarse problem is “similar”
to the fine grid problem, while much cheaper to solve. This recursive process is repeated until
a coarse grid is reached where the cost of direct solution is negligible compared to the cost of
one relaxation sweep on the finest grid. In 1970’s, Widlund, Hackbusch, Brandt et al. [67, 30]
noticed that this iterative procedure was considerably faster than standard relaxation methods

and brought it to attention in the western scientific community.

6.1 Geometric multigrid method

Geometric multigrid (GMG) method is an optimal iterative solver for linear algebraic sys-
tem (2.1) arising from discretizations of partial differential equations. It is based on two impor-

tant observations we have pointed out earlier in Chapter 3:

e A local relaxation method damps out the non-smooth (high-frequency) error components

and the residual becomes relatively smooth after a few relaxation sweeps;
e A smooth (low-frequency) vector can be well approximated on coarse spaces.

GMG establishes and makes use of hierarchical structures. It is also a good example of
the idea of divide and conquer. This idea has been applied in two-grid methods; see §3.4.
Unfortunately, for large-scale problems, the coarse grid problem might be still too large to be
solved efficiently. This makes introducing more than two nested meshes a natural idea. The key

steps in the multigrid method (see Figure 6.1) are listed as follows:

125

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 126
e Smoothing: Reduce high-frequency error using a few smoothing steps based on a simple
iterative method;
e Restriction: Restrict the residual on a finer grid to a coarser grid;
e Coarse grid correction: Solve an approximate problem on a coarse grid;

e Prolongation: Represent the correction computed on a coarser grid to a finer grid.

Fine Grid

~ =

2 3

: 5

S e
— (=]

o

—

A

Coarse Grid

Figure 6.1: Pictorial representation of a multigrid method with three grid levels.

V-cycle multigrid method

Now we will explain the multigrid algorithms using the P; finite element method for the
Poisson’s equation on < R?% as an example. Suppose we have a sequence of meshes M;
(Il =0,...,L) generated from an initial mesh My by (uniform) regular refinements. Hence

meshsize h; of M, is proportional to 7' with v € (0,1). Clearly,
h0>h1>h2>"'>hL=:h.

It is easy to see that a multigrid method can be viewed a recursive two-grid method. So
we only need to introduce how to do the iteration on two consecutive levels. We denote Z;_1; :
Viei = Vi (I = 1,---,L) as the natural embedding and Q;; ;1 = IleLz : Vi — Vi1 as the
(+,-)-projection. Define A; (I =1,---, L) as the operator form of A on the subspace V in (5.1).

Then a V-cycle multigrid method is given as follows:

Algorithm 6.1 (One iteration of MG V-cycle). Assume that B;_1 : Vi_1 — Vj_; is defined and

the coarsest level solver By = A lis exact. We shall define, recursively, B; : V; — Vj, which is

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 127

an iterator for the equation A;v; = r;. Let v; be the initial guess on each level, i.e., v; = w0

and v; = 0 for 0 <[< L. Do the following steps:
(1) Pre-smoothing: For k = 1,2,...,m, compute
v — v+ 8§ (r — Ay);

(2) Coarse grid correction: Find an approximate solution e¢;_1 € V;_ of the residual equation

onlevel I —1,ie., Aji_1e_1 = Qu_l(rl — .Alvl), by an iterative method:

el1 < Bo1Qu1(ri— Awy), v —uv+Li1e-1;

(3) Post-smoothing: For k = 1,2,..., m, compute

v — v + SlT (rl — Alvl).

From this algorithm, we can see this V-cycle multigrid method is just a generalization of Al-
gorithm 3.2 (the abstract two-grid method). Clearly, this geometric multigrid method (with one
G-S iteration as pre-smoothing and one backward G-S iteration as post-smoothing) is actually
a special successive subspace correction (SSC) method based on the following multilevel space

decomposition

J
v=> 7= Ve + Vo + > D> Vi

j=1 I=L:—1:1 1=1:ny I=1:L 1=n;:—1:1

which is a modification of (5.14). Furthermore, on each one-dimensional subspace f/j, the
subspace problem is solved exactly.
According to Lemma 3.36, the error transfer operator of V-cycle on the [-th level can be

written as
& :=I—-BA = (IS A)Z-B_1 A1) - SA),

where II;_; is the Ritz-projection from V to V;_;. By applying this operator recursively, we

obtain the error transfer operator for the MG V-cycle:

EL=T—-BrAll, = (Z—-SLAL) - (T—-S{A)(T—Ih)(T-Si1A) - (T—SpAL).

Matrix representation of GMG

Similar to the matrix representation of two-grid method discussed in §3.4, we can write the

matrix representation of multigrid method. By definition, we have

(A, vp) = (Aug,vp), Yug,v e V.

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 128

Hence,

(A Quu, Q) = (I} ATiQuu, Qv) = (AT Qu, T;Qv), Yu,ve V.
It is easy to see that
A=T/AT — A=-TAL-1 AL
This and (3.38), in turn, give the inter-grid transformations:
Al=M A =MII AL = M QM AL =77 AT, 0<I<L.
Hence we get the matrix form of the coarse level operator

A =PFAP, 0<i<L. (6.1)

Anisotropic problems x*

For GMG, smoothness of error is in the usual geometric sense. But it is not trivial for
problems on unstructured meshes or problems with complicated coefficients. A representative

example is the second-order elliptic problem

—€Uyy — Uyy = f(z,y), V(z,y)€Q, (6.2)

where € > 0 is usually small. Other examples include problems with high-contrast coefficients,
problems on anisotropic meshes, etc.

If we just naively apply the standard finite difference discretization in §1.2 on the uniform
n x n tensor-product grid for this problem, or equivalently the P; finite element discretization

on uniform triangular grid from regular refinements, then the coefficient matrix for (6.2) is
A =1®A+C®I, with A, = tridiag(—e, 2 + 2¢, —¢), C = tridiag(—1,0, —1).

The eigenvalues of A are given

LT Jgm . i) gm
Xij(Ae) = 2(1 + €) — 2ecos - — 2cos = 4esin? Mt + 45sin? M+ 1)
with eigenvectors
5—' (. kim . Um)
;i = | sin sin .
I n+1 n+1/ki=1,.n
Ife «1,then A\i1 < A1 < -+ < A1 < A2 < Ao < ---. We notice that, unlike the

Poisson’s equation, these eigenvalues are ordered in a different pattern. The geometric low-
frequencies can be highly oscillatory in the x-direction. It is natural to expect such a behavior
from the PDE itself as the z-direction is much less diffusive than the y-direction. We call the

x-direction (with smaller coefficient) the weak direction and the y-direction the strong direction.

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 129

We can also view this problem from a different perspective. Using the LFA analysis in §3.3,

we obtain that the error of the G-S method satisfies

new new old new old T
(2 + 26)61'7]‘ = 662'_17]‘ + 6€i+1,j + ei,j—l + ez‘7j+1> 1,] = 1, Lo, N

According to the local Fourier analysis, we can obtain that

o ceV—101 4 V=102
adld 242 — e VIO V102

In this case, the smoothing factor of the G-S method is

<e(1—pés)> :\/562—264-14-2_)1
2(e +1)p2, 5e + 3 ’

Pas = /\<72r, arctan as € — 0.

This means the standard G-S method barely have any smoothing effect on the anisotropic
problem when € is small.

On the other hand, if we apply the line G-S smoother, things will be a lot different. Suppose
we apply the line smoother in natural ordering (from left to right), namely,

new __ new old new new . .
(2 + 2€)ui’j = eui_l’j + eu’H—l,j + ui,j—l + ui,j-ﬁ-l?] = 1, cea,n, 1= 1, Lo, n.

Then the error satisfies

new new old new new . .
(2 + 26)61'7]‘ = 662'_17‘7‘ + €€i+17j + ei,j—l + ei,j-{-l?] = 1, ea,n, 1= 1, e, n.
And we get
agew 6(9/\/—101
)\(91, 02) =

agld T 242 —ce V101 — 2102
The maximal smoothing factor is then
B € \/5
Pros = max {75, 5

If 0 < € < 1, we always have p, .. = v/5/5 < 1 independent of e.

In the multigrid setting, one can handle such an equation using special techniques like: (1) an line
smoother (group all y-variables corresponding to the same z-coordinate together), or (2) semi-
coarsening (only coarse in y-direction), or (3) operator-dependent interpolations. In the next
chapter, we will turn our attention to the third approach, which leads to algebraic multigrid

methods for solving such difficult problems.

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 130

6.2 Nested iterations

The solve phase approximates corresponding problems by calling a two-grid algorithm recur-
sively. There are different approaches for the solve phase; for example, we have seen the V-cycle

method in §6.1. In this section, we discuss a few popular methods for the solve phase.

V-cycle and its generalizations

The V-cycle iterator B, Algorithm 6.1, is a two-grid method with an inexact coarse-level

solver defined recursively, i.e., the coarse-level iterator B, is just B on the coarse grid. On the

old _

coarse level, we start from the initial guess u2“ = 0 and then iterate

C

ulv = ugld + Bc(fe— Acugld), where B, is the two-grid method for A..

In the the V-cycle, we only apply the above iteration once on the coarse-level. Apparently, this

procedure can be generalized. For example, we can iterate multiple steps:
ugo) =0, u((:k) = ugk_l) + Bc(fc — Acugk_l)), k=1,...,v.
This gives the following equation
u = Bofe + (T~ BeAJul ™V = Bofe+ Ecul™ = = (T4 &+ -+ EN B
where &, := 7 — B.A.. We can define a new iterator 3., such that
Befe = (T—E) (L — &) Bofo = (T—) AT f.. (6.3)
Motivated by (6.3), we can introduce a polynomial g, (t) := (1 —¢)” € P, and let
Buwi= (T - a(BoA)) A

Then v = 1 yields the V-cycle apparently. The first non-trivial example is the well-known W-
cycle (v = 2), which is a simple extension of the V-cycle algorithm; see Figure 6.2. By calling
the coarse correction steps twice as in (6.4), we can obtain B2 (the W-cycle); see HW 6.4. The

parameter v is often called the cycle index.

Algorithm 6.2 (One iteration of multigrid cycle). Assume that B;_1 : V1 — Vj_; is defined
and the coarsest level solver By = Ay lis exact. We shall recursively define B; : V; — V; which

is an iterator for the equation A;v = ;. Let v = v(9) be the initial guess.
(1) Pre-smoothing: For k = 1,2,...,m, compute

v<—v+8;(1"l —.Alv);

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 131

\/ s

Figure 6.2: Multigrid V-cycle (left) and W-cycle (right).

Relaxation

Exact solving

Restriction

Coarsest Prolongation

N 7O @

(2) Coarse grid correction: Find an approximate solution e;_; € V;_ of the residual equation
on level [— 1, ie., Aj_1e-1 = Qp1—1 (rl — Alv) using the iteration: Let ¢;_1 = 0 initially.

For k=1,...,v, compute
el—1 —e—1 + B (Qz,l—l(m — Aw) — Az—1€l—1>; (6.4)

Update the solution with

v v+ €-1;
(3) Post-smoothing: For k = 1,2,...,m, compute

v<—v+SlT(rl—Aw).

In the above general algorithm, the numbers of pre-smoothing and post-smoothing steps
could be different from each other or level from level. The notation like V(1,2) means the
V-cycle multigrid with 1 pre-smoothing and 2 post-smoothing steps.

From the previous discussion, we have seen that there is a lot of freedom in the choice of
qu(t). If v = 1, then Algorithm 6.2 is the V-cycle; if v = 2, then Algorithm 6.2 is the W-cycle.
Apparently, the cycle index v on each level does not have to be a fixed integer and one can use
v;—1 > 0 to balance convergence and computation complexity; see Remark 6.3 for an alternative
scheme.

In V-cycle and W-cycle, the iterators on all the coarser levels are the same. We can also
use different polynomial orders v, on different levels [(0 < 1 < L). For example, we can use a
polynomial g, (t) such that ¢,(0) = 1 and 0 < g,(t) < 1 on the spectrum of B..A.. This type of
methods are referred to as the AMLI-cycle (Algebraic Multi-Level Iteration cycle!); see [1] and

references therein for details.

Remark 6.1 (Nonlinear AMLI cycles). Indeed, we can choose some optimal polynomial g, (t)

like the Chebyshev polynomials. This reminds us about the Krylov subspace methods discussed

'Here “algebraic” stands for the fact that certain inner polynomial iterations are used in the multilevel cycle.

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 132

in §2.2. Inspired by this similarity, we can apply a preconditioned Krylov methods (like Flexible
CG or GCR methods) on some of the coarse levels to improve convergence. This type of methods
are called Krylov-cycle (K-cycle) methods or Nonlinear AMLI methods [97]. O

Example 6.2 (A simple AMLI-cycle). A simple AMLI-cycle method is to give lp > 1, u1 >

o = 1, and use the following polynomial orders

pr, it L= Fklo;
v =
o, otherwise.

It is clear that, if o = 1 and gy = po = 1, then this method is just the standard V-cycle. O

Complexity of multigrid iterations

Now we turn our attention to the work estimate of nested iterations. For simplicity, we
consider the AMLI-cycle with pus = 1 only. Denote the work needed by B; is W;. Assume the
each smoothing sweep costs O(N;) operations and N; ~ hl_d ~ ~v~!_ Then it requires 2m O(NN;)
operations for the pre- and post-smoothing on level [. The prolongation and restriction also

requires O(N;) operations. Hence, for the AMLI-cycle, we have

Wi, = #O(Ngriy) + O(Nuiga1 + -+ + Nitgrt) + 1 Wiy
= mO(Nggrayy) + 11 Wi
= “1O(N(k+1)) + /hO(Nklo) + M%W(kq)lo

k+2—
- (Z Ha ’ jNﬂo) +M’fmo

k+1

_ (Z ,uk—i-? gleo)

+
di
= Nk+1)10 Z 1)

Let N = Np, be the number of unknowns on the finest grid. This AMLI method costs O(N)
operations in each cycle, if we choose an appropriate p; such that p;y¢% < 1. Apparently, this
analysis also yields computational complexity of the standard multigrid cycles like V-cycle and

W-cycle quickly.

Remark 6.3 (Variable V-cycle). Sometimes it is very desirable to use more smoothing steps
on the coarse meshes to achieve better convergence. For example, we can modify the V-cycle

algorithm by making the number of smoothing steps vary with the level [. Namely, we can

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 133

replace m in Algorithm 6.1 with m;, where m; = A'm with a fixed integer # > 1. Usually
in practice 8 = 2 and m = 1 are taken and then m; = 2¢~!. Note that the computational

complexity is still optimal O(N) as the number of grid points decreases geometrically. O

Full multigrid method *

The multigrid methods discussed above converge uniformly with respect to the meshsize h
and requires O(N) operations in each cycle. This means the computation cost is O(N) to reach
a fixed tolerance. On the other hand, when we solve a discrete partial differential equation, we
need to solve the linear systems increasingly accurate use smaller tolerances for finer meshes, in
order to obtain discretization accuracy. This leads to the fact that, to reach the discretization
accuracy, the V-cycle multigrid method requires O(N log N) operations.

One way to further improve the cycling algorithms (for example, the V-cycle algorithm) is
to provide good initial guesses using coarse approximations (cheap in computation). This idea
leads to a nested iteration method, i.e., the so-called full multigrid (FMG) cycle; see Figure 6.3.
From this figure, we can see the full multigrid method can be viewed as a sequence of V-cycles
on different levels. Note that FMG prolongations are different than the usual prolongations

because they must control error and decide when to proceed to the next finer level.

Finest
o Relaxation

] |]
A ‘ @) Exact solving
\ Restriction
AC/ / Prolongation
d 'd FMG prolongation

Coarsest

Figure 6.3: Full multigrid cycle.

We can write the concrete algorithm as follows:

Listing 6.1: Full multigrid method

~ —1
1 [uo <—A0 fo;

2 |for I=1,...,L
0)

3 “z(— L 1t-1;
4 ul(k) <—Vfcycle(l,fl,ul(k_1)), k=1,...,v;
5 Uy — ul@);

6 | end

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 134

Theorem 6.4 (Full multigrid convergence). Assume that the [-th level iteration is a contraction

with contraction factor 0 < § < 1 independent of level [. If v is large enough, then we have
|||Ul - alm S hl|u|27

where u; is the exact solution of finite element problem on level [and 4; is the full multigrid

approximation solution on the [-th level.

Proof. Let e; := u; — ;. Apparently, on the coarsest level, we have ey = 0 initially. On the [-th
level (0 <1< L), we have
ledl < 0% flws — @]l < 5”(s = wll + fles—y — wl + flug—1 — ﬂl—llll)

< o (Chlyu\z + el)
By iteration, we obtain that

”|€l W < C((Syhl + (52'}}1[71 + -+ (5luh1> ”U,‘Q

= C&'Iy (1 +8y++ 5“‘1)”7"1) |ul,-

Furthermore, if §* < ~,

Co"h
leill < ==

A Lev |u|2 S hl|“’2'

Hence the result. O

The above theorem indicates that, if we do enough number of V-cycles on each level (independent
of meshsize h;), we can obtain an approximate solution within the accuracy of discretization
error. That is to say, |lu — 4| < |Jlu — w| + [|wi — @]| < hi|u|2. This means that FMG can reach

discretization error tolerance within O(NN) operations.

6.3 Convergence analysis of multigrid methods

In this section, we show the slash cycle or the sawtooth cycle (i.e., /~cycle) method converges
uniformly (h-independently) using the XZ identity discussed before. For simplicity, we will
only discuss the proof in 1D here. The multidimensional cases and other MG methods can be
analyzed in the subspace correction framework as well, but more technically involved; see [118]

for example.

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 135

Convergence analysis of GMG method

Assume the subspace problems are solved exactly, i.e., §;; = .Al_il, for i = 1,...,n; and
=0,...,L. We denote the canonical interpolation operators from V to V; as J;. That is to

say, for any function v e V,
ny
(J)(Z 1=0,..., L.

Let J_1v := 0, vy := Jov, and v; := (J; — Jj—1)v, | = 1,..., L. Using the interpolants in

multilevel spaces, we can write

L L
v=Jv= 2 (jl — ﬁ_l)v = Z V). (6.5)
=0

We also have
n

S o) dha) = 31 Y

0i=1 [=01:=1

M=

L
0=Yu-
=0

l

It is easy to check that

L ny
(Z — Tx)v Z v = Z Zvl,j

I=k+1 I=k+1j=1
To estimate the convergence rate, in view of Corollary 4.19, we only need to estimate the

quantity:
L ng 9

c1 := sup inf ZZ I ; Z Uk’j‘{

\vh 1 20, 0i= YiZ0i=1 (k,5)=(1,1)

We now define and estimate

(Z”lﬁ % St

k=1+1j=1

L n
1=0 i=1
We use the same notations introduced in Chapter 4 for projections, If;; : V ~— V; is the

(+,-)a-projection. For one-dimensional problems, it is easy to see that I, = J;; see HW 6.2.

This leads to the following identity
IL,(I—-7)=0, Vi<i<n, 0<I<L.

Furthermore, we also have]Yl,i(iji v ;) = I, (Um‘ + UMH). Using these properties, we have

L n
ci(v) = Z Z i (v + vii) + (T — \71)0’?
1=0 i=1
L lnl L n
= ZZ’H“U“J”}““ ZZ loil;
=0 1=1 =0 =1
L l L

~ Z - Tl < Yl = el

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 136

The last equality is easy to check; see HW 6.3. This estimate shows the convergence rate of MG

is uniformly bounded.

Remark 6.5 (Relation with the HB preconditioner). Note that several places in the above
analysis depend on the one-dimensionality (d = 1) assumption for simplicity of presentation. In
fact, the decomposition (6.5) used in this proof is the hierarchical basis (HB) decomposition in
§5.2. We have already seen that the convergence rate of the HB method is actually not optimal
in multidimensional cases (d > 1). So the proof must be changed in higher dimensions. We
will not go into the details using this approach. There are several ways to prove the optimality
of geometric multigrid methods in the literature and we review them briefly in the following

subsection. O

Some historical remarks x

The theoretical analysis in this note has been closely following the argument of theory of
subspace corrections. We now pause a little and take a quick look at the history of multigrid
convergence theory. It is not possible to review all the relevant literature about multigrid theory
here though; the interested readers are referred to the monographs [69, 85, 20, 44, 110, 114], the
survey papers [118, 131], and the references therein for further reading.

In early 1960’s, the multigrid method was first introduced and analyzed by Fedorenko [57, 58]
for finite difference equations from the Poisson’s equation on the unit square. The result was
extended to a more complex case with variable coefficients by Bakhvalov [5]. Nicolaides [92] gave
an analysis for finite element discretizations of second-order elliptic equations. In the late 1970’s,
Hackbusch [67] and Brandt [30] made the historical breakthrough and showed that the multigrid
technique is highly efficient. These seminar work made the idea of multigrid increasingly popular
and extensive efforts had been made in order to give a general convergence theory since then.
The simplest case is of course a hierarchy with only two levels. Bank and Dupont developed
a two-level hierarchical basis (HB) finite element method [7] and gave the convergence proof
of two-grid methods in the finite element setting [6]. Based on this two-grid theory, in some
circumstances, one can show that the corresponding W-cycle (or more costly) multigrid with
sufficient number of smoothing steps also converges with “similar” efficiency as the two-grid
method; see [6, 68, 69, 110] for example. However, the uniform convergence of the V-cycle
multigrid, which is more important in practice, cannot be proved in this way [68].

Hackbusch [68] and Braess and Hackbusch [18] first gave a general convergence theory for
multigrid, including the V-cycle. The classical book by Hackbusch [69] summarized early de-
velopment of convergence and optimality of multigrid methods. Hackbusch and collaborators

reduced the conditions for the V-cycle convergence to the smoothing and approximation prop-

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 137

erties, namely,
(v, Ajuy) < (UZ,Bflvl), Vo eV (6.6)
(wl,Bl_lwl) < w(wy, Ajwy), Yw, e W, := {(Hl —I_4)v:ve V}. (6.7)

If the above conditions hold, then there is a positive mesh-independent constant C' such that

V(m, m)-cycle multigrid converges uniformly and

C
C+m’

I - BY-veA| 4 <

which indicates the convergence factor goes to zero as the number of smoothing steps increases.
The approximation property (6.7) often requires full elliptic regularity on the boundary value
problem and quasi-uniformness of the underlying meshes. These restrictions made the classical
theory not applicable in many situations where the multigrid methods are still effective. There
are some exceptional cases where full elliptic regularity is not necessary; see, for example, [16, 10].
Bramble and Pasciak [22] introduced a regularity and approzimation condition to show conver-
gence of multigrid methods including the V-cycle for any positive m. Bank and Yserentant [10]
presented the classical convergence theory of the multigrid methods from an algebraic point of
view.

An alternative convergence theory is the framework of subspace corrections, with which
inexact subspace solvers can be analyzed, very general meshes can be treated, and restrictive
regularity assumptions can be removed. The subspace correction methods (or the Schwarz meth-
ods) emerged and analyzed in both multigrid and domain decomposition communities. Closely
related to the multigrid methods (which can be viewed as multiplicative Schwarz methods),
additive versions of the multilevel Schwarz method also gained popularity as parallel comput-
ers emerged and became the dominant computing environment. Yserentant [129] and Bank,
Dupont, and Yserentant [8] extended the two-level HB idea to the multilevel case and obtained
the HB preconditioner (additive) and the HBMG method (multiplicative), respectively. The
HB-type methods (see §5.2) are easy to implement and very efficient in many cases, especially
so in 2D.

Bramble, Pasciak, and Xu [28] proposed a parallel version of V-cycle multigrid called the
multilevel nodal basis preconditioner, which is better known as the BPX preconditioner. In
this seminar paper, the authors suggested an L?-type telescope sum (see §5.3) to construct a
stable decomposition, which is a break-through and motivated a lot of research. Such a tool also
allowed Bramble, Pasciak, Wang, and Xu [27, 26] to analyze the V-cycle multigrid and domain
decomposition methods on nonuniform meshes. This analysis gave convergence estimates for the
multilevel Schwarz methods mildly depending on mesh size (i.e., depending on the number of

levels only). Dryja and Widlund [51] also showed similar convergence estimates for the multilevel

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 138

additive Schwarz methods in a more general setting. Later, these results were improved and
the multilevel Schwarz methods were finally shown to converge uniformly with respect to mesh
size and number of levels (without regularity nor quasi-uniformity assumptions) in different
ways [98, 132, 118, 25, 15, 65].

Xu [118] gave a unified theory on subspace correction methods based on stable subspace
decomposition of finite element spaces and laid solid foundation for further studies in this field.
Yserentant [131] reviewed the classical proof and the subspace correction proof for the conver-
gence of multigrid methods. By combining the two convergence theories, Brenner [37] proved
that convergence factor for some V-cycle methods decreases as number of smoothing steps in-
creases without full elliptic regularity assumption. Moreover, Xu and Zikatanov [122] considered
methods of subspace corrections in an abstract setting and showed that the convergence factor

of successive subspace correction methods can be characterized by a precise estimate

T — BVl —1 -,
C1
which is known as the XZ identity (Theorem 4.15). This theory does not depend on the number
of smoothing steps explicitly.

By far, we have mainly discussed general convergence theories for the multigrid methods.
These theoretical results indicate that the convergence factor of multilevel iterative methods is
independent of mesh size h without telling how big the convergence rate accurately is. Such
qualitative theories usually do not give satisfactorily sharp or realistic predictions of the actual
convergence factor in practice [110]. This seems contradictory as the XZ identity gives an
exact equality for the convergence factor instead of an upper bound. But an optimal space
decomposition in the XZ identity is not readily available practically speaking and, hence, it
is not always easy to obtain a quantitative convergence estimate with the identity. Algebraic
convergence estimates can be applied to obtain reasonable quantitative convergence speed for
multigrid methods; see [84, 87] for more details. More algebraic convergence analysis results will
be reviewed in Chapter 7.

Although the aforementioned qualitative results show h-independent convergent speed of
multigrid methods, they still do not fully reflect high efficiency of multigrid algorithms (like the
so-called textbook multigrid efficiency). Moreover, these results can not provide much assistance
for designing an optimal algorithm. On the other hand, quantitative analysis tools, including
rigorous Fourier analysis and local Fourier analysis, have been developed in the literature to
analyze practical performance of multigrid methods for rather general problems. For some cases,
they can even provide ezact convergence factor of the multigrid algorithms (in the sense this
convergence factor can be obtained by the worst case mode); see [32, 101].

For a particular problem, it was recommended to apply quantitative analysis (especially LFA)

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 139
to get some ideas on how fast the multigrid algorithms could converge. A general procedure for
developing multigrid programs named the LFA ladder was employed in practice:

1. Choose a suitable discretization method for the problem;

2. Find a good smoother with satisfactory convergence factor p using LFA;

3. Choose transfer operators and find the two-grid LFA convergence factor o;

4. Check whether the two-grid LFA convergence factor o is close to p;

5. Check whether the convergence factor of the multigrid program approximates o;

6. Apply the full multigrid and check whether the discretization accuracy is obtained.

This procedure help software engineers to make development decisions and improve development

efficiency. We recommend the readers to [110, 117] for more details on these technical tools.

6.4 Two-grid estimates for multigrid analysis

In this section, we introduce a simple tool for estimating convergence speed of the multigrid
methods using the two-grid convergence factor. As we mentioned earlier, although this classical
approach works well for the W-cycle or more complicated cycles only, it is relatively easy to give

practitioners some idea how fast a multigrid code should be quantitatively.

From two-grid to multigrid

It is well-known that, if the exact two-grid method converges sufficiently fast, then the
corresponding W-cycle multigrid method will also converge fast [6, 68, 110]. This is very helpful,
for practical purposes, to assess how fast a multigrid algorithm will work for a particular problem.

A more rigorous analysis has been given by Notay [93] through a closer look at convergence
rate of the inexact (or perturbed) two-grid methods Brg in Algorithm 3.2. As we have seen
earlier, the multigrid methods can be viewed as recursive calls of the two-grid method. Hence
they are indeed inexact two-grid methods. Moreover, we have the following relations between

the general two-grid method Brg and the exact two-grid method Berg:

)\max(BTGA) <)\max(BeTG-A) max {)\max(Bc-Ac), 1}7

)\min(BTG-A) =)\min(BeTG-A) min {)\min(Bc-Ac)a 1}-

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 140

Let p; := p(Z; — B1A;). In view of the above inequalities and (2.10), we obtain the following

estimate
A <1 (1= ™) (L (), 1=28 L

If pfT¢ <o < 1/2 and prX'fyCle < 1Z, then we can derive, by recursion, that

p}N—cyClegL l:2,37...,L-

This is a uniform estimate of the “convergence speed” of the W-cycle multigrid method with
respect to the number of levels. This result confirms and quantifies the common wisdom about

the W-cycle convergence speed.

Limitations of two-grid theory for GMG *

However, as we mentioned earlier, this approach does not yield uniform convergence estimate
for the V-cycle multigrid. This fact shows there is a fundamental difference between two-level and
V-cycle multigrid iterations in terms of conditions on convergence. When the above technique is
applied to the V-cycle multigrid method, we can easily obtain that: If)\max(BleTGAl) < 1 holds

for all levels, then

pl\/—cycle <1-— <1 _ pleTG) (1 - (pr_-ilfycle)>7 | = 27 37 .. ,L-

For example, suppose that pY'CyCle = pfTC and the exact two-grid method converges uni-
formly with pleTG < 0.2 for all [> 0. Then it yields the following non-uniform convergence

estimates for the V-cycle multigrid:

py ¥ <1 - 0.8 x (1 —0.200) = 0.360,
p;/—cyde <1-0.8x(1—0.360) = 0.488,
py Y <1 - 0.8 x (1 —0.488) ~ 0.590,
p;/-cyCle <1-0.8x(1-0.590) ~ 0.672,
pg/-cyde <1-08x(1-0.672) ~ 0.738,

In general, uniform two-grid convergence is not sufficient to guarantee uniform convergence
for the V-cycle multigrid; see [86] for example. To give uniform estimate for the V-cycle multi-
grid, there are additional conditions to be satisfied; see the work by Napov and Notay [88].
Nevertheless, from the above discussion, we find that the analysis for two-grid methods can
improve understanding of the convergence behavior of multilevel iterative methods. It is simple

yet very powerful. Furthermore, the analysis of inexact two-grid methods indicates that it is

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 141

possible to apply the inexact (possibly non-Galerkin) coarse-level operators and might lead to
new multigrid algorithms (particularly, algebraic multigrid methods). More discussions can be
found in the PhD thesis of Xuefeng Xu [126].

6.5 Implementation of multigrid methods

In this section, we will briefly discuss how to implement the multigrid V-cycle (Algorithm 6.1)
for solving the finite element equation Au = f with A € RV*N (N is usually very large). There
are a couple of different ways for implementing the multigrid V-cycle algorithm. Here we use a

matrix-based implementation to allow generality.

A sparse matrix data structure

First of all, we discuss how to represent a sparse matrix in practice. Apparently we do not
wish to store all the zeros in A. There are many different ways to store a sparse matrix with
optimal storage complexity. More importantly, which storage format to use usually depends
on the hardware architecture. A widely-used general purpose data structure is the so-called
Compressed Sparse Row (CSR) format [103]. The CSR storage format of a sparse matrix A

consists of three arrays, defined as follows:
1. An integer array of row pointers, IA, of size N + 1;
2. An integer array of column indices, JA, of size nnz;
3. A double array of non-zero entries corresponding to the column indices, wval, of size nnz.

More precisely, the index IA(7) points to the beginning of the i-th row in JA and val. Moreover,
the nonzero entries of a sparse matrix are stored in the array val row after row consecutively,
that is to say, the i-th row begins at val(IA(i)) and ends at val(IA(i + 1)—1). In a similar way,
JA(IA(7)) to JA(IA(i+ 1)—1) contain the column indices of the nonzeros in row i. Thus /A4 is of
size N + 1 (number of rows plus one), JA, and val are of size equal to the number of nonzeros.
The number of nonzeros in the i-th row is then equal to IA(i + 1)—IA(:) and the total number
of nonzeros is equal to JA(N +1)—IA(1). Note that, as a convention, we always start the indices
from 1 instead of 0.

When the matrix is a boolean (i.e., all entries are either true or false), the actual nonzeros

are not stored because there is no need to store them.

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 142

Example 6.6 (A simple CSR matrix). Consider the following 4 x 5 matrix

10 1.5 0 0 1.2
0 1.0 60 7.0 1.0
30 0 60 0 O
1.0 0 20 0 5.0

When in the CSR format, this matrix is stored in the following way:

e [A is of size 5 and

a=|1]a|8]10]13|
o JA is of size TA(5) — IA(1) = 12
aa=|1l2fs2]alss]l1]s]3]5]1]
e val is of the same size as JA and

val = 10| 1.5 12]/ 1.0 70|60 | 10|/ 3.0] 6.0 20|50 1.0]

Note that the indices in JA need not be sorted in ascending order as seen in this example. [

With a sparse matrix stored in the CSR format, the matrix-vector multiplication y = Az

can be performed in the following simple way:

Listing 6.2: Sparse matrix-vector multiplication

1|for ¢=1,...,N

2 t<—0;

3 for k= 14(%),...,IA(G+1) -1
4 j <« JAk);

5 t—t+ val(k)*z(j);

6 end

7 y(i) < t;

8 | end

Now we give a pseudo code of the GS method for solving Au = f. We assume that the initial
guess is stored in the vector u. The pseudo code below uses an ordering given by a permutation
array m, which takes value from 1 to N. Note that if w(¢) = ¢ for any ¢, then the code just yields
the forward Gauss—Seidel method. It is important to notice that the positions of the diagonal

entries of A in JA and wval are not known in advance.

Listing 6.3: Gauss—Seidel method with ordering

1 |for £=1,...,N

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 143

2 i< 7(l);

3 t— f(i);

4 for k<« IA(G),...,IAGG+1)—1
5 j<— JAa(k);

6 if (j == i)

7 diag < val(k);

8 else

9 t—t—wal(k)*u(j);
10 end

11 end

12 u(i) < t/diag;

13 | end

We immediately notice that this pseudo cod is very similar to the previous matrix-vector mul-

tiplication and can be implemented very easily.

Assembling finite element matrix

Geometric multigrid methods are often implemented in a matrix-free fashion and, hence,
there is no need to assemble the global stiffness matrix. However, we are going to use a matrix-
base implementation. So we now discuss the assembling of finite element matrix first. Consider
the mesh depicted in Figure 6.4. Note that this mesh has two different types of elements,

triangles and quadrilaterals.

Figure 6.4: A mesh with 4 elements and 8 nodes

Most finite element basis functions are constructed to be locally supported. Very often, a
“natural” assumption can be made about how a stiffness matrix is constructed from a finite

element mesh:

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 144

We have a nonzero in the stiffness matrix at the (4, j)-entry if and only if the nodes ¢ and j

appear in the same element.

In order to assemble the stiffness matrix, the following two steps are performed:
1. Find the sparsity pattern of the stiffness matrix A, i.e., IA and JA;
2. Loop through elements and compute the actual entries in A.

The second step (the actual assembly of the entries) is usually easier and need to be done case
by case. We will leave this step to the readers as a homework problem. Here we will only explain

the first step in the following abstract algorithm:

Algorithm 6.3 (Finding sparsity). Suppose a finite element mesh M is given.
(1) For each element, find the indices of nodes that belong to it;
(2) For each node, find the indices of elements that it belongs to = Patch(i);
(3) Obtain the sparsity pattern of A:

for i € Nodes(M)

for e € Patch(i)

Add all nodes in element e to the list of possible nonzeros in row i2.

It just remains to show how we can perform steps (1) and (2) of Algorithm 6.3. This can
be easily achieved by thinking of the element—node correspondence as a sparse matrix of size
#elements x #nodes. For example, the so-called element topology is trivially represented by a
4 x 8 matrix E for which E;; = 1 if and only if the node j is in the element i. Using the mesh

in Figure 6.4 as an example, F is given below:

o = O O

1 0
0 0
1 1
1 0

= T

1
0
1
0

= o = O

00
11
00
00

Since this matrix has value either 1 or 0, we can represent F in the compressed sparse row
format with the sparsity pattern only:

IE =|1]4|8]12|15|
JE =[7[8[2]8|3[4][5]1[6]7|2]2]|5]8]

2Make sure that you do not add anything twice. This can be done using an additional indicator array.

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 145

This concludes Step (1) of Algorithm 6.3.
On the other hand, Step (2) is also easy to achieve because the columns of E represent the
correspondence

Node — Patch.

This means that for step (2) we can use the transpose matrix E7 .

Remark 6.7 (How to find transpose of a CSR matrix). The nontrivial task here is to perform
the transposition without using any additional memory. There is an algorithm to do that due
to F. Gustavson, which dates to the 1970’s and can be found in [99]. During transposition by

this algorithm, the column indices in each row come out in increasing order, just for free. O

Matrix form of transfer operators

As seen in (6.1), we can obtain coarse level stiffness matrices using the algebraic Galerkin
relation:

Aj=P'AP, 0<I<L.

Since we can construct A;’s level by level, we only need the prolongation matrix P_;; for
0 <! < L. In the operator form, it is trivial to define the prolongation, which is just the
natural inclusion operator. But for implementation, we need to find the algebraic form of the
prolongations. For geometric multigrid methods, we usually have to write the prolongation
subroutines for different cases, and it makes the multigrid code almost a white box.

Here we are going to use a matrix-based implementation. Such a strategy is easy to be
adapted to different discretization methods and have an almost identical structure as the AMG
methods we will discuss next. Since we have seen how to apply a matrix-vector multiplication
and how to apply the smoothers, we are left with construct prolongations as a sparse matrix.
But, of course, obtaining such flexibility will cost us more storage as well as computational time.
To complete the algorithm we have to give the action of Pljil,l and P;_1;, which are just matrix-
vector multiplications to transfer data between two consecutive levels. The only programming
difficulty here is keeping track of who on the fine grid is interpolated by whom on the coarse
grid. We now focus on the particular case in which Vj, is the classical linear finite element space

corresponding to a uniform grid with size 2%,

Remark 6.8 (Matrix-free implementation of prolongation). One can easily observe that, there
is actually no need for A;_1 to be computed as Pl:CLlAlPl—l,l because A;_1 is just the stiffness
matrix corresponding to finite element discretization on a grid with size 2!7!. In such a case,

we do not need to store P themselves, but only the action of prolongations. O

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 146

In the following example, it is shown how to perform the actions of prolongation for [= 1

of grid with meshsize 1/4 on the unit square. We can easily obtain the finite element matrix on

5 3 3

4 1 g 7

3 3 2

2 7 3

1 6 1 16 of 1 . 4 . 7

Figure 6.5: Fine and coarse meshes.

the fine mesh; see Table 6.1. Also the matrix corresponding to the coarse grid can be computed.

i J | (A i J | (A i J | (A i g (A
1 1 1.0 3 3 1.0 5 6 —1.0 7 8 —0.5
1 4 —0.5 4 1 —0.5 5 8 —1.0 8 7 —0.5
1 2 —0.5 4 4 2.0 6 5 —1.0 8 8 2.0
2 1 —0.5 4 5 —1.0 6 6 2.0 8 5 —1.0
2 5 —1.0 4 71| —-0.5 6 3 —0.5 8 9 —0.5
2 2 2.0 5 4 —1.0 6 9 —0.5 9 8 —0.5
2 3 —0.5 5 5 4.0 7 41 —-0.5 9 9 1.0
3 2 —0.5 5 2 —1.0 T T 1.0 9 6 —0.5
3 6 —0.5

Table 6.1: The nonzero entries of the stiffness matrix A; on the fine grid.

Let e(i), i = 1,2,...,9 be a given vector corresponding to the representation of ef on the coarse

grid. Let r(i), i = 1,2,...,25 be a residual vector on the fine grid. According to the numbering

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 147

given in Figure 6.5, we have the following formulae for computing Pe and PTr:

(Pe)(13) = e(5);

(Pe)(12) = 0.5+ (e(4) +e(5));
(Pe)(8) = 0.5=(e(2) +e(5));
(Pe)(17) = 0.5 (e(4) + e(8));

(PTr)(5) = 7(13) + 0.5 (r(7) + r(8) + r(12) + r(14) + r(18) + r(19));
(PTr)(1) = 7(1) +0.5% (r(2) +r(6) +r(7));
(PTr)(4) = r(11) + 0.5 (r(6) + r(12) + r(17) + r(16));

The remaining values in Pe and PTr at other grid points can be obtained in similar way.

6.6 Homework problems

HW 6.1. Show the geometric multigrid V-cycle (Algorithm 6.1) is uniformly convergent in R,

HW 6.2. If A = —A, show that the interpolant J7; : V +— V] is equal to the (-,) 4-projection
I : Ve V.

HW 6.3. Let Q = (0,1) and v € V} be a P; Lagrange finite element function. Show that
L
wli = 20 [ulf.

HW 6.4. Let ¢(t) = (1 —t)%. Show that B = (Z — q(B.Ac))A; ! can be obtained by (6.4).

HW 6.5. Show the work estimate of the full multigrid method is O(XV).

Chapter 7

Algebraic Multigrid Methods

Consider the system of equations arising from the Poisson’s equation on unstructured meshes

or the second-order elliptic equation with anisotropic coefficients
Au = f, where Ae RV is SPD and u, f e RY.

Problems with anisotropic coefficients on regular meshes, or problems with isotropic coefficients
but on anisotropic meshes, will cause troubles for geometric multigrid methods. While geometric
multigrid (GMG) essentially relies on the availability of robust smoothers, algebraic multigrid
(AMG) takes a different approach [35, 36, 102] by focusing on constructing suitable coarse space.
AMG is a means to generalize GMG and to improve its robustness. There are several situations
where AMG can be used but GMG is not; for example, problems on complex domain or irregular

triangulation, problems with discontinues coefficients, and purely algebraic problems.

7.1 From GMG to AMG

How to make multigrid methods more robust in practice is a very important question from
the early stage of the method development. And AMG is one of the approaches to improve

robustness. In this section, we first show some motivations for the algebraic multigrid methods.

General procedure of multigrid methods

From our previous discussions, we observe that a typical MG algorithm contains two phases—
the “setup” phase and the “solve” phase. The setup phase automatically initializes a hierarchical
structure, including coarse spaces, prolongations and restrictions, and coarse problem solution
methods for multilevel iterations. Notice that the setup phase only needs to be called once
before iterations; sometimes, the same setup phase can be used at different time levels for time-

dependent problems. For geometric multigrid (GMG) methods, the setup phase is trivial using

148

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 149

the hierarchical grid structure. However, GMG methods are difficult to apply for equations on
general domains with unstructured grids. Algebraic multigrid (AMG) methods can be viewed
as a generalization of geometric multigrid methods; see [125] and references therein for details.

We now explain how to perform multigrid setup phase in a relatively general setting. Once
the setup is done, an appropriate nested iteration scheme should be chosen for the solve phase; see
§6.2. It is immediately clear that we only need to discuss how to setup hierarchical information
in two consecutive grids/levels for multigrid methods. We can summarize a general multigrid

setup procedure as the following steps:
Step 1. Selecting a smoother: Choose a smoother S for Au = f.
Step 2. Coarsening: Identify a coarse space V. < V, which contains smooth vectors.
Step 3. Constructing a prolongation: Construct a prolongation P in two steps:

3a. Decide, for each fine variable, which coarse variables are used for interpolation;

3b. Determine the weights for prolongation P.

Step 4. Multilevel cycling: Apply the same algorithm one or more times for the coarse
problem A.u, = f., where A, = PTAP and f. = PTf.

For GMG methods discussed in Chapter 6, Steps 2—4 are determined by the information of
nested grids and the users can only find an appropriate smoother S. For example, in §1.4, we

have presented a 1D GMG method in a purely algebraic fashion. We have observed that:

(1) GMG coarsening explores the topology of the graph representing the stiffness matrices on

different levels are explicitly clear from the geometric refinement procedure;

(2) Prolongation and restriction for GMG usually depend only on the topological structure of

the graph without knowing the grid coordinates;

(3) For GMG, smoothness of error is in the geometric sense and, in more general settings,

smooth error can be geometrically non-smooth.

The key to an efficient GMG algorithm is to construct effective and cheap smoothers for
the problem at hand. On the contrary, for AMG, we focus on how to pick coarse space and
constructing interpolation to approximate the error components that cannot be effectively re-
duced by smoothing. AMG usually employs a simple relaxation process (typically point-wise
relaxation) and then attempts to construct a suitable operator-dependent interpolation using
the algebraic information of A to treat the error components that cannot be reduced by the

relaxation process.

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 150

Sparse matrices and graphs x

A sparse matrix can be represented as a graph. As the sparse matrices that we consider are
mainly symmetric in the following we only discuss undirected graphs here. We first introduce a
few elementary concepts from the graph theory. An undirected graph (or simply a graph) G is a
pair (V,E), where V is a finite set of points called vertices and E is a finite set of edges. As set
of vertices we always consider subsets of {1,..., N}. An edge in E is an unordered pair (j, k)
with 7, k€ V. A graph Gy = (Vo, Eo) is called a subgraph of G = (V,E), if Vo c V and Ey c E.

If (4,k) € E is an edge in an undirected graph G = (V, E), vertices j and k are said to be
adjacent. The set of neighboring vertices of 4 is the set of all vertices that are adjacent to i; and
it is denoted as N; € V. An independent set of V is a set of vertices of G, no two of which are
adjacent. A mazximal independent set (MIS) or mazimal stable set is an independent set such
that adding any other vertex to the set will introduce at least one adjacent pair. A graph may
have many MIS’s of different sizes; the largest, or possibly several equally large, MIS of a graph
is called a maximum independent set.

A path from a vertex i to another vertex j is a sequence of edges

{(iy 71)s (G1,52)s « -+ GimosGi—1)s Gii—1,5)} € E

and the number of edges [is called the length of this path. A vertex j is connected to a vertex
k if there is a path from j to k. The distance between j and k is defined as the length of
the shortest path between these two vertices. Apparently, the distance between two vertices is
equal to 1 if they are adjacent and is set to oo if they are not connected. An undirected graph
G = (V, E) is connected if any pair of vertices are connected by a path, otherwise G is said to
be disconnected.

Let A e RV*N be a sparse matrix. The adjacency graph of A, denoted by G(A), is a graph
G=(V,E) withV:={1,2,...,N} and

E:={(, k) : aj # 0}.

As a general rule, sparse matrices do not provide any geometric information for the underlying
graph and only the combinatorial/topological properties of G(A) or its subgraphs; see Figure 7.1.
We note that two different discretizations on different meshes could lead to same sparse coefficient
matrix A and, hence, same graph G(A).

Let A be the coefficient matrix corresponding to the finite element discretization of the
second-order elliptic equation with Neumann boundary condition. Apparently A has zero row
sum. Hence we can write

(Au,v) = > —ai;(ui — uy)(v; — v)). (7.1)

(i,4)€E
1<j

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 151

e 4 e A AN AN
J L U NN VAN
(e e N AN AN
L J v \ZEAN VAN %
I (i e A AN AN
L/ T/ L vV v QY

Figure 7.1: Finite element grid (left), difference grid (middle), and graph of their corresponding
stiffness matrices (right).

We can also easily derive the corresponding equality for the Dirichlet boundary condition or the

mixed boundary condition:

(Au,v) = Z —a; j(u; — uj)(v; — vj), if wj=v;=0, VajeI'p. (7.2)
(i,4)€E
i<j
M-matrix and Delaunay triangulation *

We first introduce the concept of M-matrix. We call A an M-matriz if it is irreducible (i.e.,

the graph G(A) is connected) and

Qi g > 0, G5 < 0 (Z # j), Qjj = Z ‘aid , G > Z ’am“ for at least one j.
i#] 1#]

Apparently, the stiffness matrix in (1.27) is an M-matriz. The classical convergence theory
for AMG has been developed for this class of symmetric M-matrices [31, 102]. It is in general
not the case for the stiffness matrices from finite element discretizations, even for the Poisson’s
equation. In fact, whether a stiffness matrix is an M-matrix depends on the underlying mesh
M. In practice, many AMG algorithms use simple filtering schemes to construct an M-matrix
based on A. Xu and Zikatanov [124] introduced the concept of M-matrix relatives to analyze
such cases.

First we introduce a few notations using Figure 7.2. In any give simplicial element 7 in R3;
similar definitions can be introduced in R for d > 2. An edge (i, j) has two vertices z; and x;
and denote this edge as E. Let kg(7) := F;(| Fj and 0g(7) be the angle between faces F; and

F}. Define a quantity .
OJE(T) = m’ﬁ}E(T)’ cot, 6E<7') (73)

We then have the following result; see [121] for details.

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 152

Figure 7.2: Definition of 0 and kg in a simplex in 3D.

Proposition 7.1 (Condition for M-matrix). The stiffness matrix for the Poisson’s equation is

an M-matrix if and only if, for any edge E, >, _ pwp(7) = 0 with wg(7) defined in (7.3).

Remark 7.2 (Delaunay triangulation and M-matrix). In R?, the above proposition simply
means the sum of the angle opposite to any edge is less than or equal to 7, which means the
underlying triangulation must be Delaunay. Hence the stiffness matrix for the Poisson’s equation

is an M-matrix if the triangulation is Delaunay. And the condition is almost sharp!. O

For a given mesh My, the stiffness matrix of P;-finite element method for the Poisson’s
equation is not necessarily an M-matrix. However, it can be estimated by an M-matrix. More
specifically, if we keep all the vertices on M}, and swap internal edges, we can obtain a Delaunay

triangulation ME . We have
(AMEU,U) < (Ath,v), VoeRY;

moreover, the equality in the above inequality holds if and only if M), is Delaunay. We refer

the interested readers to [100] for details. Let ¢aq, € V3 is a piecewise linear function and

om, () = Zfil v;¢i, m,,(x). Then we have
2 2
[oply < loamlp: VoeRY.

This means the Delaunay triangulation results in lower roughness of finite element functions

among all possible triangulations on a fixed set of vertices.

!The opposite direction is true with a few possible exceptions near the boundary

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 153

Tarjan’s algorithm x

By far we have not assigned any kind of ordering for the unknowns in the solution vector.
Sometimes, it is very important for the iterative methods like the Gauss—Seidel method. For
example, in Remark 3.29, we have shown that the ordering is important using the local Fourier
analysis. In AMG methods, the underlying meshes are not accessible and the natural ordering
or C/F ordering can be used. We can also order the unknowns based on algebraic information.
In particular, when we solve a flow problem, we would like to order the unknowns following
the direction of the flow. Such an ordering (or permutation) results in a matrix which has all
its “big” entries in the lower triangle and this technique can enhance the performance of the
Gauss—Seidel smoother.

The first question is of course how to find such an ordering. In this section we present the
Tarjan’s algorithm [109] in the graph theory to find the “best ordering” for the Gauss—Seidel

method. Generally, we do this in two steps:

1. Drop some of the entries in the matrix A, which are considered non-essential. This will

transform the graph corresponding to A to a directed one.

2. Find the strongly connected components in this directed graph. Each one of these com-

ponents will correspond to a diagonal block in the stiffness matrix after the permutation.

In fact, after permutation according to the strongly connected component ordering obtained by

the Tarjan’s algorithm, the matrix A will have the following structure:

A11 X € X €
]

A=]Agl\ (Ao | [Ass] 0 o . (7.4)
JAKI‘ ’AKQ‘ ’Am‘ | Akk|]

The actual algorithm for finding the strongly connected components in the digraph will be
written below. Before that, we have a look at Figure 7.3. The bold edges in this figure represent
precisely the strong connections. If we number the blocks from left to right (the unknowns in
each block can be in arbitrary order), the stiffness matrix will have the type of structure as the
one in (7.4).

Imagine now that the graph represents a town, the edges are streets and the vertices are
houses. You are walking along the streets, some of them are one way (directed). You may go
and arrive at a house for the first time; other than that, there are two situations which may

occur:

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 154

flow

Figure 7.3: A sample mesh with a specify flow direction

1. Either you arrive at a house (vertex) you have already visited, or
2. You are at a house with no way out of it, i.e. a vertex with all edges pointing to it.

Having this in mind it is obvious that, if we return at a place we have been before (encountering
a cycle), this corresponds to a so-called strongly connected component. In the second case, it is
precisely the vertex we would like to number last, because all edges are sinking into it, i.e., it is

at the end of the flow. The algorithm then is as follows:
Algorithm 7.1 (Simplified Tarjan’s algorithm). Given a directed graph G with N vertices.
1. If all vertices of G have been numbered, stop.
2. Set i = 0.
3. Choose any unnumbered vertex v € G.
4. If v has no edge out, we number it N — i, set ¢ = ¢ + 1, and return to Step 3.
5. If v has been visited before (encounter a cycle), then

e Collapse all the vertices in the cycle as a single vertex vmacro;
e Connect Vpacro With all vertices which were connected to member(s) of Umacro;
e Thus we obtain a new graph G'. Goto Step 2 and continue with G'.

Example 7.3 (Finding strongly connected components of a graph). The above algorithm is

visualized in Figures 7.4, which we have a 2D flow problem. First we assume that we start from

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 155

|
@
. 0—0—0

&—(

©

©—0O ©—™O
@
C
©

Figure 7.4: Finding strongly connected components of a directed graph

vertex 1 and then follow the path
1-2-3-4—->5—-6—>4,

and we encounter a cycle. We collapse {4,5,6} as a single vertex vmaero = 4’ and return from

the beginning. Following the path
1-2-3-4 5784,

again we have a cycle. We collapse the cycle and set 4” = {4’,7,8}. The next step is again
collapsing a cycle {4”,3,4"} to a vertex 3'. What is left after this step is a simple graph with
three vertices, which precisely looks like the one corresponding to 1D convection dominated

problem.]

Apparently, this algorithm has a drawback that there might be quite a lot of renumbering
when collapsing the cycles. The fix is to use a stack as proposed by Tarjan and do not renumber
anything until the whole connected component is in the stack. This reduces the renumbering
dramatically and such an algorithm is linear in the total number of vertices and edges in the
graph. In turn, for finite element stiffness matrices and their graphs, this algorithm is linear in
the number of unknowns, because these matrices have just a few number of non-zeros per row,
i.e., each vertex is incident with only few edges (only a bounded number independent of the mesh
size h). A computer program realizing the above Tarjan’s algorithm can be found in the article
by Gustavson [66]. A good explanation and a lots of examples related to the Tarjan’s algorithm
are to be found in [61]. A better and more general algorithm is known as the Cross-Wind-Block
method by Wang and Xu [115].

Remark 7.4 (Preprocessing to a get directed graph). We comment that sometimes the graph

corresponding to A (for example, the finite element stiffness matrix of the Poisson’s equation)

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 156

is undirected. However, if we are consider a non symmetric problem, situation could be very
different. In any event, suppose that we can make the graph be directed by “dropping” some
of the “insignificant” entries of A. For example, by setting a threshold € € (0, 1), we drop all
ak; such that |ag;/a;x| < €. Then we can apply the Tarjan’s algorithm for finding the strongly

connected components in the digraph. O

7.2 Motivations of algebraic multigrid methods

In §6.3, we have discussed general convergence theory for multigrid methods. In this section,
we briefly review the convergence theory that are applicable to AMG methods and give on the
construction of AMG methods. Following the seminar work by Brandt et al. [35, 36, 31] on the
convergence analysis applicable to AMG methods, there have been a lot of discussions on the
AMG convergence theory; see [102, 40, 104, 55, 56, 114] for example. The readers are referred
to the recent survey paper by Xu and Zikatanov [124].

Algebraic convergence theory

Since the Fourier analysis is not available, algebraic convergence theory appears to be the
right tool for developing and analyzing AMG algorithms. Since sharp and computable estimates
for general AMG schemes are still lacking [76, 96, 124], we mainly focus on the classical two-level
theory of AMG for symmetric positive-definite (SPD) problems. For the development on non-
symmetric problems, we refer to [78, 94, 80, 79]; for analysis based on aggregation-type AMG
algorithms, we refer to [111, 113, 41, 86, 89, 39].

We have shown the exact convergence factor estimate of two-level methods in Theorem ?77.
Now we derive a convergence estimate from an algebraic viewpoint. In particular, we wish to
give conditions on the grid-transfer matrices, like P, such that two-level AMG methods converge.
We mainly follow the argument in a recent survey by MacLachlan and Olson [76]. Throughout

this chapter, we assume that

Assumption 7.5 (General AMG setting). The coefficient matrix A is SPD, the prolongation

P has full column-rank, and the given smoother S itself is A-convergent (i.e., |[I — SA|4 < 1).

Let V = RY and V, = RN¢ denote the fine and coarse spaces, respectively. For simplicity, we
focus on Algorithm 3.3, V(0, 1) two-grid method. The CGC operator corresponds to the matrix
I —1II. and

I, = PA;'PTA = P(PTAP)'PTA

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 157

is a projection onto range(P). The error reduction matrix for the two-gird method in Algo-

rithm 3.3 can then be written as
Erg = (I —SA)(I —11,). (7.5)

From Theorem ?7, the convergence rate of the two-grid method depends on effectiveness
of the smoother S and approximability of the coarse space range(P). Our goal is to give an
estimate in the form of

I —SA)(I—-T1I.)e|?
HETGH124 = sup H()()eHA _

1— 6%, 7.6
Sup el (7.6)

where 6* yields the sharp and parameter-independent two-grid convergence factor. Of course,
it is essential to pose conditions only on the prolongation P to ensure convergence, as the rest

components in (7.5) are considered given.

Theorem 7.6 (Convergence factor of two-level algorithm). If there exists ¢ > 0 such that

2 2
(1 = S5A)ey < leld —d|(I —Ie)e|y, VeeV, (7.7)
then the V(0, 1) two-grid method satisfies that
. . 2 —|l(I — SA)e?
Ergli=1-5 with $:= jnr 12—l 4>
(F2svel ! w (T)es0 o= Hc)eH?A

Proof. Notice that |le|} = |II.e|% + |(I — I.)e|% because II. is an A-orthogonal projection.
Since (I —1II;)e = 0 yields (I — SA)(I —1II.)e = 0 as well, we have
|(1 = SA)T —Te)el |(1 = SA)T —Te)el

| Erc|% = sup = :
40 le[? (I—)ez0 | (T = Te)el? + [Meel?

If é achieves the above supremum, then (I —II.)é also achieves the supremum because

|(1 = SA)T —TL)%|% | = SAI —T)e} _ (I = SAT —The)el;

(1 —TL)2€|? + |[He(— Te)ef (1 —10.)é|? ER

=

So the convergence factor achieves the supremum when II.é = 0. That is to say, from the
definition (7.6),
2
|7 — SA)e[y
sup —————5.
(I-Te)e0 [[(I —TLe)e’y
Hence the result. O

|Bral’y =

Note that, if we further assume that the parameter § in Theorem 7.6 is bounded uniformly on all
levels, we can also obtain a uniform bound for the V-cycle convergence factor by recursion [84].

This bound also gives reasonable estimates numerically [87].

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 158

Basically, the assumption (7.7) implies that the smoother S is efficient for the components
that cannot be treated by CGC efficiently. On the one hand, for the error components that
cannot be reduced by CGC, the smoother S must be effective uniformly; on the other hand, for
the error components that can be reduced by CGC efficiently, .S is allowed to be ineffective. The
components for which S is ineffective are called smooth and they have to be in the range of the
interpolation, range(P), roughly. So (7.7) is natural to assume in order to get an efficient TG
algorithm.

However, such a § is difficult to obtain in practice and we need to give some positive lower
bounds of §. So we introduce a nonnegative function g(e) > 0 and define
el = [= SA)el;

(I — HC>6H?A
g(e) ‘

: an e) := H
ag(e) : d Byle): 9(e)

Let Gy := inf ey .0 ag(e) and By = SUDg ()0 Bg(€). Due to the fact
|Eraeli < (I - Ho)ely — dgg((—)e)
< (T =TLo)ely — g8, (T —TLo)e
= (1= a8) (1 = Tl (7.8)
< (1= ayB,") el (7.9)
we have § > ézgﬁg_l, ie.,
|Bral’ < 1—dgh,".
In view of the above estimate, we can give two separate assumptions:
|(1 = SA)el < et —aggle), YeeV, (7.10)
and

3 By, s, such that | (I — HC)eH?4 < Bysgle), VeeV. (7.11)

The condition (7.10) is a smoothing property and the condition (7.11) is a type of approximation
property. The condition (7.11) is oftentimes called the strong approzimation assumption. In view

of (7.8), we can further weaken this condition and assume the weak approximation assumption:
3 Bg,w, such that | (I — l'Ic)eH?4 < Bgwg((I —Ie)e), VeeV. (7.12)
From the above analysis, we can easily deduce the following theorem.

Theorem 7.7 (Convergence estimate of two-level AMG). If (7.10) and (7.11) (or its weaker
version (7.12)) hold, then V(0,1) two-grid method satisfies

|Bralh < 1-ag68;"

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 159

Remark 7.8 (Strong and weak approximation properties). The strong approximation assump-
tion (7.11) can be used to show convergence of V-cycle AMG methods via a recursion [84, 102].

But the weak approximation assumption (7.12) is not sufficient for V-cycle to converge [31]. O

It is worthy to notice that, even if we are able to provide simple conditions on coarsening such
that the approximation assumptions hold to obtain a convergent two-level or multilevel AMG
method, it is still not clear how to provide an algorithm to meet these assumptions based on
pure algebraic information. Actually it is difficult to do so in a strict sense. The coarsening
process consists of identifying coarse variables and constructing prolongation matrices. And
these two procedures are usually coupled together. In the rest of this chapter, we shall discuss

more practical steps on constructing the coarsening space.

Interpolation operators

Now the question is how to choose such a function g(e)? Furthermore, how to apply The-
orem 7.7 to enforce convergence conditions on the prolongation (or interpolation) matrix P to
guarantee good AMG performance?

In case g(e) := (I —IL.)e|?, we have &, = 6 and Bg = 1. Another possible choice is given
by Ruge and Stiiben [102]:

g(e) = lelip-1a-
In this case, by definition, the strong approximation assumption (7.11) can be rewritten as

inf e — Pecl < s lel3p 14, VeeV. (7.13)

eV,

On the other hand, we have

|1 —T)el = ((I (I —1Le) , = ((I —1e)e, (I —Il)e — Pec) ,

(1 = TI)e — Pe,

<|d ||AD 1A I

If we assume, instead of (7.13), that

inf e — Pecl|% < Bu ey, VeeV, (7.14)

€cEVe

then

|(1 = T)e|, < (T - TLe)e (I — e — Pe

HAD*lA) } HD

1

<[=Te)e] sy - BE[(I —The)e 4,

which yields the weak approximation property (7.12). In this way, we obtained two alternative
bounds (7.13) and (7.14) for the strong and weak approximation assumptions, respectively.

Using (7.14), we can also get convergence bound for the two-level method.

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 160

As we mentioned before, the weak approximation property (7.14) is usually not sufficient to
guarantee a good interpolation P for V-cycle. More conditions shall be enforced for practical

construction of AMG methods.

Let Q € RV*YN be a projection onto range(P). So, by definition, it can be written as Q = PR,
where R € RNeXN satisfies RP = I.. If Ry := (PTAP) 'PTA, then it is easy to see that
Qs = PR = I, is such an example. We can also give a simplified choice Ry, := (PTDP)_lPTD.
For any vector 0 # e € V', we can assume that

2 2
o= Ped’, _le—el?, _

inf Bs and inf H
eceVe ”eH?qulA h H6H124D71A o ecEVe H€”124

e~ Ped’ _le-qel,

< 52 < By, (7.15)
lell%

to give upper bounds for the strong and weak approximation assumptions, respectively. These
inequalities give bounds for constructing P such that the two-level method converges according
to Theorem 7.7.

We notice that, in the above inequality, the measure like

|(- Q)e]7
MD(Q,@) = WD, Ve#O
A
can be generalized to
I — 2
px(@.e) = WDl e,
el

where X is an SPD matrix. We assume that pux(Q,e) < k. Then

e = Pecl _ le— Qe

inf
T el

etV el

= ux(Q,e) < k. (7.16)

If we minimize sup,q ptx (PR, e) to find the “best possible” interpolation operator P, then it is
the so-called ideal interpolation [55, 127].

In particular, if X = gfl, then & = 1 for the smoothing assumption and the convergence
factor of TG is bounded by

1
|Bral3 <1--. (7.17)

Algebraic smooth error

In §3.4 (Theorem ??, in particular), we have seen the following theoretical result: For any

given smoother S, the best coarse space of dimension N, is given by
VP i= span{gp ey, (7.18)

where {(bk}kN:Cl are the eigenfunctions corresponding to the smallest eigenvalues A\, (SA). So the

desirable coarse space should well approximate the lower end of the spectrum of SA, which can

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 161

also be called the near-null space. However, it is difficult to find small eigenvalues of SA in
practice.

A good interpretation of smooth error in algebraic sense could lead to an efficient AMG
method. In view of (3.26), we know that the standard pointwise relaxation methods, like the

Richardson, weighted Jacobi, and Gauss—Seidel methods, satisfy that
pZI(U’U)A S (gAU’U)A S (”’U)A'
Together with (7.10), it motivates the following definition of the algebraic smooth vector:
Definition 7.9 (Algebraic smoothness). Let ¢ € (0,1) be a small parameter. If e € V satisfies
(gAe, e)A < 5(6,6)A,

then e is algebraically e-smooth (or the e-algebraic low-frequency) with respect to A.

By adding and subtraction and (2.13), we immediately have

2
o —saefy
7

Apparently, the contraction factor for this error component e is close 1 if ¢ is small. Basically,

((I—?A)e,e)A > (1—¢)(ee) ,

this means the algebraically smooth error components are those which the smoother S or S
cannot damp efficiently. That is to say, an error cannot be eliminated by the smoother is a

smooth error; see Remark 1.24 for geometric smooth error.

Since S is SPD, the algebraically smooth vectors satisfy
e|? = (52 4e, 5 2¢) < (SAe, Ae) ' (8¢,)2 < e2|e] (S "e,e) 2.
Then we can derive the following estimate

el < ellelz+ (7.19)

which can be viewed as an alternative characterisation of algebraically smooth vectors. Similar

to algebraic low-frequency components, we can define algebraic high-frequency as follows
Definition 7.10 (Algebraic high-frequency). Let ¢ € (0,1]. If e € V satisfies
2 2
lells = ¢llels-
then e is called the (-algebraic high-frequency vector with respect to A.

With this notion, we can obtain the following convergence estimate [124]:

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 162

Theorem 7.11 (Convergence estimate based on space decomposition). Let V. < V be the
coarse space and Vyr consist of (-algebraic high frequencies. Suppose V = V. 4+ V¢ is a stable
decomposition, i.e., for any v € V', there exist v, € V. and vus € Vi such that v = Pv. + vps and

long|%4 < Bllv]%. Then the resulting two-level AMG satisfies

|Erclla<1—-¢B7"

Proof. Since we have the following estimate

. 2 2 Ly w2 _ By g2
o= Pl < el < ol < 1ol
we can prove the theorem using (7.17). O

Remark 7.12 (Local adaptation of AMG). In AMG methods, it is not important whether S
smooths the error in any geometric sense or not. On the contrary, the key point is that the error
after smoothing sweeps can be characterized algebraically to a degree which makes it possible
to construct coarse levels and define interpolations which are locally adapted to the properties

of the given smoother. O

Remark 7.13 (Smooth error and Classical AMG). A simpler characterization of smooth error is
used in methods like the Classical AMG. If the vector e corresponds to the low-end of eigenvalues,
then we have Ae « 1 in the entry-by-entry sense. According to (7.1) and (7.19), the algebraically

smooth error e satisfies that

(Ae,e) = Z —a;j(e; —e;)* < 1. (7.20)

1<j
This inequality provides an important motivation for the Classical AMG: Smooth error varies
slowly in the direction of relatively large (negative) coefficients of the matrix. And it motivates

the notion of strongly negative coupled variables. O

Construction of coarse spaces

We now discuss a few guidelines on how to construct coarse spaces and prolongation matrices
based on the AMG theory developed above. In §6.1, we have discussed a general procedure of
multigrid setup phase. The coarsening algorithms are automatic procedures for determining the
coarse-level variables. Such algorithms are usually based on selecting or combining vertices in
the adjacency graph corresponding to the (filtered) coefficient matrix A. We shall discuss more
concrete examples of coarsening algorithms in the following sections.

A natural choice of the coarse-level DOFs is to use a subset of fine-level DOFs. Under proper

re-ordering (coarse variables first and then fine variables) R = (I,0) € RM*N According to

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 163

Theorem ??, we can use the diagonal matrix D € RV*YN of A to analyze the smoother S defined
by the point-wise Gauss—Seidel method. This result motivates that we should construct a coarse
space, such that

2 : 2 2
[v=Qoof, = if Jo—wve|p, < By, VoeV,

where the constant 8 should be small and uniform with respect to interested parameters (like
the meshsize h). If v is smooth, i.e., Vo] is small, then v can be approximated well in the coarse
space V.. This condition is a sufficient condition for the convergence of the two-grid method.
Motivated by Lemma 3.31, we can further simplify it and just choose D := | A|I, for example.

Heuristically, the error becomes quite smooth after a few relaxation steps and we can expect
the coarse space can approximate a smooth vector v rather accurately if the coarse space is
chosen appropriately. Motivated by Theorem 7.7 and (7.15), we give Assumption 7.14, which is

equivalent to that V. reproduces local constant.
Assumption 7.14 (Weak approximability). | (I — PR)U”D < Bllv]|a, YveV.

In view of Remark 3.41, we assume that the prolongation operator preserves the constant
(Assumption 7.15). In fact, from the weak approximation property (Assumption 7.14) and let
D := |A|I, we have

|4]"2o — PRo| < Blo].a.

If v is in the near-null space of A4, i.e., |v|4 =~ 0, then PRv ~ v. Hence we get the following

simplified assumption:

Assumption 7.15 (Constant preserving). Ply, = 1y.

Unlike in the geometric setting, it is not meaningful to only look at the convergence in the
algebraic multigrid context. This is because, the computation complexity of each AMG cycle
could be prohibitively large; compare with GMG complexity discussed in §6.2. Even a uniformly
convergent AMG method could be very slow. Hence complexity of the multilevel hierarchy for
AMG is crucial.

Remark 7.16 (Operator complexity). When constructing the prolongation P, we must control
the sparsity of the coarse level matrices. For efficient overall performance, convergence speed
is only one aspect. An equally important aspect is the complexity (sparsity) of the coarser
level matrices produced by AMG. We now define a measurement of sparsity, i.e., the operator

complexity

Oy e ZIL:O nnz(Al),
nnz(A)

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 164

where nnz(-) is the number of nonzeros of a matrix. Apparently, C4 > 1 is always true and
Ca = 1 corresponds to the one-level case. When constructing an interpolation operator, we
would like to make C4 as close to 1 as possible while keeping good convergence performance.
This is not always the case when using the Galerkin-type coarse operator as we discussed in
this note. Usually, the coarser matrices A;_1 becomes more dense than A;. This problem
becomes more serious when solving very large linear systems. Sometimes, we have to truncate

the “insignificant” nonzero entries or specify sparse patterns to maintain low complexity [54]. [

7.3 Classical algebraic multigrid methods

The original AMG [35] idea (the classical AMG) was developed under the assumption that
such a problem with A being an M-matrix was solved. The multilevel hierarchy is constructed
based on the coefficient matrix only. Later, the AMG algorithm was further generalized using
many heuristics that served to extend its applicability to more general problems. For simplicity,
we suppose that A = (a; ;) € RV*N is an SPD M-matrix and G = (V, E) is the corresponding
graph of A.

General AMG setup phase

We have presented a rather abstract framework for multigrid methods in §7.1. Now we
give a general two-level setup phase suitable for AMG methods (including the classical AMG
and aggregation-based AMG methods). This algorithm can be applied recursively to obtain a

multilevel hierarchy until N, is small enough or A. is too dense to continue.
Algorithm 7.2 (General algebraic setup algorithm). Given a sparse matrix A4 € RV*V,
1. Filter A to obtain a suitable matrix for coarsening Ay (usually Ay = A);

2. Define coarse space with N, variables;

3. Construct the interpolation P € RN *Ne:

3.1. Give a sparsity pattern for the interpolation P;

3.2. Determine weights of the interpolation P;
4. Construct the restriction R € RN¥*¥ (for example, R = PT);
5. Form the coarse-level coefficient matrix (for example, A. = RA;P);

6. Give a sparser approximation of A, if necessary.

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 165

The above framework is abstract and general enough to describe a variety of algorithms.

Now we give a few comments on this algorithm:

1.

If the coefficient matrix A is not symmetric or not an M-matrix, we might want to perform
a preprocessing step to get a more suitable matrix Ay. This step can also be used as a

way to introduce auxiliary space method.

. In the classical AMG methods, we use the so-called C/F splitting, namely, split all N

variables into N, C-variables and Ny F-variables, i.e., N = N. 4+ Ny; on the other hand,
in the aggregation-based AMG, we form aggregates of F-variables.

. As we observed before, forming an interpolation P that satisfies the weak approximation

property is crucial for convergence. This task can be further divided into two stages:
(1) giving sparsity pattern and (2) determine weights of P. Sometimes, we can truncate

some of the small entries if it is not sparse enough.

. For symmetric problems, it is natural to use the Galerkin relation to assume R = PT. But

for nonsymmetric problems, we might need to construct R as well.

. In GMG, the coarse-level problems can also be given by discretization on a coarser grid.

But in AMG, we must use the restriction, interpolation, and the fine-level coefficient
matrices to compute A, using the triple-matrix product, which can easily become the most
time-consuming part of the setup phase. Implementation of this part requires attention,

especially for parallel efficiency.

. Sometimes, A, might not be sparse enough even after P is truncated when the Galerkin

relation is employed. In this case, one might have to further modify A. to obtain a sparser

approximation.

Strength of connections

In coarsening, we need to find coarse-level variables. Let 6s, € (0,1) be a given real num-

ber, usually called relative strength parameter. In view of Remark 7.13, we give the following

definition: If a pair of indices (i, j) satisfies that

—aij > bsir| mkin i,

then this pair is called strongly negatively coupled or strongly n-coupled. More precisely, we say

that the variable i is strongly negatively coupled to the variable j. Note that, by this definition,

(7,7) and (j,4) are two different pairs. We can easily generalize this concept to strongly coupling

by considering the positive coupling.

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 166

Remark 7.17 (Alternative definitions for strong coupling). There are different ways to define

strongly coupled pairs. For example, we can call 7 and j strongly negatively coupled, if

a;j < 0 and |az’,j| > estrm

or
SR N
Such definitions will be used to define aggregation-based methods in the next section. O

Denote further
S; = {j € N; : 7 strongly coupled to z} and ST := {j eV: ie Sj}.

So S; is the set of indices which affects i and S] is the ones which are affected by i. After finding
the strongly coupled variables, we can filter the coefficient matrix to obtain a filtered matrix Ag
by removing non-strongly coupled connections.

The above definition of strongly coupled variables applies to the direct connections. Some-
times we also need to consider indirect (i.e., long-range) connections; for example, in aggressive
coarsening (see Remark 7.20). A variable i is said strongly connected to another variable j along a
path of length [if there exists a sequence of edges {(i, j1), (j1,J2), ---, (i—2,ji-1), (i—1,4)} S E
such that jp41 € Sj,. If there exist at least one path of length less than or equal to £ such that
1 strongly connects to j, then we say that ¢ is /-strongly connects to j and denoted by j € Sf .

We note that, based on the nonzero pattern of the original matrix A¢ or a filtered matrix
A%, one can tell whether there are paths between i and j of length ¢ or not. For example, if
we consider five-point stencil finite difference scheme on the mesh given in Figure 7.5 (left).

Consider the vertex at the center, the point 13. Then
Si3={12,8,14,18} and S%; = {12,8,14,18,11,3,15,23,7,9,19,17}.

And we give the weights of A and A? in Figure 7.5. See Figures 7.6, 7.7, and 7.8 for details.

C/F splitting

The classical Ruge-Stiiben method is to split the set of vertices V to a sum of two non-
intersecting sets, the fine variables F and the coarse variables C, such that all the indices in F
will be affected by some index in C, while C is expected to contain as few entries as possible.
Then F will be chosen as the set of indices of finer grid nodes, and C will be chosen as the set of
indices of coarse grid nodes. The indices of nodes are assigned to be coarse or fine successively.
Denote by U the set of indices of nodes that have not been assigned yet, and we summarize the

algorithm in the following subroutine:

167

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS

(1)

)

>
e

e

D A A A D
NVACYANVAN VAN
AN EAWEAW W an)
NV AN RN
JEAWLAWELA WA NTAN
NSV AN RN
EAWCAWEAW AW
U\ g U\
(N (AN AN D M
NN Z AN

Figure 7.5: Finite difference grid (left), strong connections and weights in A of vertex 13 (middle),

and 2-strong connections and weights in A2 of 13 (right).

Figure 7.6: The stiffness matrix A for five-point stencil finite difference scheme on the mesh

given in Figure 7.5 (left).

168

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS

3> Awh

ans

o

18

o

o

19

o

=]

o

o

o

18

ol

18

o

o

o

o

o

o

o

o

o

o

ol

o

ol

o

o

o

19

o

o

=]

o

o

o

o

ol

o

o

o

o

o

o

18

]

o

19

o

o

o

o

o

]

]

]

]

o

o

o

o

o

19

o

18

o

ol

o

o

o

o

o

18

o

iven in

t stencil finite difference scheme on the mesh g

11

The matrix A? for five-po

Figure 7.5 (left).

Figure 7.7

>r A%Axp

ans

-53
100
-54

a8
-53

G54
100
—-54

-54

-53

100
-83

88

—-56
112

100
-56

-56
100

112

—58

57

-56

100

112

-57

-56
100

112

—56

-57

-58
112

100
-56

-56

112
-56

100

-53
100
-54

a8
-53

-4

-54

100
-54

-53

100
-53

a8

iven in

t stencil finite difference scheme on the mesh g

110

The matrix A3 for five-po

Figure 7.5 (left).

Figure 7.8

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 169

Listing 7.1: Classical C/F splitting method

1|U<V, C—0, F—0;
while U# 0

(V]

3 Xi < 2ISTOFl+|SFNV|, ieU;
4 k — argmax{X;,i € U};

5 C— CU{k}, U<—U\{k};

6 F—FUSL, U« USE;

7 |end

Note that A; is a measure of importance—It is a measurement about how many points are
affected by i. If \; is big, we would like to include this point in C. In this way, we can make
C contains less points to get bigger coarsening ratio, which is very important for the classical

AMG because it usually yields relatively small coarsening ratio.

e We weight more on |S] () F| than |ST (U] due to the fact that the first part has already

been determined to be on the fine grid.

e In the early stage of coarsening procedure, F does not contain many points, the above

algorithm selects a coarse point with as many as neighbors that strongly coupled to it.

e In the later stage, vertices that strongly coupled to many F-variables are preferred to be

selected.

There are a few special cases which require careful treatment during the C/F splitting pro-

cedure. We now summarize them in the following remarks:

Remark 7.18 (Isolated points). Before we start the above algorithm, we usually need to filter
out the isolated points (like the Dirichlet boundary points) and define them as F-variables.
Similarly, if a point has very strong diagonal dominance, we can also call them isolated and

move them to F. These are the trivial cases. OJ

Remark 7.19 (Termination of C/F splitting). If successfully terminated, the set C is an in-
dependent set of vertices of the underlying graph G. All F-variables have at least one strongly
negatively coupled C-variable, except the trivial ones in the previous remark. However, there
might be some U-variables left (with measure \; = 0)—They are not strongly negatively coupled
to any C-variables or themselves. Furthermore, there are no F-variables are strongly negatively
coupled to these points. In order to interpolate at these points, we can add them as F-variables

and interpolate indirectly through the F-variables, to which they are strongly coupled. O

Remark 7.20 (Aggressive coarsening). In practice, the standard C/F splitting scheme given
above usually results in high operator complexity (refer to Remark 7.16), which leads to high

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 170

Coarsening method Standard Aggressive
Operator complexity 2.889 1.606
Setup time (sec) 1.536 1.036
Number of iterations 6 38
Solve time (sec) 0.791 3.293
Time per iteration (sec) 0.132 0.087

Table 7.1: Solving 2D five-point stencil of the Poisson’s equation with 1 million DOF using
different coarsening methods in the classical AMG method (stopping criteria for PCG is the
relative residual smaller than 107°).

computational and storage demands; see Table 7.1. In such cases, we can apply the so-called
aggressive coarsening by considering strong connections of length ¢. Oftentimes a small ¢, for
example ¢ = 2, is used. However, A% is expensive to compute and we can apply the regular C/F
splitting twice—At the first pass, find C-variables among all variables using As; at the second
pass, apply the C/F splitting on the selected C-variables from the first pass using A% (but on C

only, we don’t need all entries of A%) O

Example 7.21 (Anisotropic elliptic PDE). To illustrate the effect of the above C/F splitting
algorithm, we consider an anisotropic diffusion example in §6.1. The computational domain is

a unit square. Let us consider the anisotropic diffusion equation
—€Ugy — Uyy = 0 (€ >0).

Roughly speaking, we have €[|uz;| & |uyy|. This means the solution is smooth in y-direction
(low-frequencies); but rough in z-direction (high-frequencies). We consider the five-point stencil.

The difference equation at the node (x;,y;) is

2ij — Uil — i1y 2Uij — i1 — Wil
—€ 3 — 3 =0.
h2 h2

1
RZ

the coarsening will take place indeed in one direction only (semi-coarsening); see Figure 7.9. [

If 75 « then w; ; depends on u; j4+1 and w; j—1 only. Thus if we process the C/F procedure,

Construction of prolongation

After obtaining a C/F splitting, upon a reordering of indices, we can always assume that the
indices of the nodes in C is from 1 to V., and those in F are from N, + 1 to N. We can write

the stiffness matrix in the following block structure

<Ac,c Ac,F>(uc>:<fc>
Arc Afrfp uF fr

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 171

ENEEEEEEEEE
HEEEEE

Figure 7.9: C/F splitting for the 2D elliptic problem with € = 1 (left) and € « 1 (right), where
the red points are C-variables and the black points are F-variables.

Let eff € RMe be a vector corresponding to the variables on the coarse grid. We now consider
how to prolongate it to e” € RV corresponding to the variables on the fine grid.

We first use the geometric multigrid method for linear finite element method on uniform
grids for the 1D Poisson’s equation as an example. Let {qbf f\il be the basis of the fine space V'
and {gbfl };V:cl be the basis of the coarse space V.. From the geometrical multigrid point of view,
it is natural to expect

a(¢fl, ¢!y =0, jeC, ieF. (7.21)

In fact, the fine grid (high-frequency) part can be captured by the fine grid approximation, i.e.,
a‘(uh - HHuha ¢h) = a(uha ¢h)a

if ¢ is a basis function corresponding to the difference between fine and coarse grid functions.

It is trivial to see that, we should have (Pefl); = ef, if j € C. Define

()

where I € RVe*Ne ig the identity matrix and Q € RW—Ne)xNe I the matrix form, the condi-

tion (7.21) can be written as

(o) Ui i) ()= (0)
0 If Arc Aff Q 0/

That is to say, Arc + AFrQ =0 or Q = —AE’,I:AFVC. It is easy to check that this prolongation
matrix P satisfies Assumption 7.15 if the row-sum of A is zero. However, this prolongation is
too expensive to compute in practice and there are many different ways to approximate) by a

simpler sparse matrix W.

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 172

1) Direct interpolation scheme

For the error e € RY, we have

N
AF7F62 + AECeE <1l = Z ai,je? ~0, i€ekF.
j=1
Motived by the above observation, we can assume
am-e? + Z aiyje? =0, i€eF. (7.22)

JeN;
This would be an interpolation scheme itself if all points in N; are C-variables. Of course, it is
not always the case. Alternatively, we can throw out the entries that are not strongly negatively

coupled and obtain

ame? + Z ai,je? =0, 2€F. (7.23)
JES:
We approximate the above equation (7.22) with

a
ZkeN' i,k .
ai,ie?’ + o Z ame? =0, o t 1€F.

=g,
jeN; N C ZkeNiﬂC Qisk

Qi

If the i-th row has zero row-sum, then o; = D o
keN; 3

and we get an interpolation method

el = Z wi7jefl and w; ;= Zal—’] (7.24)
jeN; N C keN; (N C @ik
In this case, the matrix form is just W = (diag(AF7c1))_1AF7C. It is straightforward to show
that Assumption 7.15 holds in this case.
We can make W more sparse by shrinking the support slightly. Define an interpolation set
(support) P; := S;(C for i € F. After further sparsifying the interpolation (by keeping the
strongly negatively coupled C-variables only), we get

a,
ZkeNv i,k
ame? + Z ai,je? =0, o= :

== —— VieF
P, Zk;ePi A4k

If the i-th row has zero row-sum, then this gives the well-known direct interpolation
ai?-]

el = w; et and Wi i = —=——2>—.
7 J])] s
ZkePi i,k

JeP;

(7.25)

2) Standard interpolation scheme

In the equation (7.22), we can first eliminate all e;-l for j € S;(F, using the j-th equation,

by the approximation

1
6? = Z aj kell;,b.
a/, . ’
2.J k‘ENJ

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 173

This results in a new equation for e?:

CALLZ'B? + Z (?Lid'e? =0, i€eF,
jeN;

with N; = {j # i : a;j # 0}. Define a new interpolation set P, = (Ujes; N Si) UGN 0.
Then we apply the above direct interpolation for this new equation and arrive at the so-called

standard interpolation scheme.

3) Jacobi interpolation scheme

We can rewrite the equation (7.23) as

am-e? + Z ai’jef + Z ame? =0, 1€eF.
jEPi jESZ\PZ

Therefore, in order to obtain an interpolation matrix @, we just need to approximately solve

the above equations for e? (1 € F). For example, we can just apply one Jacobi iteration using
éh ~ ZkePi ai,keﬁ
i ZkePi i,k

as

as the initial guess of e?, j € F (5 # i). Then the prolongation can be defined

el = el 1€ C
el (7.26)
h H ZkePi Q4 k€l . . .
i€ + 2jep, 4ij€) + Djes\p, “i,jﬁ =0, i€eF.
keP; Y1,

This is the so-called Jacobi interpolation method.

Remark 7.22 (Some simple alternatives). The biggest advantage of the above approach is that
it is simple and local: For the i-th entry, we only need the information on the i-th row of the ma-
trix. We can improve this prolongation matrix P using some straightforward modifications. For
example, the initial guess for the same entry can be different for different entries; an alternative

initial guess could be
Lk
h A Zkepj @j,kCp;
J L0
ZkEPJ‘ a.]:k

And a few more steps of Jacobi iteration might improve performance. O

jekF.

Remark 7.23 (Initial guess of weights). If the initial guess WO preserves constants, then we
get i
Q-—w® = (I - DF_lFAEF) (Q—woO).

Since both @ and W) preserves constants, all improved weights W) also preserve constants

by iteration. O

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 174

7.4 Aggregation-based algebraic multigrid methods

In this section, we consider the aggregation-base AMG methods whose easy-to-implement
feature has drawn a lot of attention recently. The idea is to sub-divide the set of vertices into
non-intersecting sets (or aggregates), i.e., V = szl ..n. Cj- Each aggregate C; corresponds to

a coarser variable.

Unsmoothed aggregation AMG

There are several different sophisticated ways to form aggregates. In principle, any combina-
torial graph partitioning algorithms can be applied to form aggregation. We first give a simple
greedy algorithm to form such an aggregation based on the concept of maximum independent

set discussed in §7.1.

Listing 7.2: A greedy aggregation method

1 Ne —0, U<V;

2 for ie U

3 if N;cU

4 Ne < Ne +1;

5 Cn, < {i}UNi, U« U\Cn,;
6 end

7 end

It is possible to have some “left-over” vertices which do not belong to any aggregate after the
above procedure. We can, for example, add them to their neighboring aggregates with least

points.

C1 CQ C3 C4

AN

1 2 3 4) 6 7

Figure 7.10: Aggregates and prolongation corresponding to (7.27).

Whence an aggregation is given, it is easy to define the prolongation matrix, for 1 <¢ < N

and 1 < j < N, by
1, ifieCy;

P). =
(P); {o, if i ¢ C;.

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 175

With this interpolation, it is straight-forward to see that P1y, = 1. We now give an example

to explain P in one dimension. Let

e RV*Ne, (7.27)

o)

Il
o O O O o O
o O O o o = O
S O = = = O O
= = O O O o O

Figure 7.10 shows the aggregation corresponding to the prolongation P in (7.27).

Of course, there are different ways to form aggregates and we give another approach here.
The algorithm to construct coarse grid and prolongation based on the concept of strong coupling
is

Listing 7.3: Another aggregation method

1] U<V;

2| for ieU

3 S;—{jeU:j is strongly coupled to i};

4 construct a column of prolongation P based on S;;

5 U U\{i}US:);

6 end

Smoothed aggregation AMG

The unsmoothed aggregation methods are very simple but usually converge slowly. There
are two ways to improve their convergence behavior. One way is to employ a more complicated
multilevel iteration, like the K-cycle multigrid method discussed in §6.2. And the other way is
to enlarge the aggregates and smooth out the basis functions. The latter approach gives the
smoothed aggregation AMG methods, which is based on the idea of minimizing the energy of
the coarse basis functions among the set of all functions with same L?-norm.

Assume that all variables are partitioned into non-overlapping subsets {C,}ZNzcl We further

assume that each C; has at least one interior point, i.e., there exists an index k; € C; such that
(4)y,

3

vector for each aggregate:

i = 0 for any j ¢ C;. Suppose that 1 is in the null space of A, namely, A1 = 0. Define a

1(x;), if jeCy
1,~(a;j) = { J

0, otherwise.

Apparently, >, 1; = 1 and (Ali)k. =0.

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 176

We now smooth out these piecewise basis functions by, for example, one step of weighted
Jacobi iteration
Y = (I —wD™1A)1,.

Hence we have the partition of unity

7

MNapy=(I-wD'A) Y 1= (I —wD'A)1 =1,

Thus we can obtain

(k) = ij(ﬂski) = > (I —wD ' A) Li(ay,) = Li(ay,) —wD ™ Aly(ay,),

which implies that D71 A 1;(zy,) = 0 and ;(zy,) = 1.

We can define the prolongation

PSA = (¢17w27 v 71/}Nc)'

Define 1. := (1,..., 1)T e RNe. Hence we have Psal, = 1. Furthermore, the coarse level matrix
A, = PSTAAPS A satisfies that

Ac]-c = (PérAAPSA)lc = PSTAA]_ =0.

By applying this definition recursively, we can finish the AMG setup for the smoothed aggrega-

tion method.

Listing 7.4: Smoothed aggregation method

1|U<V;

2 |for 1€ U

3 Si<—{jeU:j is strongly coupled to i};

4 construct a column of prolongation P based on S;;

5 U< U\{i}US:);
6 | end
7 | Smooth the basis functions using the weighted Jacobi method PSA:(IwaflA)P;

We have mentioned in the previous subsection that there are different ways to form aggre-
gates. After forming aggregates one can apply UA or SA to give prolongation. Now we do
preliminary tests on aggregation methods for solving the 2D Poisson’s equation using the five-
point stencil; see Table 7.2. The AMG methods are applied as preconditioners of PCG. Note
that, for the SA method, we use the standard V-cycle multigrid in the solve phase; on the other

hand, for the UA methods, we use the K-cycle multigrid for better convergence behavior.

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS

Aggregation method SA [111] UA [111] Pairwise UA [95]
Number of levels 5 5 7
Operator complexity 1.364 1.264 1.332
Setup time (sec) 0.557 0.171 0.277
Number of iterations 16 21 12
Solve time (sec) 1.223 1.696 1.336

177

Table 7.2: Solving 2D five-point stencil of the Poisson’s equation with 1 million DOF using
aggregation-based AMG methods (stopping criteria for PCG is the relative residual smaller

than 1079).

Part 111

Applications of Multilevel Iterative
Methods

178

Chapter 8

Fluid Problems

Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical
analysis and algorithms to solve and analyze fluid problems. Computers are used to perform
the calculations required to simulate liquids or/and gases with surfaces defined by boundary
conditions. The fundamental basis of most CFD problems are the Navier—Stokes (NS) equations,
which define single-phase fluid flows. These equations can be simplified by removing terms
describing viscous actions to yield the Euler equations. These equations can be simplified by
dropping the nonlinear convection term to yield the Stokes equation. In this chapter, we discuss

multilevel iterative methods suitable for problems arising from CFD.

8.1 The Navier—Stokes equations *

The Navier—Stokes equations describe the motion of viscous fluid substances. These balance
equations arise from applying the Newton’s second law to fluid motion, together with the as-
sumption that the stress in the fluid is the sum of a diffusing viscous term (proportional to the

gradient of velocity) and a pressure term.

Flow map

Let 9 be an open bounded set in R? (d = 2, 3). As a convention, we denote the location of a
particle in Qg by X = (X1,...,Xy). This is the configuration at time ¢ = 0, which is also called
the initial configuration. To describe movement of particles, we denote the current configuration
as) at any time ¢ > 0. The position of a particle at time ¢ is denoted by x = (x1,...,xq); see
Figure 8.1. The Lagrangian specification of the flow field is a way of looking at particle motion
where the observer follows an individual particle as it moves through space and time; see the

right figure in Figure 8.1. The Eulerian specification of the flow field is a way of looking at

179

CHAPTER 8. FLUID PROBLEMS 180

z(X,t)
Q0 /\ Q¢
X3 I3
// 4

/ ped

/ ’

O Xg (0] TIo

X1 I

Figure 8.1: From initial configuration {2y to current configuration €2;.

particle motion that focuses on specific locations in the space through which the fluid flows as
time passes; see the left figure in Figure 8.1.

For a vector-valued function f : €; — R%, the divergence operator can then be written as
V.-f:= 2?21 0;f;. The gradient tensor Vf with (Vf);; = 0;f;. Let a € R% be a constant
vector field and (a- V)f = (Zle a;0;)f. We define an inner product of two gradient matrices
Vt: Vg = Z?:I Vf; - Vgi. Let u(-,t) : Q; — R? be the velocity field at a fixed time t. The
gradient of u is denoted by Vu = (0;u;); ;. Furthermore, Vu is often divided into the symmetric
part and the anti-symmetric part. The symmetric gradient is denoted as e(u) := %(Vu + vu®)
and it is the so-called strain rate.

We are ready to introduce an important concept to describe trajectory of particles, namely,
the flow map x(X,t), which is the trajectory of a particle X along time. We define that

dx(X,t)

T = —a - u(z,t) and z(X,0) = X. (8.1)

This simple one-dimensional ordinary differential equation (ODE) is called the characteristic
equation. Hence z(-,) is a mapping from the initial configuration €2 to the current configuration

Qy, or deformation. The deformation gradient and its determinant are then defined as

ox
F := £ and J:= |F| = det(F), (8.2)

respectively. F' is also called the Jacobian matrix.
For any function f(-,t) : Q; — R, we can easily derive that

. df ()
Ji= dt

=Vf-%+ft=ft+u‘Vf, (8.3)

CHAPTER 8. FLUID PROBLEMS

181

which is usually called the material derivative of f. Apparently, F' and J are functions of ¢.

Using the well-known Jacobi’s formula in matrix calculus, we can show that

J = Jtr(F7'F).
Hence we can immediately obtain
. 0X ox

This way, we get an ODE for J, i.e.

J=(V-u)J and J(0)=1.
In fact, we can also obtain the variation of the determinant of F,
§|F| = |F|tr(F~16F).
We can also derive similar results for the deformation gradient F' itself:
d 6 ox ot ou
=—(==) === === = VuF.
a'ax) " ax "ax -V

We can easily immediately see that

F,+u-VF=VuF and F(0)=1.

Volume and mass conservation

(8.4)

(8.5)

(8.6)

(8.7)

(8.8)

A very useful trick for doing calculus in continuum mechanics is the pull-back (from € to

) and push-forward (from Qg to ;) argument. We first give an example:

d d
— flx,t)de = — flx(X,t),t)]dX
i), S i J, 7@

0, dt

J (fi+u-Vf+ fV-u)JdX
Qo

if(x(X, 0,) JdX + | flz(X,t),6)JdX
Qo

= f+fVeoude = | fi+V-(fu)da. (8.9)
Qt Qt
This identity is often called the transport formula.
Lemma 8.1 (Transport formula). For a function f: Q; — R and u(z,t) := dz(d)t(’t), we have
d
— | f(z,t)dx = ft+V-(fu)d:L‘=J (ft+u-Vf+ fV-u)JdX.
dt Jo, o Q0

CHAPTER 8. FLUID PROBLEMS 182

For a domain 2 R?, we denote its volume (or area) as |©2|. We then find that
] = f | do - f JdX — J||
Q Qo
For incompressible fluids, we have that the volume preserving property
| = || or J(t)=1.

From the equation (8.6), we can derive that V - u = 0. This is the so-called divergence-free
condition.

Denote the density of the material occupying Q; by p(x,t). According to the equation (8.9),
for any region wy < €);, we have that

d

pn p(m,t)dxzf pt + V- (pu)dx

Wi

Since this identity holds for any w, we immediately see that
pt+V-(pu)=0 and p+pV-u=0, (8.10)

which is called the equation of mass conservation or the continuity equation.
It is clear that integrating the density over any domain w; gives the mass. Due to mass

conservation, we have that

| mxyix = | pwnae= | paxo.00ix.
wo we wo
Hence, we have the relation
X
pla(x,1),0) = 2. (8.11)

If the incompressible condition V - u = 0 holds, we obtain that p(x(X,t),t) = po(X).
If p = po is a constant, then (8.10) gives the divergence-free condition immediately. On the

other hand, if we assume incompressibility, we can get a simplified equation:
pe+(u-V)p=0 or p=0. (8.12)

Together with p(X,0) = pg being a constant, we can get p = pg for all time t € [0,T].

Balance of momentum

Now we consider the incompressible Newtonian fluids. Due to the Newton’s Second Law, we

have the balance of momentum

d
— | pudz = Force(Q). (8.13)
it Jo,

CHAPTER 8. FLUID PROBLEMS 183

The left-hand side of the above equation is the rate of change for the momentum. Using the

transport formula (Lemma 8.1), we derive that

d
— pud:czf (pt +u-Vpu+p(u +u-Vu)dX.
dt Qs Qo

Due to the mass conservation and incompressibility (8.12), we then have

4 pudx = J p(u; +u- Vu)dz. (8.14)
dt Q Q

On the other hand, the right-hand side of the Newton’s Second Law is the total force acting on
Q. We have, from the divergence theorem, that

Force(§2) :=J fd:n~|—f T -ndS=| f+V.-Tdx,
(oN o (o

where f is the total external body force (like gravity), T is the traction tensor on the boundary
of £, and n is the outer normal direction on the boundary 0€2;. The exact form of T depends

on the underlying constitutive laws. For Newtonian fluids, the traction can be defined as
T := —pl + 2ue(u), (8.15)

where p is the pressure and p is the viscosity.

For incompressible fluids, we have V - u = 0. In turn, we can obtain (see HW 8.1) that

d d d
(V . (25(11)))]. = Z 81'(111'7]' + uM) = Z ajllm' + Z é’iuN- = Auj,

i=1 i=1 i=1

which means

2V - e(u) = Au. (8.16)

This way we can get the momentum equation (balance of force) for incompressible Newtonian
fluids:
p(u; +u-Vu) = —Vp + pAu. (8.17)

If the density p is a constant, we further simplify the above equation (by modifying the definition
of p and p) to give
u +u-Vu=-Vp+ pAu. (8.18)

CHAPTER 8. FLUID PROBLEMS 184

Mathematical models

To summarize, we have derived the mathematical model for incompressible Newtonian fluids,

i.e., the Navier—Stokes (NS) equations:

(plus+u-Vu) —pAu+Vp = f, balance of momentum;
pe+V-(pu) = 0, conservation of mass;
< Viu = 0, incompressibility; (8.19)
u = 0, o no-slip boundary;
uli—g = ug, initial condition.

If we assume the density p is a constant, then we can write (8.19) as follows:

w+u-Va—pAu+Vp = f, momentum equation;
V-u = 0 Q continuity equation;
3 t Yy €q) (820)
u = 0, o no-slip boundarys;
uli—p = ug, initial condition.

Now we have the mathematical model for incompressible viscous Newtonian fluids. If we
consider ideal fluids (viscosity p = 0) and assume that there is no external body force (f = 0),

then we get the incompressible Fuler equations:

(pluy +u-Vu)+Vp = 0, balance of momentum;
pe+V-(pu) = 0, conservation of mass;
{ V-u = 0, & incompressibility; (8.21)
u-n = 0, no-flow boundary;
uli—p = ug, initial condition.

If the density p is a constant, then we have the following simplified form:

w+u-Va+Vp = 0, momentum equation;
V-u = 0, Q continuity equation;
! yed (8.22)
u-n = 0, no-flow boundary;
uli—p = ug, initial condition.

For numerical simulation of the Navier—Stokes and Euler equations, there are several tech-
nical difficulties. First of all, the incompressibility condition is a constraint on the velocity field
and appropriate finite element spaces need to be selected to discretize this mixed problem. Sec-
ondly, these equations have a nonlinear convection term; when the viscosity coefficient p is small

(corresponding to high Reynolds number), the convection is essentially dominant.

CHAPTER 8. FLUID PROBLEMS 185

8.2 The Stokes-type equations

For simplicity, we now focus on a linearized problem of the Navier—Stokes equation, namely

the Stokes equation.

The time-dependent Stokes equation
On an open bounded set Q < R?, we consider

w—pAu+Vp = £, Q
Veu = 0, @
u = 0, 0

uf;—g = ug, .

(8.23)

This set of equations is usually referred to as the time-dependent Stokes equations. After time

discretization, we need to solve the Stokes-like equations

(Z-eEAu+Vp = f,
Vou = 0, O (8.24)
u = 0, 00

We can further simplify the discussion and only consider the following steady-state Stokes
equations, i.e.,
—Au+Vp = f,
V-u = 0, O (8.25)
u = 0, 0.
Let 7V := [Hé(Q)]d and 2 := L3(Q) = {q € L*(Q) : §, ¢ = 0}. The weak form of the Stokes
equation (8.25) can be written as: Find ue ¥ and p € 2, such that

QL e(u):e(v)de+(p, V-v) = (f,v), Vve?; (8.26)

(V-u,q) = 0, Vge 2.

The derivation is straightforward and hence leave to the readers; see HW 8.2.

Remark 8.2 (Constrained energy minimization). We can view the Stokes equations as a con-

strained energy minimization problem

min J e(v):e(v)dx —f f vdx,
veZ Jo Q

where 2 := {v € ¥ : V-v = 0} is the subspace of divergence-free functions. The equation
(8.26) is the first-order optimality condition of this constrained minimization problem and p is

the Lagrange multiplier. O

CHAPTER 8. FLUID PROBLEMS 186

The Brezzi theory

Let ¥ and 2’ be the dual spaces of ¥ and 2, respectively. Generally speaking, we can put
the Stokes problem in an abstract framework and consider the following saddle-point problem:

For any given (f,g) € ¥/ x 2’ find a pair (u,p) € ¥ x 2, such that the following system holds
alu,o] +b[o,p] = (fv), Voe¥;

(8.27)
blu, q] = (9,9), VYqe 2.

Here a[-,-] : ¥ x ¥ — R and b[-,-] : ¥ x 2+ R are continuous bilinear forms, i.e.,

a[u,v] < CG«HUH"//”UH7/7 VU,U € %7

blu, p] < Coluly|ple, Yue?,pe2.
We can identify a linear operator A : ¥ +— ¥” such that
(Au,v) = alu,v], Yue¥, ve¥
and another linear operator B : ¥ — 2’ (or its adjoint B : 2+ #") such that
(Bu,p) = <u,BTp> = blu,p], Yue?¥, pe 2.
Hence (8.27) can be written in the following operator form
Au+ BTp = f,
Bu =g.

We now analyze under what condition(s) the weak formulation (8.27) is well-posed. We

define the kernel space of B as
Z =null(B) ={ve? :blv,q] =0, Vge 2} = V.
Because b[-, -] is continuous, Z is closed. Hence we can give an orthogonal decomposition
¥ = 2@+ = null(B) ®null(B)*.

For any u € ¥, we have u = ug + u, , with ug € null(B) and v, € null(B)*.
In order to solve Bu = g, we only need to solve Bu; = g. Using the inf-sup theory discussed
in §1.1, we can see that, if B is surjective, namely,

: blv, q]
inf sup ——— = > 0, 8.28
125 5 Tol v lal o (8.28)

CHAPTER 8. FLUID PROBLEMS 187

then u, exists. Furthermore, it is easy to see that u| is also unique'. Hence we have B : Z+ —
2" and BT : 2 — (Z*) are isomorphisms.

Now we only need to show the existence and uniqueness of the following problem: Find
ug € &, such that

alug,v] = (f,v) —aluy,v], YveZ.
According to the Necas Theorem 1.16, we know that the existence and uniqueness of wug is
equivalent to the following inf-sup conditions
alu,v]

inf sup ———— = inf sup M

, —a>0. (8.29)
we? yez |ulylvly ez wez [uly|v]y

With the conditions (8.29) and (8.28), we obtain a unique solution u = ug + u .

We can find the solution for the pressure variable by solving
Bp = f — Au. (8.30)
For any v € 2 = null(B), it is easy to see that
(f — Au,v) = <BTp,v> = (p, Bv) = 0.

Hence, f — Au e (ZY) = {we ¥ : (w,v) =0, Yo € Z}. Because BT : 2 — (Z71) is an
isomorphism, there is a unique solution to (8.30).

Hence we obtain the following well-posedness result [42, Theorem 1.1]:

Theorem 8.3 (Brezzi Theorem). For continuous bilinear forms a[-, -] and b[-, -], the saddle-point
problem (8.27) is well-posed if and only if (8.29) and (8.28) hold. Furthermore, the solution
(u, p) satisfies the stability condition

lully + lple < £y + lgle-

Remark 8.4 (Inf-sup condition of the mixed formulation). Let 2" := ¥ x 2. We define a new
bilinear form a: " x 2" — R

al(u,p), (v,q)] := alu,v] + blv, p] + blu, q].
Then the saddle-point problem (8.27) is equivalent to finding (u,p) € 2" such that

CNL[(’LL,])), (U7q)] = <f,’U> + <ga Q>) V(’U, Q) eX. (831)

If both a[-, -] and b[+, -] are continuous, then a[-, -] is also continuous. If al[-,-] and b[-, -] satisfy
the standard Brezzi conditions (8.29) and (8.28), respectively, then a[-,-] satisfies the inf-sup

condition as well. O

!Suppose there is another solution @, , then B(uy —4y) = 0. In turn, we have uy — @y is in null(B). Due to
UL — UL enull(B)l, we find u; — @, = 0.

CHAPTER 8. FLUID PROBLEMS 188

Well-posedness of the Stokes equation

In view of the general theory developed in the previous subsection, we can define

alu,v] := 2J;; g(u):e(v)dx A:=-A (8.32)
blv,q] := —JQV -vqdx B:=-V, B .=V (8.33)

In this case, the inf-sup condition (8.29) is trivial since the coercive condition holds, i.e.,
| et e = ault, vae @)
Q
Hence we only need to check the inf-sup condition for b[-, -].

Lemma 8.5 (Inf-sup condition for divergence operator). For any ¢ € 2 = L(f2), there exists
veV =[H(Q)]? such that

Veveg and |vi < qlo.

So the inf-sup condition (8.28) holds.
Proof. This non-trivial result goes back to Nec¢as and a proof can be found in [60, 1I.3.1]. O

Remark 8.6 (Existence of solution). It has been shown in the above lemma that range(B) =
L?*(Q)/R = 2. Or equivalently, we have null(B7) (2 = {0}. O

Using the previous lemma and the Brezzi theorem, we can easily get the following result:

Theorem 8.7 (Well-posedness of the Stokes equation). There exists a unique solution (u,p) €
[HL(2)]? x LE(2) to the weak form of the Stokes equation (8.26) and

[ally + llplo < [£]-1-

Penalty method for the Stokes equation x

In general, there are two approaches to approximate the Stokes problem. The first one is to
approximate (8.26) directly. An alternative method is to formulate the original problem using

a penalty method as
Find ue 7 : 2f e(u):e(v)de+~y(V-u, V-v)=(f,v), Vve?. (8.34)
Q

The above equation can also be seen in the linear elasticity problems and it is known for
causing the locking phenomena? for many finite element methods when ~ is big. This is usually
caused by overly constraint on the velocity space. To cure such a problem, penalty methods
introduce selective or reduced integration procedures. It has been shown that penalty methods

are sometimes equivalent to mixed methods [77].

2The computed velocity is vanishing or unnaturally small for big .

CHAPTER 8. FLUID PROBLEMS 189

8.3 Mixed finite element methods

In this section, we consider conforming mixed finite element methods for the Stokes equations.
Let Vi, ¢ ¥ = [H}(Q)]? and Q) = 2 = LE(Q) be finite dimensional spaces. Find uy, € V}, and
P € Qp, such that

2fﬂs(uh) ce(vp)dx — (pp, V-vi) = (f,vp), Vvy €V},

(V-upn, qn) = 0, Y qn € Qn.

(8.35)

The existence of the discrete solution (uy,py) is straightforward due to the conformity of the

approximation spaces.

Well-posedness and convergence

Let Zp = null(By) be the kernel of the discrete divergence operator. In fact, the coercivity

of a[-, -] yields that
inf sup 7a[uh,vh]

=qyp > 0. 8.36
w2y vyez, |unl1]vali (5:50)

If Z;, ¢ % and the coercivity condition holds, we have the following optimal approximation

property by the Céa’s lemma (Lemma 3.2):

Ju—uplly < = inf |u—v|y.
Qp VREZ

However, it is not easy to make the finite element kernel space Z;, ¢ Z. A sufficient condition
for this inclusion property is B(V}) € Qp, which suggests @, should be large enough for a fixed

space Vj,. In fact, we have
Byup =0, inQ, <= (Bupqn) =0, VYgy€Qp
Furthermore, we also have
Bu,=0, in2 <= (Bu,,q) =0 Vge2.

If uy, € Z, and ¢ € 2, then (Buy,q) = (Bup,q0 + q1) = (Bup,q) + (Bup,q1) = 0, where
q = qo+q1 with gg € Qp. Notice that (Buy,q;) = 0 because the inclusion condition B(V}) < Qp.

If Z;, & %, then there is a variational crime and we have following estimate:

Co\ . 1 alu—up,w
[u—uly < <1+J> inf |lu—v|y +— sup M
oy, / veZy, ap WEZh\{O} HWHV

For w € Z;,, we have

afu —uy, w] = afu, w] = (f,v) = —b[w, p] = —b[w,p — 4],

CHAPTER 8. FLUID PROBLEMS 190

for any ¢ € Q. Because b[-,] is continues, we find that
ja[u =y, w]| < Chlwly[p — dlle.
We can then conclude with the following best approximation result:

Lemma 8.8 (Quasi-optimality for velocity). Let V}, ¢ ¥ and Qp < Z. If the bilinear form

al-, -] is coercive, then we have

Cuy . Chy .
Ju—wily < (1+52) inf fu—vly+ 2 inf [pglo.
Oéh VEZh Oéh qEQh

We have the identity

(Bhufu Qh) = b[uh7qh] = (Buhv Qh)a vq}l € Qh'

In the other words, Bxuy, is the L2-projection of Buy, onto Q. If null(Bg) is not trivial, then
range(By,) is strictly included in Q. This could lead to ill-posed problems. For a fixed Qp, the
velocity approximation space V}, should be rich enough in order to guarantee the discrete inf-sup
condition:

b
inf sup b0V, an) = B > 0. (8.37)

0€Qn vyev, [Valllgnlo
The condition null(B) = {0} is necessary for the inf-sup condition above. If null(B}) is non-
trivial, then the numerical solution pj is not unique, namely, p, + sp is also a solution when
Sp € null(BE). In this case, we usually find the computed pressure is oscillatory and, hence,

null(Bg) is often referred to as the space of spurious pressure modes.

Theorem 8.9 (Quasi-optimality). Let V;, < # and Q, < £2. If the bilinear form al-,-] is

coercive and the inf-sup condition (8.37) holds with £, = Sy > 0, then we have

lu—wply + |p—prle < inf Ju—v|y + inf |p— q|e.
VEZy, q€Qp,

Some stable finite element pairs

From the above discussions, we conclude that: To balance computational efforts and conver-
gence rates for the velocity in [H}(€2)]¢ and the pressure in L2(€2), it is better to use (k + 1)-th
degree of polynomials for V}, and k-th degree of polynomials for Qp,.

Remark 8.10 (Constraint ratio). An empirical approach has been used to check the balance

between velocity and pressure approximation spaces. The so-called constraint ratio is defined as
Cr = dimQh/dith.

Apparently, if C, > 1 then number of constraints exceeds the number of variables, which will
usually cause locking. On the other hand, if C) is too small, then divergence free condition is

not approximated accurately enough. O

CHAPTER 8. FLUID PROBLEMS 191

The easiest and seemingly natural choice for the mixed finite element spaces is the pair of
the lowest order polynomials P;’O—P}? . Unfortunately, this pair does not satisfy the discrete
inf-sup condition and we have to either enlarge velocity field finite element space or restrict the
pressure space. There are many possible stable pairs; see the survey paper [14] and references
therein for more details. Here we just name a few:

. P}'f’o]dfP;f_l’O for k > 2, Taylor-Hood
QF1%-QF 1 for k = 2, Taylor-Hood

Pﬁ’o ® Bi] 27P,?, where B2 are cubic bubble functions, MINI

L]

1,012 po
Ph/2] *Ph

Pg,()] dfP,?, important theoretically, but degree not matching

P,? e B3] . pL=1 Crouzeix Raviart

P,? e Bﬂngl’_l, Crouzeix—Raviart

d . . .
P,%’NC] fP}? , non-conforming Crouzeix—Raviart

P:7O]Q*P;]f_1’_1 for k > 4, Scott—Vogelius

L
h Az -
-~
8] (] O Lo] Q Lo] 8] O
ST T T T T T T |
&yI o [l el e[J o] o] e[(le ([l [[] e[o
< <& & & G & &
o [I] o[J] «[[] #[] «[]] #[[] e [[]e [[] [o
iy N I AN A AN iy AN 1
v W W W W W v W
o [l e[l o [[] «[[] «[]] «[[] @ [[]e [[| [o
Fay Ny s Fan Fad Fan Fay an
g W W W W W W W e
; o [l el eo[[Je[] o] «[{]e [[Je][] o
L N N s Fan s Fan AN an
i W W W W W W W N
a (] O O a O 8] O T

Figure 8.2: A sample discretization using the MAC scheme

CHAPTER 8. FLUID PROBLEMS 192

Constructing stable finite difference schemes for the Stokes equation lacks of theoretical
guidance like the Babuska—Brezzi condition discussed above. However we can expect that the
standard five-point stencil does not work for the Stokes equation. This is because the five-point
stencil can be viewed as Q}ll’o — Q}ll’o finite element with a specific quadrature rule. If we change
the pressure discretization to the center of cells, then it yields Q}L’O — Q?L’_l. And, apparently,
both finite element pairs are not stable. The main idea of the Marker-and-Cell (MAC) scheme is
to place the degrees of freedom for velocity and pressure at different locations. More specifically,
the pressure p is defined at the cell centers, the velocity component u; is defined at the middle
points of vertical edges, and the velocity component uy defined at the middle points of horizontal

edges; see Figure 8.2. This method is same as the RTy finite element on rectangular grids.

Mixed methods for the Poisson’s equation *

Mixed finite element methods have been applied to our model problem, the Poisson’s equa-
tion, as well. By introducing an artificial variable p, a general mixed formulation of the Poisson’s

equation can be written as

u—-Vp = f in{;
V-u = g, in; (8.38)
u-n = 0, on 0f)
In this section, we use this model problem to further explain how to construct preconditioners
arising from the saddle-point problems.

Sometimes the mixed formulation of the Poisson’s equation is used for numerical treatment:

Find (u,p) € Ho(div, Q) x LZ(Q2) such that
(w,v) +(p, V-v)
(Veu,q) = {g.9), VYgeLj(Q).

Here H(div,Q) consists of all functions in [L2(2)]¢ with divergence in L?(Q2) and Hy(div,)

contains the H (div, Q)-functions with vanishing normal components on the boundary 0€2. Define

(f,v), Yve Hydiv,Q);
(8.39)

an inner product
(0, V) gy (giv,0) = (u, v)+(V-u,V-v). (8.40)
This problem corresponds to the mixed formulation of the Poisson’s equation with the Neumann
boundary condition.
If ue 2 is divergence free, then |u| g, (giv,0) = |ufo,o- Hence we can easily verify the Brezzi
conditions hold for this problem. As a consequence, the operator

- Z —grad
Ao - (w0) : Ho(div,) x L3(Q) = Ho(div,) x L§(©)
v

CHAPTER 8. FLUID PROBLEMS 193

is an isomorphism. The canonical preconditioner is a block diagonal isomorphism

(1) ((z—graddiv)—l 0
0

) : Ho(div, Q) x LE(Q) — Hy(div, Q) x L(Q).
There is an alternative mixed formulation for the Poisson’s equation: Find (u, p) € [L(22)]% x
(HY(Q) N LE()) such that
(u,v) = (Vp,v) = (f,v), Vvel[Ll*(Q)]%

—(u,Vq) = {g,q, VqeH'(Q)NLFQ).

(8.41)

The Brezzi conditions can be verified using the Poincaré’s inequality. Hence A is also well-defined
on [L*(Q)]4 x (HY(2) (N LE(2)). And in this case, the canonical preconditioner is

Dy = () (AO)—l) 2@ x (@) 25() — (L@ x (H(@) () L5(©).

Apparently, this preconditioner is significantly different than the one given in the previous
subsection. As a result, different choices of approximation space and its norm can yield very

different solution methods.

8.4 Canonical preconditioners

In this section, we discuss how to construct canonical preconditioners for the saddle-point
problems, like the Stokes equation and the time-dependent Stokes equation. The basic idea
follows the discussion in §2.2.

Preconditioning the Stokes equation

We notice that the corresponding operator of the Stokes system

A (—A —grad)
div 0

is an isomorphism mapping from [H}(Q)]¢ x L2(Q2) onto [H~1(22)]? x L3(£2). A natural precon-

ditioner would be the classical block diagonal preconditioner

This observation immediately motivates the classical block diagonal preconditioner [23].

CHAPTER 8. FLUID PROBLEMS 194

Similar to the continuous case, we can construct natural preconditioners based on the map-
ping properties. Let {X}} be a family of finite element spaces and it is conforming in the sense
that X;, ¢ 2 := [H}(Q)]¢ x LE(Q). Consider the discrete Stokes problem: Find (us,pp) € Xp,
such that

al(un, pn)s Vi, qn)] = (fsva) s Y(Va, qn) € X

The corresponding linear map Ay, : Xj, — X ,, 1s given by
(Apz,y) = alz,y], Vz,ye X,

Note that, in this case, @ is not positive definite and the system A, can be singular.
According to Remark 8.4, the stable discretizations can be characterized by a discrete inf-sup
condition: There exists a constant «g, independent of h, such that

inf sup alz.)

N T) (8.42)
weXn yex, |22 llyll2

This condition does not follow from the corresponding continuous inf-sup condition. Similar to

the continuous case, we can define a preconditioner Dy, : X n — Xn by

(bhfay)ﬁ/ = <f7 y>7 vy € Xh-

That is to say

i (—Ap)~t 0
Dy = (oh e) (8.43)

Apparently, if Ay, is symmetric, Dy, A, is symmetric with respect to (-,-) 2 and

IDr Al 2(x,x) < Car |(DrAr) ™ Hg(xx0) < 0 -

Hence the condition number n(ﬁh.flh) is uniformly bounded.

Preconditioning the time-dependent Stokes equation *

Now we are in position to develop preconditioners for the time-dependent Stokes prob-
lem (8.23). Like in many other applications, it is crucial to get robust or parameter-independent
performance for problems with small or large parameters. One of the useful technique is to define
proper parameter-dependent spaces and norms, such that the operator-norms of the coefficient
operator can be bounded uniformly with respect to the parameters [83].

According to the classical theory of intersections and sums of Hilbert spaces [13], we can
introduce the norms for 27 () 22 and 27 + 23 as

1
2 2
)

ulai s = (Jul; +

CHAPTER 8. FLUID PROBLEMS 195

and

1
. 2
[ulaieay = int (lul; +lualb;).

=u1+u2
uleﬂﬁ ,UQEE%Q

If 21() 23 is dense in both 27 and 253, then

(21()22) = 21+ 2 and (21 + 22) = 2/() 25,
It F e £(21; %) (L (22 %), then

Feg((22 %) () L(2 + 2% + %).

For our purpose, we assume that 27 and 25 are real separable Hilbert spaces and 2> < 27.
Hence it is natural to assume |u|2; < |u|2,. For a real positive parameter € > 0, we consider

the norm for the space 27 (€23 and its dual, respectively, by

[NIES

1
o 2 21,02)2 o : 2 -2 2
lul 73 ez = (lul +€luls) s I lagserag = dnt (1A% +e1R15)
f1eZY, foe 2,

Apparently, 2. := 21()eZ%> is the same as 25 as a set. Furthermore, as e tends to zero, the
norm of %2, approaches the norm of || - || ;. Similarly, 27 := 2] + ¢ 1.2, as a set, is the same
as 23 and its norm approaches || - | 5 when € tends to zero.

Consider preconditioning the time-dependent Stokes problem (8.24) where the coefficient

~ T —€e2A —grad
A - € gra
div 0

For this problem, we shall construct a preconditioner which is uniformly convergent with respect
to both h and e.
(@D In view of §8.3, we know that Ay is bounded from Hy(div, Q) x L3(Q) into its dual space.

Hence we consider the operator A, on

operator is defined as

L= (Ho(div, Q) ﬂe[Hg(Q)]d) xLj(Q2) and 27 := (Ho(div, Q)+ [H ‘1(9)]d) x L ().

In this case, the two Brezzi conditions holds and A, is an isomorphism. In turn, the canonical
preconditioner is of the form
PO (Z — graddiv —€2A)~1 0 '
0 z
(2) We have seen that Ay is also bounded on [L2()]¢ x (H*(Q2) () L3(2)) into its dual space.
Furthermore, in order to guarantee the inf-sup condition, the proper norm for the pressure
unknown is [81, 82]:
(qv V- V)

sup o = |Va|lp2r1m-1 ~ lla|grpere.
verri e IvIez qemn

CHAPTER 8. FLUID PROBLEMS 196

Motivated by these observations, we can consider

7= 2@ b @] > (B @ L3©) + L)

and
2 = [L2(Q) + e’lﬂ’l(Q)]d x ((Hl(Q) ﬂLg(Q))’ﬂeLg(Q)).

This choice of spaces gives a preconditioner of the form

5O _ (Z —)t 0
‘ 0 (—A)" '+ €T)

Along this line, we can construct discrete block diagonal preconditioners for the time-

dependent Stokes problem [52, 21].

Preconditioning the heat equation

In order to introduce a uniform preconditioner for the time-dependent Stokes equation, we

)

still need to give a reasonable solver for Z — €A in 259 . And this problem is in fact much more
general. For example, it also appears in a simpler scalar time-dependent problem—the heat

equation:
u—Au = f, Q
u = 0, 0 (8.44)
uli—o = wug, K
We discretize the first equation in (8.44) using the Backward Euler method for the time
variable to obtain that
Uy, — Upy—
tm — Ym—ol Aty = fin,
tm — tm—1
where u,, and f,, are approximations to v and f, respectively, at time level t,,. Since wg is

given, we can iteration over m to obtain approximate solutions {um, }m=o,1,... to w(tm, -), namely
(T — EA)uy, = f,. (8.45)

In this case, €2 := t,, —t,,_1 equals the time step-size and f/, := w1+ (tm —tm—1) fm is known.
So we need to find out how to construct a preconditioner for operators like A, := T — ¢2A
corresponding to the reaction-diffusion equation.

In particular, in order to solve the reaction-diffusion equation Acu = f in 2 and u|sg = 0 in

the previous subsection, we have
Ze=LQ)(\eHy(Q) and 27 = L*(Q) +e "H Q).

As € goes to zero, both norms approaches the L?-norm and A, also tends to the identity.

CHAPTER 8. FLUID PROBLEMS 197

In this setting, we have

(T =E0)) =T -EA) T~ D) (T-EA)TH)
=((Z-E0)7 T -E0)THH = AT -EA)THL (T -EM)TH
= | follg + ¢ 1 f1]21,

where fo := (T — 2A)71f and f; := —€2A(T — ¢2A)~1f. Furthermore, we can get (cf. [83,
Example 4.1])
HfHQ%E’ = <f7 (I - 6QA)ilf> = <(I - EZA)U,U,>.

We can easily see the natural norm is

1
2

Jull 2, = lullz2 ey = (Il + I Vul?)
Hence, it is clear that
lull 2. = [f]2:.
Although Z — €?A is norm preserving from the above analysis, it is not yet clear how to
construct a practical algorithm to solve it. We notice that the above semi-discrete problem or
temporal discrete problem resembles our model problem—the Poisson’s equation. In order to

construct an efficient preconditioner for this equation, we can use the BPX preconditioner (5.19)

in §5.3. In view of (5.18), on level [, we wish to have a smoother S; behaves like

h2
(Sw,v) = h?ieQ (vjv), YoveV.

This smoother then defines the corresponding BPX preconditioner for the semi-discrete prob-
lem (8.45). Such a simple example shows how to handle a new problem from geometric point of

view and it can be used as a component when solving the time-dependent Stokes problem.

8.5 Block preconditioners

In the previous section, we discussed how to construct canonical (natural) preconditioners
based on the mapping property of the continuous Stokes equation. Now we shall consider the
discrete Stokes problem arising in the mixed finite element method (such as the Taylor-Hood

finite element method) in algebraic setting, i.e.,

A(“):<f> and A::(ABT>. (.40
p g B 0

Suppose A € R"*" B e R™*" 4 € R", and p € R”. Let N = n 4+ m. Assume that A is SPD
and B has full rank. It is well-known that the coupled system A is symmetric, indefinite, and

non-singular.

CHAPTER 8. FLUID PROBLEMS 198

Block diagonal and lower triangular method

If we consider the block diagonal preconditioner given in the previous section, the precondi-

D:= (Aol MO_1) , (8.47)

p

tioner can be written as

where M, is the mass matrix corresponding to the pressure approximation space and, hence, it
is well-conditioned; see Remark 3.23. It is easy to check that (8.47) is exactly the algebraic form
of (8.43). Because both A and M,, are symmetric positive definite matrices, the preconditioner

is well-defined.

Remark 8.11 (Block factorizations). We can apply the following block factorizations to the

matrix A such that
A BT\ I, 0 A0 I, A7'BT
B 0 BA™Y I, 0o S 0 -1,
(A0 I, A7'BT\ I, 0 A BT
B S 0 -, BA™' -1, o s)
where the matrix S := BA~'B” is the Schur complement. In fact, D in (8.47) can be viewed

as an approximation of diag(A~!, S~1). O

Remark 8.12 (Schur complement). Since the A is SPD, the Schur complement S = BA~! BT
is symmetric and positive semi-definite. Moreover, if B has full rank, .S is also SPD and we can
apply the CG method to solve the Schur complement equation. However, generally speaking,
S~1p cannot be computed efficiently with acceptable computational cost. Hence the Schur
complement S should be approximated by some approximation S. There are many different

ways based on approximation of the Schur complement; see the survey paper [11]. O

We can also use the block lower triangular matrix to construct a preconditioner

-1
~ A0
7o (g > ' (8.48)

In particular, if we replace A by its diagonal part D in the LU decomposition of Remark 8.11,
then we get the so-called SIMPLE preconditioner

-1 -1
. I, D7'BT A 0
TsivpLe = o . (8.49)
0 I B BD'B

The name comes from the widely-used SIMPLE method for fluid problems.

CHAPTER 8. FLUID PROBLEMS 199

Augmented Lagrangian method

One of the most well-known iterative method for solving (8.46) is probably the Uzawa

method. As the last decomposition in Remark 8.11, we can factorize the coefficient matrix

A BT B I, 0 A BT
B 0 BA™' —I, 0o S)

This means the original linear system can be rewritten as

()G Catiey)

As discussed in Remark 8.12, the pressure Schur complement equation might be too expensive

as

to be solved exactly. We can apply an iterative method to solve it. For example, we can apply
the Richardson’s iteration for the second equation in the above system, i.e.,
prev — pold +w(BA’1f _g— Spold) _ pold _w(g _BA7'f BAABTpold)
Hence we can write the above iteration as an alternative direction method
AtV = f— BTpold - prew — gold (g — Bu®v). (8.50)

The method (8.50) is called the Uzawa iteration and it is just the Richardson iteration for
the Schur complement equation. As we have discussed in §2.1, the method converges with an
appropriate scaling factor w but the convergence rate is usually very slow. One way to speedup

the convergence is to apply the Augmented Lagrangian method (cf., for example, [59]):
(A + 6fl‘BTB)unew _ f + EilBTg _ BTpold7 pnew _ pold . Eil(g . BuneW)‘ (851)

Remark 8.13 (Uzawa method and Augmented Lagrangian method). It is easy to see that the
Augmented Lagrangian (AL) method is just the Uzawa method for the modified equation

_ +¢e1BT - A+¢e¢'BTB BT
A) = fre g , where A := ‘ . (8.52)
p g B 0

Furthermore, the damping factor w is chosen to be e~ 1.]

Theorem 8.14 (Convergence rate of Augmented Lagrangian method). Let (u(¥ p(®) be a
given initial guess and (u(™),p(™) be the iterates obtained via the Augmented Lagrangian
method (8.51). Then we have

m € m
=2l < (5) o=l

m—1
Ju =™, < Velp ="y < Ve(55) " oo

07

where \; is the minimal eigenvalue of S = BA~™'BT.

CHAPTER 8. FLUID PROBLEMS 200

Sketch of proof. From (8.51) and (8.52), we have
(A+e'B"B)(u—u™) = BT (p— ptm=1)

and
p— p(m) = (I — B(eA + BTB)_IBT) (p — p(m_l)).

By the Shermann—Morrison—-Woodburry formula, we have
Z:=B(eA+ BBy 'BT =5, —S.(I+S)7 'S, S.:=e'BA'BT.
It is easy to verify that
I-B(eA+B"B) 'BT =T - S+ S.(I +S.)7*S. = (I +S.)~ .

The above equality shows p(Z) < 1 and p—p™ = (I + S.)~ ! (p —p(m_l)). So the first estimate

follows immediately. The second estimate is obtained by observing
|u— ul™ Hi = ((A +e!'BTB—¢'BTB) (u— u(m)),u - u(m))
<e(Z(p—p™ V), p—pmY)
and then applying the first estimate. O

According to Theorem 8.14, we can make the convergence as fast as we want by adjusting
the parameter e. However, the price to pay is that, in each iteration, we have to solve a nearly-
singular system with coefficient matrix A + ¢ ! BT B, which was discussed in [75]. We can also

apply the Augmented Lagrangian method as a preconditioner

_ A+e'BTB 0
Tap, = ‘ , (8.53)
B el

which is often referred to as the AL preconditioner [12].
The method is closely related to the grad-div stabilization [43] of the Stokes (or Navier—
Stokes) problem:
(I —pAu—eVV-u+Vp =f, Q;
V-u =0, & (8.54)
u =0, o0
In this modified problem, the coercivity condition automatically holds on the discrete level for
the Hy(div)-norm defined by (8.40). After discrezation by some mixed finite element method, we
obtain discrete systems in the form of (8.51). We can apply the block preconditioners discussed
in the previous subsection to solve the resulting discrete problems; see the survey and numerical

experiments by He and Vuik [70].

CHAPTER 8. FLUID PROBLEMS 201

8.6 Multigrid methods for the Stokes equation

Using a general multilevel iterative procedure, we can construct coupled geometric multigrid
methods for the saddle-point problem (8.46) as well. For the transfer operators, by applying the
similar ideas as in multigrid methods for scalar equations, we can construct prolongations and
restrictions for velocity and pressure variables separately. Coarse-level solvers can also apply the
same multilevel cycles as in §6.2. So we only discuss smoothers for the Stokes system. Analysis
and numerical experiments using different smoothers have been reviewed in the survey by Larin
and Reusken [74]. Apparently, the block preconditioners discussed in the previous section can
also be applied as smoothers for coupled multigrid methods. In this section, we discuss two

other widely-used smoothers in practice.

Braess—Sarazin smoother

The Braess—Sarazin smoother was introduced in [19] and can be written as

u(m+1) u(m) wD BT - f A BT u(m)
sy |\ T B o\ o)\ pm)| B

where w is a positive parameter. This method mimics the damped Jacobi smoother for the
Poisson’s equation.

We need to solve, in each smoothing step, the following the linear system
(wD BT) < (™) (f— Au(m — BTp(m))
B 0 spm | — Bu(m) ‘
The second equation ensures the discrete divergence free condition, i.e.,
Bu™*) = B(u™ 4+ 5u™) =0, m=12,...
Apparently, the Braess—Sarazin smoother can be reduced to an auxiliary pressure equation
(BD™'BT) 6p'™ = wBul™ + BD7!(f — Aul™ — BTp(m).

The coefficient matrix S := BD BT is similar to a scaled discrete Laplace operator on the

pressure space. In practice, we can solve it approximately using an iterative method for example.

Vanka smoother

Next we introduce a smoother originally proposed by Vanka [112]. In the context of finite
element methods, the Vanka-type smoothers are just block Gauss—Seidel (or Jacobi) methods.

Fach block contains degrees of freedom in an element or a set of elements. One of the popular

CHAPTER 8. FLUID PROBLEMS 202

variant of Vanka-type smoothers is the so-called pressure-oriented Vanka smoother for continuous
pressure approximations. We only discuss this special case of Vanka smoother here.

For each pressure variable indexed by i (1 < i < m), let the set of velocity indices that are
“connected” to ¢ as

Sii={1<j<n:b;+#0}

where b; ; is the (i, j)-entry of the matrix B. So we can define an injection to the set of variables

{uj (] € 52)7 pz}a lea
IZ' _ Iu,i 0 c R(|S¢|+1)X(n+’m)7
0 I;

where I, ;p = p; and I, ;u = (uj)jes, are the corresponding injection matrices for velocity and
pressure, respectively.

We can then apply a multiplicative Schwarz method (or the so-called Full Vanka smoother):

I— j-’]:_“\/ankafZi = H (I - IZTAl_IIzA)y (856)
i=1
where
, T
A=A = (B cesienision,
B, 0

We can also use a simplified version (i.e., the Diagonal Vanka smoother):
~ ~ m ~ ~
I~ TovawA =[] (I —I7 Di_lliA>, (8.57)
i=1

where

. T
b= [P B crisinxisie,
B, 0

In this case, due to the special nonzero pattern of DZ-, it can be solved very efficiently.

8.7 Homework problems

HW 8.1. Show the equation (8.16). Hint: In R?, taking divergence of the symmetric gradient,
we get,

Puy + %82(82u1 + O1u2)

3uz + 501(O1uz + Oaur)

3(0%ur + A3ur) + 501(01ur + Oyusn)

- = %Au + %VV - .
%((9%712 + (7%1@) + %(92(511“ + (32712)

CHAPTER 8. FLUID PROBLEMS 203

HW 8.2. Derive the weak form (8.26) of the Stokes equations (8.25).

HW 8.3. Give the complete proof of Theorem 8.14.

Chapter 9
Optimization Problems

Mathematical optimization (mathematical programming or optimization) is the selection
of a “best” element (with regard to certain criterion) from some set of available alternatives.
Many optimization problems can be written as variational inequalities (VIs); for example, many
problems in economics, operations research, and transportation equilibrium problems. In this
chapter, we discuss multilevel iterative methods for solving finite-dimensional variational in-

equalities.

9.1 Model problems

VlIs arise from a wide range of application areas, like mechanics, control theory, engineering,
and finance. After several decades of development, this subject has become very rich on both
theory and numerics. For a general discussion on the existence and regularity, we refer the
interested readers to [72]. For a comprehensive discussion on numerical methods for VIs, we

refer to Glowinski [62].

A model variational inequality

Let a[-,-] and f(-) be a symmetric bilinear form and a linear form, respectively, and x €
H} () be an admissible obstacle (for simplicity, we assume the zero boundary condition). Con-
sider the following elliptic variational inequality (or the obstacle problem): Find v € K, := {v e
HE(Q) : v = x}, such that

alu,v —u] = f(v—u), Vovek,. (9.1)

After transformation w := u—y, we arrive at a new problem with a simple inequality constraint:
Find w € Ko := {v e H}(Q) : v = 0}, such that

alw,v —w] = fo(v —w) = flv —w) —a[x,v—w], VveKp. (9.2)

204

CHAPTER 9. OPTIMIZATION PROBLEMS 205

For problem (9.1), the Lagrange multiplier can be defined as o1 such that
(o1(u),) == f(¢) —alu,¢], ¥ ¢e Hy(9). (9.3)
On the other hand, for (9.2), notice, for any ¢ € H}(2), that

(o2(w), @) = folp) — alw, o] = F() = alu, o] = (o1 (u), 9) -

It is easy to see that

(o1(u),v—u) <0, Vwvelk,, (9.4)
or
(o2(w),v —w) <0, VY wveKy.
On the other hand, if o is the Lagrange multiplier of (9.1), we have
(o(v) —0o(u),) = —alv —u,¢], ¥ peHy(Q).
Hence,

(o(v) —o(u),v—u) = —afv —u,v —u] = — v —ul|*, Vov,ueHIQ). (9.5)
Hence, we have (o(v) — o(u),v — u) < 0, for any v,u € H}(Q), i.e., o is a monotone operator.

Remark 9.1 (Uniqueness of solution). Notice that if both u; and wus are solutions of the
variational inequality (9.1), by the monotonicity of o, |[u; — uz| = 0 and then we obtain the

uniqueness.

As before, we assume that A : H}(Q) — H1(Q) be the operator corresponding to al[-,].
An frequently equivalent formulation of (9.1) is the so-called linear complementarity problem
(LCP): Find a solution u € H} () such that

Au—f>=0
u—x=0 (9.6)
<AU—faU—X>:0

The last equation is the so-called complementarity condition.
Proof. If u is a solution of LCP (9.6), then for any v € H}(Q2) and v > x we have
(Au— fu—v) = (Au— f,x —v) <0,

in view of the complementarity condition and the sign condition of Au — f. On the other hand,
if u is solution of (9.1), it is trivial to see that u satisfies the first two conditions of LCP. The

complementarity condition is obtained by taking v = u + (u — x) and v = . O

CHAPTER 9. OPTIMIZATION PROBLEMS 206

Finite element discretization for VIs

As discussed in §3.1, the domain € is partitioned into a quasi-uniform simplexes of size h;
this mesh is denoted by Mj,. Let V}, < VVO1 *(2) be the continuous piecewise linear finite element
space associated with Mj,. The obstacle problem (9.2) can be approximated by a finite element

function uy, € Ko [V3 satisfying:
alup,vp —up] = fo(vp —up), Y op € Ko ﬂVh. (9.7)

As before, we denote all the interior nodes of the partition Mj by G(Mp). Let {¢Z}zeé(Mh)
be the canonical linear finite element basis of the mesh M;,. Let u = wu = Zzeé(Mh) Uy Py
and u = (“Z)zeé(M, the discrete solution and its nodal value vector (primal vector form),

respectively. Hence we have the following linear system
(w—u)T(Au—fo) =0, YVu=0, (9.8)

where A is the corresponding stiffness matrix of the bilinear form and f_}; is the dual vector form
of fo.

Remark 9.2. One can prove (see for example [34]) that the [?>-error between the exact solution

u of (9.8) and any approximation solution v satisfies that

lv = ullo < |(fo = Av)+]o,
where the vector (ﬁ) — Aw) is defined element-wise by

(fT(;—AQ)i if v, >0

fo — Av)s ; = 7
(fo V), { min{(fo — Av);, 0} if v; = 0.

Error and residual

As usual, we define the energy functional as following
F(v) = %a[v,v] — f(v).
Then it follows that
Flw) = Flu) = o —ul? = (0,0), Vveky (9.9)

Consider finite element solutions, u; and wy, for problems (9.1) and (9.2), respectively. The
differences, in terms of energy, between the finite element solutions and the exact solutions can

be written as)

Fun) = Fw) = 5l — wl> = (o0, —)
1 (9.10)
Flun) = F(w) = 5 lwn —wl? = (o, w5 —w).

CHAPTER 9. OPTIMIZATION PROBLEMS 207

It is easy to see that the variational inequality (9.2) can be written as the following quadratic
minimization problem:

min %a[w,w] — fo(w). (9.11)

wE’Co

For finite element approximation, we compute the finite dimensional minimization problem

1
i Zafwp, wp] — . 9.12
2min - Safunw] — foun) (912

Suppose wy, is an approximate solution of the above minimization problem. Then the defect
ey, = wp, — Wy, satisfies

. 1)) 1)
~ min —alwy, + ep, Wy, + €] — folwn + en) = —alep, en] — folen) + alwp, en] + C,
wp+er€Viy (Ko 2

i.e.,
1
min —alep, ep| — (o(wy), en) - 9.13
e 3 lens en] — (o (i), en) (9.13)
Notice that it is in the same form as (9.12) but replacing fo by o(wy). Hence the above problem
can be viewed as the error problem; compare this with the error equation in the linear case (1.38).

Whence we have ej,, we can update wy, = wp, + e, as in the linear case.

9.2 Nonlinear equation and unconstrained minimization
We first consider the unconstrained optimization problem

u = argmin F(v). (9.14)
vey

If F: % — Ris a convex function, then the problem is called a convex optimization (or
convex programming). If F is differentiable, a minimizer satisfies the well-known first-order
optimization condition

G(u) := F'(u) = 0, (9.15)

where G : 7 +— R is the Frechet derivative of F. If F is convex, then (9.14) is equivalent
for solving the nonlinear equation (9.15). In particular, if F is quadratic, then the problem is
called a quadratic optimization. Apparently, if F is a convex quadratic functional, then the

problem (9.14) is equivalent to our model problem (2.1), Au = f, with an SPD operator A = G'.

Nonlinear solvers

In general, the problem (9.14) is much more difficult to solve than (2.1) due to its nonlin-
earity. We can employ a nonlinear iterative solver to linearize (9.15) to obtain a linear (differ-

ential) equation, i.e., linearization then discretization. For example, we may use the standard

CHAPTER 9. OPTIMIZATION PROBLEMS 208

approaches, like the Picard method or the Newton—Raphson method. Another strategy is to dis-

cretize the continuous problem (9.14) or (9.15) in order to obtain a nonlinear algebraic problem

u = argmin F(v) (9.16)
veRN
or
G(u) = 0. (9.17)

The idea of coarse-grid correction used in Algorithm 3.1 does not apply any more here because the
classical residual equation is linear. There are basically two approaches to apply the multilevel
idea on this problem—The first approach is to linearize the problem and then apply multigrid
methods to linear problems; The second one is to apply multigrid directly to the nonlinear

problem using the so-called Full Approzimation Scheme (FAS).

Newton—Raphson method

There are different ways to linearize a nonlinear problem like (9.15). For simplicity, we
now only consider discrete version of the nonlinear equation, i.e., # = RY. The most popular
approach is the so-called Newton—Raphson (or Newton) linearization. We apply second-order
Taylor expansion to approximate the objective function near the current iteration u*®) € RN,
ie.,

1
Fu® +e) ~ Fu®) + (VFu®), e) + §(V2.7:(u(k))e, e).
In order to find a good incremental correction step, we can consider

e®) = argmin %(VQJ:(U(]“))@, e) + (VF(u®),) = —[V2F (™)' VF(u®).

eeRN

This is the Newton—Raphson iteration
uF+D) — @) (V2 F)] v Fu®). (9.18)
In the above iteration step, we need to solve a linear system, the Jacobian equation:
Ae®) = [V2]-"(u(k))]e(k) = —VFu®) = ¢k, (9.19)

We can employ the methods discussed in the previous chapters to solve such equations.

Listing 9.1: Newton-Raphson method

1 |Given an initial guess u€ ¥ and set r — —V.F(u);

[\v]

while |r|>¢€

3 solve the Jacobian equation VZF(u)e=r;
4 find a good stepsize a > 0;
5 u—u+ae; r——VF(u);

6 | end

CHAPTER 9. OPTIMIZATION PROBLEMS 209

The Newton-Raphson method converges very fast (second-order convergence) if the initial
guess is close enough to the exact solution. So if a good initial guess is available, the main
computation cost of the above algorithm is assembling the Jacobian systems and solving it to
acceptable accuracy. If we apply a multigrid algorithm to solve the Jacobian systems, then this
method is usually called Newton-Multigrid method. Similarly, another wide-used approach to
apply a domain decomposition preconditioned Krylov method to solve the Jacobian systems,
then this method is called Newton-Schwarz-Krylov method. Note that we might not need to

assemble the Jacobian system explicitly; instead, we can use a Jacobian-free scheme.

Full approximation scheme

For the nonlinear equation (9.15), the residual corresponding to an approximate solution v
can be defined as
r:=—G(v)=G(u) —G(v) (9.20)
However, because G is not linear, r # G(u — v). In FAS, instead of considering the residual
equation as in the linear case, the full equation is solved on the coarse grids.
We now use the following two-grid method to demonstrate the basic idea of FAS. Let u()
be an approximate solution on the fine grid after several steps of relaxation. On the coarse grid,

according to (9.20), we need to solve the following nonlinear equation
gc(ugl)) - QC(ICTU(I)) =r.=1I1r = —Ich(u(l)). (9.21)

This means, on the coarse level, a problem similar to the original problem (with different right-
hand side) should be solved

Ge(ulM) = G.(ZFuW) — 77 G (uV). (9.22)

Usually the right-hand side of the above equation is denoted as 7.(u(")) and is called the tau
correction. Note that the coarse-level equation G. can be obtained from the discretization on

the coarse grid. We can also use the Galerkin method
Ge(ue) =TT G(Zeue).
Once the problem (9.22) is solved, we correct the approximation as
u® =M 4 Ic(ugl) - ICTu(l)). (9.23)

Apparently the above idea can be applied recursively as we discussed in §6.2. Because the
coarse-grid problem is solved for the full approximation, rather than the error, the method is
named as the Full Approximation Scheme. In this algorithm, evaluating the nonlinear function
is usually the most expensive part computationally. We summarize the two-grid FAS algorithm

as follows:

CHAPTER 9. OPTIMIZATION PROBLEMS 210

Listing 9.2: Full Approximation Scheme

1 |Given an initial guess uwu€ ¥;
2 |Solve the nonlinear equation G.(u.) = Go(ZXu) — ZXG(u);
3 u<—u+Ic(uc—I;ru);

Subspace correction methods for convex minimization

Apparently, the idea of subspace correction methods can be easily extended to unconstrained
convex minimization problems here. The convergence analysis of SSC and PSC methods has
been given by Tai and Xu [108].

9.3 Constrained minimization

In this section, we consider multilevel solvers for constrained minimization problems
1
u = argmin F(v) := —a[v,v] — f(v), (9.24)
UE]CO 2

which is equivalent to the variational inequality (9.2).

Projected full approximation method

Since the the above problem is nonlinear, we can apply the Full Approximation Scheme
introduced in the previous section to solve this problem. And this is the so-called Projected
Fully Approximation Scheme (PFAS) by Brandt and Cryer [34].

As we have discussed in the previous chapters, we first need to find a relatively simple iterative
procedure which is able to dump the high-frequency part of the error quickly. In order to obtain
a smoother for (9.24), we can employ the simple iterative methods discussed in §2.1 and then
apply a projection step to ensure the new iteration stays in the feasible set. For example, if 1!
is the previous iteration and u®S is the iteration after one or several Gauss-Seidel sweeps, then

new - — max{0,u%%} € Ky is the new iteration. This method is naturally called the Projected

U
Gauss-Seidel (PGS) method.

At some point PGS will not reduce error efficiently any more, we then apply FAS to approx-
imate the error on a coarser level and continue this procedure until the coarsest level where the
nonlinear problem can be solved quickly and accurately. To ease the notation, we explain the
idea using a two-grid algorithm for now. We first solve the general LCP problem on a fine level

with a given right-hand side f;

CHAPTER 9. OPTIMIZATION PROBLEMS 211

using the PGS method or some other smoother to obtain an approximate solution u(*). Then

we solve the above LCP on a coarse level with the right-hand side

fer=T (f - Au(l)) + AT W
to obtain an approximation ugl). In turn, an improved approximation is given by

u® =M 4 Ic(u‘(:l) — Igu(l)).

Interior point method

For simplicity, we now consider the constrained minimization problem (9.2) on the finite

dimensional space RY, that is to say

1
u = argmin F(v) := —vl Av — fTo. (9.25)
v=0, veERN 2
In this case, the Lagrange multiplier ¢ € R satisfies that ¢ = —G(u). Then we have the

first-order optimality condition

o+ Gu) =0, o0<0,
Uo =0, u = 0.
Here we use a convention often employed in the literature U := diag{uq,...,un}; similarly, we

will denote ¥ := diag{o1,...,0n}.

The condition Uo = 0 (or equivalently, u;o; = 0 for any i = 1,..., N) is usually called the
complementarity condition. We now try to relax this condition such that Uo = ul, where p is
a positive penalty parameter and 1 is an all-one vector. At the same time, we try to maintain
the iterative solution (u, o) strictly in the primal-dual feasible set, i.e., u > 0 and o < 0. Hence
we need to solve a system of nonlinear equations:

o+Gu) = 0,
{ Uoc—p1l = 0.
We apply the Newton’s method for this system and obtain an iterative method

Adu+ 60 = —o—G(u) A T ou f—Au—o
or = .
Yéu + Udo uwl—Uco ¥ U oo ul—Uco

Upon solving this linear system, we can obtain a new iteration. Furthermore, in the above

system, I, 3, and U are all known diagonal matrices, we only need to solve the Schur complement
problem
(A—=U'S)ou = pU™'1 + f — Au. (9.26)

Moreover, since o < 0 and u > 0, the above equation is well-defined and the coefficient matrix
is SPD. We can then apply a multilevel iterative method discussed in the previous chapters to

solve it efficiently; see [9] for details.

CHAPTER 9. OPTIMIZATION PROBLEMS 212

Monotone multigrid method

Now suppose we hierarchical meshes, {M? ... ,M%} and let A;, b, | = 0,...,7 are the
stiffness matrices and right-hand-side vectors corresponding to the partition M! , respectively.
As usual, /\/lil is the finest mesh. We denote the linear finite element space by V}f associated
with mesh Mﬁl

We need two kinds of orthogonal projections onto the finite element space V,f. The L?*-

projections Q) : V}f — Vhl are defined by

(Quon, 1) = (v, 1), 1€ Vi, (9.27)

and the energy projections II; : V,f — V,f by

a[vy, 1] = alvw, &1], ¢ € V. (9.28)

We first define multigrid methods recursively. For a given initial guess w;
coarse grid correction is performed: computing the approximate defect eg-_)
V}f ~! as the solution of the quadratic programming problem

0 0
alefy,ef] = o), el). (9.29)

1
min Z
e eVt w® el Ko 2

Then let w](-l) = w](-o) + eg.o_)l. Then we apply m steps of post-smoothing scheme, like projected
SOR to obtain w](-mﬂ). For the coarse correction step, instead of solving the problem on the
coarser level 7 — 1 exactly, we can solve it by the same multigrid procedure described here. In
this way, we obtain a recursive multigrid V-cycle. If we perform coarse grid correction twice at
each level, then we get a W-cycle.
One problem with this procedure is that e;_; and w; are in different levels. To avoid this
difficulty, we propose the following coarse grid correction scheme instead of (9.29):
o, o Sald®y a0~ (o), d%). (9.30)
1€V, N Ko
And then wj(.l) = w() 4 d()1 which is always in Kg because both w(o) and d()1 are in Ky by
definition. It is easy to check that the local obstacles in this method are monotone in the sense
of Kornhuber [73]. Then we get the similar V-cycle or W-cycle multigrid method as for linear

problems expect we need to add a projection step to project the iterates to Ky.

Remark 9.3. This method is shown to be not very good by Tai’s test example. The reason
is that the coarse grid correction only works when the current approximation is less than the

exact solution in the method.

CHAPTER 9. OPTIMIZATION PROBLEMS 213

9.4 Constraint decomposition method

It is known the general V-cycle can be written as a successive subspace correction method.
For a sequence of search directions {¢;}}¥, such that V,f := span{¢;}}¥.,. We can construct

a numerical method for find the minimizer of (9.12) as a sequential quadratic programming

method. Starting from an initial guess wj(o) € fo () Ko, at each iteration, we solve

0

1
fa[wj(-o) + agbl,wj(p) + apr] — fg(wj(-) + agr). (9.31)

min
w§0)+a¢1€VgﬂKo 2

Similar to the discussion in the previous section, we need to solve a discrete problem

1
min —alp1, p1]a® — <U(w](-0)), o1y (9.32)
w§.0)+a¢>1eV}fﬂ/Co 2
Then the new iterate is obtained by w](-l) = w](-O) + a¢q. Similarly, we start from w](-l) and search

in the direction ¢2 to obtain wj(?), and so on.

If we choose span{qbi}i]\i 1 as the canonical nodal basis of V}f , then it is just usual nonlinear
or projected Gauss-Seidel method. To take advantage of multilevel basis, it is natural to choose
span{gﬁi}fil = {(j){,...,gbjj,(;ﬁ{_l,..., %il,...,gb%,...,gﬁ}vl}. It falls into the category of ez-
tended relaxation methods. The problem with this procedure is that ¢; might not be in the finest
level j, which costs extra computation effort to enforce the constraints w](.i_l) + ap; € V}f M Ko.

See Tai [107] for details.

Bibliography

[10]

O. Axelsson. A survey of algebraic multilevel iteration (AMLI) methods. BIT Numerical
Mathematics, 43:863-879, 2003.

0. Axelsson and G. Lindskog. On the eigenvalue distribution of a class of preconditioning
methods. Numerische Mathematik, 48(5):479-498, 1986.

0. Axelsson and G. Lindskog. On the rate of convergence of the preconditioned conjugate
gradient method. Numerische Mathematik, 48(5):499-523, 1986.

I. Babuska. Error-bounds for finite element method. Numerische Mathematik, 16(4):322—-
333, 1971.

N. S. Bakhvalov. On the convergence of a relaxation method with natural constraints
on the elliptic operator. USSR Computational Mathematics and Mathematical Physics,
6(5):101-135, 1966.

R. E. Bank and T. Dupont. An optimal order process for solving finite element equations.
Mathematics of Computation, 36(153):35-51, 1981.

R. E. Bank and T. F. Dupont. Analysis of a two-level scheme for solving finite element

equations. Technical report, 1980.

R. E. Bank, T. F. Dupont, and H. Yserentant. The hierarchical basis multigrid method.
Numerische Mathematik, 52(4):427-458, 1988.

R. E. Bank, P. E. Gill, and R. F. Marcia. Interior methods for a class of elliptic variational
inequalities. In L. T. Biegler, M. Heinkenschloss, O. Ghattas, and B. van Bloemen Waan-
ders, editors, Large-Scale PDE-Constrained Optimization, pages 218-235. 2003.

R. E. Bank and H. Yserentant. Multigrid convergence: A brief trip down memory lane.
Computing and Visualization in Science, 13(4):147-152, 2010.

214

BIBLIOGRAPHY 215

[11]

[12]

[13]

[14]

[18]

[19]

22]

[23]

M. Benzi, G. H. Golub, and J. Liesen. Numerical solution of saddle point problems. Acta
Numerica, 14:1-137, May 2005.

M. Benzi and M. A. Olshanskii. An Augmented Lagrangian-based approach to the Oseen
problem. STAM Journal on Scientific Computing, 28(6):2095-2113, 2006.

J. Bergh and J. Lofstrom. Interpolation spaces: an introduction, volume 223. Springer
Science & Business Media, 2012.

D. Boffi, F. Brezzi, and M. Fortin. Finite elements for the Stokes problem. In Mized Fi-
nite Elements, Compatibility Conditions, and Applications, pages 45-100. Springer Berlin
Heidelberg, 2008.

F. Bornemann and H. Yserentant. A basic norm equivalence for the theory of multilevel
methods. Numerische Mathematik, 64(1):455-476, 1993.

D. Braess. The contraction number of a multigrid method for solving the poisson equation.
Numerische Mathematik, 37(3):387-404, 1981.

D. Braess. Finite elements. Cambridge University Press, Cambridge, second edition, 2001.
Theory, fast solvers, and applications in solid mechanics, Translated from the 1992 German

edition by Larry L. Schumaker.

D. Braess and W. Hackbusch. A new convergence proof for the multigrid method including
the V-cycle. SIAM journal on numerical analysis, 20(5):967-975, 1983.

D. Braess and R. Sarazin. An efficient smoother for the Stokes problem. Applied Numerical
Mathematics, 23(1):3-19, feb 1997.

J. Bramble. Multigrid methods. Pitman research notes in mathematics series. Longman
Scientific & Technical, 1993.

J. Bramble and J. Pasciak. Iterative techniques for time dependent Stokes problems.
Computers Math. Applic., 33:13-30, 1997.

J. H. Bramble and J. E. Pasciak. New convergence estimates for multigrid algorithms.
Mathematics of computation, 49(180):311-329, 1987.

J. H. Bramble and J. E. Pasciak. A preconditioning technique for indefinite systems
resulting from mixed approximations of elliptic problems. Mathematics of Computation,

50(181):1, jan 1988.

BIBLIOGRAPHY 216

[24]

[25]

[26]

[31]

32]

[33]

[34]

[35]

[36]

J. H. Bramble and J. E. Pasciak. The analysis of smoothers for multigrid algorithms.
Mathematics of Computation, 58(198):467-488, 1992.

J. H. Bramble and J. E. Pasciak. New estimates for multilevel algorithms including the
V-cycle. Mathematics of computation, 60(202):447-471, 1993.

J. H. Bramble, J. E. Pasciak, J. P. Wang, and J. Xu. Convergence estimates for multigrid
algorithms without regularity assumptions. Mathematics of Computation, 57(195):23-45,
1991.

J. H. Bramble, J. E. Pasciak, J. P. Wang, and J. Xu. Convergence estimates for product
iterative methods with applications to domain decomposition. Mathematics of Computa-
tion, 57(195):1-21, 1991.

J. H. Bramble, J. E. Pasciak, and J. Xu. Parallel multilevel preconditioners. Mathematics
of Computation, 55(191):1-22, Jul. 1990.

J. H. Bramble and J. Xu. Some estimates for a weighted L? projection. Mathematics of
Computation, 56:463-476, 1991.

A. Brandt. Multi-level adaptive solutions to boundary-value problems. Mathematics of

Computation, 31(138):333-390, 1977.

A. Brandt. Algebraic multigrid theory: The symmetric case. Applied Mathematics and
Computation, 19(1-4):23-56, jul 1986.

A. Brandt. Rigorous Quantitative Analysis of Multigrid, I. Constant Coefficients Two-
Level Cycle with Lo-Norm. SIAM Journal on Numerical Analysis, 31(6):1695-1730, 1994.

A. Brandt. Multigrid guide. Technical report, 2011.

A. Brandt and C. W. Cryer. Multigrid algorithms for the solution of linear complemen-
tarity problems arising from free boundary problems. SIAM J. Sci. Statist. Comput.,
4(4):655—684, 1983.

A. Brandt, S. McCormick, and J. Ruge. Algebraic multigrid (amg) for automatic multi-
grid solutions with application to geodetic computations. Report, Inst. for computational
Studies, Fort collins, colo, 1982.

A. Brandt, S. McCormick, and J. W. Ruge. Algebraic multigrid for sparse matrix equa-
tions. In D. Evans, editor, Sparsity and its Application, pages 257-284. Cambridge Uni-
versity Press, 1984.

BIBLIOGRAPHY 217

[37]

[38]

[48]

[49]

S. Brenner. Convergence of the multigrid V-cycle algorithm for second-order boundary
value problems without full elliptic regularity. Mathematics of Computation, 71(238):507—
525, 2002.

S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods,
volume 15 of Texts in Applied Mathematics. Springer-Verlag, New York, second edition,
2002.

M. Brezina. An improved convergence analysis of smoothed aggregation algebraic multi-
grid. Numerical Linear Algebra with Applications, 19:441—469, 2012.

M. Brezina, A. J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones, T. A. Manteuffel, S. F.
Meccormick, and J. W. Ruge. Algebraic multigrid based on element interpolation (AMGe).
SIAM J. Sci. Comput., 22:1570-1592, 2000.

M. Brezina, R. Falgout, S. MacLachlan, T. a. Manteuffel, S. Mccormick, and J. Ruge.
Aggregation (@SA) Multigrid. SIAM Review, 47(2):317-346, 2005.

F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising
from lagrangian multipliers. ESAIM: Mathematical Modelling and Numerical Analysis -
Modélisation Mathématique et Analyse Numérique, 8(R2):129-151, 1974.

F. Brezzi, M. Fortin, and L. D. Marini. Mixed finite element methods with continuous
stresses. Mathematical Models and Methods in applied sciences, 3(02):275-287, 1993.

W. L. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid Tutorial. Siam, 2000.

L. Chen. Deriving the XZ identity from auxiliary space method. In Domain Decomposition

Methods in Science and Engineering XIX, pages 309-316. Springer, 2011.

P. G. Ciarlet. The Finite Element Method for Elliptic Problems, volume 4 of Studies in
Mathematics and its Applications. North-Holland Publishing Co., Amsterdam-New York-
Oxford, 1978.

R. Courant and D. Hilbert. Methods of Mathematical Physics. Number v. 1 in Methods
of Mathematical Physics. Wiley, 1991.

R. a. DeVore. Nonlinear approximation. Acta Numerica, 7:51, nov 2008.

M. Dryja and O. Widlund. Additive schwarz methods for elliptic finite element problems in
three dimensions. In Fifth International Conference on Domain Decomposition Methods.
STAM, 1992.

BIBLIOGRAPHY 218

[50]

[61]

[62]

[63]

M. Dryja and O. B. Widlund. Some domain decomposition algorithms for elliptic problems.

In Iterative Methods for Large Linear Systems. Academic Press Professional, Inc., 1989.

M. Dryja and O. B. Widlund. Additive schwarz methods for elliptic finite element problems
in three dimensions. In Parallel Algorithms for Partial Differential Equations Proceedings,

Kiel 1990. New York University. Courant Institute of Mathematical Sciences., 1991.

H. C. Elman, D. J. Silvester, and A. J. Wathen. Finite elements and fast iterative solvers:

with applications in incompressible fluid dynamics. Oxford University Press, USA, 2005.
L. C. Evans. Partial Differential Equations. American Mathematical Society, 1998.

R. D. Falgout and J. B. Schroder. Non-Galerkin coarse grids for algebraic multigrid. STAM
J. Sci. Comput., 36:C309—-C334, 2014.

R. D. Falgout and P. S. Vassilevski. On generalizing the algebraic multigrid framework.
SIAM J. Numer. Anal., 42:1669-1693, 2004.

R. D. Falgout, P. S. Vassilevski, and L. T. Zikatanov. On two-grid convergence estimates.
Numerical Linear Algebra with Applications, 12(5-6):471-494, 2005.

R. P. Fedorenko. A relaxation method for solving elliptic difference equations. USSR
Computational Mathematics and Mathematical Physics, 1(4):1092-1096, 1962.

R. P. Fedorenko. The speed of convergence of one iterative process. USSR Computational
Mathematics and Mathematical Physics, 4(3):227-235, 1964.

M. Fortin and R. Glowinski. Augmented Lagrangian methods: applications to the numerical

solution of boundary-value problems, volume 15. Elsevier, 2000.

G. P. Galdi. An introduction to the mathematical theory of the Navier-Stokes equations:
Steady-state problems. Springer Science & Business Media, 2011.

A. Gibbons. Algorithmic graph theory. Cambridge university press, 1985.

R. Glowinski. Numerical methods for nonlinear variational problems. Springer-Verlag,
New York, 1984.

R. Glowinski, T.-W. Pan, and J. Periaux. A fictitious domain method for dirichlet problem
and applications. Computer Methods in Applied Mechanics and Engineering, 111(3-4):283—
303, 1994.

BIBLIOGRAPHY 219

[64]

[75]

G. H. Golub and C. F. Van Loan. Matrix Computations, Third Edition, volume 10 of
Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press,
1996.

M. Griebel and P. Oswald. On the abstract theory of additive and multiplicative Schwarz
algorithms. Numerische Mathematik, 180:163-180, 1995.

F. Gustavson. Finding the block lower triangular form of a sparse matrix. In Sparse matrix

computations, pages 275-289. Elsevier, 1976.

W. Hackbusch. Ein iteratives verfahren zur schnellen auflosung elliptischer randwertprob-

leme. Technical report, 1976.

W. Hackbusch. Multi-grid convergence theory. In Multigrid methods, pages 177-219.
Springer, 1982.

W. Hackbusch. Multi-grid methods and applications. Springer, 1985.

X. He and C. Vuik. Comparison of some preconditioners for the incompressible Navier-
Stokes equations. Numerical Mathematics: Theory, Methods and Applications, 9(02):239—
261, 2016.

C. Johnson. Numerical Solution of Partial Differential Equations by the Finite Element
Method. Cambridge University Press, Cambridge, 1987.

D. Kinderlehrer and G. Stampacchia. An introduction to variational inequalities and their
applications, volume 88 of Pure and Applied Mathematics. Academic Press Inc. [Harcourt
Brace Jovanovich Publishers], New York, 1980.

R. Kornhuber. Monotone multigrid methods for elliptic variational inequalities. I. Numer.
Math., 69(2):167—-184, 1994.

M. Larin and A. Reusken. A comparative study of efficient iterative solvers for generalized
Stokes equations. Numerical Linear Algebra with Applications, 15(November 2007):13-34,
2008.

Y. Lee, J. Wu, J. Xu, and L. Zikatanov. Robust subspace correction methods for nearly
singular systems. Mathematical Models and Methods in Applied Sciences, 17(11):1937—
1963, 2007.

S. P. MacLachlan and L. N. Olson. Theoretical bounds for algebraic multigrid performance:

review and analysis. Numerical Linear Algebra with Applications, 21(2):194-220, 2014.

BIBLIOGRAPHY 220

[77]

(78]

[83]

[89]

D. S. Malkus and T. J. Hughes. Mixed finite element methods—reduced and selective
integration techniques: a unification of concepts. Computer Methods in Applied Mechanics
and Engineering, 15(1):63-81, 1978.

J. Mandel. Multigrid convergence for nonsymmetric, indefinite variational problems and
one smoothing step. Appl. Math. Comput., 19(1-4):201-216, 1986. Second Copper Moun-

tain conference on multigrid methods (Copper Mountain, Colo., 1985).

T. A. Manteuffel, S. Miinzenmaier, J. Ruge, and B. S. Southworth. Nonsymmetric
reduction-based algebraic multigrid. SIAM J. Sci. Comput., 41:5242-S268, 2019.

T. A. Manteuffel, J. Ruge, and B. S. Southworth. Nonsymmetric algebraic multigrid based
on local approximate ideal restriction (¢AIR). SIAM J. Sci. Comput., 40:A4105-A4130,
2018.

K.-A. Mardal and R. Winther. Uniform preconditioners for the time dependent stokes
problem. Numerische Mathematik, 98(2):305-327, 2004.

K.-A. Mardal and R. Winther. Erratum: Uniform preconditioners for the time dependent
stokes problem. Numerische Mathematik, 103(1):171-172, 2006.

K.-A. Mardal and R. Winther. Preconditioning discretizations of systems of partial dif-
ferential equations. Numerical Linear Algebra with Applications, 18(1):1-40, Jan 2011.

S. F. McCormick. Multigrid methods for variational problems: general theory for the
V-cycle. SIAM Journal on Numerical Analysis, 22(4):634-643, 1985.

S. F. McCormick. Multigrid methods. SIAM, 1987.

A. C. Muresan and Y. Notay. Analysis of aggregation-based multigrid. SIAM Journal on
Scientific Computing, 30(2):1082-1103, 2008.

A. Napov and Y. Notay. Comparison of bounds for V-cycle multigrid. Appl. Numer. Math,
60(3):176-192, 2010.

A. Napov and Y. Notay. When does two-grid optimality carry over to the V-cycle? Nu-
merical linear algebra with applications, 17(2-3):273-290, 2010.

A. Napov and Y. Notay. Algebraic analysis of aggregation-based multigrid. Numerical
Linear Algebra with Applications, 18(3):539-564, 2011.

BIBLIOGRAPHY 221

[90]

[91]

[97]

(98]

[100]

[101]

[102]

J. Necas. Sur une méthode pour résoudre les équations aux dérivées partielles du type
elliptique, voisine de la variationnelle. Annali della Scuola Normale Superiore di Pisa-
Classe di Scienze, 16(4):305-326, 1962.

S. Nepomnyaschikh. Decomposition and fictitious domains methods for elliptic boundary
value problems. In Fifth International Symposium on Domain Decomposition Methods for

Partial Differential Equations, pages 62—72. Philadelphia: STAM, 1992.

R. Nicolaides. On the #? convergence of an algorithm for solving finite element equations.
Mathematics of Computation, 31(140):892-906, 1977.

Y. Notay. Convergence analysis of perturbed two-grid and multigrid methods. SIAM
journal on numerical analysis, 45(3):1035-1044, 2007.

Y. Notay. Algebraic analysis of two-grid methods: The nonsymmetric case. Numerical
Linear Algebra with Applications, 17(1):73-96, jan 2010.

Y. Notay. An aggregation-based algebraic multigrid method. FElectronic transactions on
numerical analysis, 37(6):123-146, 2010.

Y. Notay. Algebraic theory of two-grid methods. Numerical Mathematics: Theory, Meth-
ods and Applications, 8(2):168-198, 2015.

Y. Notay and P. S. Vassilevski. Recursive Krylov-based multigrid cycles. Numerical Linear
Algebra with Applications, 15(July 2007):473-487, 2008.

P. Oswald. On discrete norm estimates related to multilevel preconditioners in the finite
element method. In Constructive Theory of Functions, Proc. Int. Conf. Varna, pages
203-214, 1991.

S. Pissanetzky. Sparse matriz technology. Academic Press Inc. [Harcourt Brace Jovanovich
Publishers], London, 1984.

S. Rippa. Minimal roughness property of the Delaunay triangulation. Comput. Aided
Geom. Design, 7:489-497, 1990.

C. Rodrigo, F. J. Gaspar, and L. T. Zikatanov. On the validity of the local Fourier analysis.
arXiw:1710.00408, 2017.

J. W. Ruge and K. Stiiben. Algebraic multigrid. in Multigrid Methods, Frontiers Appl.
Math., STAM, Philadelphia, 3:73-130, 1987.

BIBLIOGRAPHY 222

[103]

[104]

[105]

[106]

[107]

108]

109

[110]

[111]

[112]

[113]

[114]

[115]

[116]

Y. Saad. [terative Methods for Sparse Linear Systems. Number 4. STAM, second edition,
2003.

K. Stiiben. An introduction to algebraic multigrid. In Multigrid by U. Trottenberg, C.
QOosterlee, and A. Schiiller, pages 413-532. 2001.

K. Stiiben and U. Trottenberg. Multigrid methods: Fundamental algorithms, model prob-

lem analysis and applications. 1982.

D. B. Szyld. The many proofs of an identity on the norm of oblique projections. Numerical
Algorithms, 42(3-4):309-323, 2006.

X.-C. Tai. Rate of convergence for some constraint decomposition methods for nonlinear

variational inequalities. Numerische Mathematik, 93:755-786, 2003.

X.-C. Tai and J. Xu. Global and uniform convergence of subspace correction methods
for some convex optimization problems. Mathematics of Computation, 71(237):105-124,
2002.

R. Tarjan. Depth-first search and linear graph algorithms. SIAM journal on computing,
1(2):146-160, 1972.

U. Trottenberg, C. W. Oosterlee, and A. Schuller. Multigrid. Elsevier, 2000.

P. Vanék, J. Mandel, and M. Brezina. Algebraic multigrid by smoothed aggregation for
second and fourth order elliptic problems. Computing, 56(3):179-196, Sep 1996.

S. P. Vanka. Block-implicit multigrid solution of Navier-Stokes equations in primitive
variables. Journal of Computational Physics, 65:138-158, 1986.

P. Vanék, M. Brezina, J. Mandel, et al. Convergence of algebraic multigrid based on
smoothed aggregation. Numerische Mathematik, 88(3):559-579, 2001.

P. S. Vassilevski. Multilevel Block Factorization Preconditioners. 2008.

F. Wang and J. Xu. A crosswind block iterative method for convection-dominated prob-
lems. SIAM Journal on Scientific Computing, 21(2):620-645, 1999.

O. B. Widlund. Some schwarz methods for symmetric and nonsymmetric elliptic prob-
lems. In Fifth International Symposium on Domain Decomposition Methods for Partial
Differential Equations, number 55, page 19. STAM Philadelphia, PA, 1992.

BIBLIOGRAPHY 223

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]
[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

R. Wienands and W. Joppich. Practical Fourier analysis for multigrid methods. CRC
press, 2004.

J. Xu. Iterative methods by space decomposition and subspace correction. SIAM Review,
34:581-613, 1992.

J. Xu. A new class of iterative methods for nonselfadjoint or indefinite problems. SIAM

journal on numerical analysis, 29(2):303-319, 1992.

J. Xu. The auxiliary space method and optimal multigrid preconditioning techniques for
unstructured grids. Computing, 56:215-235, 1996.

J. Xu and L. Zikatanov. A monotone finite element scheme for convection-diffusion equa-
tions. Mathematics of Computation, 68(228):1429-1446, 1999.

J. Xu and L. Zikatanov. The method of alternating projections and the method of subspace
corrections in Hilbert space. Journal of The American Mathematical Society, 15:573—-597,
2002.

J. Xu and L. Zikatanov. Some observations on Babuska and Brezzi theories. Numerische
Mathematik, 94(1):195-202, mar 2003.

J. Xu and L. Zikatanov. Algebraic multigrid methods. Acta Numer., 26:591-721, 2017.
J. Xu and L. T. Zikatanov. Algebraic multigrid methods. ArXiv e-prints, Nov. 2016.

X. Xu. Algebraic Theory of Multigrid Methods. PhD thesis, University of Chinese Academy
of Sciences, 2019.

X. Xu and C.-S. Zhang. On the ideal interpolation operator in algebraic multigrid methods.
SIAM J. Numer. Anal., 56:1693-1710, 2018.

K. Yoshida. Functional Analysis. Springer-Verlag, 1971.

H. Yserentant. On the multi-level splitting of finite element spaces. Numerische Mathe-
matik, 49(4):379-412, 1986.

H. Yserentant. Two preconditioners based on the multi-level splitting of finite element
spaces. Numerische Mathematik, 58(1):163-184, 1990.

H. Yserentant. Old and new convergence proofs for multigrid methods. Acta Numerica,
2(1993):285-326, 1993.

X. Zhang. Multilevel schwarz methods. Numerische Mathematik, 63(1):521-539, 1992.

BIBLIOGRAPHY 224

[133] L. T. Zikatanov. Two-sided bounds on the convergence rate of two-level methods. Numer.
Linear Algebra Appl., 15(5):439-454, 2008.

Index

Algebraic high-frequency, 161 Full multigrid, 133

Algebraic low-frequency, 161
Galerkin orthogonality, 64

Gauss—Seidel method, 26

Gauss—Seidel smoother, 26

Algebraic smoothness, 161
AMLI-cycle, 131

Auxiliary space lemma, 102
Geometric multigrid, 125

Auxiliary space method, 102, 109
GMG, 125
Banach—Necas theorem, 14

o Hierarchical basis preconditioner, 116
BPX preconditioner, 120

Ideal interpolation, 160
Independent set, 150

CGC, 82

Coarse grid correction, 82

Interpolation error estimate, 67
Coercivity, 18 P

Inverse equality, 68
Complementarity condition, 205 q v

. Iteration matrix, 27
Complementarity problem, 205
Condition number, 38 K-cycle, 132
Conjugate gradient method, 50 Kato’s lemma, 82

Cycle index, 130
Laplace equation, 11

Discrete Sobolev inequality, 68 Lax-Milgram theorem, 18
Lemma of oblique projections, 83

LFA Ladder, 139
Local Fourier analysis, 75, 138

Effective condition number, 51

Error propagation operator, 39

Error reduction operator, 39

Expanded equation, 97 M-matrix, 151

Expanded system, 97 Matrix representation, 70

F-cycle, 133 Maximal independent set, 150

. . Maximum independent set, 150
Fictitious domain lemma, 109

e Method of subspace corrections, 94
Fictitious space lemma, 109

225

INDEX 226

MG-cycle, 130
Multigrid method, 32

Necas theorem, 16

Non-singular operator, 38
Operator complexity, 163

Poincaré inequality, 13

Poisson’s equation, 10

Richardson method, 26
Richardson smoother, 26

Ritz projection, 64

Smoothing factor, 77

Sobolev embedding theorem, 13
Sobolev number, 12

Sobolev space, 12

SOR method, 26

SOR smoother, 26

Spectral radius, 38

Strong approximation assumption, 158
Strongly n-coupled, 165

Strongly negatively coupled, 165

Symmetrized iteration, 41

Textbook multigrid efficiency, 138
Trace theorem, 13
Twogrid method, 81

V-cycle, 126
Variable V-cycle, 132

W-cycle, 131

Weak approximation assumption, 158
Weak approximation property, 163
Weighted Jacobi method, 26
Weighted Jacobi smoother, 26

X7 identity, 103

	Contents
	General Theory of Multilevel Iterative Methods
	Introduction
	The model equation
	Derivation and classical solution
	Sobolev spaces
	Weak formulation
	Well-posedness of the weak problem
	A simple model problem
	High-frequency and locality

	Discretization methods
	Finite difference method
	Finite element method
	Adaptive approximation

	Simple iterative solvers
	Some examples
	A simple observation
	Smoothing effect of Jacobi method

	Multigrid method in 1D
	Nested grids
	Smoothers
	Prolongation and restriction
	Multigrid algorithm

	Tutorial of FASP
	Homework problems

	Iterative Solvers and Preconditioners
	Stationary linear iterative methods
	Preliminaries and notation
	Convergence of stationary iterative methods
	Symmetrization
	Convergence rate of stationary iterative methods
	An example: modified G-S method

	Krylov subspace methods
	Gradient descent method
	Conjugate gradient method
	Effective condition number
	Generalizing KSM to Hilbert spaces

	Condition number and preconditioning
	Construction of preconditioners
	Preconditioned conjugate gradient method
	Preconditioning v.s. iteration
	Stopping criteria

	Domain decomposition methods
	Divide and conquer
	Overlapping DD methods
	Classical convergence results of overlapping DDMs

	Homework problems

	Twogrid Methods
	Finite element methods
	Galerkin approximation
	Finite element
	Properties of finite element methods
	Error analysis

	Matrix representations
	Vector and matrix representations
	Finite element matrices
	Matrix and operator forms of simple iterative methods

	Smoothers and smoothing effect
	A numerical example
	Local Fourier analysis
	Smoothing effect
	Smoother as preconditioner

	Twogrid methods
	General twogrid methods
	Convergence analysis of twogrid method
	Optimal coarse space

	Matrix representation of the twogrid method
	Grid transfer operators in matrix form
	Coarse problem in matrix form
	Twogrid iterator in matrix form

	Homework problems

	Subspace Correction Methods
	Successive and parallel subspace corrections
	Abstract framework for subspace corrections
	SSC and PSC methods

	Expanded system and block solvers
	Expansion of the original problem
	Block solvers for expanded equation
	Convergence of block solvers

	Convergence analysis of SSC
	A technical lemma
	The XZ identity

	Convergence analysis of PSC
	Relating PSC to SSC
	Condition number of PSC
	Estimates of K1 and K2

	Auxiliary space method
	Homework problems

	Examples of Multilevel Iterative Methods
	Subspace Correction Preconditioners
	Two-level overlapping DDM
	Two-level space decomposition
	Convergence analysis of DDM

	HB preconditioner
	Nested space decomposition
	Telescope expansions
	Hierarchical basis preconditioner
	Strengthened Cauchy-Schwarz inequality
	Convergence analysis of HB preconditioner

	BPX preconditioner
	Norm equivalence
	Convergence analysis for BPX preconditioner
	Matrix representation of BPX

	Homework problems

	Geometric Multigrid Methods
	Geometric multigrid method
	V-cycle multigrid method
	Matrix representation of GMG
	Anisotropic problems

	Nested iterations
	V-cycle and its generalizations
	Complexity of multigrid iterations
	Full multigrid method

	Convergence analysis of multigrid methods
	Convergence analysis of GMG method
	Some historical remarks

	Two-grid estimates for multigrid analysis
	From two-grid to multigrid
	Limitations of two-grid theory for GMG

	Implementation of multigrid methods
	A sparse matrix data structure
	Assembling finite element matrix
	Matrix form of transfer operators

	Homework problems

	Algebraic Multigrid Methods
	From GMG to AMG
	General procedure of multigrid methods
	Sparse matrices and graphs
	M-matrix and Delaunay triangulation
	Tarjan's algorithm

	Motivations of algebraic multigrid methods
	Algebraic convergence theory
	Interpolation operators
	Algebraic smooth error
	Construction of coarse spaces

	Classical algebraic multigrid methods
	General AMG setup phase
	Strength of connections
	C/F splitting
	Construction of prolongation

	Aggregation-based algebraic multigrid methods
	Unsmoothed aggregation AMG
	Smoothed aggregation AMG

	 Applications of Multilevel Iterative Methods
	Fluid Problems
	The Navier–Stokes equations
	Flow map
	Volume and mass conservation
	Balance of momentum
	Mathematical models

	The Stokes-type equations
	The time-dependent Stokes equation
	The Brezzi theory
	Well-posedness of the Stokes equation
	Penalty method for the Stokes equation

	Mixed finite element methods
	Well-posedness and convergence
	Some stable finite element pairs
	Mixed methods for the Poisson's equation

	Canonical preconditioners
	Preconditioning the Stokes equation
	Preconditioning the time-dependent Stokes equation
	Preconditioning the heat equation

	Block preconditioners
	Block diagonal and lower triangular method
	Augmented Lagrangian method

	Multigrid methods for the Stokes equation
	Braess–Sarazin smoother
	Vanka smoother

	Homework problems

	Optimization Problems
	Model problems
	A model variational inequality
	Finite element discretization for VIs
	Error and residual

	Nonlinear equation and unconstrained minimization
	Nonlinear solvers
	Newton–Raphson method
	Full approximation scheme
	Subspace correction methods for convex minimization

	Constrained minimization
	Projected full approximation method
	Interior point method
	Monotone multigrid method

	Constraint decomposition method

	Bibliography

