
Multilevel Iterative Methods

Chen-Song Zhang

Version 0.8, July 31, 2020

Copyright © Chen-Song Zhang, 2016–2020.

This work is licensed under a Creative Commons “Attribution-

NonCommercial-NoDerivs 3.0 Unported” license.

You can use this book free of charge for non-commercial purposes, in particular for studying and/or teaching.

You can print paper copies of the book or its parts using either personal printer or professional printing services.

Instructors teaching a class (or their institutions) can provide students with printed copies of the book and charge

the fee to cover the cost of printing; however the students should have an option to use the free electronic version.

See https://creativecommons.org/licenses/by-nc-nd/3.0/.

https://creativecommons.org/licenses/by-nc-nd/3.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/3.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/3.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/3.0/

Abstract

Over the past few decades, intensive research has been done on developing efficient it-

erative solvers for large-scale linear systems arising from PDEs. One particularly powerful

technique that has drawn a lot of attention in practice and theoretical analysis is the class

of multilevel iterative solvers/preconditioners. In this lecture note, we will focus on algo-

rithms and analysis of multilevel iterative methods, including the well-known geometric and

algebraic multigrid methods, for discrete problems arsing from partial differential equations.

The main content of this note is presented for the simple Poisson’s equation, but a few more

complicated applications of multilevel iterative methods are also discussed.

The lecture note is originally prepared for a semester-long course at the Academy of

Mathematics and Systems Science, Beijing. It is mainly based on Prof. Jinchao Xu’s short

courses at the Peking University in 2013 and at the Academy of Mathematics and Systems

Science in 2016, as well as Prof. Ludmil Zikatanov’s summer school lectures at the Academy

of Mathematics and Systems Science in 2015. Special thanks to Dr. Xuefeng Xu, Ms. Huilan

Zeng, and Ms. Wenjuan Liu for proof-reading this note.

- Version 0.1: March 18, 2016 — May 10, 2016

- Version 0.2: May 12, 2016 — May 26, 2016

- Version 0.3: June 08, 2016 — Aug 22, 2016

- Version 0.4: Aug 26, 2016 — Dec 31, 2016

- Version 0.5: Feb 01, 2017 — Jan 10, 2018

- Version 0.6: Sep 10, 2018 — Dec 20, 2018

- Version 0.7: May 28, 2019 — July 24, 2019

- Version 0.8: Jan 24, 2020 — July 31, 2020

Contents

Contents 1

I General Theory of Multilevel Iterative Methods 7

1 Introduction 8

1.1 The model equation . 10

Derivation and classical solution ‹ . 10

Sobolev spaces ‹ . 12

Weak formulation . 14

Well-posedness of the weak problem ‹ . 14

A simple model problem . 18

High-frequency and locality . 19

1.2 Discretization methods . 20

Finite difference method . 21

Finite element method . 23

Adaptive approximation . 24

1.3 Simple iterative solvers . 25

Some examples . 25

A simple observation . 27

Smoothing effect of Jacobi method ‹ . 29

1.4 Multigrid method in 1D . 30

Nested grids . 30

Smoothers . 30

Prolongation and restriction . 31

Multigrid algorithm . 32

1.5 Tutorial of FASP ‹ . 34

1.6 Homework problems . 35

1

CONTENTS 2

2 Iterative Solvers and Preconditioners 36

2.1 Stationary linear iterative methods . 36

Preliminaries and notation . 37

Convergence of stationary iterative methods . 39

Symmetrization . 41

Convergence rate of stationary iterative methods 43

An example: modified G-S method ‹ . 44

2.2 Krylov subspace methods . 46

Gradient descent method . 46

Conjugate gradient method . 49

Effective condition number ‹ . 51

Generalizing KSM to Hilbert spaces . 52

2.3 Condition number and preconditioning . 54

Construction of preconditioners . 54

Preconditioned conjugate gradient method . 55

Preconditioning v.s. iteration . 56

Stopping criteria ‹ . 57

2.4 Domain decomposition methods . 58

Divide and conquer . 58

Overlapping DD methods . 59

Classical convergence results of overlapping DDMs ‹ 60

2.5 Homework problems . 61

3 Twogrid Methods 62

3.1 Finite element methods . 62

Galerkin approximation . 63

Finite element ‹ . 65

Properties of finite element methods . 67

Error analysis ‹ . 69

3.2 Matrix representations . 70

Vector and matrix representations . 70

Finite element matrices . 71

Matrix and operator forms of simple iterative methods 72

3.3 Smoothers and smoothing effect . 74

A numerical example . 74

Local Fourier analysis ‹ . 75

CONTENTS 3

Smoothing effect . 78

Smoother as preconditioner . 80

3.4 Twogrid methods . 80

General twogrid methods . 81

Convergence analysis of twogrid method . 82

Optimal coarse space ‹ . 86

3.5 Matrix representation of the twogrid method . 87

Grid transfer operators in matrix form . 88

Coarse problem in matrix form . 89

Twogrid iterator in matrix form . 89

3.6 Homework problems . 90

4 Subspace Correction Methods 92

4.1 Successive and parallel subspace corrections . 92

Abstract framework for subspace corrections . 93

SSC and PSC methods . 95

4.2 Expanded system and block solvers . 96

Expansion of the original problem . 96

Block solvers for expanded equation . 98

Convergence of block solvers . 100

4.3 Convergence analysis of SSC . 101

A technical lemma . 101

The XZ identity . 103

4.4 Convergence analysis of PSC . 105

Relating PSC to SSC . 105

Condition number of PSC . 106

Estimates of K1 and K2 . 107

4.5 Auxiliary space method ‹ . 109

4.6 Homework problems . 110

II Examples of Multilevel Iterative Methods 111

5 Subspace Correction Preconditioners 112

5.1 Two-level overlapping DDM . 112

Two-level space decomposition . 112

Convergence analysis of DDM . 113

CONTENTS 4

5.2 HB preconditioner . 114

Nested space decomposition . 114

Telescope expansions . 115

Hierarchical basis preconditioner . 115

Strengthened Cauchy-Schwarz inequality . 117

Convergence analysis of HB preconditioner . 118

5.3 BPX preconditioner . 120

Norm equivalence . 120

Convergence analysis for BPX preconditioner . 122

Matrix representation of BPX . 123

5.4 Homework problems . 124

6 Geometric Multigrid Methods 125

6.1 Geometric multigrid method . 125

V-cycle multigrid method . 126

Matrix representation of GMG . 127

Anisotropic problems ‹ . 128

6.2 Nested iterations . 130

V-cycle and its generalizations . 130

Complexity of multigrid iterations . 132

Full multigrid method ‹ . 133

6.3 Convergence analysis of multigrid methods . 134

Convergence analysis of GMG method . 135

Some historical remarks ‹ . 136

6.4 Two-grid estimates for multigrid analysis . 139

From two-grid to multigrid . 139

Limitations of two-grid theory for GMG ‹ . 140

6.5 Implementation of multigrid methods . 141

A sparse matrix data structure . 141

Assembling finite element matrix . 143

Matrix form of transfer operators . 145

6.6 Homework problems . 147

7 Algebraic Multigrid Methods 148

7.1 From GMG to AMG . 148

General procedure of multigrid methods . 148

Sparse matrices and graphs ‹ . 150

CONTENTS 5

M-matrix and Delaunay triangulation ‹ . 151

Tarjan’s algorithm ‹ . 153

7.2 Motivations of algebraic multigrid methods . 156

Algebraic convergence theory . 156

Interpolation operators . 159

Algebraic smooth error . 160

Construction of coarse spaces . 162

7.3 Classical algebraic multigrid methods . 164

General AMG setup phase . 164

Strength of connections . 165

C/F splitting . 166

Construction of prolongation . 170

7.4 Aggregation-based algebraic multigrid methods 174

Unsmoothed aggregation AMG . 174

Smoothed aggregation AMG . 175

III Applications of Multilevel Iterative Methods 178

8 Fluid Problems 179

8.1 The Navier–Stokes equations ‹ . 179

Flow map . 179

Volume and mass conservation . 181

Balance of momentum . 182

Mathematical models . 184

8.2 The Stokes-type equations . 185

The time-dependent Stokes equation . 185

The Brezzi theory . 186

Well-posedness of the Stokes equation . 188

Penalty method for the Stokes equation ‹ . 188

8.3 Mixed finite element methods . 189

Well-posedness and convergence . 189

Some stable finite element pairs ‹ . 190

Mixed methods for the Poisson’s equation ‹ . 192

8.4 Canonical preconditioners . 193

Preconditioning the Stokes equation . 193

Preconditioning the time-dependent Stokes equation ‹ 194

CONTENTS 6

Preconditioning the heat equation ‹ . 196

8.5 Block preconditioners . 197

Block diagonal and lower triangular method . 198

Augmented Lagrangian method . 199

8.6 Multigrid methods for the Stokes equation . 201

Braess–Sarazin smoother . 201

Vanka smoother . 201

8.7 Homework problems . 202

9 Optimization Problems 204

9.1 Model problems . 204

A model variational inequality . 204

Finite element discretization for VIs . 206

Error and residual . 206

9.2 Nonlinear equation and unconstrained minimization 207

Nonlinear solvers . 207

Newton–Raphson method . 208

Full approximation scheme . 209

Subspace correction methods for convex minimization 210

9.3 Constrained minimization . 210

Projected full approximation method . 210

Interior point method . 211

Monotone multigrid method . 212

9.4 Constraint decomposition method . 213

Bibliography 214

Part I

General Theory of Multilevel

Iterative Methods

7

Chapter 1

Introduction

Computer simulation has become an important tool in engineering and sciences. Many

physical problems in scientific and engineering computing can be reduced to the numerical

solution of certain partial differential equations (PDEs). Finding a viable solution to underlying

discretized systems is often expensive, generally consuming a significant portion of the overall

cost in a numerical solution procedure of PDEs. Various fast solution techniques, such as

adaptive mesh refinement (AMR), domain decomposition (DD) methods, and multigrid (MG)

methods, have been developed to address this issue. In certain sense, all these techniques involve

“multilevel” iterations.

A Physical Problem

Mathematical Model

Analysis Simulation

Existence,
uniqueness,

stability,
regularity,

conservation,
…

Linearization,
mesh generation,

discretization,
solution,

parallelization,
…

Software
Development

User interface,
code optimization,

input/output,
customer service,

…

Computer System

Computer Program

Figure 1.1: Numerical simulation of a physical problem.

8

CHAPTER 1. INTRODUCTION 9

The above diagram gives a simple illustration of how a physical problem is “solved” via

numerical simulation in general. It is basically an interplay of modeling, mathematical analy-

sis, numerical analysis, scientific computing, and software engineering. A successful computer

simulation of complicated physical phenomena requires expertise in many scientific subjects.

Hence, nowadays it is difficult for one person to manage all these areas and close collaborations

of experts from different areas become crucial.

Effective linear solvers play a key role in many application areas in scientific computing.

There are many different types of algorithms for solving linear systems. In this lecture, we

focus on studying algorithmic and theoretical aspects of multilevel iterative methods, including

geometric multigrid (GMG) and algebraic multigrid (AMG) methods. The basic problem setting

for our discussion is: Given an invertible matrix A : RNˆN and a vector ~f P RN , find ~u P RN

such that A~u “ ~f . There are many features of linear solver that we desire in practice, including:

• Convergence — The method should converge to the solution for any initial guess.

• Robustness — The method should behave similarly in different scenarios.

• Optimality — The method can give a solution with OpNq computational cost.

• Efficiency — The method can give a solution in “reasonably short” wall time.

• Scalability — The method can scale well on modern parallel architectures.

• Reliability — The method should converge to a solution with limited amount of time.

• Usability — The method can be implemented and used relatively easily.

Here we do not mean to define these features rigorously and we will discuss some of them in

details later. These features sometimes contradict with each other and we have to find a good

balance in practice. There are many different solution methods available, including direct solvers

and iterative solvers. In this lecture, we will discuss several popular multilevel iterative methods,

including the overlapping domain decomposition methods with coarse space corrections, two-

grid methods, geometric multigrid methods, algebraic multigrid methods. And we will mainly

study the convergence theory of these methods using the subspace correction framework.

CHAPTER 1. INTRODUCTION 10

1.1 The model equation

Let Ω Ă Rd be an open and bounded domain with Lipschitz boundary and f P L2pΩq. We

consider solution of the Poisson’s equation with Dirichlet boundary condition

$

&

%

´∆u “ f in Ω,

u “ 0 on BΩ.
(1.1)

This equation will be our main model equation in most part of this lecture.

Remark 1.1 (Diffusion equation in various applications). The Poisson’s equation, or more

generally the diffusion equation, appears in many areas of physics, for example, Fick’s law for

chemical concentration, Fourier’s law for temperature, Ohm’s law for electrostatic potential,

Darcy’s law for porous media flow.

Derivation and classical solution ‹

The concept of diffusion is widely used in physics, chemistry, biology, sociology, economics,

and finance. It is the net movement of the object (e.g. molecules or atoms) from a region of

high concentration (or high chemical potential) to a region of low concentration (or low chemical

potential). This is also referred to as the movement of a substance down a concentration gradient.

Let upxq be some diffusive quantity, like pressure, temperature, or concentration of a bio-

logical species. We define the operator ∇ :“ pB1, . . . , Bdq
T . So the gradient of scalar function

u : Ω ÞÑ R can be denoted by ∇u. The Laplace operator can be written as ∆u “ ∇ ¨ ∇u. A

diffusive flux ~F is usually proportional to the gradient of u, i.e.,

~F “ ´κ∇u. (1.2)

where κ is the diffusivity (e.g., heat conductivity or permeability). Note that´∇u is the so-called

steepest descent direction. If a flow is controlled solely by diffusion, then the mass conservation

in any volume ω with unit outer normal vectors ~ν can be written, in the integral form, as

B

Bt

ż

ω
u dx “ ´

ż

Bω

~F ¨ ~ν dS

or, in the strong form, as
B

Bt
u “ ´∇ ¨ ~F . (1.3)

This can be seen by applying the Divergence Theorem

ż

ω
∇ ¨ ~F dx “

ż

Bω

~F ¨ ~νdS. (1.4)

CHAPTER 1. INTRODUCTION 11

Now, by plugging (1.2) into (1.3), we obtain an equation

B

Bt
u “ ∇ ¨ pκ∇uq. (1.5)

If we assume κ ” 1 or just a constant and there is a source/sink term f on Ω, then we arrive at

the heat equation
B

Bt
u´∆u “ f. (1.6)

The steady-state solution of equation (8.44) satisfies the well-known Poisson’s equation

´∆u “ f. (1.7)

Remark 1.2 (Laplace equation). In case of the body force or source/sink term is zero, the

equation is usually referred to as the Laplace equation

´∆u “ 0. (1.8)

If u P C2pΩq and ´∆u “ 0, the u is called a harmonic function.

We have the fundamental solution of the Laplace equation

Φpxq :“

$

&

%

´ 1
2π log |x|, d “ 2

1
dpd´2qαpdq |x|

2´d, d ě 3
(1.9)

where αpdq is the volume of the unit ball in Rd. It is well-known that

upxq “ Φ ˚ f :“

ż

Rd
Φpx´ yqfpyq dy

satisfies ´∆u “ f in Rd and u P C2pRdq; see Evans [53].

Theorem 1.3 (Strong Maximum Principle). If u P C2pΩq
Ş

CpΩq is harmonic in Ω, then

max
xPΩ

upxq “ max
xPBΩ

upxq.

If the domain Ω is connected, then u ” C if there exists x0 P Ω such that

upx0q “ max
xPΩ

upxq.

Using the maximum principle, we can obtain uniqueness of the solution to the Poisson’s

equation:

Theorem 1.4 (Uniqueness of solution). If f P CpΩq, then there exists at most one solution

u P C2pΩq
Ş

CpΩq.

CHAPTER 1. INTRODUCTION 12

Sobolev spaces ‹

The standard L8-norm and L2-norm will be denoted by } ¨ }8 and } ¨ }0, respectively. The

symbol L2
0pΩq denotes a subspace of L2pΩq consisting of functions that have a zero average.

The bilinear forms p¨, ¨q and x¨, ¨y denote the classical L2-inner product and the duality pair,

respectively.

Given a natural number k P N and 1 ď p ď 8, we define the Sobolev spaces

W k
p pΩq :“

v : Ω ÞÑ R : ∇αv P LppΩq, for all |α| ď k
(

, (1.10)

where α “ rα1, . . . , αds is a multi-index and ∇αv :“ Bα1
x1
¨ ¨ ¨ Bαdxd v is the weak derivative of order

α. The corresponding norm and semi-norm are then defined as follows: for 1 ď p ă 8,

}v}Wk
p pΩq

:“
´

ÿ

|α|ďk

}∇αv}pLppΩq

¯
1
p
, |v|Wk

p pΩq
:“

´

ÿ

|α|“k

}∇αv}pLppΩq

¯
1
p
, (1.11)

and, for p “ 8,

}v}Wk
8pΩq

:“ sup
|α|ďk

}∇αv}L8pΩq, |v|Wk
8pΩq

:“ sup
|α|“k

}∇αv}L8pΩq. (1.12)

Definition 1.5 (Sobolev number). Let Ω Ă Rd be Lipschitz and bounded, k P N, and 1 ď p ď 8.

The Sobolev number is defined by

sobpW k
p pΩqq :“ k ´

d

p
. (1.13)

Remark 1.6 (Natural scaling). There is a natural scaling for the semi-norm | ¨ |Wk
p pΩq

. For

h ą 0, we apply the change of variable x̂ “ x{h : Ω ÞÑ Ω̂. Then the following scaling result holds

ˇ

ˇv̂
ˇ

ˇ

Wk
p pΩ̂q

“ h
k´ d

p
ˇ

ˇv
ˇ

ˇ

Wk
p pΩq

“ hsobpWk
p pΩqq

ˇ

ˇv
ˇ

ˇ

Wk
p pΩq

.

This property is useful in scaling argument (or homogeneity argument) for finite element error

estimates.

If p “ 2, the spaces W k
2 pΩq are Hilbert spaces and we denote them by HkpΩq for short. The

inner product is given by

pu, vqk,Ω :“ pu, vqHkpΩq :“
ÿ

|α|ďk

ż

Ω
∇αu∇αv dx.

The induced norm of this scalar product is the W k
2 pΩq-norm. We denote the completion of

C80 pΩq in HkpΩq by Hk
0 pΩq. We will also use the fractional Sobolev space Hk`σ

0 pΩq where

0 ă σ ă 1. It is defined as the completion of C80 pΩq in the fraction norm:

}v}Hk`σpΩq :“
´

}v}2HkpΩq ` |v|
2
Hk`σpΩq

¯
1
2
,

CHAPTER 1. INTRODUCTION 13

where

|v|Hk`σpΩq :“

ˆ

ÿ

|α|“k

ż

Ω

ż

Ω

|Dαvpxq ´Dαvpyq|2

|x´ y|d`2σ
dx dy

˙
1
2

.

Before we discuss the Poisson’s equation in weak formulation, we introduce a few important

properties of the Sobolev spaces, which will become important in our later analysis for multigrid

methods.

Proposition 1.7 (Sobolev embedding). Let 0 ď k ă m. If sobpWm
p pΩqq ą sobpW k

q pΩqq, then

the embedding Wm
p pΩq ãÑW k

q pΩq is compact.

Proposition 1.8 (Sobolev embedding to Hölder continuous spaces). Let 0 ă m and Ω is

Lipschitz. If 0 ă µ ď sobpWm
p pΩqq, then Wm

p pΩq Ă C0,µpΩq Ă C0pΩq.

Example 1.9 (Embedding to C0pΩq). An example of particular interests is the relation between

H1pΩq and continuous functions C0pΩq for Ω Ă Rd. From Proposition 1.8, we have

H1pΩq Ă C0pΩq, if d “ 1; and H1pΩq Ć C0pΩq, if d ą 1.

For example, if Ω is the unit disk on R2, then upx, yq “ p´ logpx2`y2qq1{3 is not continuous but

in H1pΩq.

Proposition 1.10 (Poincaré-Wirtinger inequality). For any v P H1pΩq, we have

›

›

›
v ´ |Ω|´1

ż

Ω
v dx

›

›

›

0,Ω
ď CpΩq

ˇ

ˇv
ˇ

ˇ

1,Ω
.

Proposition 1.11 (Poincaré inequality). For any v P H1
0 pΩq, we have

›

›v
›

›

0,Ω
ď Cd|Ω|

1{d
ˇ

ˇv
ˇ

ˇ

1,Ω
.

It is a special case of the more general Friedrichs’ inequality on W k
p pΩq with zero trace and it is

sometimes referred to as the Friedrichs–Poincaré inequality.

Proposition 1.12 (Trace theorem). There exists a unique linear operator trace : H1pΩq ÞÑ

L2pBΩq, such that tracepvq “ v, if v P C0pΩq
Ş

H1pΩq, and

›

› tracepvq
›

›

0,BΩ
ď CpΩq}v}1,Ω, @v P H1pΩq.

Moreover, if g P H
1
2 pBΩq, there exists φ P H1pΩq such that φ|BΩ “ g and

}φ}1,Ω ď C}g} 1
2
,BΩ.

CHAPTER 1. INTRODUCTION 14

Weak formulation

Now we consider the Poisson’s equation in a weaker sense. A simple motivation is to convert

from a point-wise view to an average view:

upxq “ 0, a.e. ðñ

ż

Ω
uv dx “ 0, @v P C80 pΩq.

Similarly, we can write the Poisson’s equation in the weak form (i.e., the integral form). In the

one-dimensional case, it is easy to see that

´u2 “ f, a.e. ðñ ´

ż

Ω
pu2 ` fqv dx “ 0, @v P C80 pΩq.

Let U be a Hilbert space with an inner product p¨, ¨qU and its induced norm } ¨ }U . Let V

be a Hilbert space with another inner product p¨, ¨qV and its induced norm } ¨ }V . Denote by V 1

the dual space of V equipped with the norm

}f}V 1 :“ sup
vPV

〈f, v〉
}v}V

, @f P V 1.

Definition 1.13 (Continuity). A bilinear form ar¨, ¨s : U ˆ V ÞÑ R is called continuous if and

only if there exists a constant Ca such that

aru, vs ď Ca}u}U }v}V , @u P U , v P V . (1.14)

Consider a continuous bilinear form ar¨, ¨s : U ˆ V Ñ R and f P V 1. We formulate a model

problem: Find u P U such that Au “ f in V 1. Or in the weak form, find u P U such that

aru, vs “ 〈f, v〉 , @v P V . (1.15)

Example 1.14 (The Poisson equation). The Poisson problem with homogenous Dirichlet bound-

ary was given in (1.1). In this case, we have Au :“ ´∆u and aru, vs :“ p∇u,∇vq. Ap-

parently, the bilinear form ar¨, ¨s is continuous due to the Cauchy–Schwarz inequality and

U “ V “ H1
0 pΩq.

Well-posedness of the weak problem ‹

We denote the space of all linear and continuous operators from U to V as L pU ; V q. Here

we review a few results on the inf-sup condition due to Nečas [90].

Theorem 1.15 (Banach–Nečas Theorem). Let ar¨, ¨s : U ˆ V ÞÑ R be a continuous bilinear

form with a norm defined as

›

›ar¨, ¨s
›

› :“ sup
uPU

sup
vPV

aru, vs

}u}U }v}V
.

CHAPTER 1. INTRODUCTION 15

(i) Then there exists a unique linear operator A P L pU ; V q such that

pAu, vqV “ aru, vs, @u P U , v P V ,

with the operator norm
›

›A
›

›

L pU ;V q
“

›

›ar¨, ¨s
›

›.

(ii) Moreover, the bilinear form ar¨, ¨s satisfies the inf-sup condition:

Dα ą 0, such that α}u}U ď sup
vPV

aru, vs

}v}V
, @u P U , (1.16)

for any 0 ‰ v P V , there exists u P U , such that aru, vs ‰ 0, (1.17)

if and only if A : U ÞÑ V is an isomorphism and

}A´1}L pV ;U q ď α´1. (1.18)

Proof. (i) For any fixed u P U , the mapping aru, ¨s belongs to the dual space V 1. By the Riesz

representation theorem, there exists Au P V such that

pAu, vqV “ aru, vs, @ v P V .

Since ar¨, ¨s is continuous, we obtain a bounded operator A P L pU ; V q. Furthermore,

}A}L pU ;V q “ sup
uPU

}Au}V
}u}U

“ sup
uPU

sup
vPV

pAu, vqV
}u}U }v}V

“ sup
uPU

sup
vPV

aru, vs

}u}U }v}V
“

›

›ar¨, ¨s
›

›.

(ii) ùñ The inf-sup condition (1.16) guarantees that there exists α ą 0 such that

α}u}U ď sup
vPV

aru, vs

}v}V
“ sup

vPV

pAu, vqV
}v}V

“ }Au}V , @u P U . (1.19)

This implies that A is injective. Let

uk
(8

k“0
Ă U and vk :“ Auk be a sequence such that

vk Ñ v P V . In order to show the range of A is closed, we need to show v P ApU q. From the

inequality (1.19), we have

α}uk ´ uj}U ď }Apuk ´ ujq}V “ }vk ´ vj}V Ñ 0.

Hence, tuku
8
k“0 is a Cauchy sequence and uk Ñ u P U . Moreover,

v “ lim
kÑ8

vk “ lim
kÑ8

Auk “ Au P ApU q.

Now we assume that ApU q ‰ V . Since ApU q is closed, we can decompose V as

V “ ApU q ‘ApU qK

CHAPTER 1. INTRODUCTION 16

and ApU qK is non-trivial. That is to say, there exists 0 ‰ vK P ApU qK, which contradicts the

condition (1.17). Hence the assumption ApU q ‰ V cannot hold, i.e., A is surjective. This, in

turn, shows that A is an isomorphism from U onto V . Moreover, (1.19) shows

α}A´1v}U ď }v}V , @ v P V .

This proves the inequality (1.18).

(ii) ðù We have

inf
uPU

sup
vPV

aru, vs

}u}U }v}V
“ inf

uPU
sup
vPV

pAu, vq
}u}U }v}V

“ inf
uPU

}Au}V
}u}U

“ inf
vPV

}v}V
}A´1v}U

“

´

sup
vPV

}A´1v}U
}v}V

¯´1
“ }A´1}

´1
L pV ;U q ě α.

This is exactly (1.16). Since A is an isomorphism, for any 0 ‰ v P V , there exists 0 ‰ u P U ,

such that Au “ v and

aru, vs “ pAu, vq “ }v}2V ‰ 0,

which is (1.17).

Theorem 1.16 (Nečas Theorem). Let ar¨, ¨s : U ˆV ÞÑ R be a continuous bilinear form. Then

the equation (1.15) admits a unique solution u P U for all f P V 1, if and only if the bilinear

form ar¨, ¨s satisfies one of the equivalent inf-sup conditions:

(1) There exists α ą 0 such that

sup
vPV

arw, vs

}v}V
ě α}w}U , @w P U ; (1.20)

and for every 0 ‰ v P V , there exists w P U such that arw, vs ‰ 0.

(2) There holds

inf
wPU

sup
vPV

arw, vs

}w}U }v}V
ą 0 and inf

vPV
sup
wPU

arw, vs

}w}U }v}V
ą 0. (1.21)

(3) There exists a positive constant α ą 0 such that

inf
wPU

sup
vPV

arw, vs

}w}U }v}V
“ inf

vPV
sup
wPU

arw, vs

}w}U }v}V
“ α. (1.22)

Furthermore, the solution u satisfies the stability condition

}u}U ď
1

α
}f}V 1 .

CHAPTER 1. INTRODUCTION 17

Proof. Let J : V ÞÑ V 1 be the isometric Reisz isomorphism. According to Theorem 1.15, we

have A P L pU ; V q, which is the linear operator corresponding to ar¨, ¨s. In this sense, (1.15) is

equivalent to

u P U : Au “ J ´1f in V .

Assume the condition (1) holds. Then, A is invertible by Theorem 1.15. The other direction is

also easy to see.

Now the interesting part is to show the equivalence of the three conditions, (1), (2), and (3).

From the proof of Theorem 1.15, we have seen that

inf
wPU

sup
vPV

arw, vs

}w}U }v}V
“ }A´1}

´1
L pV ;U q.

Similarly,

inf
vPV

sup
wPU

arw, vs

}w}U }v}V
“ inf

vPV
sup
wPU

pAw, vqV
}w}U }v}V

“ inf
vPV

sup
wPU

pw,A:vqU
}w}U }v}V

“ }A´:}´1
L pU ;V q “ }A´1}

´1
L pV ;U q,

where A: denotes the adjoint operator. Furthermore, if the condition

inf
vPV

sup
wPU

arw, vs

}w}U }v}V
ą 0

holds, then for any v P V , we have

sup
wPU

arw, vs

}w}U }v}V
ą 0.

Hence there exists w P U , such that arw, vs ‰ 0. This completes the equivalence proof.

From the proof of the last two theorems, we have the following observations:

Remark 1.17 (Existence and uniqueness). Solution of the equation (1.15) exists (i.e., A is

surjective or onto) if and only if

inf
vPV

sup
wPU

arw, vs

}w}U }v}V
ą 0. existence or surjective

Solution of (1.15) is unique (i.e., A is injective or one-to-one) if and only if

inf
wPU

sup
vPV

arw, vs

}w}U }v}V
ą 0. uniqueness or injective

That is to say, A is bijective if and only if the inf-sup conditions (1.21) or its equivalent conditions

hold. In finite dimensional spaces, any linear surjective or injective map is also bijective. So we

only need one of the above inf-sup conditions to show well-posedness.

CHAPTER 1. INTRODUCTION 18

Remark 1.18 (Optimal constant). The constant α in (1.22) is the largest possible constant

in (1.20). In general, the first condition in Theorem 1.16 is easier to verify than the third

condition.

Corollary 1.19 (Well-posedness and inf-sup condition). If the weak formulation (1.15) has a

unique solution u P U for any f P V 1 so that

}u}U ď C}f}V 1 ,

then the bilinear form ar¨, ¨s satisfies the inf-sup condition (1.22) with α ě C´1.

Proof. Since (1.15) has a unique solution for all f P V 1, the operator A : L pU ; V q is invertible

and A´1 : L pV ; U q is bounded. Due to the fact }u}U ď C}f}V 1 , we have }A´1}L pV ;U q ď C.

From the proof of the Nečas theorem, we can immediately see the optimal inf-sup constant

α “ }A´1}
´1
L pV ;U q ě C´1.

A simple model problem

Now we consider the simplest case where V “ U and A is coercive.

Definition 1.20 (Coercivity). A continuous bilinear form ar¨, ¨s : V ˆV ÞÑ R is called coercive

if there exists α ą 0 such that

arv, vs ě α}v}2V , @v P V . (1.23)

We notice that supwPV
arv,ws
}w}V

ě
arv,vs
}v}V

ě α}v}V , which implies the first inf-sup condition in

Theorem 1.16. Hence, for any f P V 1, the coercive variational problem (1.15) has a unique

solution and the solution u is continuously depends on f , i.e., }u}V ď α´1}f}V 1 . In this case,

Theorem 1.16 is reduced to the well-known Lax-Milgram theorem.

Corollary 1.21 (Lax-Milgram theorem). Let ar¨, ¨s : V ˆV ÞÑ R be a continuous bilinear form

which satisfies the coercivity condition (1.23). Then (1.15) has a unique solution u P V for any

f P V 1 and }u}V ď α´1}f}V 1 .

Remark 1.22 (Energy norm). If the bilinear form ar¨, ¨s : V ˆ V ÞÑ R is symmetric, then,

apparently, it defines an inner product on V . Its induced norm is also called the energy norm

|||v||| :“ arv, vs1{2.

Coercivity and continuity of the bilinear form ar¨, ¨s imply that

α
›

›v
›

›

2

V
ď |||v|||2 ď

›

›ar¨, ¨s
›

›

›

›v
›

›

2

V
“

›

›A
›

›

L pV ;V q

›

›v
›

›

2

V
,

namely, the energy norm |||¨||| is equivalent to the } ¨ }V -norm. We will denote the dual energy

norm by |||¨|||˚.

CHAPTER 1. INTRODUCTION 19

Remark 1.23 (Poisson is “well-conditioned”). We notice that the Poisson’s equation is well-

posed in the sense that ´∆ : V ÞÑ V 1 is an isomorphism with V “ H1
0 pΩq and V 1 “ H´1pΩq.

There exist constants α (coercivity constant) and Ca (continuity constant), such that

α
›

›v
›

›

2

V
ď arv, vs “ x´∆v, vy ď Ca

›

›v
›

›

2

V
, @v P V .

Hence we have the “condition number” of the Laplace operator is bounded

κp´∆q “
›

›´∆
›

›

L pV ;V 1q
¨
›

›p´∆q´1
›

›

L pV 1;V q
ď
Ca
α
.

This means ´∆ is well-conditioned, which is contradicting our experience in solving the Poisson’s

equation numerically. The problem here lies in that we are working on two different spaces V

and V 1. If we consider ´∆ : L2pΩq ÞÑ L2pΩq instead, then we lost boundedness. More general

theory has been developed in the seminar work by Babuška [4].

High-frequency and locality

Consider the eigenvalue problem for one-dimensional Laplace operator with the homogenous

Dirichlet boundary condition, i.e., ´u2pxq “ λupxq for x P p0, 1q and up0q “ up1q “ 0. It is easy

to see that the eigenvalues and the corresponding eigenfunctions are

λk “ pkπq
2 and ukpxq “ sinpkπxq, k “ 1, 2, ¨ ¨ ¨

For other types of boundary conditions, the eigenvalues and eigenfunctions can be obtained

as well. We notice that larger eigenvalues (larger k) correspond to eigenfunctions of higher

frequency. Similar results can be expected for discrete problems which will be discussed later

on.

An important observation comes from the analysis to the local problem

´u2δpxq “ fpxq, x P Bδ :“ px0 ´ δ, x0 ` δq and uδpx0 ´ δq “ uδpx0 ` δq “ 0.

We can obtain the eigenfunctions of this local problem:

uδ,kpxq “ sin
`kπ

2δ
px´ x0 ` δq

˘

, k “ 1, 2, ¨ ¨ ¨ .

Define the error e :“ u´ uδ in Bδ. Hence e is harmonic in Bδ. It is easy to construct a cut-off

function θ P C80 pBδq, such that it satisfies the following conditions:

(i) θpxq ą 0; (ii) θpxq “ 1, @x P Bδ{2; (iii) |θ1pxq| ď C
δ .

CHAPTER 1. INTRODUCTION 20

Thus we have

ż

Bδ{2

ˇ

ˇe1pxq
ˇ

ˇ

2
dx ď

ż

Bδ

θ2pxq
ˇ

ˇe1pxq
ˇ

ˇ

2
dx “ ´

ż

Bδ

´

pθ2q1e1 ` θ2e2
¯

e dx

ď
2C

δ

ż

Bδ

ˇ

ˇθe1e
ˇ

ˇ dx ď
2C

δ

´

ż

Bδ

ˇ

ˇθe1
ˇ

ˇ

2
dx

¯
1
2
´

ż

Bδ

|e|2 dx
¯

1
2
.

The first and last inequalities immediately imply that

´

ż

Bδ{2

ˇ

ˇe1pxq
ˇ

ˇ

2
dx

¯
1
2
ď

´

ż

Bδ

θ2pxq
ˇ

ˇe1pxq
ˇ

ˇ

2
dx

¯
1
2
ď

2C

δ

´

ż

Bδ

|e|2 dx
¯

1
2
. (1.24)

If we plug in the eigenfunctions uδ,k to the above inequality, we can see that

kπ

2δ
ď

2C

δ
or k ď

4C

π
,

which suggests only low-frequency components are left in the error function e and oscillating

components in the distance δ are accurately captured.

Remark 1.24 (High-frequencies). This simple result implies that the high-frequency part of u

can be estimated very well by the local solution uδ for the model problems. Motived by (1.24), we

can define geometric high-frequency functions uk as those with relatively large }∇uk}0,Ω{}uk}0,Ω
ratio. Moreover, we also note that singularities are special forms of high-frequency. Many forms

of singularity can be resolved numerically through local mesh refinement. The reason why this

type of methods is able to work is such a local behavior of high frequencies. In the later chapters,

we will discuss more on this issue from geometric and algebraic perspectives.

1.2 Discretization methods

Discretization concerns the process of transferring continuous functions, models, or equations

into their discrete counterparts. This process is usually carried out as the first step toward

making them suitable for numerical evaluation and implementation on modern computers.

Let Ω P Rd be an open domain and f P L2pΩq. We consider the following model problem

$

&

%

´∆u “ f in Ω,

u “ 0 on BΩ.

Many discretization methods have been developed, such as finite difference (FD) and the finite

element (FE) methods, each with specific approaches to discretization. After discretization, we

usually end up with a linear algebraic system of equations

A~u “ ~f. (1.25)

CHAPTER 1. INTRODUCTION 21

Finite difference method

In one-dimensional case, without loss of generality, we can assume Ω “ p0, 1q and the domain

is sub-divided intoN`1 equally spaced pieces. So we get a uniform mesh with meshsize h “ 1
N`1 ;

see the following figure for illustration.

0 1h

x0 x1 x2 x
N

x
N+1

1

Figure 1.2: Uniform mesh in 1D.

Using the Taylor’s expansion, we can easily obtain that

u2pxiq “
1

h

”

u1pxi` 1
2
q ´ u1pxi´ 1

2
q

ı

`Oph2q

“
1

h2

”

upxi´1q ´ 2upxiq ` upxi`1q

ı

`Oph2q.

Let ui « upxiq be an approximate solution. Then the FD discretization of the Poisson’s equation

is

1

h2

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

2 ´1

´1 2 ´1
. . .

. . .
. . .

. . .
. . . ´1

´1 2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

u1

u2

...

uN´1

uN

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

fpx1q

fpx2q

...

fpxN´1q

fpxN q

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (1.26)

That is to say,

A :“
1

h2
tridiagp´1, 2,´1q and ~f :“

´

fi

¯N

i“1
“

´

fpxiq
¯N

i“1
.

We need to solve the linear system A~u “ ~f in order to obtain an approximate solution to the

Poisson’s equation. It is worth noticing that the coefficient matrix A is symmetric positive

definite (SPD), sparse, as well as Toeplitz.

Remark 1.25 (An alternative form of the linear system). Sometimes, it is more convenient (for

implementation) to also include the boundary values in ~u and write the linear system as

1

h2

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

1

´1 2 ´1
. . .

. . .
. . .

´1 2 ´1

1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

u0

u1

...

uN

uN`1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

0

f1

...

fN

0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Apparently this form is equivalent to the discrete problem above.

CHAPTER 1. INTRODUCTION 22

Remark 1.26 (Eigenvalues of 1D FD problem). For simplicity we now assume h ” 1. It is

well-known (see HW 1.3) that the eigenvalues of A :“ tridiagp´1, 2,´1q are

λkpAq “ 2´ 2 cos

ˆ

kπ

N ` 1

˙

“ 4 sin2

ˆ

kπ

2pN ` 1q

˙

and the corresponding eigenvectors are

~ξ k “
´

ξki

¯N

i“1
P RN , with ξki :“ sin

´ ikπ

N ` 1

¯

.

We note that the set of eigenvectors of A, ~ξ k “
`

ξ ki
˘N

i“1
, forms an orthogonal basis of RN .

Therefore, any ~ξ P RN can be expanded in terms of these eigenvectors:

~ξ “
N
ÿ

k“1

αk~ξ
k.

This type of expansion is often called the discrete Fourier expansion. From Figure 1.3, we can

21 of 119
0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1

- 1

- 0 . 8

- 0 . 6

- 0 . 4

- 0 . 2

0

0 . 2

0 . 4

0 . 6

0 . 8

1

Numerical Experiments
• Solve ,
• Use Fourier modes as initial iterate, with N =64:

uA = 0 =−+− uuu iii +− 11 02

vk
!
"
#

π$
%
&

=)(=
N
ki

v ki nis 1111 −≤≤,−≤≤ NkNi
component mode

k = 3

k = 1

k = 6

Figure 1.3: Eigenvectors of 1D finite difference system for the Poisson’s equation.

easily see that the eigenvectors are “smooth” with small k and are “oscillatory” with large k.

Hence the smoothness of ~ξ has a lot to do with the relative size of the coefficients αk.

For two-dimensional problems, we can partition the domain uniformly in both x and y-

directions into n ` 1 pieces (N “ n2). We denote pxi, yjq “
`

i
n`1 ,

j
n`1

˘

and the Poisson’s

equation is discretize using the five-point stencil

1

h2

”

4ui,j ´
`

ui´1,j ` ui`1,j ` ui,j´1 ` ui,j`1

˘

ı

“ fpxi, yjq, i, j “ 1, . . . , n.

CHAPTER 1. INTRODUCTION 23

Then we need to assign an order to the grid points in order to write the unknowns as a vector.

There are many ways to order the unknowns for practical purposes. For simplicity, we use the

Lexicographic ordering, i.e., ppj´1qn`i :“ pxi, yjq. Then we have

1

h2

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

A1 ´I

´I A2 ´I
. . .

. . .
. . .

´I An´1 ´I

´I An

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

u1

u2

...

...

uN´1

uN

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

f1

f2

...

...

fN´1

fN

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

where the block diagonal matrices Ai :“ tridiagp´1, 4,´1q, pi “ 1, . . . , nq are tridiagonal. Define

C :“ tridiagp´1, 0,´1q. Then it is clear that

A “
1

h2
tridiagp´I, A1,´Iq “

1

h2
I bA1 `

1

h2
C b I.

Remark 1.27 (Eigenvalues of the 2D FD problem). Again we assume h ” 1. Similar to the

1D problem, we can get the eigenvalues

λi,jpAq “ 4´ 2 cos
iπ

n` 1
´ 2 cos

jπ

n` 1
“ 4 sin2 iπ

2pn` 1q
` 4 sin2 jπ

2pn` 1q
,

with eigenvectors

~ξi,j “

˜

sin
kiπ

n` 1
sin

ljπ

n` 1

¸

k,l“1,...,n

.

Remark 1.28 (Ordering). The shape of the above coefficient matrix A depends on the ordering

of degrees of freedom (DOFs). We will see that the ordering also affects the smoothing properties

of smoothers and parallelization. Finding the minimal bandwidth ordering is important for some

linear solvers, like the LU factorization methods. But it is NP-hard.

Finite element method

Finite element method (FEM) is a Galerkin method that uses piecewise polynomial spaces

for approximate test and trial function spaces. The readers are referred to [46, 71, 17, 38]

for more detailed discussion on construction and error analysis of the standard finite element

method.

The weak formulation of the model equation can be written as (see Example 1.14): Find

u P H1
0 pΩq, such that

ż

Ω
∇u ¨∇vdx “

ż

Ω
fv dx, @v P H1

0 pΩq.

CHAPTER 1. INTRODUCTION 24

In 1D, it is easy to explain the main idea of finite element method. Let Pkpτq be the space of

all polynomials of degree less than or equal to k on τ . Let

V “ Vh :“

v P CpΩq : v P P1pxi´1, xiq, vp0q “ vp1q “ 0
(

.

Now we can write the discrete variational problem as: Find uh P Vh, such that

aruh, vhs “ pf, vhq, @vh P Vh.

Furthermore, we use nodal basis functions φi P Vh, i.e. φipxjq “ δi,j . In this way, we can express

a given function uh P Vh as uhpxq “
řN
j“1 ujφjpxq. Hence we arrive at the following equation:

For any i “ 1, . . . , N ,

N
ÿ

j“1

arφj , φisuj “ pf, φiq or
ÿ

j

Ai,juj “ fi.

This is a system of algebraic linear equations

A~u “ ~f, (1.27)

with
`

A
˘

i,j
“ ai,j :“ arφi, φjs, ~u :“

`

ui
˘N

i“1
, and ~f “

`

fi
˘N

i“1
:“

´

xf, φiy
¯N

i“1
.

If we use the uniform mesh in Figure 1.2, then we have (see HW 1.4) that

A :“
1

h
tridiagp´1, 2,´1q and ~f :“

`

hfpxiq
˘N

i“1
.

Upon solving this finite-dimensional problem, we obtain a discrete approximation uh. The finite

element method has several appealing properties and it will be the main underlying discretization

used in this lecture; see §3.1 for more details.

Remark 1.29 (Discrete Poisson’s equation is ill-conditioned). Remark 1.23 has shown that the

Poisson’s equation has a bounded condition number. On the other hand, the discrete problems

from FD and FE are both ill-conditioned if meshsize h is small. Later on, we will see that this

will cause problems for many iterative methods. The convergence rates of these methods usually

depend on the spectrum of the coefficient matrix A.

Adaptive approximation

We explain the idea of adaptivity with a simple 1D example. Let u : r0, 1s ÞÑ R be a

continuous function. Assume that 0 “ x0 ă x1 ă ¨ ¨ ¨ ă xN “ 1 and hi :“ xi´xi´1. Let uN be a

piecewise constant function defined on this partition, i.e., uN pxq “ upxi´1q for all xi´1 ď x ă xi.

Then we have

|u´ uN | “ |upxq ´ upxi´1q| “

ˇ

ˇ

ˇ

ż x

xi´1

u1ptq dt
ˇ

ˇ

ˇ
ď

ż xi

xi´1

|u1ptq| dt ď hi}u
1}L8pxi´1,xiq. (1.28)

CHAPTER 1. INTRODUCTION 25

If the partition is quasi-uniform, then we have the approximation estimate

}u´ uN}L8p0,1q ď
1

N
}u1}L8p0,1q

if u is in W 1
8p0, 1q.

The question now is what happens if the function u is less regular (not smooth, singular,

rough)? We assume that u is in W 1
1 p0, 1q. In view of the inequalities in (1.28), we notice that we

actually need to bound }u1}L1pxi´1,xiq. This motivates to give a special (non-uniform) partition

such that
ż xi

xi´1

|u1ptq| dt ”
1

N
}u1}L1p0,1q, for i “ 1, 2, . . . , N.

On this partition, we can still obtain a desirable approximation estimate

}u´ uN}L8p0,1q ď
1

N
}u1}L1p0,1q.

This motivates us that equidistribution of mesh spacing might not be a good choice when the

solution is not smooth. Instead, in such cases, we may seek equidistribution of error. Apparently,

this type of mesh is u-dependent and obtaining such a mesh is a nonlinear approximation

procedure; see more details in Devore [48].

Remark 1.30 (A very useful notation). We use some notations introduced by Xu [118]. The

notation a À b means: there is a generic constant C independent of meshsize h, such that a ď Cb.

Similarly, we can define “Á” and “–”. This is important because, in our future discussions,

we would like to construct solvers/preconditioners that yield convergence rate independent of

meshsize h.

1.3 Simple iterative solvers

There are many different approaches for solving the linear algebraic equations results from

the finite difference, finite element, and other discretizations for the Poisson’s equation. For

example, sparse direct solvers, FFT, and iterative methods. We only discuss iterative solvers in

this lecture.

Some examples

Now we give a few well-known examples of simple iterative methods. Consider the linear

system A~u “ ~f . Assume the coefficient matrix A P RNˆN can be partitioned as A “ L `

D`U , where the three matrices L,D,U P RNˆN are the lower triangular, diagonal, and upper

triangular parts of A, respectively (the rest is set to be zero).

CHAPTER 1. INTRODUCTION 26

Example 1.31 (Richardson method). The simplest iterative method for solving A~u “ ~f might

be the Richardson method

~unew “ ~u old ` ω
´

~f ´A~u old
¯

. (1.29)

We can choose an optimal weight ω to improve performance of this method.

Example 1.32 (Weighted Jacobi method). The weighted or damped Jacobi method can be

written as

~unew “ ~u old ` ωD´1p~f ´A~u oldq. (1.30)

This method solves one equation for one variable at a time, simultaneously. Apparently, it is a

generalization of the above Richardson method. If ω “ 1, then we arrive at the standard Jacobi

method.

Example 1.33 (Gauss–Seidel method). The Gauss–Seidel (G-S) method can be written as

~unew “ ~u old ` pD ` Lq´1p~f ´A~u oldq.

We rewrite this method as

pD ` Lq~unew “ pD ` Lq~u old ` p~f ´A~u oldq “ ~f ´ U~u old.

Thus we have

~unew “ ~u old `D´1
´

~f ´ L~unew ´ pD ` Uq~u old
¯

. (1.31)

Compared with the Jacobi method (1.30) (ω “ 1), the G-S method uses the most updated

solution in each iteration instead of the previous iteration.

Example 1.34 (Successive over-relaxation method). The successive over-relaxation (SOR)

method can be written as

pD ` ωLq~unew “ ω ~f ´
´

ωU ` pω ´ 1qD
¯

~u old. (1.32)

The weight ω is usually in p1, 2q. This is in fact the extrapolation of ~u old and ~unew obtained in

the G-S method. If ω “ 1, then it reduces to the G-S method.

These preliminary iterative methods have been covered in standard textbooks of numerical

analysis. They can be constructed using a classical splitting approach. Here we employ a

modified version to give a better view. Let α ě 0 be a real parameter and

A :“ A1 `A2 “
`

A1 ` αI
˘

`
`

A2 ´ αI
˘

.

This way we can split the original equation A~u “ ~f as

`

A1 ` αI
˘

~u “ ~f ´
`

A2 ´ αI
˘

~u.

CHAPTER 1. INTRODUCTION 27

This immediately motivates the standard splitting iterative method

~unew “
`

A1 ` αI
˘´1

´

~f ´
`

A2 ´ αI
˘

~u old
¯

. (1.33)

The method is equivalent to an alternative form, which is the notation we use in this note, as

~unew “ ~u old `B
`

~f ´A~u old
˘

,

with B :“
`

A1 ` αI
˘´1

. Apparently, we can choose the splitting to obtain the above simple

iterative methods. For example, by setting A1 “ 0, (1.33) yields the Richardson method (1.29);

by setting α “ 0 and A1 “
1
ωD, (1.33) yields the weighted Jacobi method (1.30).

In this setting, the matrix

E :“ ´
`

A1 ` αI
˘´1`

A2 ´ αI
˘

“ I ´BA (1.34)

is oftentimes called an iteration matrix for the iterative method (1.33). It is well-known that

the iterative method converges for any initial guess if and only the spectral radius ρpEq ă 1.

A simple observation

Many simple iterative methods exhibit different rates of convergence for short and long

wavelength error components, suggesting these different scales should be treated differently. We

now try to look into this more closely. Let λmax and λmin be the largest eigenvalue and the

smallest eigenvalue of A, respectively, and ~ξmax and ~ξmin be the corresponding eigenvectors.

One interesting observation many people made is: When we use the weighted Jacobi method

(1.30) with weight ω “ 2{3 to solve the problem A~u “ ~0 with the initial guess just equal to

~ξmax, the convergence is very fast. On the other hand, if the weighted Jacobi iteration is used

to solve the same equation but with a different initial guess ~ξmin, the convergence becomes slow.

See Figure 1.4 for a demonstration.

Note that the reason which causes this difference mainly relies on the fact that the error in

the first problem (corresponding to ~ξmax) is oscillatory or of high frequency but the error in the

second problem (corresponding to ~ξmin) is smooth or of low frequency. This makes one speculate

that the weighted Jacobi method can damp the high frequency part of the error rather quickly,

but slowly for the low frequency part; see Remark 1.24.

In Remark 1.26, we have seen that the eigenvalues of the simple finite difference matrix in

1D are

λkpAq “ 2´ 2 cos

ˆ

kπ

N ` 1

˙

.

CHAPTER 1. INTRODUCTION 28

23 of 119
0 20 40 6 0 8 0 1 00 1 20

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

Convergence rates differ for
different error components

• Error, ||e||∞∞∞∞ , in weighted Jacobi on Au = 0 for
100 iterations using initial guesses of v1, v3, and v6

k = 1

k = 3

k = 6

Figure 1.4: Error decay in } ¨ }8-norm for weighted Jacobi method with initial guess ~ξ k.

Then it is easy to obtain the eigenvalues of the iteration matrix for the weighted Jacobi method

λkpEq “ 1´ ω ` ω cos

ˆ

kπ

N ` 1

˙

“
1

3
`

2

3
cos

ˆ

kπ

N ` 1

˙

.

From this equation, it is immediately clear that the eigenvalues are small |λkpEq| ď
1
3 for larger

k (N2 ď k ď N). This suggests faster convergence behavior of the weighted Jacobi method for

larger k.

Now we can make this simple observation more formal by considering the simple iterative

method (1.29), i.e. the Richardson method (it is equivalent to the weighted Jacobi for simple

finite difference equations with a constant diagonal), and assume that

A~ξ k “ λk~ξ
k, k “ 1, . . . , N,

where 0 ă λ1 ď ¨ ¨ ¨ ď λN and we choose ω “ 1
λN

for example. Since t~ξ kuNk“1 forms a basis of

RN , we can write

~u´ ~u pmq “
N
ÿ

k“1

α
pmq
k

~ξ k

as an expansion. In the Richardson method, we have

~u´ ~u pmq “ pI ´ ωAqp~u´ ~u pm´1qq “ ¨ ¨ ¨ “ pI ´ ωAqmp~u´ ~u p0qq.

Hence it is easy to see that

N
ÿ

k“1

α
pmq
k

~ξ k “ pI ´ ωAqm
N
ÿ

k“1

α
p0q
k
~ξ k “

N
ÿ

k“1

α
p0q
k p1´ ωλkq

m~ξ k.

CHAPTER 1. INTRODUCTION 29

That is to say, we have

α
pmq
k “ p1´ ωλkq

mα
p0q
k “

´

1´
λk
λN

¯m
α
p0q
k , k “ 1, . . . , N. (1.35)

From (1.35), we can see that the convergence speed is fast for high-frequency error components

(large k) and slow for low-frequency components (small k).

Smoothing effect of Jacobi method ‹

In view of Remark 1.26, based on the understanding of the relation between the smoothness

and the size of Fourier coefficients, we can analyze the smoothing property using the discrete

Fourier expansion. Let ~u be the exact solution of the 1D FD problem on uniform grids and ~u pmq

the result of m-th iteration from the damped Jacobi method (or equivalently in this case, the

Richardson method). Then

~u´ ~u pmq “ pI ´ ωAqp~u´ ~u pm´1qq “ ¨ ¨ ¨ “ pI ´ ωAqmp~u´ ~u p0qq.

It is straightforward to see that

λkpI ´ ωAq “ 1´ ωλkpAq “ 1´ 4ω sin2

ˆ

kπ

2pN ` 1q

˙

.

Notice that λkpI´ωAq can be viewed as the damping factor for error components corresponding

to Fourier mode k; see Remark 1.26. We would like to choose ω such that λk’s are small.

Consider the Fourier expansion of the initial error:

~u´ ~u p0q “
N
ÿ

k“1

αk~ξ
k.

Then

~u´ ~u pmq “
N
ÿ

k“1

αkpI ´ ωAq
m~ξ k.

Note that, for any polynomial p, we have ppAq~ξ k “ ppλkq~ξ
k. By choosing ω “ 1

4 «
1

λmaxpAq
, we

obtain

~u´ ~u pmq “
N
ÿ

k“1

αkp1´ ωλkq
m~ξ k “

N
ÿ

k“1

α
pmq
k

~ξ k,

where

α
pmq
k “

ˆ

1´ sin2 kπ

2pN ` 1q

˙m

αk.

The above equation implies

α
pmq
k “ αk sin2m

ˆ

N ´ k ` 1

N ` 1

π

2

˙

ď αk

ˆ

N ´ k ` 1

N ` 1

π

2

˙2m

,

CHAPTER 1. INTRODUCTION 30

which approaches to 0 very rapidly as m Ñ 8, if k is close to N (high-frequencies). This

means that high frequency error can be damped very quickly. This simple analysis justifies the

smoothing property we observed in the beginning of this section.

We can apply the same analysis to the Jacobi method as well and the Fourier coefficient in

front of the highest frequency is as follows:

α
pmq
N “

ˆ

1´ 2 sin2 Nπ

2pN ` 1q

˙m

αN “ cosm
ˆ

Nπ

N ` 1

˙

αN „ p´1qm
ˆ

1´
π2

2pN ` 1q2

˙m

αN .

This suggests that the regular Jacobi method might not have a smoothing property and should

not be used as a smoother in general.

1.4 Multigrid method in 1D

In this section, we first give a simple motivation and sneak-peak of the well-known multigrid

method, which is a representing example of multilevel iterative methods. The observations of

this section will be helpful for our later discussions; see the famous tutorial by Briggs et al. [44]

for a quick introduction to the multigrid methods. Consider the finite difference scheme (1.26)

for the Poisson’s equation in 1D, namely

A~u “ ~f with A “
1

h2
tridiagp´1, 2,´1q, fi “ fpxiq.

Nested grids

Multigrid (MG) methods are a group of algorithms for solving partial differential equations

using a hierarchy of discretizations. They are very useful in problems exhibiting multiple scales

of behavior. In this section, we introduce the simplest multigrid method in 1D.

Suppose there are a hierarchy of L ` 1 grids with mesh sizes hl “ p
1
2q
l`1 (l “ 0, 1, . . . , L);

see Figure 1.5. It is clear that

h0 ą h1 ą h2 ą ¨ ¨ ¨ ą hL “: h

and N “ 2L`1 ´ 1. We call level L the finest level and level 0 the coarsest level.

Smoothers

We consider how to approximate the solution on each level using some local relaxation

method. Assume the 1D Poisson’s equation is discretized using the finite difference scheme

discussed in the previous section. Then, on each level, we have a linear system of equations

Al~ul “ ~fl with Al “ h´2
l tridiagp´1, 2,´1q.

CHAPTER 1. INTRODUCTION 31

l = 0 h0 = (1
2)1

l = 1 h1 = (1
2)2

l = 2 h2 = (1
2)3

...

...

1

Figure 1.5: Hierarchical grids for 1D multigrid method.

For each of these equations, we can apply the damped Jacobi method (with the damping factor

equals to 1{2)

~u
pm`1q
l “ ~u

pmq
l `

1

2
D´1
l

´

~fl ´Al~u
pmq
l

¯

(1.36)

to obtain an approximate solution. This method is usually referred as a local relaxation or

smoother, which will be discussed later in this lecture note.

Prolongation and restriction

Another important component of a multigrid method is to define the transfer operators

between different levels. In the 1D case, the transfer operators can be easily given; see Figure 1.6.

In another word, we can also write the transfer operators in the matrix form, i.e.,

× ×

Pl−1,l 1 1
2

1
2 1 1

2
1
2 1

××

Rl,l−1
1
2

1
4

1
4

1
2

1
4

1
4

1
2

1

Figure 1.6: Transfer operators between two consecutive levels (Left: restriction operator; right:
prolongation operator).

CHAPTER 1. INTRODUCTION 32

Rl,l´1 :“
1

4

¨

˚

˚

˚

˚

˚

˝

. . .

1 2 1

1 2 1
. . .

˛

‹

‹

‹

‹

‹

‚

and Pl´1,l :“
1

2

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

. . .

1

2

1 1

2

1
. . .

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (1.37)

We notice that R “ 1
2P

T . It is straight-forward to check that the coefficient matrices of two

consecutive levels satisfy

Al´1 “ Rl,l´1AlPl´1,l.

Multigrid algorithm

Let ~fl be the right-hand side vector and ~ul be an initial guess or previous iteration on level

l. Now we are ready to give one iteration step of the multigrid algorithm (V-cycle).

Algorithm 1.1 (One iteration of multigrid method). ~ul “MGpl, ~fl, ~ulq

(i) Pre-smoothing: ~ul Ð ~ul `
1
2D

´1
l

`

~fl ´Al~ul
˘

(ii) Restriction: ~rl´1 Ð Rl,l´1

`

~fl ´Al~ul
˘

(iii) Coarse-grid correction: If l “ 1, ~el´1 Ð A´1
l´1~rl´1; otherwise, ~el´1 ÐMGpl´1, ~rl´1,~0l´1q

(iv) Prolongation: ~ul Ð ~ul ` Pl´1,l~el´1

(v) Post-smoothing: ~ul Ð ~ul `
1
2D

´1
l

`

~fl ´Al~ul
˘

Remark 1.35 (Coarse-grid correction). Suppose that there is an approximate solution ~u pmq.

Then we have

A
`

~u´ ~u pmq
˘

“ ~r pmq :“ ~f ´A~u pmq

and the error equation can be written

A~e pmq “ ~r pmq. (1.38)

If we get ~e pmq or its approximation, we can just update the iterative solution by ~u pm`1q “

~u pmq ` ~e pmq to obtain a better approximation of ~u. This explains the steps (iii) and (iv) in the

above algorithm.

CHAPTER 1. INTRODUCTION 33

Remark 1.36 (Coarsest-grid solver). It is clear that, in our setting, the solution on level l “ 0

is trivial to obtain. In general, we can apply a direct or iterative solver to solve the coarsest-level

problem, which is relatively cheap. Sometimes, we have singular problems on the coarsest level,

which need to be handled carefully.

Algorithm 1.1 is one iteration of the multigrid method. We can iterate until the approxima-

tion is “satisfactory”. For example, we iterate until the relative residual }~r}0{}~f}0 is less than

10´6; we will discuss stopping criteria later in this lecture. This multigrid algorithm is easy to

implement; see HW 1.6. In Table 1.1, we give the numerical results of Algorithm 1.1 for the

1D Poisson’s equation (using three G-S iterations as smoother). From the table, we find that,

unlike the classical Jacobi and G-S methods, this multigrid method converges uniformly with

respect to the meshsize h. This is, of course, a very desirable feature of the multilevel iterative

methods, which will be investigated in this lecture.

#Levels #DOF #Iter Contract factor

5 31 4 0.0257
6 63 4 0.0259
7 127 4 0.0260
8 255 4 0.0260
9 511 4 0.0261
10 1023 4 0.0262

Table 1.1: Convergence behavior of 1D geometric multigrid method.

Now it is natural to ask a few questions on such multilevel methods:

• How fast the method converges?

• When does the multigrid method converge?

• How to generalize the method to other problems?

• How to find a good smoother when solving more complicate problems?

• Why the matrices R and P are given as (1.37)? Are there other choices?

And we will mainly focus on these questions in this lecture.

CHAPTER 1. INTRODUCTION 34

1.5 Tutorial of FASP ‹

All the numerical examples in this lecture are done using the Fast Auxiliary Space Precon-

ditioning (FASP) package. The FASP package provides C source files1 to build a library of

iterative solvers and preconditioners for the solution of large-scale linear systems of equations.

The components of the FASP basic library include several ready-to-use, modern, and efficient

iterative solvers used in applications ranging from simple examples of discretized scalar partial

differential equations (PDEs) to numerical simulations of complex, multicomponent physical

systems.

The main components of the FASP basic library are:

• Basic linear iterative methods;

• Standard Krylov subspace methods;

• Geometric and Algebraic Multigrid (G/AMG) methods;

• Incomplete factorization methods.

The FASP distribution also includes several examples for solving simple benchmark problems.

The basic (kernel) FASP distribution is open-source and is licensed under GNU Lesser General

Public License or LGPL. Other distributions may have different licensing (contact the developer

team for details on this). The most updated version of FASP can be downloaded directly from

http://www.multigrid.org/fasp/download/faspsolver.zip

To build the FASP library for these operating systems. Open a terminal window, where you

can issue commands from the command line and do the following: (1) go to the main FASP di-

rectory (we will refer to it as $(faspsolver) from now on); (2) modify the “FASP.mk.example”

file to math your system and save it as “FASP.mk”; (3) then execute:

> make config

> make install

These two commands build the FASP library/header files. By default, it installs the library

in $(faspsolver)/lib and the header files in $(faspsolver)/include. It also creates a file

$(faspsolver)/Config.mk which contains few of the configuration variables and can be loaded

by external project Makefiles. If you do not have “FASP.mk” present in the current directory,

default settings will be used for building and installation FASP.

Now, if you would like to try some of the examples that come with FASP, you can build the

“tutorial” target and try out the tutorial examples:

1The code is C99 (ISO/IEC 9899:1999) compatible.

http://www.multigrid.org/fasp/download/faspsolver.zip

CHAPTER 1. INTRODUCTION 35

> make tutorial

Equivalently, you may also build the test suite and the tutorial examples by using the “local”

Makefile in $(faspsolver)/tutorial.

> make −C tutorial

For more information, we refer to the user’s guide and reference manual of FASP2 for techni-

cal details on the usage and implementation of FASP. Since FASP is under heavy development,

please use this guide with caution because the code might have been changed before this docu-

ment is updated.

1.6 Homework problems

HW 1.1. Prove the uniqueness of the Poisson’s equation. Hint: You can argue by the maximum

principle or the energy method.

HW 1.2. Let x0 and δ ą 0 are fixed scales. Find eigenvalues and eigenfunctions of the following

local problem

´u2δpxq “ λδuδ, x P px0 ´ δ, x0 ` δq and uδpx0 ´ δq “ uδpx0 ` δq “ 0.

HW 1.3. Prove the eigenvalues and eigenvectors of tridiagpb, a, bq P RNˆN are

λk “ a´ 2b cos
´ kπ

N ` 1

¯

and ~ξ k “
´

sin
` kπ

N ` 1

˘

, . . . , sin
` Nkπ

N ` 1

˘

¯T
,

respectively. Apply this result to give eigenvalues of the 1D FD matrix A. What are the

eigenvalues of tridiagpb, a, cq P RNˆN?

HW 1.4. Derive the finite element stiffness matrix for 1D Poisson’s equation with homogenous

Dirichlet boundary condition using a uniform mesh.

HW 1.5. Derive 1D FD and FE discretizations for the heat equation (8.44) using the backward

Euler method for time discretization.

HW 1.6. Implement the geometric multigrid method for the Poisson’s equation in 1D using

Matlab, C, Fortran, or Python. Try to study the efficiency of your implementation.

HW 1.7. Suppose we need to solve the finite difference equation with coefficient matrix A :“

tridiagp´1, 2,´1q P RNˆN . Plot the eigenvalues of the weighted Jacobi iteration matrix E for

ω “ 1, 2
3 , and 1

2 . You can use different problem size N ’s to get a better view.

2Available online at http://www.multigrid.org/fasp. It is also available in “faspsolver/doc/”.

http://www.multigrid.org/fasp
faspsolver/doc/

Chapter 2

Iterative Solvers and Preconditioners

The term “iterative method” refers to a wide range of numerical techniques that use succes-

sive approximations

upmq
(

for the exact solution u of a certain problem. In this chapter, we

will discuss two types of iterative methods: (1) Stationary iterative method, which performs in

each iteration the same operations on the current iteration; (2) Nonstationary iterative method,

which has iteration-dependent operations. Stationary methods are simple to understand and

implement, but usually not very effective. On the other hand, nonstationary methods are a

relatively recent development; their analysis is usually more difficult.

2.1 Stationary linear iterative methods

In this section, we discuss stationary iterative methods; typical examples include the Jacobi

method and the Gauss–Seidel method. We will discuss why they are not efficient in general but

still widely used. Let V be a finite-dimensional linear vector space, A : V ÞÑ V be a non-singular

linear operator, and f P V . We would like to find a u P V , such that

Au “ f. (2.1)

For example, in the finite difference context discussed in §1.2, V “ RN and the linear operator

A becomes a matrix A. We just need to solve a system of linear equations: Find ~u P RN , such

that

A~u “ ~f. (2.2)

We will discuss the linear systems in both operator and matrix representations.

Remark 2.1 (More general setting). In fact, we can consider iterative methods in a more

general setting. For example, let V be a finite-dimensional Hilbert space, V 1 be its dual, and

A : V ÞÑ V 1 be a linear operator and f P V 1. A significant part of this lecture can be generalized

to such a setting easily.

36

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 37

A linear stationary iterative method (one iteration) to solve (2.1) can be expressed in the

following general form:

Algorithm 2.1 (Stationary iterative method). unew “ ITERpuoldq

(i) Form the residual: r “ f ´Auold

(ii) Solve or approximate the error equation: Ae “ r by ê “ Br

(iii) Correct the previous iterative solution: unew “ uold ` ê

That is to say, the new iteration is obtained by computing

unew “ uold ` Bpf ´Auoldq, (2.3)

where B is called the iterator. Apparently, B “ A´1 for nonsingular operator A also defines an

iterator, which yields a direct method.

Preliminaries and notation

The most-used inner product in this lecture is the Euclidian inner product pu, vq :“
ş

Ω uv dx;

and pu, vq :“
řN
i“1 uivi if V “ RN . Once we have the inner product, we can define the concept

of transpose and symmetry on the Hilbert space V . Define the adjoint operator (transpose) of

the linear operator A as AT : V ÞÑ V , such that

pATu, vq :“ pu,Avq, @u, v P V.

A linear operator A on V is symmetric if and only if

pAu, vq “ pu,Avq, @u, v P domainpAq Ď V.

If A is densely defined and AT “ A, then A is called self-adjoint.

Remark 2.2 (Symmetric and self-adjoint operators). A symmetric operator A is self-adjoint

if domainpAq “ V . The difference between symmetric and self-adjoint operators is technical;

see [128] for details.

We denote the null space and the range of A as

nullpAq :“ tv P V : Av “ 0u , (2.4)

rangepAq :“ tu “ Av : v P V u . (2.5)

Very often, the null space is also called the kernel space and the range is called the image space.

The subspaces nullpAq and rangepAT q are fundamental subspaces of V . We have

nullpAT qK “ rangepAq and nullpAT q “ rangepAqK.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 38

Remark 2.3 (Non-singularity). If nullpAq “ t0u, then A is injective or one-to-one. Apparently,

A : V ÞÑ rangepAq is surjective or onto. If we consider a symmetric operator A : nullpAqK ÞÑ
rangepAq, then A is always non-singular.

The set of eigenvalues of A is called the spectrum, denoted as σpAq. The spectrum of any

bounded symmetric matrix is real, i.e., all eigenvalues are real, although a symmetric opera-

tor may have no eigenvalues1. We define the spectral radius ρpAq :“ sup

|λ| : λ P σpAq
(

.

Furthermore,

λminpAq “ min
vPV zt0u

pAv, vq
}v}2

and λmaxpAq “ max
vPV zt0u

pAv, vq
}v}2

.

An important class of operators for this lecture is symmetric positive definite (SPD) oper-

ators. An operator A is called SPD if and only if A is symmetric and pAv, vq ą 0, for any

v P V zt0u. Since A is SPD, all of its eigenvalues are positive. We define the spectral condition

number or, simply, condition number κpAq :“ λmaxpAq
λminpAq , which is more convenient, compared with

spectrum, to characterize convergence rate of iterative methods. For the indefinite case, we can

use

κpAq :“
supλPσpAq |λ|

infλPσpAq |λ|
.

More generally, for an isomorphic mapping A P L pV ;V q, we can define

κpAq :“ }A}L pV ;V q}A´1}L pV ;V q.

And all these definitions are consistent for symmetric positive definite problems.

If A is an SPD operator, it induces a new inner product, which will be used heavily in our

later discussions

pu, vqA :“ pAu, vq @u, v P V. (2.6)

It is easy to check p¨, ¨qA is an inner product on V . For any bounded linear operator B : V ÞÑ V ,

we can define two transposes with respect to the inner products p¨, ¨q and p¨, ¨qA, respectively;

namely,

pBTu, vq “ pu,Bvq,
pB˚u, vqA “ pu,BvqA.

By the above definitions, it is easy to show (see HW 2.1) that

B˚ “ A´1BTA. (2.7)

1A bounded linear operator on an infinite-dimensional Hilbert space might not have any eigenvalues.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 39

Symmetry is a concept with respect to the underlying inner product. In this chapter, we

always refers to the p¨, ¨q-inner product for symmetry. By definition, pBAq˚ “ BTA; see HW 2.2

for this equality. If BT “ B, we do not necessarily have pBAqT “ BA; however, we have a key

identity:

pBAq˚ “ BTA “ BA. (2.8)

Remark 2.4 (Induced norms). The inner products defined above also induce norms on V by

}v} :“ pv, vq
1
2 and }v}A :“ pv, vq

1
2
A. These, in turn, define the operator norms for B : V ÞÑ V ,

i.e.,

}B} :“ sup
vPV zt0u

}Bv}
}v}

and }B}A :“ sup
vPV zt0u

}Bv}A
}v}A

.

It is well-known that, for any consistent norm } ¨ }, we have ρpBq ď }B}. Furthermore, we

have the following results:

Proposition 2.5 (Spectral radius and norm). Suppose V is Hilbert space with an inner product

p¨, ¨q and induced norm } ¨ }. If A : V ÞÑ V is a bounded linear operator, then

ρpAq “ lim
mÑ`8

}Am}
1
m .

Moreover, if A is self-adjoint, then ρpAq “ }A}.

From this general functional analysis result, we can immediately obtain the following rela-

tions:

Lemma 2.6 (Spectral radius of self-adjoint operators). If BT “ B, then ρpBq “ }B}. Similarly,

if B˚ “ B, then ρpBq “ }B}A.

Convergence of stationary iterative methods

Now we consider the convergence analysis of the stationary iterative method (2.3). A method

is called convergent if and only if upmq converges to u for any initial guess up0q.

Notice that each iteration (2.3) only depends on the previous approximate solution uold and

does not involve any information of the older iterations; in each iteration, it basically performs

the same operations over and over again. It is easy to see that

u´ upmq “ pI ´ BAq
`

u´ upm´1q
˘

“ ¨ ¨ ¨ “ pI ´ BAqm
`

u´ up0q
˘

“ Em
`

u´ up0q
˘

,

where I : V ÞÑ V is the identity operator and the operator E :“ I ´ BA is called the error

propagation operator (or, sometimes, error reduction operator)2.
2It coincides with the iteration matrix (1.34) or the iterative reduction matrix appeared in the literature on

iterative linear solvers.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 40

Lemma 2.6 and (2.8) imply the following identity: If A is SPD and B is symmetric, then

ρpI ´ BAq “ }I ´ BA}A. (2.9)

Hence we can get the following simple convergence theorem.

Theorem 2.7 (Convergence of Algorithm 2.1). The Algorithm 2.1 converges for any initial

guess if the spectral radius ρpI´BAq ă 1, which is equivalent to limmÑ`8pI´BAqm “ 0. The

converse direction is also true.

If both A and B are SPD, the eigenvalues of BA are real and the spectral radius satisfies

that

ρpI ´ BAq “ max
´

λmaxpBAq ´ 1, 1´ λminpBAq
¯

. (2.10)

So we can expect that the speed of the stationary linear iterative method is related to the span

of spectrum of BA.

This convergence result is simple but difficult to apply. More importantly, it does not provide

any direct information on how fast the convergence could be if the algorithm converges; see the

following example for further explanation.

An iterative method converges for any initial guess if and only if the spectral radius of the

iteration matrix ρpEq ă 1. However, it is important to note that the spectral radius of E only

reflects the asymptotic convergence behavior of the iterative method. That is to say, we have

}~e pk`1q}

}~e pkq}
« ρpEq,

only for very large k.

Example 2.8 (Spectral radius and convergence speed). Suppose we have an iterative method

with an error propagation matrix

E :“

¨

˚

˚

˚

˚

˚

˝

0 1 ¨ ¨ ¨ 0
...

. . .
. . .

...
...

. . . 1

0 ¨ ¨ ¨ ¨ ¨ ¨ 0

˛

‹

‹

‹

‹

‹

‚

P RNˆN

and the initial error is ~e p0q :“ ~u´~u p0q “ p0, . . . , 0, 1qT P RN . Notice that ρpEq ” 0 in this exam-

ple. However, if applying this error propagation matrix to form a sequence of approximations,

we will find the convergence is actually very slow for a large N . In fact,

}~e p0q}2 “ }~e
p1q}2 “ ¨ ¨ ¨ “ }~e

pN´1q}2 “ 1 and }~e pNq}2 “ 0.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 41

Hence, analyzing the spectral radius of the iterative matrix alone will not provide much useful

information about the speed of an iterative method.

An alternative measure for convergence speed is to find out whether there is a constant

δ P r0, 1q and a convenient norm } ¨ } on RN , such that }~e pm`1q} ď δ}~e pmq} for any ~e p0q P RN .

However, this approach has its own problems because it usually yields pessimistic convergence

bound for iterative methods.

Remark 2.9 (Convergence rate of the Richardson method). The simplest iterative method for

solving A~u “ ~f might be B “ ωI, which is the well-known Richardson method in Example 1.31.

In this case, the iteration converges if and only if ρpI´ωAq ă 1, i.e., all eigenvalues of matrix A

are in p0, 2
ω q. Since A is SPD, the iteration converges if ω ă 2λ´1

maxpAq. If we take ω “ λ´1
maxpAq,

then

ρ
`

I ´ λ´1
maxpAqA

˘

“ 1´
λminpAq

λmaxpAq
“ 1´

1

κpAq
.

In fact, the optimal weight is ωopt “
2

λmaxpAq ` λminpAq
and

ρ
`

I ´ ωoptA
˘

“ }I ´ ωoptA} “ 1´
2λminpAq

λmaxpAq ` λminpAq
“
κpAq ´ 1

κpAq ` 1
.

We can see that the convergence is very slow if A is ill-conditioned.

Symmetrization

In general, the iterator B might not be symmetric and it is more convenient to work with

symmetric problems. We can apply a simple symmetrization algorithm:

Algorithm 2.2 (Symmetrized iterative method). unew “ SITERpuoldq

upm`
1
2
q “ upmq ` B

´

f ´Aupmq
¯

, (2.11)

upm`1q “ upm`
1
2
q ` BT

´

f ´Aupm` 1
2
q
¯

. (2.12)

In turn, we obtain a new iterative method

u´ upm`1q “ pI ´ BTAqpI ´ BAqpu´ upmqq “ pI ´ BAq˚pI ´ BAqpu´ upmqq.

If this new method satisfies the relation

u´ upm`1q “ pI ´ BAqpu´ upmqq,

then it has a symmetric iteration operator

B :“ BT ` B ´ BTAB “ BT pB´T ` B´1 ´AqB “: BTKB. (2.13)

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 42

Lemma 2.10 (Error decay property). We have, for any v P V , that

›

›v
›

›

2

A ´
›

›pI ´ BAqv
›

›

2

A “
`

BAv, v
˘

A,

or equivalently,
`

pI ´ BAqv, v
˘

A “
›

›pI ´ BAqv
›

›

2

A.

Proof. Notice that, by the definition of symmetrization,

BA “ BT pB´T ` B´1 ´AqBA.

This immediately gives

pBAv, vqA “
`

pB´T ` B´1 ´AqBAv,BAv
˘

“ pBAv,Avq ` pAv,BAvq ´ pABAv,BAvq
“

`

p2I ´ BAqv,BAv
˘

A

and the first equality follows immediately. The second equality is trivial.

Remark 2.11 (Effect of symmetrization). We notice that BT “ B and pI ´ BAq˚ “ I ´ BA.

Furthermore, Lemma 2.10 shows that
`

pI ´ BAqv, v
˘

A “ }pI ´ BAqv}2A, @v P V . Since I ´ BA
is self-adjoint w.r.t. p¨, ¨qA, we have }I ´ BA}A “ ρpI ´ BAq. And as a consequence,

}I ´ BA}A “ sup
}v}A“1

`

pI ´ BAqv, v
˘

A “ sup
}v}A“1

}pI ´ BAqv}2A “ }I ´ BA}2A. (2.14)

This immediately gives

ρpI ´ BAq “ }I ´ BA}A “ }I ´ BA}2A ě ρpI ´ BAq2.

Hence, if the symmetrized method (2.11)–(2.12) converges, then the original method (2.3) also

converges; the opposite direction might not be true though (see Example 2.13). Furthermore,

we have obtained the following identity:

}I ´ BA}A “ ρpI ´ BAq “ sup
vPV zt0u

`

pI ´ BAqv, v
˘

A
}v}2A

. (2.15)

For the symmetrized iterative methods, we have the following theorem.

Theorem 2.12 (Convergence of Symmetrized Algorithm). The symmetrized iteration, namely,

Algorithm 2.2, is convergent if and only if B is SPD.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 43

Proof. First of all, we notice that

I ´ BA “ pI ´ BTAqpI ´ BAq “ A´ 1
2 pI ´A 1

2BTA 1
2 qpI ´A 1

2BA 1
2 qA 1

2 ,

which has the same spectrum as the operator pI´A 1
2BTA 1

2 qpI´A 1
2BA 1

2 q. Hence, all eigenvalues

of I ´ BA are non-negative, i.e., λ ď 1 for all λ P σpBAq.
The convergence of Algorithm 2.2 is equivalent to ρpI´BAq ă 1. Since σpI´BAq “ t1´λ :

λ P σpBAqu, it follows that Algorithm 2.2 converges if and only if σpBAq Ď p0, 2q. Therefore,

the convergence of (2.11)–(2.12) is equivalent to σpBAq Ď p0, 1s, i.e., BA is SPD w.r.t. p¨, ¨qA.

Hence the result.

We can also easily obtain the contraction property in a different way. In Lemma 2.10, we

have already seen that
›

›pI ´ BAqv
›

›

2

A “
›

›v
›

›

2

A ´
`

BAv,Av
˘

.

Hence,
›

›I ´ BA
›

›

A ă 1 if and only if B is SPD.

Example 2.13 (Convergence condition). Note that even if B is not SPD, the method defined

by B could still converge. For example, in R2, if

A “

«

1 0

0 1

ff

, B “

«

1 ´2

0 1

ff

, and I ´BA “

«

0 2

0 0

ff

,

then we have

B “

«

1 0

0 ´3

ff

and I ´BA “

«

0 0

0 4

ff

.

Hence ρpI ´ BAq “ 0 ă 4 “ ρpI ´ BAq. Apparently, the iterator B converges but B does

not.

Convergence rate of stationary iterative methods

Remark 2.14 (Contraction property). The stationary iterative method defined by B is a con-

traction if }I ´ BA}A ď δ0 ă 1. Apparently, it is equivalent to say

›

›e
›

›

2

A ´
›

›pI ´ BAqe
›

›

2

A ě p1´ δ
2
0q
›

›e
›

›

2

A ą 0, @e ‰ 0.

Lemma 2.10 indicates that δ :“ }I ´BA}A ă 1 if and only if B is SPD. The constant δ is called

the contraction factor of the iterative method. From this point on, we can assume that all the

iterators B are SPD; in fact, if an iterator is not symmetric, we can consider its symmetrization

instead.

Based on the identity (2.15), we can prove the convergence rate estimate:

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 44

Theorem 2.15 (Convergence rate). If B is SPD, the convergence rate of the stationary iterative

method (or its symmetrization) is

}I ´ BA}2A “ }I ´ BA}A “ 1´
1

c1
, with c1 :“ sup

}v}A“1
pB´1

v, vq.

Proof. The first equality is directly from (2.14). Since ppI ´BAqv, vqA “ }v}2A´pBAv, vqA, the

identity (2.15) yields

}I ´ BA}2A “ 1´ inf
}v}A“1

pBAv, vqA “ 1´ λminpBAq “ 1´
1

c1
,

where

c1 “ λmaxppBAq´1q “ sup
}v}A“1

`

pBAq´1v, v
˘

A “ sup
}v}A“1

`

B´1
v, v

˘

.

This in turn gives the second equality.

Example 2.16 (Jacobi and weighted Jacobi methods). If A P RNˆN is SPD and it can be

partitioned as A “ L ` D ` U , where L,D,U P RNˆN are lower triangular, diagonal, upper

triangular parts of A, respectively. We can immediately see that B “ D´1 yields the Jacobi

method. In this case, we have

B “ BT pB´T `B´1 ´AqB “ D´T pD ´ L´ UqD´1.

If KJacobi :“ D´L´U “ 2D´A is SPD, the Jacobi method converges. In general, it might not

converge, but we can apply an appropriate scaling (i.e., the damped Jacobi method) Bω “ ωD´1.

We then derive

B´Tω `B´1
ω ´A “ 2ω´1D ´A.

The damping factor should satisfy that ω ă 2
ρpD´1Aq

in order to guarantee convergence. For

the 1D finite difference problem of the Poisson’s equation, we should use a damping factor

0 ă ω ă 1.

An example: modified G-S method ‹

Similar to the weighted Jacobi method (see Example 2.16), we define the weighted G-S

method Bω “ pω
´1D ` Lq´1. We have

B´Tω `B´1
ω ´A “ pω´1D ` LqT ` pω´1D ` Lq ´ pD ` L` Uq “ p2ω´1 ´ 1qD.

The weighted G-S method converges if and only if 0 ă ω ă 2. In fact, ω “ 1 yields the standard

G-S method; 0 ă ω ă 1 yields the SUR method; 1 ă ω ă 2 yields the SOR method. One

can select optimal weights for different problems to achieve good convergence result, which is

beyond the scope of this lecture.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 45

Motived by the weighted G-S methods, we assume there is an invertible smoother or a local

relaxation method S for the equation A~u “ ~f , like the damped Jacobi smoother S “ ωD´1

(0 ă ω ă 1). We can define a general or modified G-S method:

B :“
`

S´1 ` L
˘´1

. (2.16)

This method seems abstract and not very interesting now; but we will employ this idea on block

matrices for multilevel iterative methods later on.

We can analyze the convergence rate of this modified G-S method using the same technique

discussed above. Since K “ B´T ` B´1 ´ A is a symmetric operator and we can write (2.13)

as B “ BTKB. If B is the iteration operator defined by (2.16), we have

K “ pS´T ` Uq ` pS´1 ` Lq ´ pD ` L` Uq “ S´T ` S´1 ´D.

Furthermore, from the definition of K, we find that B´1 “ K ` A ´ B´T . Hence we get an

explicit form of B
´1

by simple calculations:

B
´1
“ pK `A´B´T qK´1pK `A´B´1q “ A` pA´B´T qK´1pA´B´1q.

This identity and the definition of B yield:

´

B
´1
~v,~v

¯

“ pA~v,~vq `
´

K´1pD ` U ´ S´1q~v, pD ` U ´ S´1q~v
¯

, @~v P RN .

Now we apply Theorem 2.15 and get the following identity for the convergence rate:

Corollary 2.17 (Convergence rate of Modified G-S). If K “ S´T ` S´1 ´D is SPD, then the

modified G-S method converges and

}I ´BA}2A “ }I ´BA}A “ 1´
1

1` c0
, with c0 :“ sup

}~v}A“1

›

›

›
K´ 1

2

`

D ` U ´ S´1
˘

~v
›

›

›

2
.

This simple result will motivate our later analysis for subspace correction methods in Chap-

ter 4.

Example 2.18 (Solving 1D Poisson’s equation using G-S). If we apply the G-S method to the

1D FD/FE system (1.26) for the Poisson’s equation discussion in §1.2. For simplicity, we first

rescale both sides of the equation such that A :“ tridiagp´1, 2,´1q and ~f :“
`

h2fpxiq
˘N

i“1
. In

this case, S “ D´1 and K “ D in the above modified G-S method. Corollary 2.17 shows that

the convergence rate of the G-S iteration satisfies that

}I ´BA}2A “ 1´
1

1` c0
, with c0 “ sup

~vPRN zt0u

pLD´1U~v,~vq

}~v}2A
.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 46

The positive constant can be further written

c0 “ sup
~vPRN zt0u

`

D´1U~v, U~v
˘

pA~v,~vq
“ sup

~vPRN zt0u

1
2

`

U~v, U~v
˘

pA~v,~vq
“ sup

~vPRN zt0u

1
2

řN
i“2 v

2
i

pA~v,~vq
.

Because we have the eigenvalues of this discrete coefficient matrix A of FD (see Remark 1.26),

we can estimate the denominator

pA~v,~vq ě λminpAq}~v}
2 “ 4 sin2

´ π

2pN ` 1q

¯

}~v}2.

Hence, asymptotically, we have the following estimate

c0 ď sup
~vPRN zt0u

1
2}~v}

2

4 sin2
´

π
2pN`1q

¯

}~v}2
„ pN ` 1q2 “ h´2.

Hence

}I ´BA}A „
a

1´ C̃h2 „ 1´ Ch2.

Similarly, for the FE equation, the condition number also likes Oph´2q and convergence rate will

deteriorate as the meshsize decreases.

2.2 Krylov subspace methods

Nonstationary iterative methods are more popular for standard-alone usage. Krylov subspace

method (KSM) is a well-known class of nonstationary methods [64]. Let A : V ÞÑ V be an

invertible operator. By the Cayley–Hamilton theorem (see HW 2.3), there exists a polynomial

of degree no more than N ´ 1, qN´1pλq P PN´1, such that A´1 “ qN´1pAq. Hence the solution

of the linear system has the form u “ qN´1pAqf . Krylov subspace methods construct iterative

approximations to u in

Km :“ spantf,Af,A2f, . . . ,Am´1fu, m “ 1, 2, . . .

Gradient descent method

Let A : V ÞÑ V be an SPD operator. Consider the following convex minimization problem:

min
uPV

Fpuq :“
1

2
pAu, uq ´ pf, uq. (2.17)

Suppose we have an initial approximation uold and construct a new approximation

unew “ uold ` αp

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 47

with a fixed search direction p P V and a stepsize α. In order to find the “best possible” stepsize,

we can solve an one-dimensional problem (i.e., the exact line-search method):

min
αPR

Fpαq :“
1

2

`

uold ` αp, uold ` αp
˘

A ´ pf, u
old ` αpq.

By simple calculation (HW 2.4), we obtain

Fpαq :“
1

2
α2pAp, pq ´ αpf ´Auold, pq `

1

2

`

Auold, uold
˘

´ pf, uoldq,

and the optimal stepsize is

αopt “
pf ´Auold, pq

pAp, pq “
prold, pq

pAp, pq , with rold “ f ´Auold. (2.18)

In the previous chapter, we have discussed the Richardson method. A nonstationary version

of the Richardson method can be given as:

upm`1q “ upmq ` αm
`

f ´Aupmq
˘

,

which can be viewed as the gradient descent or steepest descent (SD) method with exact line-

search for the above convex minimization problem.

Remark 2.19 (Richardson and steepest descent method). If A is a SPD matrix, then A~u “ ~f

is equivalent to the unconstrained quadratic minimization problem

argmin
~uPRN

1

2
~uTA~u´ ~f T~u.

We immediately notice that the search direction in the Richardson method is exactly the same

as the steepest decent method for the above minimization problem.

This method is easy to implement and cheap in computation (each step only requires 1

matrix-vector multiplication and 2 inner products). Unfortunately, the SD method usually

converges very slowly. See the following algorithm description of the SD method:

Listing 2.1: Steepest descent method

1 %% Given an initial guess u and a tolerance ε;

2 r Ð f ´Au;
3 while }r} ą ε

4 αÐ pr, rq{pAr, rq;
5 uÐ u` α r;

6 r Ð r ´ αAr;
7 end

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 48

Example 2.20 (Line-search and the G-S method). Let V “ RN , A “ pai,jq P RNˆN . Suppose

we choose the natural basis as the search directions, i.e., ~p “ ~ei :“ p0, . . . , 0, 1, 0, . . . , 0qT P V .

Let ~u old “ ~u p0q be an initial guess. Then the above method yields the iteration:

~u piq “ ~u pi´1q ` α~p “ ~u pi´1q `
p~r pi´1q, ~pq

pA~p, ~pq
~p “ ~u pi´1q `

p~r pi´1q, ~eiq

pA~ei, ~eiq
~ei.

So we get

~u piq “ ~u pi´1q `
fi ´

řN
j“1 ai,j u

pi´1q
j

ai,i
~ei.

This means that only one entry is updated in each iteration:

u new
i “ u

pi´1q
i `

fi ´
řN
j“1 ai,j u

pi´1q
j

ai,i
“

1

ai,i

´

fi ´
ÿ

jăi

ai,ju
new
j ´

ÿ

jąi

ai,ju
old
j

¯

. (2.19)

After N steps (i “ 1, 2, . . . , N), we obtain a new iteration ~unew, which is exactly the G-S

iteration.

Remark 2.21 (The G-S method and Schwarz method). Based on (2.19), we can write the G-S

error propagation matrix in a different form

I ´BA “ pI ´ INa
´1
N,NI

T
NAq ¨ ¨ ¨ pI ´ I1a

´1
1,1I

T
1 Aq “ pI ´ΠN q ¨ ¨ ¨ pI ´Π1q, (2.20)

where Ii is the natural embedding from spant~eiu to RN and Πi “ IiA
´1
i ITi A. This form of G-S

will be further discussed later in the framework of Schwarz method and subspace correction

method.

Theorem 2.22 (Convergence rate of steepest descent method). If we apply the exact line-search

using the stepsize

αm :“

`

rpmq, rpmq
˘

`

rpmq, rpmq
˘

A
,

then the convergence rate of the SD method satisfies that

›

›u´ upmq
›

›

A ď
ˆ

κpAq ´ 1

κpAq ` 1

˙m
›

›u´ up0q
›

›

A. (2.21)

Proof. The exact line-search stepsize is easy to obtain by 1D quadratic programming. At the

m-th iteration, the energy satisfies that

Fpupm`1qq “ Fpupmq ` αmrpmqq “ Fpupmqq ´ αmprpmq, rpmqq `
1

2
α2
mpArpmq, rpmqq.

By plugging the expression of αm into the right-had side of the above equality, we obtain that

Fpupm`1qq “ Fpupmqq ´ 1

2

prpmq, rpmqq2

pArpmq, rpmqq .

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 49

This implies that

Fpupm`1qq ´ Fpuq
Fpupmqq ´ Fpuq “

Fpupmqq ´ prpmq, rpmqq2

2pArpmq, rpmqq ´ Fpuq

Fpupmqq ´ Fpuq

“ 1´
prpmq, rpmqq2

pArpmq, rpmqqpA´1rpmq, rpmqq
“: 1´

1

β

By the Kantorovich inequality, we know β ď pλmax`λminq
2

4λmaxλmin
. So it follows

Fpupm`1qq ´ Fpuq
Fpupmqq ´ Fpuq “ 1´

1

β
ď 1´

4λmaxλmin

pλmax ` λminq
2
“
pλmax ´ λminq

2

pλmax ` λminq
2
“

ˆ

κpAq ´ 1

κpAq ` 1

˙2

.

Hence the result.

Conjugate gradient method

Now we consider a descent direction method with search direction ppmq, i.e.

upm`1q “ upmq ` αmp
pmq. (2.22)

In this case, the “optimal” stepsize from the exact line-search is

αm :“

`

rpmq, ppmq
˘

`

ppmq, ppmq
˘

A
. (2.23)

We notice that the residual after one iteration is

rpm`1q “ rpmq ´ αmAppmq.

In order to keep the iteration going, we wish to construct a new search direction which is

orthogonal to the previous search directions. This motives us to define

ppm`1q :“ rpm`1q ` βmp
pmq, such that

`

ppmq, ppm`1q
˘

A “ 0.

By simple calculations, we get the weight

βm :“ ´

`

Arpm`1q, ppmq
˘

`

Appmq, ppmq
˘ . (2.24)

This is basically the so-called conjugate gradient (CG) method.

Lemma 2.23 (Properties of conjugate directions). For any conjugate gradient step i, we have

following identities:

1.
`

rpiq, ppiq
˘

“
`

rpiq, rpiq
˘

;

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 50

2.
`

rpjq, ppiq
˘

“ 0, j ą i;

3.
`

ppjq, ppiq
˘

A “ 0, j ‰ i;

4.
`

rpjq, rpiq
˘

“ 0, j ‰ i.

This lemma is very simple but important; see HW 2.5. It guarantees we can apply a short

recurrence iteration procedure while keep all directions are orthogonal to each other.

Lemma 2.24 (Stepsizes for CG). For the conjugate gradient method, we have following iden-

tities:

αm “

`

rpmq, rpmq
˘

`

Appmq, ppmq
˘

and βm “

`

rpm`1q, rpm`1q
˘

`

rpmq, rpmq
˘

.

The previous lemma may look like some trivial transformations, but it is essential for CG

implementation, which is described as follows:

Listing 2.2: Conjugate gradient method

1 %% Given an initial guess u and a tolerance ε;

2 r Ð f ´Au, pÐ r;

3 while }r} ą ε

4 αÐ pr, rq{pAp, pq;
5 ũÐ u` αp;

6 r̃ Ð r ´ αAp;
7 β Ð pr̃, r̃q{pr, rq;

8 p̃Ð r̃ ` β p;

9 Update: uÐ ũ, r Ð r̃, pÐ p̃;

10 end

Remark 2.25 (Computational complexity of CG). We find that, in each iteration of the CG

method, the complexity is only 1 matrix-vector multiplication and 2 inner products, with a few

vector additions.

The CG method converges much faster than the steepest descent in practice. In fact, we

have the following theorem

Theorem 2.26 (Convergence rate of CG). The convergence rate of the CG iteration satisfies

the following estimate:

›

›u´ upmq
›

›

A ď 2

˜

a

κpAq ´ 1
a

κpAq ` 1

¸m
›

›u´ up0q
›

›

A. (2.25)

Proof. We only give a sketch of proof here. From Lemma 2.23, the residual rpmq is orthogonal

to

Km “ spantrp0q,Arp0q, . . . ,Am´1rp0qu,

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 51

namely

pApu´ upmqq, vq “ prpmq, vq “ 0, @v P Km.

This implies
`

pu´ up0qq ´ pupmq ´ up0qq, v
˘

A “ 0, @v P Km.

The above A-orthogonality gives

›

›

›
u´ upmq

›

›

›

A
“ min

wPKm

›

›

›
u´ up0q ´ w

›

›

›

A
“ min

qm´1

›

›

›
u´ up0q ´ qm´1pAqrp0q

›

›

›

A

“ min
qm´1

›

›

›

`

I ´ qm´1pAqA
˘

pu´ up0qq
›

›

›

A
“ min

qmp0q“1

›

›

›
qmpAqpu´ up0qq

›

›

›

A
.

The desired estimate can then be obtained by choosing appropriate Chebyshev polynomials; see

HW 2.6 as a guideline to complete the proof.

Remark 2.27 (Minimum residual method). If A : V ÞÑ V is a symmetric isomorphism mapping

and it is indefinite, we can apply the minimum residual (MINRES) method characterized by

upmq “ argmin
vPKm

}f ´Av}20.

We can derive analytically that (see, for example, [64])

›

›rpmq
›

›

0
ď min

qmp0q“1
max
λPσpAq

|qmpλq|
›

›rp0q
›

›

0

In this case, the following crude convergence estimate holds

›

›rpmq
›

›

0
“

›

›Apu´ upmqq
›

›

0
ď 2

ˆ

κpAq ´ 1

κpAq ` 1

˙m
›

›Apu´ up0qq
›

›

0
“ 2

ˆ

κpAq ´ 1

κpAq ` 1

˙m
›

›rp0q
›

›

0
. (2.26)

If all the eigenvalues are positive, we can get sharp convergence estimate using Chebyshev

polynomials. Unfortunately, it is not easy to get a general yet sharp estimate for indefinite

problems.

Effective condition number ‹

If the spectrum of A is uniformly distributed in the interval rλmin, λmaxs, then the upper

bound in (2.25) is sharp. In fact a few “bad eigenvalues” have almost no effect on the asymptotic

convergence of the method. In this case, this bound is not sharp any more. Instead, the

asymptotic convergence rate can be estimated by the effective condition number [2, 3].

If the spectrum of A can be decomposed into two parts, σpAq “ σeffpAq
Ť

σisopAq, with

m0 isolated eigenvalues in σisopAq. In this case, the above convergence estimate for CG can be

modified as

}u´ upmq}A
}u´ up0q}A

ď 2C

˜

a

b{a´ 1
a

b{a` 1

¸m´m0

, m ě m0, (2.27)

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 52

where the constant C :“ maxλPσeffpAq
ś

µPσisopAq

ˇ

ˇ

ˇ
1´ λ

µ

ˇ

ˇ

ˇ
. It is easy to see that C ď

`

κpAq´ 1
˘m0

in general; and, in particular, C ď 1 if σiso contains only isolated large eigenvalues.

Hence we can define the effective condition number as

κeffpAq :“
b

a
“

maxσeff

minσeff

and use the effective condition number to estimate the rate of convergence of the Krylov subspace

methods instead.

Generalizing KSM to Hilbert spaces

It is important to note that the above convergence estimates (2.25) and (2.26) do not depend

on the finite dimensionality N . Hence the Krylov subspace methods (KSMs) can be applied for

operators A : V ÞÑ V , where V is a separable Hilbert space3. In view of Remark 1.23, we have

}A}L pV ;V q “ sup
vPV

pAv, vq
}v}2V

“ sup
vPV

arv, vs

}v}2V
ď Ca

and the inf-sup condition (1.16) gives

}A´1}
´1
L pV ;V q “ inf

vPV

}Av}V
}v}V

“ inf
vPV

sup
uPV

pAv, uq
}v}V }u}V

“ inf
vPV

sup
uPV

arv, us

}v}V }u}V
ě α.

Hence the condition number κpAq ď Ca{α, which is bounded.

However, in order to employ KSMs for the continuous equations that we are interested in, like

the Poisson’s equation, we have to consider A : V ÞÑ W , where V and W are both separable

Hilbert spaces. Typically, W Ą V and most likely W “ V 1. For simplicity, we consider a

symmetric isomorphism A P L pV ; V 1q, i.e.,

xAu, vy “ xAv, uy, u, v P V ,

where x¨, ¨y is the duality pair. Since V 1 Ć V , KSMs are not well-defined in this case. The

question is how we can apply a KSM method in such a setting.

We need to construct an isomorphism B mapping V 1 back to V . We assume that the map B
is symmetric and positive definite, namely x¨,B¨y defines an inner product in V 1. We immediately

notice that B could be a Riesz operator4: For any given f P V 1,

pBf, vqV “ xf, vy, @v P V .

As a consequence, xB´1¨, ¨y is an inner product on V , with associated norm equivalent to } ¨ }V .

This leads to a so-called preconditioned system

BAu “ Bf
3V might not be finite dimensional.
4We note that, here, B is inner product dependent.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 53

and BA is an isomorphism from V to itself. The Krylov subspace methods can be applied to

this preconditioned system and B is called a preconditioner.

Note that BA : V ÞÑ V is symmetric with respect to p¨, ¨qV , i.e.,

pBAu, vqV “ xAu, vy “ aru, vs “ pu,BAvqV , u, v P V .

The last equality follows from the symmetry of the bilinear form ar¨, ¨s. Furthermore, due to the

continuity of ar¨, ¨s (1.14), we obtain

}BA}L pV ;V q “ sup
vPV

|pBAv, vqV |
}v}2V

“ sup
vPV

arv, vs

}v}2V
ď Ca

and the inf-sup condition (1.16) gives

}pBAq´1}
´1
L pV ;V q “ inf

vPV

}BAv}V
}v}V

“ inf
vPV

sup
uPV

pBAv, uqV
}v}V }u}V

“ inf
vPV

sup
uPV

arv, us

}v}V }u}V
ě α.

This discussion directly follows the work by Mardal and Winther [83].

Example 2.28 (Poisson solver as a preconditioner). As an example, we consider a second-order

elliptic operator A : H1
0 pΩq ÞÑ H´1pΩq. We need to define

pBf, vqH1
0 pΩq

:“ p∇Bf,∇vq0,Ω “ xf, vy.

In this sense, we can choose B “ p´∆q´1 as a preconditioner. We note that other inner products

can be used, which will yield different preconditioners. As long as the above continuity condition

and the inf-sup condition hold, the preconditioned system is well-conditioned.

Now we summarize the above discussion on how to construct a “natural” preconditioner:

1. Define an appropriate inner product p¨, ¨qV ;

2. Establish the inf-sup condition supvPV
aru, vs
}v}V

ě α}u}V for any u P V ;

3. Define B as the Reisz operator, i.e., pBf, vqV “ xf, vy for any v P V ;

4. The preconditioned system BA is symmetric with respect to p¨, ¨qV and well-conditioned;

5. Construct a discretization which satisfies the corresponding discrete inf-sup condition;

6. Define a spectrally equivalent Bh as a preconditioner.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 54

2.3 Condition number and preconditioning

The convergence rate of an iterative method depends greatly on the spectrum of the coef-

ficient matrix. Hence, iterative methods usually involve a second matrix that transforms the

coefficient matrix into one with a more favorable spectrum. The transformation matrix is called

a preconditioner. A good preconditioner B improves the convergence of the iterative method

sufficiently and is relatively cheap to compute, in order to overcome the overhead (extra cost)

of constructing and applying the preconditioner. There are a few different ways to apply pre-

conditioners, for example:

BAu “ Bf Left preconditioning

ABv “ f u “ Bv Right preconditioning

BLABRv “ BLf u “ BRv Split preconditioning

Although convergence behavior of iterative methods is not governed by the condition number

alone, it provides useful information for a variety of methods. For example, we would hope that

κpBAq ! κpAq, if we apply a Krylov subspace method to solve a preconditioned linear system.

Construction of preconditioners

It is desirable to have an effective preconditioner which satisfy most, if not all, of the following

properties:

• The preconditioned linear systems have improved convergence behavior. Furthermore,

the spectral condition number of BA should be bounded independently of the size of the

problem.

• The preconditioner is relatively easy to setup and cheap to apply. The computational cost

of Br should be proportional to the size of the problem.

• The preconditioner should be robust on different domain shapes, mesh types, jumps in

coefficients, etc.

• The preconditioner can be implemented easily and efficiently.

We first introduce a few simple facts that could be helpful when we need to estimate the

condition number κpBAq.

Lemma 2.29 (Estimation of condition number). If µ0 and µ1 are positive constants satisfying

µ0

`

Au, u
˘

ď
`

B´1u, u
˘

ď µ1

`

Au, u
˘

, @u P V, (2.28)

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 55

then the condition number

κpBAq ď µ1

µ0
.

Proof. By change of variable u “ A´ 1
2 v, we have σ

`

A´ 1
2B´1A´ 1

2

˘

Ď
“

µ0, µ1

‰

and, hence,

σ
`

pBAq´1
˘

Ď
“

µ0, µ1

‰

.

Sometimes, it is more convenient to use some equivalent conditions of (2.28) to analyze

condition number; see the following lemma. Proof of the following lemma is left to the readers

as an exercise; see HW 2.7.

Lemma 2.30 (Some equivalent conditions). If A and B are symmetric positive definite operators

on a finite-dimensional space V , then we have the inequalities (2.28) are equivalent to

µ0pBu, uq ď pA´1u, uq ď µ1pBu, uq, @u P V, (2.29)

or

µ´1
1 pAu, uq ď pABAu, uq ď µ´1

0 pAu, uq, @u P V, (2.30)

or

µ´1
1 pBu, uq ď pBABu, uq ď µ´1

0 pBu, uq, @u P V. (2.31)

Remark 2.31 (Another equivalent condition). If A and B are symmetric positive definite

operators on a finite-dimensional space V , α ą 0 and 0 ă δ ă 1, then it is easy to verify the

following two conditions are equivalent:

´αpAu, uq ď pApI ´ BAqu, uq ď δpAu, uq, @u P V (2.32)

and

p1` αq´1pAu, uq ď pB´1u, uq ď p1´ δq´1pAu, uq, @u P V. (2.33)

Preconditioned conjugate gradient method

Before we talk about preconditioned KSMs, the first question to answer is why and how CG

can be applied to the preconditioned system BAu “ Bf . We have mentioned BA is usually not

symmetric w.r.t. p¨, ¨q but symmetric w.r.t. p¨, ¨qA. Similarly, we can define a new inner product

p¨, ¨qB´1 :“ pB´1¨, ¨q. Then

pBA¨, ¨qB´1 “ pA¨, ¨q ùñ BA is SPD w.r.t. p¨, ¨qB´1 ,

which means CG can be applied to BAu “ Bf with the new inner product.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 56

Lemma 2.32 (Stepsizes of PCG). For the preconditioned conjugate gradient method, we have

the following identities:

αm “

`

Brpmq, rpmq
˘

`

Appmq, ppmq
˘

and βm “

`

Brpm`1q, rpm`1q
˘

`

Brpmq, rpmq
˘

.

We notice that B´1 is cancelled out in the above inner products. With the help of this

lemma, we can write the pseudo-code of PCG with left preconditioner (compared with regular

CG, it just requires one more matrix-vector multiplication):

Listing 2.3: Preconditioned conjugate gradient method

1 %% Given an initial guess u and a tolerance ε;

2 r Ð f ´Au, pÐ Br;
3 while }r} ą ε

4 αÐ pBr, rq{pAp, pq;
5 ũÐ u` αp;

6 r̃ Ð r ´ αAp;
7 β Ð pBr̃, r̃q{pBr, rq;
8 p̃Ð Br̃ ` β p;
9 Update: uÐ ũ, r Ð r̃, pÐ p̃;

10 end

Preconditioning v.s. iteration

Let B be a symmetric iterator of the SPD operator A. We have seen that a sufficient

condition for the iterative method to be convergent is that

ρpI ´ BAq ă 1.

In this case, ρ :“ }I ´ BA}A ă 1. The method is not only converging but also a contraction,

i.e., }u ´ upmq}A ď ρm}u ´ up0q}A Ñ 0 as m Ñ `8. Similar argument as Theorem 2.12 shows

that B must be SPD. Furthermore, by definition, we have

´

`

A´ 2ABA`ABABA
˘

u, u
¯

ď ρ2pu, uqA.

Changing variable v “ A1{2u, we obtain

´

`

I ´A1{2BA1{2
˘2
v, v

¯

ď ρ2pv, vq ùñ

ˇ

ˇ

ˇ

`

pI ´A1{2BA1{2qv, v
˘

ˇ

ˇ

ˇ
ď ρpv, vq

ùñ

ˇ

ˇ

ˇ

`

pA´ABAqu, u
˘

ˇ

ˇ

ˇ
ď ρpAu, uq, @u P V.

Hence Remark 2.31 shows (see HW 2.9) that the condition number is uniformly bounded, i.e.,

κpBAq ď 1` ρ

1´ ρ
.

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 57

In fact, the above estimate can also be easily obtained from ρpI ´ BAq “ ρ ă 1.

We use the same notation B for the preconditioner and the iterator, apparently for a reason.

Indeed, the convergence rate of the preconditioned CG method (2.25) is equal to

δCG :“

a

κpBAq ´ 1
a

κpBAq ` 1
ď

b

1`ρ
1´ρ ´ 1

b

1`ρ
1´ρ ` 1

“
1´

a

1´ ρ2

ρ
ă ρ.

The last inequality holds true when 0 ă ρ ă 1. Hence, for any convergent stationary linear

iterative method, a preconditioner can be found and its convergence can be accelerated by

PCG. Of course, it comes with the extra cost of applying the preconditioners. Preconditioning

is so important for practical problems and KSMs are sometimes referred as accelerators.

Stopping criteria ‹

When an iterative method is employed, sometimes it is hard to determine when to stop the

iteration process. Ultimately we would like to have the error epmq “ u ´ upmq in certain norm

(e.g. the energy norm) to be small enough, i.e.,
`

epmq, epmq
˘

1
2
A ă ε. However, the error is not

usually computable. Norms of the residual rpmq “ f ´Aupmq, which is not only computable but

also naturally available in the iterative process, are used instead. According to the standard

perturbation analysis, we have

›

›u´ upmq
›

›

}u}
ď κpAq

›

›rpmq
›

›

}f}
. (2.34)

In fact, Apu´ upmqq “ f ´Aupmq “ rpmq. Hence }u´ upmq} ď }A´1}}rpmq}. On the other hand,

it is easy to see that }f} ď }A}}u}. By combining the last two inequalities, we can obtain the

desired estimate (2.34). We notice that the right-hand side of (2.34) is the relative residual (with

initial guess equals zero) and the left-hand side is just the relative error. Hence this inequality

shows that, even if the relative residual is small, the relative error could be still very large,

especially for the ill-conditioned problems.

Although L2-norm of rpmq is usually used in practice,
`

rpmq, rpmq
˘

1
2
B is a better quantity to

monitor for convergence. We notice that

prpmq, rpmqqB “
`

Aepmq,Aepmq
˘

B “
`

ABAepmq, epmq
˘

.

According to Lemma 2.30,
`

rpmq, rpmq
˘

1
2
B is equivalent to

`

epmq, epmq
˘

1
2
A, if and only if B is a good

preconditioner.

Another comment is that we have been using the residual of the original equation instead of

the preconditioned equation in PCG. In practice, there might be situations that left part of the

preconditioner changes the residual of the equation a lot, which will cause trouble for users to

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 58

design stopping criteria. The preconditioned equation has a residual rB “ Br “ Bpf ´Auq and

}rB} might be a lot different than }r}. Thus it is usually not good to use rB instead of r.

2.4 Domain decomposition methods

In the field of numerical methods for partial differential equations, domain decomposition

methods (DDMs) make use of divide and conquer techniques by iteratively solving subprob-

lems defined on smaller subdomains. It is a convenient framework for the solution and, more

importantly, preconditioning of heterogeneous or multiphysics problems. It can be used in the

framework of many discretization methods (e.g., FD and FE) to make their algebraic solution

efficient, especially on parallel computers. Roughly speaking, there are two ways of subdividing

the computational domain, overlapping and non-overlapping. We will only discuss overlapping

domain decomposition methods here.

Divide and conquer

We consider the model boundary value problem

#

Au “ f in Ω

u “ 0 on BΩ

Overlapping domain decomposition algorithms are based on a decomposition of the domain Ω

into a number of overlapping subdomains. To introduce the main ideas of DDMs, we consider

the case of two overlapping subdomains Ω1 and Ω2, which form a covering of Ω and Ω1
Ş

Ω2 ‰ Ø;

see Figure 1. We let Γi (i “ 1, 2) denote the part of the boundary of Ωi, which is in the interior

of Ω.
Overlapping Domain Decomposition Methods 3

ΩΩ1 2

Γ

Γ2

1

Fig. 1. Solution domain for the classical alternating Schwarz method.

Then, we solve the Poisson equation within the rectangle ≠2, using the latest
solution un

1 on the artificial internal boundary °2:

°r2un
2 = f2 in ≠2,

un
2 = g on @≠2\°2,

un
2 = un

1 |°2 on °2.

The two local Poisson equations in ≠1 and ≠2 are coupled together in the
following way: the artificial Dirichlet condition on the internal boundary °1

of subdomain ≠1 is provided by subdomain ≠2 in form of un°1
2 |°1 , and vice

versa. It is clear that un°1
2 |°1 and un

1 |°2 may change from iteration to itera-
tion, while converging towards the true solution. Therefore, in each Schwarz
iteration, the two Poisson equations need to update the artificial Dirichlet
conditions on °1 and °2 by exchanging some data. Note also that the classi-
cal alternating Schwarz method is sequential by nature, meaning that the two
Poisson solves within each iteration must be carried out in a predetermined
sequence, first in ≠1 then in ≠2. Of course, the above alternating Schwarz
method can equally well choose the rectangle as ≠1 and the circle as ≠2,
without any noticeable effects on the convergence.

2.2 The Multiplicative Schwarz Method

We now extend the classical alternating Schwarz method to more than two
subdomains. To this end, assume that we want to solve a linear elliptic PDE
of the form:

Lu = f in ≠, (1)

u = g on @≠, (2)

Figure 2.1: Overlapping domain partition with two sub-domains.

If we already have an approximate solution upmq, we can construct a new approximation by

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 59

solving the following two equations:

$

’

’

&

’

’

%

Aupm`1q
1 “ f in Ω1,

u
pm`1q
1 “ upmq on Γ1,

u
pm`1q
1 “ 0 on BΩ1zΓ1,

and
$

’

’

&

’

’

%

Aupm`1q
2 “ f in Ω2,

u
pm`1q
2 “ gpmq on Γ2,

u
pm`1q
2 “ 0 on BΩ2zΓ2.

Here we have not specified how to choose the right boundary condition gpmq. There are two

approaches to apply these two subdomain corrections—the additive approach and the multi-

plicative approach. In the additive approach, we take gpmq “ upmq and carry out the two

corrections simultaneously. In the multiplicative approach, we take gpmq “ u
pm`1q
1 and use the

most up-to-date iterative solution. We then define the new iteration as

upm`1qpxq :“

#

u
pm`1q
2 , if x P Ω2;

u
pm`1q
1 , if x P ΩzΩ2.

Overlapping DD methods

With the above motivation in mind, we are ready to introduce the standard overlapping

domain decomposition method in matrix form:

A~u “ ~f, V “ RN .

Suppose we have an one-dimensional domain partitioning of Ω; see Figure 2.2. Of course, we

can use more general partitioning strategies as well.

Ω̂2

ΩΩ1 Ω2 Ω3 Ω4

βH

Figure 2.2: Overlapping domain partition with four sub-domains.

Denote the set of grid point indices as G :“ t1, 2, . . . , Nu and it is partitioned into n subdo-

mains. Let Ĝi be the index set of the interior points of Ω̂i, and Ni :“ |Ĝi| be the cardinality of

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 60

Ĝi. Apparently, we have

G “ Ĝ1

ď

Ĝ2

ď

¨ ¨ ¨
ď

Ĝn and N ă N1 `N2 ` ¨ ¨ ¨ `Nn.

In the matrix form, the injection matrix (natural embedding) Ii P RNˆNi is defined as

pIi~viqk “

$

&

%

`

~vi
˘

k
, if k P Ĝi;

0, if k P GzĜi.
(2.35)

It is natural to define sub-problems as Ai :“ ITi AIi (i “ 1, . . . , n). If we solve each sub-problem

exactly, then we have Bi :“ IiA
´1
i ITi .

We can define an additive Schwarz method (ASM) as

Bas :“
n
ÿ

i“1

Bi “
n
ÿ

i“1

IiA
´1
i ITi , (2.36)

which generalizes the block Jacobi method. Similarly, a multiplicative Schwarz method (MSM)

is then defined by the following error propagation operator

I ´BmsA :“ pI ´BnAq ¨ ¨ ¨ pI ´B1Aq “
1
ź

i“n

pI ´BiAq. (2.37)

This is a generalization of the block G-S method (with overlapping blocks). In practice, the

sub-problem solver A´1
i could be replaced by an approximation, like the ILU method.

Classical convergence results of overlapping DDMs ‹

These DD methods, especially the ASM version, are usually applied as preconditioners for

parallel computing. Its convergence has been analyzed in [49, 50] and we only show the results

for the additive version here.

Theorem 2.33 (AS DD preconditioner). The condition number of AS domain decomposition

method is independent of the mesh size h and satisfies

κpBasAq À H´2p1` β´2q,

where H is size of domain partitions and βH characterizes size of the overlaps.

The DD preconditioner (2.36) performs very well in practice. But the convergence rate still

depends on H and the condition number could be large if H is very small. A simple approach

to get rid of this dependence on H is to introduce a coarse space V0 Ă V and a corresponding

coarse-level solver, i.e.

Bas,2 :“ I0A
´1
0 IT0 `

n
ÿ

i“1

IiA
´1
i ITi ,

where I0 : V0 ÞÑ V is the injection matrix and A0 is the coarse space problem. We then have

the following estimate on the condition number:

CHAPTER 2. ITERATIVE SOLVERS AND PRECONDITIONERS 61

Theorem 2.34 (Two-level AS DD preconditioner). The condition number of AS domain de-

composition method is independent of the mesh size h and satisfies

κpBas,2Aq À 1` β´1.

The above theorem shows the dependence on meshsize can be removed by introducing an

appropriate coarse-level correction. We will construct and analyze two-level and, more generally,

multilevel iterative methods in the following chapters.

2.5 Homework problems

HW 2.1. Show the identity (2.7).

HW 2.2. If BT “ B, show that pBAq˚ “ BTA “ BA.

HW 2.3. Let A P RNˆN and qpλq :“
ˇ

ˇλI ´A
ˇ

ˇ be the characteristic polynomial of A. Show the

Cayley-Hamilton theorem, i.e., qpAq “ 0.

HW 2.4. Show the optimal stepsize (2.18) for general descent direction method.

HW 2.5. Prove Lemmas 2.23 and 2.24.

HW 2.6. The Chebyshev (or Tchebycheff) polynomial of first kind on r´1, 1s can be defined

recursively as

T0pxq “ 1, T1pxq “ x, Tn`1pxq “ 2xTnpxq ´ Tn´1pxq.

Show that

Tnpxq “
1

2

´

`

x`
a

x2 ´ 1
˘n
`
`

x´
a

x2 ´ 1
˘n
¯

and
ˇ

ˇTnpxq
ˇ

ˇ ď 1 for any x P r´1, 1s. Let 0 ă λmin ď λmax. Define

Snpλq :“

„

Tn

´λmax ` λmin

λmax ´ λmin

¯

´1

Tn

´λmax ` λmin ´ 2λ

λmax ´ λmin

¯

and we have
ˇ

ˇ

ˇ

ˇ

Tn

´λmax ` λmin

λmax ´ λmin

¯

ˇ

ˇ

ˇ

ˇ

´1

“
›

›Sn
›

›

8,rλmin,λmaxs
“ min

pPPn; pp0q“1

›

›p
›

›

8,rλmin,λmaxs
,

where Pn is the set of polynomials of degree less than or equal to n.

HW 2.7. Prove Lemma 2.30.

HW 2.8. Show that (2.32) and (2.33) are equivalent to each.

HW 2.9. Let A be SPD and B be a symmetric iterator. If ρ “ }I ´ BA}A ă 1, then B is also

SPD and

κpBAq ď 1` ρ

1´ ρ
.

Chapter 3

Twogrid Methods

In the previous chapter, we have seen several simple iterative solvers and preconditioners for

solving the linear algebraic system (2.1). The convergence rate of these methods deteriorates

when meshsize h approaches zero, except for the two-level overlapping domain decomposition

method with coarse-grid correction. This motivates our discussions on multilevel iterative meth-

ods in the following chapters. In this chapter, we will discuss the twogrid (or more generally,

two-level) method for the discrete Poisson’s equation:

$

&

%

´∆u “ f in Ω,

u “ 0 on BΩ.
ùñ A~u “ ~f.

In Chapter 1, we have briefly discussed the finite element approximation for this model

problem. From now on, we will mainly discuss in the context of finite element discretizations.

Throughout this chapter, we use the standard notations for Sobolev spaces introduced in Chap-

ter 1: HkpΩq denotes the classical Sobolev space of scalar functions on a bounded domain

Ω Ă Rd whose derivatives up to order k are square integrable, with the full norm } ¨ }k and the

corresponding semi-norm | ¨ |k. The symbol H1
0 pΩq denotes the subspace of H1pΩq whose trace

vanishes on the boundary BΩ. We will also discuss the corresponding spaces restricted to the

subdomain of Ω.

3.1 Finite element methods

We now take a little detour and say a few more words about the finite element discretizations;

see [38] for more details. The linear operator A : V ÞÑ V 1 is defined by

pAu, vq :“ aru, vs “

ż

Ω
∇u∇v dx, @v P V

62

CHAPTER 3. TWOGRID METHODS 63

and f P V 1 is a function or distribution. Suppose that A is bounded (1.14), i.e.,

aru, vs ď Ca}u}V }v}V , @u, v P V

and coercive (1.23), i.e.,

arv, vs ě α}v}2V , @v P V .

We would like to find u P V such that Au “ f or in the weak form

aru, vs “ 〈f, v〉 , @ v P V (3.1)

which is well-posed. And we have seen that this problem is well-conditioned in Remark 1.23.

Galerkin approximation

The Galerkin method exploits the weak formulation (3.1) and replaces the underlying func-

tion space by appropriate finite dimensional subspaces. We choose a finite dimensional space

VN (trial/test space), which is an approximation to the space V with dimpVN q “ N . When no

confusion arises, we shall just drop the subscript and denote the space as V “ VN . Then we

arrive at the Galerkin discretization:

Find uN P V : aruN , vN s “ 〈f, vN 〉 , @ vN P V. (3.2)

Equation (3.2) yields the so-called Galerkin discretization. If the bilinear form ar¨, ¨s is symmetric

and coercive, it is called the Ritz–Galerkin discretization. In the finite-dimensional setting, we

can identify the dual space V 1 and V ; this way, the duality pair x¨, ¨y becomes the l2-inner

product p¨, ¨q.

For conforming discretizations, the bilinear form ar¨, ¨s is well-defined on V ˆ V . If the

bilinear form ar¨, ¨s is coercive, then we have

arvN , vN s ě αN }vN}
2
V , @ vN P V.

Since coercivity is inherited from V to its subspace V , we can see that the constant αN is

bounded from below, i.e.,

αN ě α, @N

As a consequence, the discrete inf-sup condition holds1. It is easy to show the following simple

optimality approximation properties.

1In general, the continuous inf-sup condition does not imply the discrete one.

CHAPTER 3. TWOGRID METHODS 64

Remark 3.1 (Galerkin Orthogonality). Assume V Ă V . The weak formulations of the exact

and discrete solutions satisfy
$

&

%

aru, vs “ 〈f, v〉 , @ v P V ;

aruN , vN s “ 〈f, vN 〉 , @ vN P V.

Taking v “ vN in the first equation and simply subtracting the two equations gives the Galerkin

orthogonality, i.e.,

aru´ uN , vN s “ 0, @ vN P V. (3.3)

If ar¨, ¨s is symmetric and coercive, then (3.3) means the error u´ uN is orthogonal to V in the

induced inner product by the bilinear form ar¨, ¨s. Apparently, ΠNu :“ uN is a projection from

V to V with respect to p¨, ¨qA-inner product. It is oftentimes called the Ritz projection.

Lemma 3.2 (Céa’s Lemma). If the bilinear form ar¨, ¨s is continuous and coercive, then the

Galerkin approximation uN satisfies

}u´ uN}V ď
Ca
α
}u´ vN}V , @ vN P V.

More generally, we have the following quasi-optimality or quasi-best-approximation of the

finite-dimensional Galerkin approximation.

Proposition 3.3 (Quasi-Optimality). Suppose ar¨, ¨s : V ˆ V ÞÑ R is continuous. The fi-

nite dimensional subspace V in the Galerkin approximation satisfies the discrete inf-sup condi-

tion (1.22) with αN ą 0. Let u and uN be the exact solution of (1.15) and the Galerkin solution

of (3.2), respectively. Then the error

}u´ uN}V ď
}A}
αN

min
wNPV

}u´ wN}V .

Proof. For all wN P V , applying (1.20) and (3.3), we have

αN }uN ´ wN}V ď sup
vNPV

aruN ´ wN , vN s

}vN}V
“ sup

vNPV

aru´ wN , vN s

}vN}V
ď }A} }u´ wN}V .

Then simply applying the triangular inequality gives the estimate.

}u´ uN}V ď
}A} ` αN

αN
min
wNPV

}u´ wN}V .

Note that this constant in the upper bound is still not sharp. The desired constant in this

Proposition was obtained by Xu and Zikatanov [123].

Remark 3.4 (Stability). In view of Theorem 1.16, we can see that the Galerkin solution depends

on the data continuously, i.e.,

}uN}V ď
1

α
}f}V 1 .

CHAPTER 3. TWOGRID METHODS 65

Finite element ‹

The finite element method (FEM) has a long history in practical use and is widely applied

to lots of problems in physics and engineering. It has been proved to be very successful in

many areas, like structural mechanics. After decades of extensive development, the subject of

classical (conforming) finite element method has become a well-understood and successful area in

scientific computation. The most attractive feature of the FEM is its ability to handle complex

geometries, boundaries, and operators with relative ease.

Definition 3.5 (Finite element). A triple pK,P,N q is called a finite element if and only if

(i) K Ď Rd be a bounded closed set with nonempty interior and piecewise smooth boundary;

(ii) P be a finite-dimensional space of functions on K;

(iii) N “ tN1, . . . ,Nku be a basis of P 1.

We usually call K the element domain, P the space of shape functions, and N the set of

nodal variables.

Definition 3.6 (Nodal basis). Let pK,P,N q be a finite element. The basis tφjuj“1,...,k of P
dual to N , i.e., Nipφjq “ δi,j is called the nodal basis of P.

Example 3.7 (1D Lagrange element). Let K “ r0, 1s, P be the set of linear polynomials, and

N “ tN1,N2u where N1pvq “ vp0q and N2pvq “ vp1q. Then pK,P,N q is a finite element and it

is the well-known P1-Lagrange finite element discussed in Chapter 1. The nodal basis functions

are φ1pxq “ 1´ x and φ2pxq “ x.

Remark 3.8 (Set of nodal variables). If P is a k-dimensional space and tN1, . . . ,Nku Ă P 1.
Then condition piiiq in Definition 3.5 is equivalent to the unisolvence: For any v P P,

Nipvq “ 0, i “ 1, . . . , k ùñ v ” 0.

Remark 3.9 (d-dimensional simplex). Let xp1q, . . . , xpd`1q are d` 1 points in Rd. Suppose that

these points do not lie in one hyper-plane. That is to say, the matrix

S “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

x
p1q
1 x

p2q
2 ¨ ¨ ¨ x

pd`1q
1

x
p1q
2 x

p2q
2 ¨ ¨ ¨ x

pd`1q
2

...
...

...
...

x
p1q
d x

p2q
d ¨ ¨ ¨ x

pd`1q
d

1 1 1 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

CHAPTER 3. TWOGRID METHODS 66

is non-singular. The convex hull of the d` 1 points

τ :“ tx “
d`1
ÿ

i“1

λix
piq : 0 ď λi ď 1, i “ 1 : d` 1,

d`1
ÿ

i“1

λi “ 1u

is called a geometric d-simplex generated (spanned) by the vertices xp1q, . . . , xpd`1q. Given any

point x P Rd, we have

x “
d`1
ÿ

i“1

λipxqx
piq, with

d`1
ÿ

i“1

λipxq “ 1.

Here the numbers λ1, . . . , λd`1 are called the barycentric coordinates of x with respect to the

simplex τ .

Now we describe the main steps of discretization using the pK,P,N q-finite element:

Step 1. Domain partitioning: Choose K to be a simplex in Rd. So we first partition the

physical domain into simplexes. We discretize a polygonal domain Ω into small triangles or

tetrahedrons τ . Let hτ :“ |τ |
1
d be the diameter of τ PM and hpxq be the local meshsize, that

is the piecewise constant function with h|τ :“ hτ for all τ PM. The collection M of elements

is called a mesh or triangulation. We call Mh :“M quasi-uniform if there exists a constant h

independent of τ such that

h À hτ À h, @ τ PM.

We will only consider conforming meshes, i.e., the intersection of any two elements in M is

either an edge (d “ 2) / a face (d “ 3), vertex, or empty (see Figure 3.1 for an example). We

denote by GpMq the set of all grid points (vertices) in the mesh M. And G̊pMq Ď GpMq

is the set of vertices except those on the Dirichlet boundary. Here we use the subscript h to

describe the discrete nature and this does not imply the underlying meshes are quasi-uniform

with meshsize h. In the future discussions, we will focus on uniform conforming meshes only.

Figure 3.1: A polygonal domain Ω with conforming partition.

CHAPTER 3. TWOGRID METHODS 67

Remark 3.10 (Number of geometric entities). We now briefly discuss the relations among the

numbers of vertices, edges, faces, and elements in a triangular or tetrahedral partition. We will

denote these numbers as #V, #E, #F, and #τ respectively. As a convention, #F “ #τ in 2D.

In 2D, we can consider the term of half-edge, which is defined as a pair of an edge and a face it

borders. We can easily see that the number of half-edges is 2 #E or 3 #F. Therefore, we have

2 #E “ 3 #F. Furthermore, according to the famous Euler–Poincaré formula, in any polyhedron,

we have that #V´#E`#F “ 2. Hence we can obtain that #F « 2 #V and #E « 3 #V. In 3D,

we have the following relations asymptotically #F « 12 #V, #E « 7 #V, and #τ « 6 #V.

Step 2. Finite-dimensional approximation: Let Vh Ă V be the space of continuous

piecewise polynomials over a quasi-uniform conforming mesh Mh, which satisfies appropriate

conditions on the boundary Γ :“ ΩzΩ, i.e.,

Vh :“

v P CpΩq : v|τ P Pτ , for all τ PMh

(

č

V . (3.4)

We notice that there are many ways to approximate the continuous test function space. Different

choices will then result in different numerical methods. In this section, we shall focus on the

simplest case—linear finite element method on triangles or tetrahedrons, i.e., v|τ is a linear

polynomial on each τ P Mh. The weak form of the finite element approximation reads: Find

uh P Vh such that

aruh, vhs “ xf, vhy, @ vh P Vh, (3.5)

or, equivalently,

Ahuh “ fh. (3.6)

Step 3. Assembling the finite-dimensional problem: Using the finite element definition

pK,P,N q, we can give a basis of the finite dimensional approximation space Vh. Suppose tφiu
N
i“1

be a basis of the N -dimensional space Vh. Then (3.6) can be written as an linear algebraic

equation

Âhuh “ ~fh. (3.7)

We are going to discuss this notation later in §3.2.

Properties of finite element methods

There are a few important properties of finite element space and method that will become

crucial for our later analysis for multilevel iterative methods.

Proposition 3.11 (Interpolation error). Let Mh be a uniform mesh and Vh be a Cα pα ě 0q

finite element space on Mh. The interpolant Jh : Wm
p pΩq ÞÑ Vh satisfies

›

›v ´ Jhv
›

›

Wk
p pΩq

À hm´k
›

›v
›

›

Wm
p pΩq

, @ v PWm
p pΩq, 0 ď k ď mintm,α` 1u.

CHAPTER 3. TWOGRID METHODS 68

Proposition 3.12 (Inverse estimate). Let Mh be a uniform mesh and P ĎW k
p pKq

Ş

Wm
q pKq

and 0 ď m ď k. If Vh is a finite element space for pK,P,N q on Mh, then we have

´

ÿ

τPMh

›

›v
›

›

p

Wk
p pτq

¯
1
p
À h

m´k`mint0, d
p
´ d
q
u
´

ÿ

τPMh

›

›v
›

›

q

Wm
q pτq

¯
1
q
, @ v P Vh.

Using Proposition 3.12, we can easily see that, for any v P Vh,

$

’

’

’

&

’

’

’

%

}v}L8pΩq À h
´ d
p }v}LppΩq, p P r1,8q;

}v}HspΩq À h´s}v}L2pΩq, s P r0, 1s;

}v}H1`αpΩq À h´α}v}H1pΩq, α P p0, 1
2q.

Moreover, there is a discrete Sobolev inequality at the bottom-line case (when d “ 2) which is

worthy for special attention.

Proposition 3.13 (Discrete Sobolev inequality [29]). The following inequality holds

}v}L8pΩq À Cdphq}v}H1pΩq, @ v P Vh,

where C1phq ” 1, C2phq “ | log h|1{2, and C3phq “ h´
1
2 .

Proposition 3.14 (Weighted estimate for L2 projection [29]). Define Qh : L2pΩq ÞÑ Vh by, for

any v P L2pΩq, it holds that

pQhv, wq “ pv, wq, @w P Vh.

Then we have the following weighted L2-estimate

›

›v ´Qhv
›

›

0
` h

›

›Qhv
›

›

1
À h

›

›v
›

›

1
, @ v P H1

0 pΩq.

Remark 3.15 (Simultaneous estimate). From the above weighted L2-estimate, we can easily

show the so-called simultaneous estimate

inf
wPVh

´

›

›v ´ w
›

›

0
` h

›

›v ´ w
›

›

1

¯

À h}v}1, @ v P H1
0 pΩq.

Remark 3.16 (Spectral radius and condition number of Ah). Suppose that we have a uniform

partition with meshsize h. It is clear, from the Poincaré inequality and the inverse inequality,

that

}v}20 À }∇v}20 “ pAhv, vq ď }v}
2
1 À h´2}v}20, @v P Vh.

In fact, we have ρpAhq – h´2 and κpAhq – h´2.

CHAPTER 3. TWOGRID METHODS 69

Error analysis ‹

We now briefly introduce standard error estimates for the continuous linear finite element;

see [46, 38] for details. For standard finite element approximation of elliptic equations, the most

important property is the following Galerkin orthogonality property (see Remark 3.1)

aru´ uh, vhs “ 0, @ vh P V.

Using the definition of the energy norm |||¨||| :“ ar¨, ¨s1{2, the Galerkin orthogonality (3.3),

and the Cauchy-Schwarz inequality, we have

|||u´ uh|||
2
“ aru´ uh, u´ uhs “ aru´ uh, u´ vhs ď |||u´ uh||| |||u´ vh||| , @vh P V.

Hence, we obtain the optimality of the finite element approximation, i.e.,

|||u´ uh||| ď inf
vhPV

|||u´ vh||| . (3.8)

This means uh is the best approximation of u in the subspace V . In general, it is not true for

finite element approximations.

Theorem 3.17 (H1-error estimate). If u P Hm
0 pΩq p1 ă m ď 2q, its P1-Lagrange finite element

approximation uh P Vh Ă V “ H1
0 pΩq satisfies

›

›u´ uh
›

›

1,Ω
À hm´1

ˇ

ˇu
ˇ

ˇ

m,Ω
.

If m “ 2, then we have }u´ uh}1,Ω À h
›

›f
›

›

0,Ω
.

Theorem 3.18 (L2-error estimate). If u P H2
0 pΩq, its P1-Lagrange finite element approximation

uh P Vh Ă V “ H1
0 pΩq satisfies

›

›u´ uh
›

›

0,Ω
À h

ˇ

ˇu´ uh
ˇ

ˇ

1,Ω
À h2

ˇ

ˇu
ˇ

ˇ

2,Ω
À h2

›

›f
›

›

0,Ω
.

Remark 3.19 (A posteriori error analysis). A posteriori error estimation relies on the following

error equation (or residual equation):

aru´ uh, vs “ aru, vs ´ aruh, vs “ 〈f, v〉´ aruh, vs “ 〈f ´Auh, v〉 , @v P V .

Hence, by the Cauchy-Schwarz inequality, we obtain (see HW 3.1)

|||f ´Auh|||˚ À |||u´ uh||| À |||f ´Auh|||˚ . (3.9)

Here |||¨|||˚ is the dual norm of |||¨|||. Notice that, on the right-hand side, we only have the data

f and the discrete solution uh. This upper bound does not depend on the unknown solution u.

Of course, to make the upper bound useful in adaptive algorithms, we need it to be local and

computable.

CHAPTER 3. TWOGRID METHODS 70

3.2 Matrix representations

In the previous chapters, we have written the discrete problem simply as

A~u “ ~f.

We will see that, in some sense, it is an abuse-of-notation. Now we would like to clarify (especially

for finite element methods) the relation between the general operator form Ahuh “ fh and its

often-used matrix form (3.7), i.e., Âhuh “ ~fh. Sometimes we can drop the subscript h for

simplicity.

Vector and matrix representations

Assume that tφiui“1,...,N is a basis of the finite-dimensional space V . Any function v P V

can be represented as

v “
N
ÿ

i“1

viφi

and the vector representation (coefficient vector) of v is defined as

v :“

¨

˚

˚

˚

˚

˚

˝

v1

v2
...

vN

˛

‹

‹

‹

‹

‹

‚

P RN . (3.10)

It is not hard to notice that there is another natural and easier-to-compute vector representation

~v :“

¨

˚

˚

˚

˚

˚

˝

pv, φ1q

pv, φ2q

...

pv, φN q

˛

‹

‹

‹

‹

‹

‚

and ~v “Mv, (3.11)

where M P RNˆN with Mi,j :“ pφj , φiq “ pφi, φjq is the mass matrix. v and ~v can be referred

to as the primal and dual vector representations of v, respectively. Apparently, we have

pu,~v q ” pu,~v ql2 “ uTMv “ pu, vqV .

Suppose W is another finite-dimensional linear space with a basis tψiui“1,...,N 1 . In general, W

could be of different dimension than V , namely, N 1 ‰ N . For any linear operator A : V ÞÑ W ,

we give a matrix representation (the so-called primal representation), A P RN 1ˆN , such that it

satisfies that
řN 1

i“1

`

A
˘

i,j
ψi “ Aφj pj “ 1, . . . , N), i.e.,

pψ1, . . . , ψN 1qA “ Apφ1, . . . , φN q. (3.12)

CHAPTER 3. TWOGRID METHODS 71

On the other hand, the dual representation (the stiffness matrix) corresponding to A is denoted

by Â P RNˆN with entries
`

Â
˘

i,j
:“ pAφj , φiq.

It is not difficult to check the statements in the following identities; see HW 3.2.

Lemma 3.20 (Matrix representations). If A,B : V ÞÑ V and v, u P V , we have the following

results:

1. AB “ AB;

2. Av “ A v;

3. σpAq “ σpAq, κpAq “ κpAq;

4. ~v “M v,
ÝÑAv “ Â v;

5. Â “M A;

6. pu, vq “ pMu, vq.

Example 3.21 (Identity operator). Let I : V ÞÑ V be the identity operator. Its stiffness and

mass matrices are equal to each other, i.e., Î “ M . Hence I “ M´1Î “ I. Note that this

relation is independent of the choice of basis functions. As a consequence, we have

I “ I “ AA´1 “ AA´1,

which gives the equality A´1 “ A´1.

Example 3.22 (Finite difference matrices). For the finite difference methods, we can simply

let A : RN ÞÑ RN be a matrix and the canonical basis φi “ ~ei :“ p0, . . . , 1, . . . , 0qT P RN , then

we have Â “ A. Generally speaking, if A : V ÞÑ V and tφiu
N
i“1 is an orthonormal basis of V ,

then we have M “ I and Â “ A.

Finite element matrices

We now use a few simple examples to demonstrate how to apply these notations. Suppose

that V “ Vh is the piecewise linear finite element space and tφiui“1,...,N are the basis functions.

Let A be the resulting coefficient matrix of (3.2) with pAqi,j “ ai,j :“ arφi, φjs. By definition,

A “ Â P RNˆN is the stiffness matrix corresponding to A. Since we are going to focus on the

finite element discretization from now on, we will not distinguish A and Â, when no ambiguity

arises.

Let u “
`

ui
˘N

i“1
P RN be the vector of coefficients of uh, namely uh. Let ~f “

`

fi
˘N

i“1
:“

xf, φiy
(N

i“1
. Then u satisfies the linear system of equations:

Âu “ ~f or Au “ ~f.

CHAPTER 3. TWOGRID METHODS 72

Upon solving this finite-dimensional linear system, we are able to obtain a discrete approximation

uh “
N
ÿ

i“1

uiφi.

The main algebraic properties for the stiffness matrix includes: A is sparse with OpNq

nonzeros, symmetric positive definite (for Dirichlet or mixed boundary condition problems) or

symmetric positive semi-definite (for Neumann boundary condition problems). We now summa-

rize this brief introduction of finite element matrices with a few comments. The following results

are valid for a large class of finite elements for second-order elliptic boundary value problems in

general domains.

Remark 3.23 (Spectrum of mass matrix). Suppose that we have a uniform partition with

meshsize h. An often-used matrix is the mass matrix M P RNˆN , in which Mi,j “ pφi, φjq. In

fact, we know that

pMv, vq “
ÿ

i,j

vi vj pφi, φjq “ pv, vq “

ż

Ω
v2pxq dx – hd

ÿ

i

v2
i – hdpv, vq. (3.13)

It is consistent with the well-known facts that the mass matrix is also SPD and well-conditioned,

i.e.,

hd}ξ}20 À ξ TM ξ À hd}ξ}20, @ ξ P RN .

Remark 3.24 (Spectrum of stiffness matrix). Suppose that we have a uniform partition with

meshsize h. It is also well-known that the stiffness matrix A is SPD and, from Remark 3.16,

hd}ξ}20 À ξ TAξ À hd´2}ξ}20, @ ξ P RN .

Hence the spectral radius ρpAq – hd´2 and the condition number κpAq – h´2. And it has been

observed that the CG method becomes slower when h decreases.

Matrix and operator forms of simple iterative methods

Now we consider the solution of the standard finite element (say the P1-Lagrange element)

for the Poisson’s equation, i.e., Âu “ ~f . The simplest iterative solver for this finite element

equation is probably the well-known Richardson method:

unew “ uold ` ω
´

~f ´ Âuold
¯

. (3.14)

It is equivalent to

unew “ uold ` ω
´

Mf ´MAuold
¯

“ uold ` ωM
´

f ´Auold
¯

.

CHAPTER 3. TWOGRID METHODS 73

That is to say, the Richardson method, can be written in the operator form as

unew “ uold ` Bω
´

f ´Auold
¯

with an iterator Bω, whose matrix representation is Bω “ ωM . Therefore, it is easy to check

(HW 3.3) that the operator form of the Richardson method is

Bωv :“ ω
N
ÿ

i“1

pv, φiqφi, @v P V ðñ Bω “ ωM. (3.15)

In general, a smoother or local relaxation is just a linear stationary iterative method

unew “ uold ` Spf ´Auoldq

and its matrix representation is

unew “ uold ` SpM´1 ~f ´M´1Âuoldq “ uold ` SM´1p~f ´ Âuoldq. (3.16)

The above equality indicates that, we shall define a smoother in the matrix form as

S :“ SM´1, i.e., S “ SM. (3.17)

Example 3.25 (Matrix form of the Richardson iteration). If we consider the above Richardson

method (3.15) as an example, i.e. SR :“ Bω, then

SR “ SRM
´1 “ BωM´1 “ ωI.

This coincides with the algebraic form of the Richardson method (3.14).

Now we discuss another important concept for our analysis, the matrix form of the sym-

metrization. Let w :“ STu. Then we have

~w “
´

`

STu, φi
˘

¯N

i“1
“

´

ÿ

j

uj
`

STφj , φi
˘

¯N

i“1
“

´

ÿ

j

uj
`

φj ,Sφi
˘

¯N

i“1
“

`

Ŝ
˘T
u.

This immediately gives

ST u “ STu “ w “M´1 ~w “M´1
`

Ŝ
˘T
u “M´1

`

MS
˘T
u.

In turn, it shows

ST “M´1
`

MS
˘T
“M´1STM “ STM. (3.18)

By definition of the primal matrix representation of an operator, we have

Spφ1, . . . , φN q “ pφ1, . . . , φN qS and S´1pφ1, . . . , φN q “ pφ1, . . . , φN qS´1.

CHAPTER 3. TWOGRID METHODS 74

Using Example 3.21, it is easy to see that

S´1 “
`

S
˘´1

“
`

SM
˘´1

“M´1S´1. (3.19)

Using the definition of symmetrized operator (2.13) and (3.17)–(3.19), we can define the

matrix form of the symmetrization

S :“ SM´1 “ STM
`

M´1S´T `M´1S´1 ´M´1Â
˘

SMM´1

“ ST
`

S´T ` S´1 ´A
˘

S, (3.20)

which is formally consistent with the definition of symmetrization (2.13).

3.3 Smoothers and smoothing effect

The methods discussed by far, for example the damped Jacobi and Gauss–Seidel methods,

are mostly local relaxation methods. The name “local relaxation” comes from the fact that

these methods just correct the residual vector locally, one variable at a time; see Example 2.20.

Although these methods are not very efficient as a solver by themselves, they are key ingredients

of modern multilevel iterative methods. These methods can be applied to reduce high-frequency

error components; see §1.3. Other methods like the SOR method and incomplete factoriza-

tions have similar effects too. In this section, we analyze their smoothing effect using different

approaches.

A numerical example

The damped Jacobi and Gauss–Seidel methods are often called local relaxations and such

relaxation procedures are effective to the error components that are local in nature. Therefore,

it is not surprising that both the damped Jacobi and the Gauss–Seidel methods can damp

out non-smooth components more easily. These methods are inefficient for relatively smoother

components in the error since they are more globally related.

We have observed that the basic stationary linear iterative schemes converge rather fast in the

very beginning but then slows down after a few step; see Figure 1.4 for the convergence behavior

of the damped Jacobi method. Moreover, these methods not only converges fast in the first few

steps, but also smooth out the error function very quickly. In other words, the error becomes a

much smoother function after a few iterations. This property of the iterative scheme is naturally

called smoothing property and any iterative scheme possessing such smoothing property is called

a smoother.

Figure 3.2 is a pictorial example for applying multiplicative overlapping domain decomposi-

tion method with four subdomains. We can see that, after one iteration, the method smoothes

CHAPTER 3. TWOGRID METHODS 75

out the high frequency part and leaves the lower frequency part behind. In fact, basic linear

(a) Initial Guess (b) A quarter of the domain relaxed

(c) First half relaxed (d) After smoothing

Figure 3.2: Iterative method in the viewpoint of subdomain relaxation.

relaxation schemes, such as the Richardson, Jacobi, and Gauss–Seidel iterations, are local and

can only capture high frequency (local) part of the error, but do not work well on low frequency

(global) part.

Local Fourier analysis ‹

Local Fourier analysis (LFA) or local mode analysis [30, 105, 32] is a very powerful technique

to understand and predict the convergence speed of geometric multigrid (GMG) methods. It is

well-known that, for model problems on rectangular domains with periodic boundary conditions,

LFA can yield the exact convergence rate of GMG; see detailed discussions in, for example, [33,

110, 117]. More recently, LFA has been shown to be applicable to more realistic situations like

the Dirichlet boundary condition case—It was proved that, if the problem is compatible to a

periodic boundary condition problem, LFA yields rigorous convergence rate of the multigrid

schemes [101].

LFA has been developed for multigrid algorithms for very general problems, including prob-

lems with nonconstant or nonlinear coefficients. The LFA technique can be applied to different

CHAPTER 3. TWOGRID METHODS 76

discretization methods (like finite difference methods, finite volume methods, etc) as long as

the resulting discrete problems can be represented in a stencil form. This is restrictive for its

application on finite element methods due to their grids are typically not structured. Here, for

simplicity, we analyze the simple smoothers using LFA, just to give the readers some flavor on

this powerful tool. For more details, the readers are referred to the practical guide on LFA by

Wienands and Joppich [117].

In order to analyze the local behavior of iterative methods, we consider the 2D Poisson’s

equation with homogenous Dirichlet boundary condition on the unit square discretized with a

uniform triangulation; see §1.2. We begin with the damped (weighted) Jacobi method as an

example. Using the local Fourier analysis, we have the following observation:

1. The standard FD stencil can be written as

4ui,j ´
`

ui´1,j ` ui`1,j ` ui,j´1 ` ui,j`1

˘

“ h2fi,j , i, j “ 1, . . . , n

and the damped Jacobi (or Richardson) method for the above equation reads

unew
i,j “ p1´ ωquold

i,j `
ω

4

`

uold
i´1,j ` u

old
i`1,j ` u

old
i,j´1 ` u

old
i,j`1

˘

`
ω

4
h2fi,j , i, j “ 1, . . . , n.

2. Define the discrete error function enew
i,j :“ ui,j ´ unew

i,j and eold
i,j :“ ui,j ´ uold

i,j , for i, j “

1, . . . , n. It is clear that the error function satisfies the local error equation

enew
i,j “ p1´ ωqeold

i,j `
ω

4

`

eold
i´1,j ` e

old
i`1,j ` e

old
i,j´1 ` e

old
i,j`1

˘

, i, j “ 1, . . . , n.

3. Apply the discrete Fourier transformation:

ei,j “
ÿ

θPΘn

αθe
?
´1piθ1`jθ2q

and

Θn :“
!

pθ1, θ2q : θ1 “
2kπ

n
, θ2 “

2lπ

n
, k, l P r´m1,m2s

)

,

where m1 “ n{2´1,m2 “ n{2, if n is even and m1 “ m2 “ pn´1q{2, if n is odd. Plugging

the discrete Fourier transforms of enew
i,j and eold

i,j to the above error equation, we get the

amplification factor of the local mode e
?
´1piθ1`jθ2q

λpθq :“
αnew
θ

αold
θ

“ 1´ ω
´

1´
cospθ1q ` cospθ2q

2

¯

ď 1.

Furthermore, λpθq Ñ 1 when |θ| Ñ 0 (low-frequency components).

CHAPTER 3. TWOGRID METHODS 77

4. Asymptoticly, m1 « m2 «
n
2 . So we can define a smoothing factor (i.e. maximal amplifi-

cation factor corresponding to high-frequency local modes) by

ρ̄ :“ sup
θ

!

ˇ

ˇλpθq
ˇ

ˇ :
π

2
ď |θk| ď π, k “ 1, 2

)

.

By plugging in the end points, we get the the smoothing factor for the damped Jacobi

method is

ρ̄
Jacobi

:“ max
!ˇ

ˇ

ˇ
1´ 2ω

ˇ

ˇ

ˇ
,
ˇ

ˇ

ˇ
1´

1

2
ω
ˇ

ˇ

ˇ
,
ˇ

ˇ

ˇ
1´

3

2
ω
ˇ

ˇ

ˇ

)

.

Remark 3.26 (Optimal damping factor for smoothing). We notice that, if ω “ 1 (the Jacobi

method), then ρ̄
Jacobi

“ 1. This confirms the result we obtained in the previous subsection.

Apparently, the “best” weight that minimizes the smoothing factor is ω “ 4{5, which leads to

ρ̄
Jacobi

“ 3{5.

Remark 3.27 (What is high-frequency error). In the above analysis, we have specify the high-

frequency part to be corresponding to π
2 ď |θk| ď π. As pointed in Remark 1.24, high-frequencies

can be approximated accurately by local behavior. On the contrary, the low-frequencies are

those which can be represented well on the coarser grids. Hence this definition is not universal.

We have to adjust it to fit the coarsening algorithm under consideration. For example, semi-

coarsening or red-black coarsening will lead to different definitions of high-frequency; see, for

example, [110]. Later on, we will also discuss how to define this concept from an algebraic point

of view.

It is natural for us to imagine that the G-S method should be better than the Jacobi method

in terms of smoothing property. Using the same steps as above, we have the following LFA

analysis:

1. The G-S method in lexicographical order reads

unew
i,j “

1

4

`

unew
i´1,j ` u

old
i`1,j ` u

new
i,j´1 ` u

old
i,j`1

˘

`
1

4
h2fi,j , i, j “ 1, . . . , n.

2. The discrete error function satisfies

enew
i,j “

1

4

`

enew
i´1,j ` e

old
i`1,j ` e

new
i,j´1 ` e

old
i,j`1

˘

, i, j “ 1, . . . , n.

3. Apply the discrete Fourier transform and compute the amplification factor

λpθq :“
αnew
θ

αold
θ

“
e
?
´1θ1 ` e

?
´1θ2

4´ e´
?
´1θ1 ´ e´

?
´1θ2

.

4. One can show the smoothing factor for the G-S method is

ρ̄GS :“
ˇ

ˇ

ˇ
λ
´π

2
, arccosp4{5q

¯ˇ

ˇ

ˇ
“

1

2
.

CHAPTER 3. TWOGRID METHODS 78

Remark 3.28 (Anisotropic problems and smoothing effect). Notice that the above analysis only

works for uniform partition and isotropic coefficients. When we solve an anisotropic problem,

it is important to note that the G-S method (and other point relaxation methods) yields not as

good smoothing factor as the isotropic case. In fact, the smoothing factor goes to 1 when ratio

between small and large coefficients goes to 0; see Chapter 6 for details.

Remark 3.29 (Ordering and G-S smoother). For the G-S method, ordering is important.

When using the red-black ordering instead of the lexicographical ordering above, one can show

the smoothing factor ρ̄RBGS is 1
4 [105, 110]. This means the smoothing effect of the red-black

ordering for G-S is better.

Smoothing effect

Considering the Richardson method (3.15), then we have Bωv “ ω
řN
i“1pv, φiqφi. This implies

pBωv, vq “ ω
N
ÿ

i“1

pv, φiq
2 “ ω

N
ÿ

i“1

pMvq2i “ ωpMv,Mvq “ ωpM2v, vq.

Since M is SPD, we get

pM2v, vq “ pMM
1
2 v, M

1
2 vq – hdpM

1
2 v, M

1
2 vq “ hdpMv, vq.

The estimate (3.13) implies that

pBωv, vq – ωhdpv, vq. (3.21)

Now we choose the weight of the Richardson iteration to be ω “ h2´d, i.e.,

SRv :“ Bωv “ h2´d
N
ÿ

i“1

pv, φiqφi, @v P V. (3.22)

In view of (3.21) and using the fact that the spectral radius of the FE operator is ρpAq – h´2

(see Remark 3.16), we find

pSRv, vq – h2pv, vq –
1

ρpAqpv, vq.

Roughly speaking, SR behaves like A´1 in the high-frequency regime. This is a natural property

we will ask for from a smoother later on:

pSv, vq – 1

ρpAqpv, vq. (3.23)

In fact, such conditions are only needed in the range of S.

CHAPTER 3. TWOGRID METHODS 79

Apparently, the damped Jacobi method also satisfies this condition. In fact, using the

standard scaling argument on each element, we can see that

hd´2pξ, ξq À pDξ, ξq À hd´2pξ, ξq.

Hence, using (3.17), we have the Jacobi smoother

pSJv, vq “ pMSJv, vq “ pMD´1Mv, vq – hd`2pv, vq – h2pv, vq –
1

ρpAqpv, vq.

Next, we shall show a more interesting fact that the G-S method behaves in a similar way

as in the Jacobi method.

Lemma 3.30 (Smoothing property of G-S in matrix form). Let Â be the stiffness matrix and

Â “ A “ D ` L` U . Then the G-S method satisfies

›

›pD ` Lqξ
›

›

0
–

›

›Dξ
›

›

0
– hd´2}ξ}0, @ξ P RN .

Proof. Locality of the nodal basis functions leads to sparse matrix L; in turn, this gives

›

›pD ` Lqξ
›

›

0
À

›

›Dξ
›

›

0
À hd´2}ξ}0.

The other direction follows from

hd´2}ξ}20 À
`

Dξ, ξ
˘

ď
`

pD `Aqξ, ξ
˘

“ 2
`

pD ` Lqξ, ξ
˘

À }pD ` Lqξ}0 }ξ}0.

We then get the desired estimates with simple manipulations.

Similar results for SGS follows directly as in the Jacobi method. Now we consider the

symmetrized G-S method.

Lemma 3.31 (Smoothing property of SGS). Let S : V ÞÑ V be the symmetrized G-S (SGS)

iterator. Then we have
`

Sv, v
˘

– h2pv, vq –
1

ρpAqpv, vq. (3.24)

Proof. The matrix form of SGS can be written as

S “ SM “ pD ` Uq´1DpD ` Lq´1M.

Let v be the primal vector representation of v P V . Then we have

pSv, vq “ pMSv, vq “ pMS v, vq “
›

›D
1
2 pD ` Lq´1Mv

›

›

2

0
.

Hence to show the lemma is equivalent to prove that

›

›D
1
2 pD ` Lq´1Mv

›

›

2

0
– h2pMv, vq.

CHAPTER 3. TWOGRID METHODS 80

By changing of variable ξ :“ pD`Lq´1Mv P RN and the fact M – hd, we can obtain the above

equality using

hd´2pDξ, ξq – h2pd´2q}ξ}20 –
›

›pD ` Lqξ
›

›

2

0
“ pMv,Mvq, @ ξ P RN ,

which is true due to Lemma 3.30.

Smoother as preconditioner

From the property (3.24) which is satisfied by all the aforementioned popular smoothers, we

can easily see that

ρ´1
A pv, vq À pSv, vq À ρ´1

A pv, vq, (3.25)

where ρA :“ ρpAq. In this note, we call it the smoothing property, which basically means

the smoother S behaves like A´1 on the high frequency regime. Other forms of conditions or

assumptions for smoothers have been discussed in the literature, interested readers are referred to

the paper by Bramble and Pasciak [24] (general smoothers defined as additive and multiplicative

Schwarz methods) and the references therein.

From this property, we have a lower bound for the minimal eigenvalue ρ´1
A À λminpSq. If the

smoother is also symmetric, then the above property indicates that the smoother is SPD. That

is to say, the symmetrized version S is apparently SPD and can be used as a preconditioner as

well. In view of Remark 3.16 (i.e., }v}20 À pv, vqA ď ρA}v}20), with simple manipulations, we can

derive

ρ´1
A pv, vqA À ρ´1

A pAv,Avq À pSAv, vqA À ρ´1
A pAv,Avq ď pv, vqA. (3.26)

Due to Lemmas 2.29 and 2.30, (3.26) indicates that κpSAq À ρpAq – κpAq, which means these

smoothers, when applied as preconditioners, might not improve the condition number. Hence,

to make a reasonable preconditioner requires a lot more than to be a good smoother, which will

be the main topic for the rest of this note.

3.4 Twogrid methods

From the analysis in §3.3, we have found that local relaxation methods (smoothers) can damp

the oscillatory components of the error rather quickly. Motivated by the two-level DD method

in §2.4, we can introduce coarser levels to take care of the smooth components which cannot be

treated efficiently by local relaxation methods. A natural idea is then, after a few smoothing

steps, to approximate the resulting problem on a coarser grid and continue the iteration with a

“coarse version” of the problem. This way, we can resolve the high frequency part of the error

CHAPTER 3. TWOGRID METHODS 81

with relaxation schemes and leave the low frequency part to the coarse levels. Before we discuss

multilevel methods, we first investigate a much simpler case—the twogrid method.

First of all, we present a simple observation which heuristically explains why the solution on

a coarse grid can give a good approximation for smooth error. In fact, smooth functions can

be represented on the coarse grid rather accurately. This is the last missing piece of ideas that

motivate multilevel iterative methods. We only give a sketch of the proof here and leave the

complete proof to the readers (see HW 3.5).

Remark 3.32 (Low frequency error). Let uh and uH be the finite element solutions on Vh and

VH Ă Vh, respectively. Then we immediately have

aruh ´ uH , vHs “ 0, @ vH P VH .

Using the Aubin-Nitsche’s argument, we consider a boundary value problem
$

&

%

´∆w “ uh ´ uH in Ω,

w “ 0 on BΩ.

Assume that we have full elliptic regularity. Then }w}2 ď C}uh ´ uH}0 is bounded. For any

wH P VH , we get

}uh´ uH}
2
0 “ arw, uh´ uHs “ arw´wH , uh´ uHs ď |||w ´ wH ||| |||uh ´ uH ||| À H|w|2 |||uh ´ uH ||| .

Hence the following inequality holds

}uh ´ uH}0 À H |||uh ´ uH ||| À H |||uh||| . (3.27)

That is to say, if uh is relatively smooth (small first derivatives), then uh can be well approxi-

mated by uH . Compare with Remarks 1.24 and 3.27.

General twogrid methods

Let Vh be fine grid finite element space and VH be the coarse gird space (usually it is a

subspace of Vh.) The twogrid method for equation (3.2) can be described as

Algorithm 3.1 (General twogrid method). Given an initial guess up0q P Vh.

(i) Pre-smoothing: Apply a few relaxation steps to smooth up0q in the fine space to obtain

a new approximation up1q P Vh;

(ii) Coarse-grid Correction: Find eH P VH by solving (exactly or approximately) the error

equation

pAeH , vHq “ pf ´Aup1q, vHq, @ vH P VH

in the coarse space, and then set up2q “ up1q ` eH ;

CHAPTER 3. TWOGRID METHODS 82

(iii) Post-smoothing: Apply a few more relaxation steps to smooth up2q in the fine space to

obtain up3q P Vh.

A more concrete algorithm based on the above abstract algorithm can be introduced. Let

V be the fine space associated with meshsize h and Vc Ă V be the coarse space associated with

meshsize H. Let Ic : Vc ÞÑ V be the natural embedding (injection), i.e., Icvc “ vc, @vc P Vc.

Remark 3.33 (Embedding and projection). By the definition of embedding Ic : Vc ÞÑ V and

the fact

pITc v, wcq “ pv, Icwcq “ pv, wcq, @v P V,wc P Vc,

it is easy to see that ITc “ Qc is the p¨, ¨q-projection from V to Vc. And the coarse-level operator

can be defined by the Galerkin relation

Ac “ ITc AIc “ QcAIc.

Suppose that S is a smoother and Bc is a solver or iterator for the coarse-grid problem.

Algorithm 3.2 (Twogrid method). Given an initial guess up0q P V .

(i) Pre-smoothing: up1q “ up0q ` Spf ´Aup0qq;

(ii) Coarse-grid Correction: up2q “ up1q ` pIcBcITc qpf ´Aup1qq;

(iii) Post-smoothing: up3q “ up2q ` ST pf ´Aup2qq.

We note that this algorithm is very similar to the multigrid algorithm discussed in Chapter 1.

It mainly contains two processes: the smoothing steps and the coarse grid correction (CGC).

When these two parts are complement to each other, we may except high effectiveness of the

resulting algorithm. That is to say, we may choose S, Vc, and Bc to make the method efficient

for the equation. The twogrid method is defined in the hope of capturing the high-frequency

components of error on the fine grid, and leaving the low-frequency components to the coarser

grid. The effect of coarse grid correction is illustrated in Figure 3.3. Note that these two pictures

have different scales.

Convergence analysis of twogrid method

In this section, we will estimate convergence rate of twogrid methods. We now give a few

simple lemmas. The first lemma is on the norm of oblique projections (also known as the

Kato’s lemma) which has been proved and reproved in several different fields; see the paper by

Szyld [106] for details.

CHAPTER 3. TWOGRID METHODS 83

Figure 3.3: After coarse-grid correction, global low frequency is replaced by local high frequency.

Lemma 3.34 (Norm of oblique projections). If Π is a continuous projection onto a Hilbert

space V and Π is neither I nor 0 , then

}Π } “ }I ´Π }.

Proof. Let u P V be arbitrary and }u} “ 1. From the assumption on Π , we can take x :“ Πu P

rangepΠ q and y :“ pI ´Π qu P nullpΠ q. Then we have

1 “ }u}2 “ }x}2 ` }y}2 ` 2 px, yq.

If x “ 0 or y “ 0, then we have Πu “ 0 or }Πu} “ 1, respectively. And, in turn, }Πu} ď }I´Π }.

If both x and y are nonzero, we define w :“ x̃` ỹ P V , where

x̃ :“
}y}

}x}
x P rangepΠ q and ỹ :“

}x}

}y}
y P nullpΠ q.

Then }w} “ }x}2 ` }y}2 ` 2 px, yq “ 1 and

}Πu} “ }x} “ }ỹ} “ }pI ´Π qw} ď }I ´Π } ùñ }Π } ď }I ´Π }.

The other direction can be shown in a similar way and the lemma can be proved.

Proof of the next two lemmas are straightforward and left to the readers; see HW 3.4.

Lemma 3.35 (Iterator of twogrid method). The twogrid method has a corresponding iterator

BTG : V 1 Ñ V defined as

BTG “ S `
`

I ´ STA
˘

IcBcITc pI ´ASq , (3.28)

where S “ ST ` S ´ STAS is the symmetrization of the smoother S.

CHAPTER 3. TWOGRID METHODS 84

Lemma 3.36 (Error propagation of twogrid method). The error propagation operator ETG “

I ´ BTGA for twogrid method is

ETG “ pI ´ STAqpI ´ BcAcΠcqpI ´ SAq, (3.29)

where Πc is the p¨, ¨qA-orthogonal projection onto Vc. If the coarse-level solver is exact, namely,

Bc “ A´1
c , then we have

ETG “ pI ´ STAqpI ´ΠcqpI ´ SAq. (3.30)

The explicit formula for the projection operator Πc can be written as Πc “ IcA´1
c ITc A. In

the above equation (3.30), we observe that it is essential for performance to reduce the norms

of the coarse-level correction operator I ´ Πc as well as the error reduction operator I ´ SA.

Moreover, from Lemma 3.34, analyzing the exact coarse-level correction operator }I ´ Πc}A is

equivalent to analyze the behavior of }Πc}A.

Notice that Πc is the A-projection from V to Vc. So there is an implicit natural embedding

operator Ic in front of Πc in the above equality.

We now present a theorem which gives the convergence rate of a simplified twogrid method

(Algorithm 3.3) in terms of approximability of the coarser space Vc.

Algorithm 3.3 (Simplified twogrid method). Given an initial guess up0q P V .

(i) Coarse-grid Correction: up1q “ up0q ` pIcBcITc qpf ´Aup0qq;

(ii) Post-smoothing: up2q “ up1q ` Spf ´Aup1qq.

Assume that S is SPD. In the twogrid method analysis below, we need the following notation

T “ TS :“ SA : V ÞÑ V. (3.31)

With the above notation, we can define the inner product

`

u, v
˘

S´1 :“
`

T ´1u, v
˘

A,

the accompanying norm } ¨ }S´1 , and p¨, ¨qS´1-orthogonal projection QS´1 : V ÞÑ Vc. The

convergence rate of the twogrid method is obtained in the following theorem; compare this

result with the convergence rate of stationary iterative method in Theorem 2.15.

CHAPTER 3. TWOGRID METHODS 85

Theorem 3.37 (Convergence rate of the twogrid method). The convergence rate of the twogrid

method, Algorithm 3.3, with the exact coarse-level solver is given by

}ETG}
2
A “ 1´

1

c1pVcq
, (3.32)

where

c1pVcq :“ sup
vPV

›

›pI ´QS´1qv
›

›

2

S´1

}v}2A
“ sup

vPV
inf
vcPVc

›

›v ´ vc
›

›

2

S´1

}v}2A
. (3.33)

This theorem can be obtained from the X-Z identity; see Theorem 4.15. Here we present a

direct proof originally given in [124].

Sketch of the proof. (1) It follows from (3.29) that the simplified TG method has the following

error propagation operator

ETG “ pI ´ SAqpI ´Πcq.

Hence, we can immediately obtain

}ETG}
2
A “ sup

vPV

}pI ´ SAqpI ´Πcqv}
2
A

}v}2A
“ sup

vPV
KA
c

}pI ´ SAqv}2A
}v}2A

.

Using the definition of p¨, ¨qA-projection Πc, we can show that

}ETG}
2
A “ sup

vPV
KA
c

`

pI ´ T qv, v
˘

A
}v}2A

“ 1´ inf
vPV

KA
c

`

T v, v
˘

A
pv, vqA

“ 1´ inf
vPV

KA
c

`

pI ´ΠcqT v, v
˘

A
pv, vqA

.

(2) Define

X :“ pI ´ΠcqT : V KA
c ÞÑ V KA

c (3.34)

and it is easy to check that X is self-adjoint with respect to p¨, ¨qA. A key observation is that

the inverse of X can be explicitly written as

Z “ T ´1pI ´QS´1q.

Since
`

ΠcT ´1pI ´ QS´1qu, v
˘

A “
`

T ´1pI ´ QS´1qu, v
˘

A “
`

pI ´ QS´1qu, v
˘

S´1 “ 0 for any

u P V KA
c and v P Vc, we have ΠcZ “ 0, which implies that Z : V KA

c ÞÑ V KA
c . Furthermore, by

the definition of projections, we get

XZ “ pI ´ΠcqpI ´QS´1q “ I ´Πc “ I on V KA
c .

(3) Consequently λmin pX q “ λmax pZq´1. Finally,

λmax pZq “ sup
vPV

KA
c

pT ´1pI ´QS´1qv, vqA
pv, vqA

“ sup
vPV

KA
c

`

pI ´QS´1qv, v
˘

S´1

pv, vqA

“ sup
vPV

KA
c

}pI ´QS´1qv}2
S´1

pv, vqA
“ sup

vPV

›

›pI ´QS´1qv
›

›

2

S´1

}v}2A
“: c1pVcq.

CHAPTER 3. TWOGRID METHODS 86

The last identity holds because I ´ QS´1 “ pI ´ QS´1qpI ´ Πcq and we can then take the

supremum back over all v P V (similar to the argument in the very beginning of this proof).

Note that, in this theorem, we have only discussed the simplest case where the coarse problem

is solved exactly. In practice, the coarse problem is rarely solved exactly. We can also obtain

convergence estimates for the inexact twogrid method based on convergence factor of the exact

twogrid method; see [93, 126]. This will be discussed later in §6.2.

Optimal coarse space ‹

Now we discuss how to choose the coarse space to maximize the convergence speed, which

will become handy later for developing algebraic multigrid methods (AMGs). We will show

that the space spanned by the eigenvectors of SA corresponding to small eigenvalues gives the

“best” coarse space. Here the term “best” refers to the fact that this coarse space minimizes

the convergence rate.

Theorem 3.37 provides an estimate on the convergence rate of a twogrid method in terms of

c1pVcq. For a given method, a smaller bound on c1pVcq means faster convergence. In particular,

the twogrid method is uniformly convergent if c1pVcq is uniformly bounded with respect to

meshsize. However, one problem for applying Theorem 3.37 is that it is sometimes difficult to

work with S´1
.

A natural approach to overcome such a difficulty is to introduce a simpler but spectrally

equivalent SPD operator D, such that

CL
›

›v
›

›

2

D ď
›

›v
›

›

2

S´1 ď CU
›

›v
›

›

2

D, @ v P V.

Similar to the definition of c1pVcq, we can introduce the quantity

c1pVc,Dq “ sup
vPV

›

›pI ´QDqv
›

›

2

D
}v}2A

“ sup
vPV

inf
vcPVc

›

›v ´ vc
›

›

2

D
}v}2A

,

where QD : V ÞÑ Vc is the p¨, ¨qD-orthogonal projection. Hence

CL c1pVc,Dq ď c1pVcq ď CU c1pVc,Dq.

It is straight-forward to derive the following estimates:

Theorem 3.38 (An estimate of convergence rate of TG). The convergence rate of the twogrid

method (3.28) with exact coarse-level solver is given by

1´
1

CL c1pVc,Dq
ď }ETG}A ď 1´

1

CU c1pVc,Dq
ď 1´

1

CUC
, (3.35)

where C is an upper bound of c1pVc,Dq, i.e.,

inf
vcPVc

›

›v ´ vc
›

›

2

D ď C}v}2A, @ v P V. (3.36)

CHAPTER 3. TWOGRID METHODS 87

The following theorem characterizes the optimal choice of coarse space Vc with a fixed

smoother S:

Theorem 3.39 (Optimal coarse space). Given a smoother S, the best coarse space of dimension

Nc is given by

V opt
c :“ argmin

dimVc“Nc

}ETGpVcq}A “ span

ξk
(Nc
k“1

, (3.37)

where

ξk
(Nc
k“1

are the eigenfunctions corresponding to the smallest eigenvalues λk of SA.

Proof. Recall that ETG “ pI ´ STAqpI ´ ΠcqpI ´ SAq. Since ETG depends on Vc we write

ETGpVcq and using the same argument as in the proof of Theorem 3.37, we have

}ETGpVcq}A “ 1´ min
vPV

KA
c

pSAv, vqA
}v}2A

.

Thus,

min
dimVc“Nc

}ETGpVcq}A “ 1´ max
dimVc“Nc

min
vPV

KA
c

pSAv, vqA
}v}2A

.

By the well-known Courant minimax principle [47], we have

max
dimVc“Nc

min
vPV

KA
c

`

SAv, v
˘

A
}v}2A

“ λNc`1

and the equality holds if Vc “ V opt
c as given in (3.37).

Remark 3.40 (Lower bound of contraction factor). Since the coarse space which minimizes

the convergence rate is the coarse space which minimizes also c1pVcq, we have the following

inequalities

c1pVcq “
1

1´ }ETG}A
ě

1

λNc`1
or }ETG}A ě 1´ λNc`1,

which is a lower bound of the contraction factor in terms of size of the small eigenvalues (low

frequencies) of SA.

Since the eigenvalues of SA are expensive to compute, the practical value of Theorem 3.39 is

limited. But it will provide useful guidance in the design practical algebraic multilevel methods

in §7.1.

3.5 Matrix representation of the twogrid method

In practice, we have to understand the matrix representation of an abstract algorithm before

we can actually implement it. In particular, we wish to answer the questions raised at the end

of §1.4. We now explain the matrix representation of the twogrid method in the finite element

context.

CHAPTER 3. TWOGRID METHODS 88

Grid transfer operators in matrix form

Let tφiu be the basis of a finite element space V on the fine-grid. Then the stiffness matrix

Â reads
`

Â
˘

i,j
“ arφi, φjs.

Let tφcl u be the basis functions of the coarse-grid subspace Vc Ă V and the stiffness matrix on

the coarser space is denote by Âc with
`

Âc

˘

k,l
“ arφck, φ

c
l s. Then φcl can be expressed as

φcl “
N
ÿ

i“1

`

P
˘

i,l
φi

or

pφc1, . . . , φ
c
Ncq “ pφ1, . . . , φN qP,

which defines a prolongation matrix P P RNˆNc . By definition, this implies that P “ Ic.

Remark 3.41 (Cannonical prolongation operator). Let 1N :“ p1, 1, . . . , 1qT . Since the basis

functions form the partition of unity, it follows that

pφ1, ¨ ¨ ¨ , φN q1N “
N
ÿ

i“1

φi “ 1 “
Nc
ÿ

l“1

φcl “ pφ
c
1, ¨ ¨ ¨ , φ

c
Ncq1Nc “ pφ1, ¨ ¨ ¨ , φN qP 1Nc .

Hence we have that the prolongation matrix preserves constant away from the boundary, i.e.,

P 1Nc “ 1N .

It is important to note that ITc “ Qc ‰ IcT , i.e., the matrix representation of adjoint

operator is not equal to the transpose of the matrix representation. If we take any v P V , then

we have

vc :“ Qcv and vc “ pφ
c
1, . . . , φ

c
Ncqvc.

On the other hand, with straightforward calculations, we obtain that

~vc “
´

pvc, φ
c
kq

¯Nc

k“1
“

´

pv, φckq
¯Nc

k“1
“

´

N
ÿ

j“1

vjpφj , φ
c
kq

¯Nc

k“1
“

´

N
ÿ

j“1

vj

´

IcTM
¯

k,j

¯Nc

k“1
“ IcTMv.

In turn, we can obtain the matrix representation of the L2-projection

Qcv “ vc “M´1
c ~vc “M´1

c IcTMv ùñ ITc “ Qc “M´1
c IcTM “M´1

c P TM. (3.38)

CHAPTER 3. TWOGRID METHODS 89

Coarse problem in matrix form

Since the coarse-level operator is defined as Ac “ ITc AIc, we obtain its matrix representation

Ac “ QcAIc ùñ Âc “McAc “McQcAIc “ P TMAP “ P T ÂP. (3.39)

Then the coarse stiffness matrix satisfies

Âc “ P T ÂP. (3.40)

Therefore, the algebraic form (3.40) of the coarse level problem is equivalent to the matrix

representation of the operator form.

In the above equality, we observe that, the L2-projection Qc is not needed for implementation.

Instead, we only need to use a restriction matrix R :“ P T .

Remark 3.42 (Finite difference case). Notice that, here, for the finite element stiffness matrices,

the restriction matrix is just R “ P T . However, we have already noticed that R ‰ P T for the

finite difference method in (1.37). In fact, many books (see [44] for example) states R “ αP T .

This difference comes from the scaling effect caused by h. In the 1D FD example, the coefficient

matrices on fine and coarse levels are A “ h´1Â and Ac “ H´1Âc, respectively. Hence we get

Âc “ P T ÂP ùñ Ac “

ˆ

h

H
P T

˙

AP “: RAP.

This remark explains how we can obtain such the constant α in general.

Twogrid iterator in matrix form

From (3.28), we have that the twogrid method with exact coarse solver is

BTG “ S `
`

I ´ STA
˘

IcA´1
c ITc pI ´ASq .

We can then write the above equation in matrix form

BTG “ S `
`

I ´ STA
˘

IcA´1
c ITc

`

I ´AS
˘

.

So we define

BTG :“ BTGM
´1 “ SM´1 `

`

I ´ STA
˘

IcA´1
c ITc

`

I ´AS
˘

M´1.

Using the matrix form the symmetrization, inversion, and transpose derived earlier, we can

easily get

BTG “ S ` pI ´ STAqPA´1
c P T pI ´ASq “ S ` pI ´ STAqP

`

P TAP
˘´1

P T pI ´ASq.

CHAPTER 3. TWOGRID METHODS 90

Now we are ready to introduce the matrix representation of the twogrid method for solving

the linear system Au “ ~f . We describe the twogrid method as a preconditioner action BTGp¨q.

For any given vector (usually it is the residual vector) ~r P RN , we can compute BTGp~rq in the

following steps:

Listing 3.1: A twogrid method

1 %% Given any vector ~r;

2 Pre−smoothing: ~v Ð S~r;

3 Coarse−grid correction: ~w Ð ~v ` P pPTAP q´1PT p~r ´A~vq;

4 Post−smoothing: BTG~r Ð ~w ` ST p~r ´A~wq;

Similarly, from (3.30), we have matrix form of the iteration matrix

ETG “ ETG “ pI ´ S
TAqpI ´ PA´1

c P TAqpI ´ SAq

“ pI ´ STAqpI ´ΠcqpI ´ SAq, (3.41)

where Πc :“ Πc “ PA´1
c P TA is the matrix form of the coarse-level correction; see HW 3.8.

In [56], an algebraic analysis of the twogrid method has been given and the convergence rate

of the TG method can be written as

ρpETGq “ 1´ inf
v

vT pI ´ Π̃cqA
1
2SA

1
2 pI ´ Π̃cqv

vT pI ´ Π̃cqv
,

where Π̃c :“ A
1
2 ΠcA

´ 1
2 “ A

1
2PA´1

c P TA
1
2 . This algebraic form is explicit and might be easier

to understand compared with Theorem 3.37.

3.6 Homework problems

HW 3.1. Show the a posteriori error bounds (3.9).

HW 3.2. Prove the statements in Lemma 3.20.

HW 3.3. Show the operator form and matrix form (3.15) of the Richardson method.

HW 3.4. Prove Lemma 3.35 and Lemma 3.36.

HW 3.5. Give a complete proof of Remark 3.32.

HW 3.6. Write the 1D multigrid method in §1.4 as a twogrid method (Algorithm 3.2) called

recursively and modify your implementation in this way.

CHAPTER 3. TWOGRID METHODS 91

HW 3.7. Give the detailed proof of Theorem 3.37. Hint: First show that

sup
vPV

}pI ´ SAqpI ´Πcqv}
2
A

}v}2A
“ sup

vPV

}pI ´ SAqpI ´Πcqv}
2
A

}pI ´Πcqv}2A ` }Πcv}2A
“ sup

vPV
KA
c

}pI ´ SAqv}2A
}v}2A

;

Then prove that X defined in (3.34) is self-adjoint with respect to p¨, ¨qA-inner product.

HW 3.8. Derive the primal matrix representation of Πc and ETG respectively.

Chapter 4

Subspace Correction Methods

In the previous chapters, we have introduced several iterative solvers for the linear equation

Au “ f, (4.1)

where A : V ÞÑ V is SPD. A linear stationary iterative method can be written as

unew “ uold ` Bpf ´Auoldq. (4.2)

In Chapter 2, we have seen that: If B is an SPD operator, with proper scaling, the above iterative

method (4.2) converges; Furthermore, B can be applied as a preconditioner of Krylov subspace

methods, like PCG.

In this chapter, we present a theoretical framework for analyzing linear iterative methods

and/or preconditioners in terms of space decomposition and subspace corrections. This gen-

eral framework can be used to establish convergence theory for various methods, including the

multigrid method, the domain decomposition method, and the twogrid method discussed in the

previous chapters.

4.1 Successive and parallel subspace corrections

Suppose we have a subspace decomposition of the solution space

V “
J
ÿ

j“1

Vj and Vj Ă V pj “ 1, . . . , Jq.

For any v P V , we can write it as v “
řJ
j“1 vj with vj P Vj . Notice that this representation

is not unique as there could be redundancy in the subspace decomposition. Later on, it will

become clear that such redundancy is crucial for constructing optimal multilevel methods.

92

CHAPTER 4. SUBSPACE CORRECTION METHODS 93

Abstract framework for subspace corrections

We first define a few operators which have already been used at different places in the

previous chapters.

Definition 4.1. Let V be a finite-dimensional Hilbert space with inner product p¨, ¨q and Vj Ă V

be a subspace. We define
$

’

’

&

’

’

%

subspace problem Aj : Vj ÞÑ Vj , pAjvj , wjq “ pAvj , wjq, @ vj , wj P Vj ;

p¨, ¨q-projection Qj : V ÞÑ Vj , pQjv, wjq “ pv, wjq, @wj P Vj ;

p¨, ¨qA-projection Πj : V ÞÑ Vj , pΠjv, wjqA “ pv, wjqA, @wj P Vj .

Using Definition 4.1, we have the following elementary results:

Lemma 4.2 (Relation between projections). The following equalities hold:

1. ITj “ Qj , I˚j “ Πj ;

2. QjA “ AjΠj .

Proof. (i) By definition, for any u P V, vj P Vj , we have

pQju, vjq “ pu, vjq “ pu, Ijvjq “ pITj u, vjq,
pΠju, vjqA “ pu, vjqA “ pu, IjvjqA “ pI˚j u, vjqA.

(ii) For any u P V, vj P Vj , we have

pAjΠju, vjq “ pΠju, vjqA “ pu, vjqA “ pu, IjvjqA “ pAu, Ijvjq “ pQjAu, vjq,

which gives the second identity.

Remark 4.3 (Matrix representation of the A-projection). Let uc :“ Πcu. Since Πc : V ÞÑ Vc Ă

V is the A-orthogonal projection operator, for any u P V , we have

aruc, vcs “ arΠcu, vcs “ aru, vcs, @ vc P Vc.

Using the matrix representation notations introduced in §3.2, we have, for any vc P Vc, that

aruc, vcs “ pAuc, vcq “ vc
T Âc uc, @uc P Vc; (4.3)

aru, vcs “ pAu, vcq “ pIcvcqT Âu “ vc
TP T Âu, @u P V. (4.4)

From (4.3) and (4.4), we can derive the matrix representation of the Galerkin projection on the

coarse grid

Âcuc “ P T Âu ùñ Πc u “ Πcu “ uc “ Â´1
c P T Âu.

CHAPTER 4. SUBSPACE CORRECTION METHODS 94

Hence, we obtain the matrix representation of the A-projection operator

Πc “ Â´1
c P T Â. (4.5)

One can compare this equation with the matrix form of the L2-projection in (3.38).

Remark 4.4 (Subspace problems). From the definition of Aj , we get

Aj “ ITj AIj “ QjAIj “ QjAQT
j .

With the help of Lemma 4.2 and simple calculations, we can immediately obtain the error

equation on each subspace Vj :

Ae “ r ùñ QjAe “ Qjr ùñ AjΠje “ Qjr ùñ Ajej “ rj ,

where rj “ Qjr and ej “ Πje.

The main idea of method of subspace corrections (MSC), namely divide and conquer, has

already been discussed in the domain decomposition method. We first describe the idea of

subspace correction in the following abstract algorithm1, which is just a generalization of Algo-

rithm 2.1:

Algorithm 4.1 (Method of subspace corrections). unew “ SCpuoldq

(i) Form residual: r “ f ´Auold

(ii) Solve error equation on Vj : Ajej “ rj by ej « êj “ Sjrj

(iii) Apply correction: unew “ uold ` êj

Notice that, instead of constructing an iterator for the whole system, Algorithm 4.1 only con-

siders one subproblem on the subspace Vj . It is still not clear how to taking all subspaces into

account. In fact, the ordering of subspace corrections plays a key role in algorithm construction.

Remark 4.5 (Subspace solvers). It is well-known that

uj “ argmin
vPVj

Fpvq :“
1

2
pAv, vq ´ pf, vq

is equivalent to

uj “ argmin
vPVj

›

›u´ v
›

›

A.

1Note that this procedure is not really an algorithm as it does not specify how to combine the corrections êj ’s
from different subspaces.

CHAPTER 4. SUBSPACE CORRECTION METHODS 95

We notice that the solution of the subspace problem Ajej “ rj “ Qjr
old satisfies that

Fpuold ` ejq “ min
ePVj

Fpuold ` eq.

In order to provide an effective yet practical subspace solver, we should pay attention to the

dimension of the subspace and choose an appropriate problem size.

SSC and PSC methods

Algorithm 4.1 does not specify how to combine the corrections êj ’s from different subspaces.

There are two basic approaches: the successive subspace correction (SSC) and the parallel

subspace correction (PSC). SSC can be viewed as the multiplicative Schwarz method (2.37) and

PSC can be viewed as the additive Schwarz method (2.36). We now give descriptions of the SSC

and PSC algorithms.

Algorithm 4.2 (Successive subspace corrections). unew “ SSCpuoldq

(i) v “ uold

(ii) v “ v ` SjQjpf ´Avq, j “ 1, . . . , J

(iii) unew “ v

Remark 4.6 (Relaxation for subspace solvers). In the above algorithm, we can introduce a

relaxation parameter in each subspace correction step

v “ v ` ωjSjQjpf ´Avq, j “ 1, . . . , J.

Good relaxation parameters are difficult to obtain in general, but they can improve convergence

if optimal values can be found. We will not discuss this modified subspace correction though

because ωj can always be absorbed in Sj .

Algorithm 4.3 (Parallel subspace corrections). unew “ PSCpuoldq

(i) r “ f ´Auold

(ii) êj “ SjQjr, j “ 1, . . . , J

(iii) unew “ uold `
řJ
j“1 êj

From the above algorithms, it is immediately clear why they are named as PSC and SSC,

respectively. As in (3.31), we define an operator

Tj “ TSj :“ SjQjA “ SjAjΠj : V ÞÑ Vj .

CHAPTER 4. SUBSPACE CORRECTION METHODS 96

Apparently, if we restrict the domain to Vj , then we have

Tj “ TSj “ SjAj : Vj ÞÑ Vj .

We shall now assume all the subspace solvers (smoothers) Sj are SPD operators. As STj “ Sj ,
the operator Tj “ SjAj : Vj ÞÑ Vj is symmetric and positive definite with respect to p¨, ¨qA. If

Sj “ A´1
j , i.e., the smoother is the exact solver on each subspace, then we have Tj “ Πj .

• The SSC method satisfies:

u´ unew “ pI ´ BSSCAqpu´ uoldq “ pI ´ TJq ¨ ¨ ¨ pI ´ T1qpu´ u
oldq. (4.6)

If J “ N and each subspace Vj “ spantφju (j “ 1, . . . , N) and Sj “ A´1
j , then the

corresponding SSC method (4.6) is exactly the G-S method; see (2.20).

• For the PSC method, the iterator (or, more often, the preconditioner) satisfies

BPSC “

J
ÿ

j“1

SjQj “

J
ÿ

j“1

IjSjQj and BPSCA “
J
ÿ

j“1

SjQjA “
J
ÿ

j“1

Tj . (4.7)

If Sj ’s (j “ 1, . . . , J) are all SPD, then the preconditioner BPSC is also SPD; see HW 4.2.

If each subspace Vj “ spantφju (j “ 1, . . . , N) as before, then the resulting PSC methods

with Sj “ ωp¨, φjqφj and Sj “ A´1
j correspond to the Richardson method and the Jacobi

method, respectively.

So far, we have not mentioned any multilevel structures in the above methods. In order to intro-

duce multilevel iterative methods in the subspace correction framework, we will need multilevel

subspace decompositions.

4.2 Expanded system and block solvers

Recall that, back in §2.1, we discussed a modified block Gauss–Seidel method. In this

section, we discuss an expanded system of (4.1) and its block iterative solvers. Moreover, we

will show how these block solvers are related to the subspace correction methods for the original

linear system (4.1). This relation will become important in the next section for deriving the XZ

identity, which gives the convergence rate of SSC.

Expansion of the original problem

Suppose that the finite dimensional vector space V can be decomposed as the summation of

linear vector subspaces (might not be linearly independent), V1, V2, . . . , VJ , i.e., V “
řJ
j“1 Vj .

We define a new vector space

V :“ V1 ˆ V2 ˆ ¨ ¨ ¨ ˆ VJ .

CHAPTER 4. SUBSPACE CORRECTION METHODS 97

Define an operator Π : V ÞÑ V such that Πu “
řJ
j“1 uj , where u “ pu1, . . . , uJq

T P V with

each component uj “ uj P Vj . From the definition, it is easy to see that Π is surjective. This

operator can be formally interpreted as

Π “ pI1, . . . , IJq,

where Ij is the natural embedding from Vj to V . Hence, we obtain

Πu “ pI1, . . . , IJq

¨

˚

˚

˝

u1

...

uJ

˛

‹

‹

‚

“

J
ÿ

j“1

Ijuj “
J
ÿ

j“1

uj .

So we have

ΠT “

¨

˚

˚

˝

IT1
...

ITJ

˛

‹

‹

‚

“

¨

˚

˚

˝

Q1

...

QJ

˛

‹

‹

‚

.

Note that Π ΠT ‰ I in general.

Define A : V ÞÑ V such that Ai,j “ Ai,j :“ ITi AIj : Vj ÞÑ Vi. And we denote Aj :“ Aj,j

(j “ 1, . . . , J). Hence we can write the operator A in a matrix form

A :“ ΠTAΠ “

´

Ai,j

¯

JˆJ
“

¨

˚

˚

˝

A1,1 ¨ ¨ ¨ A1,J

...
. . .

...

AJ,1 ¨ ¨ ¨ AJ,J

˛

‹

‹

‚

.

Given any right hand side function f P V , we define

f :“ ΠT f “

¨

˚

˚

˝

IT1 f
...

ITJ f

˛

‹

‹

‚

P V.

In this setting, we consider the following problem: Find u P V, such that

Au “ f . (4.8)

This system is called the expanded equation of the original linear equation (4.1). We will see

how the solution of these two problems are related. If A is SPD, then A is a symmetric positive

semidefinite (SPSD) operator. Note that A is usually singular due to its nontrivial null space,

nullpΠq. However, its diagonal entries Aj (j “ 1, 2, . . . , J) are non-singular. We can define a

semi-norm for B : V ÞÑ V

}B}A :“ sup
}v}A‰0

}Bv}A
}v}A

.

CHAPTER 4. SUBSPACE CORRECTION METHODS 98

Block solvers for expanded equation

As before, we denote the lower, upper, and diagonal part of A as L, U, and D, respectively.

We can immediately see that the stationary iterative methods discussed in §1.3 can be easily

adapted to solve (4.8). The linear stationary iterative methods for (4.8) can be written in the

following abstract form

unew “ uold `Bpf ´Auoldq, (4.9)

where the iterator B : V ÞÑ V. If B “ D´1, then we have the block Jacobi method for (4.8); if

B “ pD` Lq´1, then we have the block Gauss–Seidel method.

Motivated by (2.16), we can generalize the block Jacobi and G-S methods. Assume there is

a non-singular block diagonal smoother (or relaxation operator) S : V ÞÑ V, i.e.,

S “ diagpS1,S2, . . . ,SJq, with Sj : Vj ÞÑ Vj , j “ 1, 2, . . . , J.

We define modified block Jacobi method by B “ S and the modified block Gauss–Seidel method

by B “ pS´1 ` Lq´1.

Theorem 4.7 (Solution of expanded and original systems). The linear stationary iteration (4.9)

for the equation (4.8) reduces to an equivalent stationary iteration (4.2) with the iterator

B “ Π B ΠT

for the original equation (4.1). Moreover, these two methods have the same convergence speed,

namely,

}I ´ BA}A “ }I´BA}A.

Proof. The linear stationary iterative method

unew “ uold `Bpf ´Auoldq

is equivalent to

unew
j “ uold

j `
ÿ

k

Bj,k

´

ITk f ´
ÿ

i

Ak,iu
old
i

¯

“ uold
j `

ÿ

k

Bj,kITk
´

f ´
ÿ

i

AIiuold
i

¯

“ uold
j `

ÿ

k

Bj,kITk
´

f ´Auold
¯

.

Therefore, we have

unew “
ÿ

j

Ijunew
j “ uold `

ÿ

j,k

IjBj,kITk
´

f ´Auold
¯

“ uold ` B
´

f ´Auold
¯

.

This proves the equivalence of (4.9) and (4.2).

CHAPTER 4. SUBSPACE CORRECTION METHODS 99

A key observation is that

pBAv,vqA “ pABAv,vq “ pΠTAΠ B ΠTAΠv,vq “ pABAΠv,Πvq “ pBAΠv,ΠvqA.

The contraction factor can be written

}I ´ BA}2A “ sup
v‰0

}pI ´ BAqv}2A
}v}2A

“ sup
v‰0

pv, vqA ´
`

pBT ` B ´ BTABqAv, v
˘

A
pv, vqA

“ sup
Πv‰0

pΠv,ΠvqA ´
`

pBT ` B ´ BTABqAΠv,Πv
˘

A
pΠv,ΠvqA

“ sup
}v}A‰0

pv,vqA ´
`

pBT `B´BTABqAv,v
˘

A

}v}2A

“ }I´BA}2A.

Hence we get the desired result.

Example 4.8 (Block Jacobi method and PSC). We now apply the block Jacobi method for the

expanded system (4.8), i.e.,

unew “ uold `D´1pf ´Auoldq.

We notice that D´1A “ D´1ΠTAΠ, which is spectrally equivalent to ΠD´1ΠTA because

σpBAqzt0u “ σpABqzt0u. In fact, from Theorem 4.7, we can see that the above iterative method

is equivalent to

unew “ uold `ΠD´1ΠT pf ´Auoldq “ uold `

J
ÿ

j“1

IjA´1
j ITj

`

f ´Auold
˘

.

We immediately recognize that this is the PSC method (or the additive Schwarz method) with

exact subspace solvers.

Example 4.9 (Block G-S method and SSC). Similar to the above example, we can get the block

G-S method is just the SSC method (or the multiplicative Schwarz method) for the original

problem. We now apply the block G-S method for the expanded system (4.8), i.e.,

unew “ uold ` pD` Lq´1pf ´Auoldq.

We can rewrite this method as

pD` Lqunew “ pD` Lquold ` pf ´Auoldq.

Hence we have

Dunew “ Duold ` f ´ Lunew ´ pD`Uquold;

CHAPTER 4. SUBSPACE CORRECTION METHODS 100

in turn, we get

unew “ uold `D´1
´

f ´ Lunew ´ pD`Uquold
¯

.

For j “ 1, . . . , J , the block G-S method can be written as

unew
j “ uold

j `A´1
j

´

ITj f ´
ÿ

iăj

ITj AIiunew
i ´

ÿ

iěj

ITj AIiuold
i

¯

.

We define iteration

u
j
J :“

ÿ

iăj

unew
i `

ÿ

iěj

uold
i “

ÿ

iăj

Iiunew
i `

ÿ

iěj

Iiuold
i , j “ 1, . . . , J.

By this definition, we can see that

u
j`1
J “ u

j
J ` Ijunew

j ´ Ijuold
j “ u

j
J ` IjA´1

j ITj pf ´Au j
J q.

Here the term f ´ Au j
J is sometimes called the dynamic residual, which is the residual at an

inner iteration of the G-S method. From the above equation, we notice that the block G-S

method is just the SSC method with exact subspace solvers Sj “ A´1
j for the original linear

equation (4.1).

Convergence of block solvers

Motived by the weighted Jacobi and G-S methods, we assume that there is an invertible

smoother or local relaxation S for solving Au “ f . Similar to the method presented in §2.1, we

define a general or modified block G-S method:

B :“
`

S´1 ` L
˘´1

. (4.10)

We analyze the convergence rate of this method. Let K :“ B´T ` B´1 ´ A be a symmetric

operator and the symmetrization operator as B “ BTKB. Then we get

´

B
´1

v,v
¯

“

´

B´1K´1B´Tv,v
¯

“

´

`

S´1 ` L
˘

K´1
`

S´T `U
˘

v, v
¯

, @v P V (4.11)

By the definition of K, it is clear that K is diagonal and

K “ pS´T `Uq ` pS´1 ` Lq ´ pD` L`Uq

“ S´T ` S´1 ´D “ S´T
`

ST ` S´ STDS
˘

S´1.

Hence, its inverse matrix is also diagonal and

K´1 “ SpST ` S´ STDSq´1ST . (4.12)

CHAPTER 4. SUBSPACE CORRECTION METHODS 101

Using the definition of K, we can obtain that B´1 “ K`A´B´T . Hence we have a represen-

tation of B
´1

by simple manipulations:

B
´1
“ pK`A´B´T qK´1pK`A´B´1q “ A` pA´B´T qK´1pA´B´1q.

The last equality and (4.10) immediately yield another important identity:

´

B
´1

v,v
¯

“ pAv,vq `
´

K´1pD`U´ S´1qv, pD`U´ S´1qv
¯

, @v P V. (4.13)

Now we apply a modification of Theorem 2.15 (i.e., general convergence rate estimate for

SPD problems2) and get the following convergence result:

Theorem 4.10 (Convergence rate of modified block G-S). If K :“ S´T ` S´1 ´D is SPD,

then the modified block G-S method converges and

}I´BA}2A “ 1´
1

1` c0
, with c0 :“ sup

}v}A“1

›

›

›
K´ 1

2

`

D`U´ S´1
˘

v
›

›

›

2
.

4.3 Convergence analysis of SSC

In the previous section, we have found that the SSC method for the original equation is

equivalent to the block G-S method for the expanded equation using the same subspaces

Vj
(J

j“1
.

Now we try to analyze the convergence rate of the block G-S method for the expanded system.

In this way, we can give a convergence analysis for the successive subspace correction method.

The proof here follows the discussion in [45].

A technical lemma

Suppose V “
řJ
j“1 Vj . It is clear that Π : V ÞÑ V is surjective and Πu “

řJ
j“1 Ijuj . We

have the following simple but useful lemma:

Lemma 4.11. If the iterator B in (4.9) is SPD, then B “ Π B ΠT is also SPD and

pB´1v, vq “ inf
vPV

Πv“v

pB´1v,vq, @v P V.

Proof. It is clear that pBv, vq ě 0 for any v P V due to positive definiteness of B. Furthermore,

we have

0 “ pBv, vq “ pBΠT v,ΠT vq ùñ ΠT v “ 0 ùñ v P nullpΠT q “ rangepΠqK.

2In order to apply the convergence rate estimate Theorem 2.15 for stationary iterative methods to a symmetric
positive semi-definite problem, we can restrict the domain of operator A inside the subspace, rangepAq. This way
the operator A is still non-singular.

CHAPTER 4. SUBSPACE CORRECTION METHODS 102

Since Π is surjective, we have v “ 0. This proves the iterator B is SPD.

Define v˚ :“ BΠTB´1v. It is easy to see that

Πv˚ “ ΠBΠTB´1v “ BB´1v “ v, @v P V,

and

pB´1v˚,wq “ pΠ
TB´1v,wq “ pB´1v,Πwq.

If w P nullpΠq, then pB´1v˚,wq “ 0. This ensures that, for any vector v P V, there exists a

B´1-orthogonal decomposition v “ v˚ `w with w P nullpΠq. Hence, we get

pB´1v,vq “
`

B´1pv˚ `wq,v˚ `w
˘

“
`

B´1v˚,v˚
˘

`
`

B´1w,w
˘

.

Thus

inf
vPV

Πv“v

pB´1v,vq “
`

B´1v˚,v˚
˘

` inf
wPnullpΠq

`

B´1w,w
˘

“
`

B´1v˚,v˚
˘

“
`

ΠTB´1v,BΠTB´1v
˘

“
`

B´1v, v
˘

.

Hence the result.

Remark 4.12 (Minimizer for the expanded problem). From the above proof, we can easily see

v˚ “ BΠTB´1v is actually the minimizer for inf vPV
Πv“v

pB´1v,vq.

Remark 4.13 (Auxiliary space method). The above lemma for relation between the expanded

problem and the original problem can also be extended to the auxiliary space lemma: For two

vector spaces V and Ṽ and a surjective Π : Ṽ ÞÑ V , if the iterator B̃ : Ṽ 1 ÞÑ Ṽ is SPD, then

B “ Π B̃ ΠT is also SPD and

pB´1v, vq “ inf
ṽPṼ

Πṽ“v

pB̃´1ṽ, ṽq, @v P V.

See more discussion on this topic in §4.5.

We can then derive the following expression for the inverse of the PSC preconditioner, which

can be found in [116, 119, 65, 124].

Lemma 4.14. Assume that all Sj ’s are SPD. Then

pB´1
PSCv, vq “ inf

ř

j vj“v

J
ÿ

j“1

pS´1
j vj , vjq, @ v P V.

CHAPTER 4. SUBSPACE CORRECTION METHODS 103

The XZ identity

We now give the well-known XZ identity originally proved by Xu and Zikatanov [122] which

gives the exact convergence rate of the SSC method.

Theorem 4.15 (XZ Identity). Assume that B is defined by Algorithm 4.2 and, for j “ 1, . . . , J ,

wj :“ AjΠj
ř

iěj vi ´ S´1
j vj . If S´Tj ` S´1

j ´Aj are SPD’s for j “ 1, . . . , J , then

}I ´ BA}2A “ 1´
1

1` c0
“ 1´

1

c1
, (4.14)

where

c0 “ sup
}v}A“1

inf
ř

j vj“v

J
ÿ

j“1

}STj wj}
2

S´1
j

(4.15)

and

c1 “ sup
}v}A“1

inf
ř

j vj“v

J
ÿ

j“1

›

›

›
SjS´1

j vj ` STj wj

›

›

›

2

S´1
j

. (4.16)

Proof. (1) By applying Theorem 2.15 and Lemma 4.11, we know

}I ´ BA}2A “ 1´

ˆ

sup
}v}A“1

`

B´1
v, v

˘

˙´1

“ 1´

ˆ

sup
}v}A“1

inf
Πv“v

`

B
´1

v,v
˘

˙´1

. (4.17)

From (4.13), we have, for any v P V, that

´

B
´1

v,v
¯

“ pAv,vq `
´

K´1
`

D`U´ S´1
˘

v,
`

D`U´ S´1
˘

v
¯

.

By simple calculation, we get

`

D`U
˘

v “

´

ÿ

jě1

Q1AQT
j vj ,

ÿ

jě2

Q2AQT
j vj , ¨ ¨ ¨

¯T

“

´

ÿ

jě1

A1Π1Ijvj ,
ÿ

jě2

A2Π2Ijvj , ¨ ¨ ¨
¯T

“

´

A1Π1

ÿ

jě1

vj , A2Π2

ÿ

jě2

vj , ¨ ¨ ¨
¯T
.

Hence we can denote

`

D`U´ S´1
˘

v “ pw1,w2, . . . ,wJq
T , with wj :“ AjΠj

ÿ

iěj

vi ´ S´1
j vj .

Due to (4.12) and the fact that K is diagonal, we have

´

K´1
`

D`U´ S´1
˘

v,
`

D`U´ S´1
˘

v
¯

“

J
ÿ

j“1

´

SjS´1
j STj wj ,wj

¯

“

J
ÿ

j“1

›

›

›
STj wj

›

›

›

2

S´1
j

,

CHAPTER 4. SUBSPACE CORRECTION METHODS 104

where Sj :“ STj ` Sj ´ STj AjSj is the symmetrization of Sj . We then obtain, for any v P V ,

that

sup
}v}A“1

inf
Πv“v

´

B
´1

v,v
¯

“ 1` sup
}v}A“1

inf
Πv“v

J
ÿ

j“1

›

›

›
STj wj

›

›

›

2

S´1
j

.

This gives the desired estimate for the constant c0.

(2) On the other hand, from (4.11), we have

´

B
´1

v,v
¯

“

´

K´1
`

S´T `U
˘

v,
`

S´T `U
˘

v
¯

“

J
ÿ

j“1

›

›

›

`

S´1
j ` S´Tj ´Aj

˘´ 1
2
`

S´Tj vj `
ÿ

iąj

QjAIivi
˘

›

›

›

2
. (4.18)

We notice that

S´Tj vj `
ÿ

iąj

QjAIivi “ S´Tj vj `AjΠj

ÿ

iąj

vi “
`

S´Tj ` S´1
j ´Aj

˘

vj `wj

“ S´Tj SjS´1
j vj `wj “ S´Tj

´

SjS´1
j vj ` STj wj

¯

.

Plug this into the previous identity, we get

´

B
´1

v,v
¯

“

J
ÿ

j“1

›

›

›

›

SjS´1
j vj ` STj wj

›

›

›

›

2

S´1
j

.

Hence the estimate for the constant c1.

Remark 4.16 (An equivalent form). We have introduced operators Tj :“ SjAj : Vj ÞÑ Vj .

Hence TSj :“ SjAj “ Tj `T ˚j ´T ˚j Tj and we can rewrite the above estimate (4.16) in a slightly

different form. Notice that, in (4.18),

S´Tj vj `
ÿ

iąj

QjAIivi “ Aj

`

STj Aj

˘´1
vj `AjΠj

ÿ

iąj

vi “ Aj

”

`

T ˚j
˘´1

vj `Πj

ÿ

iąj

vi

ı

and
`

S´1
j ` S´Tj ´Aj

˘´1Aj “
`

T ´1
j ` pT ˚j q´1 ´ Ij

˘´1
“ TjT ´1

Sj
T ˚j .

Thus we have

c1 “ sup
}v}A“1

inf
ř

j vj“v

J
ÿ

j“1

›

›

›

›

T ´
1
2

Sj

´

vj ` T ˚j Πj

ÿ

iąj

vi

¯

›

›

›

›

2

A
. (4.19)

Example 4.17 (Linear stationary iterative method). One-level linear stationary iterative method

unew “ uold ` Spf ´Auoldq,

CHAPTER 4. SUBSPACE CORRECTION METHODS 105

can be viewed as a special subspace correction method with only one subspace V . Hence,

using (4.19), we immediately have

c1 “ sup
}v}A“1

›

›T ´
1
2

S v
›

›

2

A “ sup
}v}A“1

`

pSAq´1v, v
˘

A “ sup
}v}A“1

`

S´1
v, v

˘

,

which is exactly the convergence rate derived in Theorem 2.15.

Example 4.18 (Twogrid method). Theorem 3.37 can be viewed as a special case of the XZ

identity in the case of space decomposition with two subspaces, i.e., V “ Vc ` V . Suppose we

use A´1
c and S as subspace solvers, respectively. According to (4.19), we get

c1 “ sup
}w}A“1

inf
w“vc`v
vcPVc,vPV

}vc `Πcv}
2
A ` }pSAq´

1
2 v}2A.

We can prove that

c1 “ sup
}v}A“1

›

›T ´
1
2

S pI ´QS´1qv
›

›

2

A,

which is consistent with (3.33) in Theorem 3.37. For a complete proof of this result, we refer to

Zikatanov [133].

When we solve each subspace problem exactly, the XZ identity is substantially simpler since

Tj “ Πj in this case. This special case of the XZ identity is given in the following corollary.

Corollary 4.19 (SSC with exact subspace solvers). If an exact subspace solver Sj “ A´1
j for

each subspace is used, then we have, in (4.14), that

c0 “ sup
}v}A“1

inf
ř

j vj“v

J
ÿ

j“1

›

›

›
Πj

ÿ

iąj

vi

›

›

›

2

Aj
(4.20)

and

c1 “ sup
}v}A“1

inf
ř

j vj“v

J
ÿ

j“1

›

›

›
Πj

ÿ

iěj

vi

›

›

›

2

Aj
. (4.21)

4.4 Convergence analysis of PSC

In this section, we estimate the condition number of the PSC method. In general, PSC

might not converge as an iterative method, but we can show that it is uniform convergent as a

preconditioner under certain conditions.

Relating PSC to SSC

The following theorem shows the relation between the PSC and SSC methods.

CHAPTER 4. SUBSPACE CORRECTION METHODS 106

Theorem 4.20 (PSC and SSC). If Sj “ A´1
j for all j and Vj are subspaces of V , then there

exists a constant c˚ depends only on topology of the overlaps between the subspaces such that

1

4

`

B´1
PSCv, v

˘

ď
`

B´1
SSCv, v

˘

ď c˚
`

B´1
PSCv, v

˘

, @ v P V.

Proof. Given v “
řJ
j“1 vj with vj P Vj . It follows that

}v}2A “
J
ÿ

k,j“1

pvk, vjqA “
J
ÿ

k“1

pvk, vkqA ` 2
J
ÿ

jąk

pvk, vjqA “ 2
J
ÿ

jěk

pvk, vjqA ´
J
ÿ

k“1

pvk, vkqA.

Hence, since Πk is a A-projection, it follows that

J
ÿ

k“1

}vk}
2
A ď 2

J
ÿ

k“1

´

vk,
J
ÿ

j“k

vj

¯

A
“ 2

J
ÿ

k“1

´

vk,Πk

J
ÿ

j“k

vj

¯

A

ď 2
´

J
ÿ

k“1

}vk}
2
A
¯

1
2
´

J
ÿ

k“1

›

›Πk

J
ÿ

j“k

vj
›

›

2

A

¯
1
2
.

In turn, it gives
řJ
k“1 }vk}

2
A ď 4

řJ
k“1

›

›Πk
řJ
j“k vj

›

›

2

A. Together with Lemma 4.14, Corollary 4.19,

and (4.17), it gives the first inequality. The second one is also easy; see HW 4.5.

This shows that, if the SSC method works well as an iterative method, then the PSC method

based on the same space decomposition also works as a preconditioner. Next, we give direct

analysis of the condition number of the PSC method.

Condition number of PSC

To obtain estimates on the condition number of the preconditioned problems, we first give

the following assumptions:

Assumption 4.21 (Convergence assumptions for MSC). We assume that

1. For any v P V , there exists a decomposition v “
řJ
j“1 vj with vj P Vj such that

J
ÿ

j“1

`

S´1
j vj , vj

˘

ď K1pAv, vq; (4.22)

2. For any u, v P V ,

ÿ

pi,jq

`

Tiu, Tjv
˘

A ď K2

´

J
ÿ

i“1

pTiu, uqA
¯

1
2
´

J
ÿ

j“1

pTjv, vqA
¯

1
2
. (4.23)

Theorem 4.22 (Condition number of PSC). If Assumption 4.21 holds true, the PSC method

(4.7) satisfies

κpBAq ď K1K2.

CHAPTER 4. SUBSPACE CORRECTION METHODS 107

Proof. (1) For any v P V , suppose that v “
řJ
j“1 vj is a decomposition, which satisfies the first

condition of Assumption 4.21. It is easy to see that

pv, vqA “

J
ÿ

j“1

pvj , vqA “

J
ÿ

j“1

pvj ,ΠjvqA “

J
ÿ

j“1

pvj ,AjΠjvq “

J
ÿ

j“1

`

S´
1
2

j vj ,S
1
2
j AjΠjv

˘

ď

J
ÿ

j“1

`

S´1
j vj , vj

˘
1
2
`

SjAjΠjv,AjΠjv
˘

1
2 “

J
ÿ

j“1

`

S´1
j vj , vj

˘
1
2
`

SjAjΠjv, v
˘

1
2
A

ď

˜

J
ÿ

j“1

`

S´1
j vj , vj

˘

¸

1
2
˜

J
ÿ

j“1

`

Tjv, v
˘

A

¸

1
2

ď
a

K1

›

›v
›

›

A pBAv, vq
1
2
A.

Consequently, we have the lower bound

1

K1
pv, vqA ď pBAv, vqA, @ v P V.

(2) From the second assumption, we have

}BAv}2A “
J
ÿ

i,j“1

`

Tiv, Tjv
˘

A ď K2pBAv, vqA ď K2}BAv}A}v}A.

So we obtain the upper bound

pBAv, vqA ď K2pv, vqA, @ v P V.

Thus Lemmas 2.29 and 2.30 yield the desired estimate.

According to Theorem 4.22, if we can find a space decomposition and corresponding smoothers

with uniform constants K1 and K2, then we are able to construct a uniformly convergent pre-

conditioner using the PSC framework. Similar results can obtained for SSC as well.

Remark 4.23 (Similar estimate for SSC). In fact, with the same assumptions (Assump-

tion 4.21), we can also show that the SSC method also converges with

}I ´ BA}2A ď 1´
2´ ω1

K1p1`K2q
2

and ω1 :“ max
j
ρpSjAjq “ max

j
ρpTjq.

Because a sharp result has been given in §4.3, we will just leave the proof to the readers (cf., for

example, [118]).

Estimates of K1 and K2

Assumption 4.21 is not easy to verify directly. So we now give a few useful estimates for

the constants in these conditions. We first give a straight-forward estimate of K1, which clearly

separates the condition on space decomposition part and smoother part.

CHAPTER 4. SUBSPACE CORRECTION METHODS 108

Lemma 4.24 (Estimates of K1). Assume that, for any v P V , there is a decomposition v “
řJ
j“1 vj with vj P Vj :

(i) If the decomposition satisfies that

J
ÿ

j“1

pvj , vjqA ď C1pv, vqA,

then we have

K1 ď C1{ω0, where ω0 :“ min
j“1,...,J

λminpSjAjq
(

;

(ii) If ρj :“ ρpAjq and
J
ÿ

j“1

ρjpvj , vjq ď Ĉ1pv, vqA,

then we have

K1 ď Ĉ1{ω̂0, where ω̂0 :“ min
j“1,...,J

ρjλminpSjq
(

.

Proof. (i) By the definition of ω0 and the fact that λpS1{2
j AjS1{2

j q “ λpSjAjq, we have

pS1{2
j AjS1{2

j S´1{2
j vj ,S´1{2

j vjq ě ω0pS´1
j vj , vjq, j “ 1, . . . , J.

Note that

J
ÿ

j“1

pS1{2
j AjS1{2

j S´1{2
j vj ,S´1{2

j vjq “
J
ÿ

j“1

pAjvj , vjq “
J
ÿ

j“1

pvj , vjqA ď C1pv, vqA.

We then have

ω0

J
ÿ

j“1

pS´1
j vj , vjq ď C1pAv, vq or

J
ÿ

j“1

pS´1
j vj , vjq ď

C1

ω0
pAv, vq,

which implies that K1 ď
C1
ω0

.

(ii) Similar to the previous part, from the definition of ω̂0, we have

ρjpvj , vjq “ ρjpSjS´1{2
j vj ,S´1{2

j vjq ě ω̂0pS´1
j vj , vjq, j “ 1, . . . , J.

Hence, we have

ω̂0

J
ÿ

j“1

pS´1
j vj , vjq ď

J
ÿ

j“1

ρjpvj , vjq ď Ĉ1pv, vqA,

which implies that K1 ď
Ĉ1
ω̂0

.

CHAPTER 4. SUBSPACE CORRECTION METHODS 109

We introduce a nonnegative symmetric matrix

Σ “
`

σi,j
˘

P RJˆJ , (4.24)

where each entry σi,j is the smallest constant such that

`

Tiu, Tjv
˘

A ď ω1σi,j
`

Tiu, u
˘

1
2
A
`

Tjv, v
˘

1
2
A, @u, v P V. (4.25)

It is clear that 0 ď σi,j ď 1. Moreover, σi,j “ 0, if ΠiΠj “ 0.

Lemma 4.25 (Estimate of K2). The constant K2 ď ω1ρpΣq. Furthermore, if σi,j À γ|i´j| holds

for some parameter 0 ă γ ă 1, then ρpΣq À p1´ γq´1; in this case, the inequality (4.23) is the

well-known strengthened Cauchy-Schwarz inequality.

Proof. From the definition of Σ as in (4.24), it is immediately clear that K2 ď ω1ρpΣq. Fur-

thermore, because the matrix Σ is a real symmetric matrix and ρpΣq ď maxj“1,...,J
řJ
i“1 σi,j , we

have

ρpΣq ď max
1ďjďJ

J
ÿ

i“1

σi,j À
J
ÿ

i“1

γi´1 ď
1

1´ γ
.

Hence the result.

4.5 Auxiliary space method ‹

Sometimes, we cannot apply subspace correction methods directly due to difficulties in ob-

taining an appropriate space decomposition. In this case, we can introduce an auxiliary or

fictitious space Ṽ for assistance. Suppose Π : Ṽ ÞÑ V is surjective and satisfies the following two

conditions:

• Firstly,

}Πṽ}A ď µ1}ṽ}Ã, @ ṽ P Ṽ .

• Secondly, for any v P V , there exists ṽ P Ṽ such that Πṽ “ v and

µ0}ṽ}Ã ď }v}A, @ ṽ P Ṽ .

Under the above assumptions, if B̃ is a SPD preconditioner for Ã, then B “ ΠB̃ΠT is SPD and

κpBAq ď
ˆ

µ1

µ0

˙2

κpB̃Ãq.

This suggests that we can construct a subspace correction method on Ṽ instead of the original

space V . This result is also known as the Fictitious Space Lemma or the Fictitious Domain

Lemma; see [91, 120].

CHAPTER 4. SUBSPACE CORRECTION METHODS 110

The fictitious domain method is a large class of methods which is usually for problems in

geometrically complex, and most likely moving, domains. By embedding the original physical

domain in a larger artificial domain, we can discretize the partial differential equations on a

more structured grid and, hence, solve the resulting linear algebraic systems more quickly. Of

course, the boundary conditions have to be handled with great care; see [63] for details.

4.6 Homework problems

HW 4.1. Prove the statements in Remark 4.5.

HW 4.2. If Sj (j “ 1, . . . , J) are all SPD, then the preconditioner B “ řJ
j“1 SjQj is also SPD.

HW 4.3. Show that the block G-S method for the expanded system is just the SSC method

for the original problem.

HW 4.4. Prove Theorem 4.10.

HW 4.5. Prove Theorem 4.20. What is the constant c˚?

Part II

Examples of Multilevel Iterative

Methods

111

Chapter 5

Subspace Correction Preconditioners

In Chapter 4, we have discussed stationary iterative methods in the framework of method of

subspace correction (MSC). In this chapter, we give a few examples of multilevel methods and

their convergence analysis based on the framework of subspace corrections.

5.1 Two-level overlapping DDM

In this section, we will investigate the two-level overlapping domain decomposition method

(DDM) presented in §2.4 using the MSC framework.

Two-level space decomposition

Based on the previous discussions, it is now easy to understand that the additive and mul-

tiplicative Schwarz domain decomposition methods can be considered as PSC and SSC, respec-

tively. For proof-of-concept, we use the Poisson’s equation on Ω as an example. In this case,

V “ H1
0 pΩq, Ω “

ŤJ
j“1 Ωj , and Vj :“ tv P V : supp v Ă Ω̂ju Ă V ; see Figure 2.2. Sup-

pose we have a finite-dimensional coarse space V0 Ă V on a quasi-uniform mesh of meshsize

H “ diampΩjq. Apparently, this way, we have a space decomposition

V “ V0 ` V1 ` ¨ ¨ ¨ ` VJ .

The SSC method based on this space decomposition with exact subspace solvers on each sub-

domain as well as on the coarse space gives an abstract multiplicative Schwarz DDM method1.

We first define a partition of unity function θj P C
1pΩq (j “ 1, . . . , J) such that

(1) 0 ď θj ď 1 and
řJ
j“1 θj “ 1;

1It is an abstract algorithm because we did not discretize each sub-domain problems.

112

CHAPTER 5. SUBSPACE CORRECTION PRECONDITIONERS 113

(2) supp θj Ă Ω̂j ;

(3) max |∇θj | ď Cβ{H, where Cβ depends on the relative overlap size β.

This way, for any function v P V , we can define a decomposition

v “ v0 ` v1 ` ¨ ¨ ¨ ` vJ ,

where

v0 P V0 and vj :“ θjpv ´ v0q P Vj , j “ 1, . . . , J.

Convergence analysis of DDM

Based on the above decomposition, we have
řJ
j“1 vj “ v ´ v0 and

J
ÿ

j“0

ˇ

ˇ

ˇ
Πj

J
ÿ

i“j`1

vi

ˇ

ˇ

ˇ

2

1
“

J
ÿ

j“0

ˇ

ˇ

ˇ
Πj

J
ÿ

i“j`1

θipv ´ v0q

ˇ

ˇ

ˇ

2

1
“

ˇ

ˇ

ˇ
Π0pv ´ v0q

ˇ

ˇ

ˇ

2

1
`

J
ÿ

j“1

ˇ

ˇ

ˇ
Πj

J
ÿ

i“j`1

θipv ´ v0q

ˇ

ˇ

ˇ

2

1
.

Since Πj ’s : V ÞÑ Vj (j “ 1, . . . , J) are A-projections, it is easy to see that |Πjw|1 ď |w|1.

Furthermore,

ˇ

ˇ

ˇ
Πj

J
ÿ

i“j`1

θipv ´ v0q

ˇ

ˇ

ˇ

2

1
“

ˇ

ˇ

ˇ
Πj

J
ÿ

i“j`1

θipv ´ v0q

ˇ

ˇ

ˇ

2

1,Ω̂j
ď

ˇ

ˇ

ˇ

J
ÿ

i“j`1

θipv ´ v0q

ˇ

ˇ

ˇ

2

1,Ω̂j

ď

›

›

›

`

ÿ

iąj

θi
˘

∇pv ´ v0q

›

›

›

2

0,Ω̂j
`

›

›

›
∇
`

ÿ

iąj

θi
˘

pv ´ v0q

›

›

›

2

0,Ω̂j

ď
ˇ

ˇv ´ v0

ˇ

ˇ

2

1,Ω̂j
` C2

βH
´2
›

›v ´ v0

›

›

2

0,Ω̂j
.

By summing up all the terms, we have

J
ÿ

j“0

ˇ

ˇ

ˇ
Πj

J
ÿ

i“j`1

vi

ˇ

ˇ

ˇ

2

1
ď

ˇ

ˇv ´ v0

ˇ

ˇ

2

1
`

J
ÿ

j“1

ˇ

ˇv ´ v0

ˇ

ˇ

2

1,Ω̂j
` C2

βH
´2

J
ÿ

j“1

›

›v ´ v0

›

›

2

0,Ω̂j

À
ˇ

ˇv ´ v0

ˇ

ˇ

2

1
` C2

βH
´2
›

›v ´ v0

›

›

2

0
,

where the constant in the last inequality depends on the maximal number of overlaps in domain

decomposition. Because v0 could be any function in V0, in view of Proposition 3.14 or the

so-called simultaneous estimate in Remark 3.15, we can obtain

J
ÿ

j“0

ˇ

ˇ

ˇ
Πj

J
ÿ

i“j`1

vi

ˇ

ˇ

ˇ

2

1
À |v|21.

Using the X-Z identity (Corollary 4.19), we can get the following uniform convergence result.

CHAPTER 5. SUBSPACE CORRECTION PRECONDITIONERS 114

Proposition 5.1 (Uniform convergence of two-level DDM). The abstract domain decomposition

method with coarse space correction converges uniformly.

We leave the full proof to the interested readers; see HW 5.16.

Remark 5.2 (DDM without coarse space). From the above analysis, we immediately see the

importance of having the coarse space V0. In fact, with a similar proof, one can show that the

convergence rate depends on H´2 if not applying the coarse space correction.

5.2 HB preconditioner

In the previous section, we have seen a two-level domain decomposition method in the setting

of subspace correction. Now we investigate a multilevel example.

Nested space decomposition

We consider the Poisson’s equation on a sequence of nested meshes Ml (l “ 0, . . . , L) gen-

erated from an initial mesh M0 by uniform regular refinements. Hence meshsize hl of Ml is

proportional to γ2l with γ P p0, 1q. For example, in Figure 1.5, there is a hierarchy of grids with

hl “ p1{2q
l`1 (l “ 0, 1, . . . , L). Clearly,

h0 ą h1 ą h2 ą ¨ ¨ ¨ ą hL “: h.

Define continuous piecewise linear finite element spaces on the mesh Ml as

Vl :“

v P V : v|τ P P1pτq, @ τ PMl

(

. (5.1)

This way, we build a nested subspaces

V0 Ă V1 Ă ¨ ¨ ¨ Ă VL “: V Ă V “ H1
0 pΩq.

The set of interior grid points on the l-th level is denoted as xl,i P G̊pMlq (i “ 1, . . . , nl). The

subspace Vl is assigned with a nodal basis tφl,iu
nl
i“1, where nl :“

ˇ

ˇG̊pMlq
ˇ

ˇ. The space Vl can be

further decomposed as the sum of the one-dimensional subspaces spanned with the nodal basis

Vl,i :“ spantφl,iu (i “ 1, . . . , nl).

We then define

Wl :“

v P Vl : vpxq “ 0, @x P G̊pMl´1q
(

(5.2)

and obtain a multilevel space decomposition

V “W0 ‘W1 ‘ ¨ ¨ ¨ ‘WL. (5.3)

CHAPTER 5. SUBSPACE CORRECTION PRECONDITIONERS 115

Let Jl : V ÞÑ Vl be the cannonical interpolation operator and define J´1 :“ 0. It is easy to see

that

Wl “ pJl ´ Jl´1qV “ pI ´ Jl´1qVl, l “ 0, . . . , L.

For level l “ 0, . . . , L, we define a nodal basis function

ψl,ipxq “ φl,ipxq, for xl,i P G̊pMlqzG̊pMl´1q and i “ 1, . . . ,ml :“ nl ´ nl´1.

Apparently,
řL
l“0ml “ nL “ N . This basis

tψl,ipxq : i “ 1, . . . ,ml, l “ 0, . . . , Lu (5.4)

is the so-called hierarchical basis.

Notice that the decomposition (5.3) is a direct sum and there is no redundancy in this decom-

position at all.

Telescope expansions

Using notations in Definition 4.1, we have

$

’

’

&

’

’

%

Al : Vl ÞÑ Vl pAlul, vlq “ arul, vls, @ul, vl P Vl;

Ql : L2 ÞÑ Vl pQlu, vlq “ pu, vlq, @ vl P Vl;

Πl : V ÞÑ Vl pΠlu, vlq “ aru, vls, @ vl P Vl.

(5.5)

We introduce a new notation i^ j :“ minpi, jq. It is trivial to see

QiQj “ Qi^j , ΠiΠj “ Πi^j , (5.6)

and

pQi ´Qi´1qpQj ´Qj´1q “ pΠi ´Πi´1qpΠj ´Πj´1q “ 0, @ i ‰ j. (5.7)

If we define Q´1 “ Π´1 “ 0, we have the following possible decompositions

v “
L
ÿ

l“0

pQl ´Ql´1qv “
L
ÿ

l“0

pΠl ´Πl´1qv. (5.8)

Hierarchical basis preconditioner

We now use the Richardson iteration discussed in §3.3 as the subspace solver, i.e.,

Sl,iQl,iv “ h2´d
l

`

Ql,iv, ψl,i
˘

ψl,i “ h2´d
l

`

v, ψl,i
˘

ψl,i.

CHAPTER 5. SUBSPACE CORRECTION PRECONDITIONERS 116

The PSC method based on the space decomposition (5.3) can then be written

BHBr “
N
ÿ

j“1

SjQjr “
L
ÿ

l“0

˜

h2´d
l

ml
ÿ

i“1

pr, ψl,iqψl,i

¸

. (5.9)

And this is the explicit form of the well-known hierarchical basis (HB) preconditioner proposed

by Yserentant [129].

We shall now analyze this preconditioner in the framework of PSC in §4.4. In order to do

that, we need a few important estimates.

Lemma 5.3 (H1-stability of interpolation). We have

›

›pJl ´ Jl´1qv
›

›

2

0
` h2

l

ˇ

ˇJlv
ˇ

ˇ

2

1
À cdplqh

2
l |v|

2
1, @v P V,

where c1plq ” 1, c2plq “ L´ l, and c3plq “ γ´2pL´lq.

Proof. Using Proposition 3.11, we have

}pJl ´ Jl´1qv}0 “ }Jlv ´ Jl´1Jlv}0 À hl|Jlv|1.

Let τ P Ml and vτ :“ |τ |´1
ş

τ v dx be the average of v on τ . Using the standard scaling

argument for | ¨ |1,τ , the discrete Sobolev inequality Proposition 3.13, and the Poincaré inequality

Proposition 1.10, we can obtain that

|Jlv|1,τ “ |Jlv ´ vτ |1,τ À }Jlv ´ vτ }8,τ ď }v ´ vτ }8,τ À Cd}v ´ vτ }1,τ À Cd|v|1,τ .

Hence the desired result follows by summing up terms on all elements in Ml.

Remark 5.4 (Condition number in hierarchical basis). The above lemma suggests that, if

v PWl for any 0 ď l ď L, we have

c´1
d plqh

´2
l pv, vq À arv, vs.

Compare this with the general Poincaré inequality in Proposition 1.11. Furthermore, from the

inverse inequality Proposition 3.12, we always have

arv, vs “ |v|21 À h´2
l }v}

2
0 “ h´2

l pv, vq.

Hence the operator Al is “well-conditioned” up to a constant cdplq; compare this property with

the standard Lagrange finite element basis case in Remark 3.16.

CHAPTER 5. SUBSPACE CORRECTION PRECONDITIONERS 117

Strengthened Cauchy-Schwarz inequality

Lemma 5.5 (Inner product between two levels). If i ď j, we have

aru, vs À γj´ih´1
j |u|1}v}0, @u P Vi, v P Vj .

Proof. We first restrict our attention to an element τi P Mi. For v P Mj , there is a unique

function v1 P V , such that v1 vanishes on Bτi and equals to v at all other grid points. Let

v0 :“ v ´ v1. Because u PWi is a linear function on τi, we have
ş

τi
∇u∇v1 “ 0.

Define T :“
Ť

τjPMj ,τ j
Ş

Bτi‰Ø τj . Then |T | –
`

hi
hj

˘d´1
hdj “ hd´1

i hj and supp v0 Ă T . We

have
›

›∇v0

›

›

2

0,τi
À

ÿ

xPG̊pMjq
Ş

Bτi

hdjh
´2
j v2

0pxq “
ÿ

xPG̊pMjq
Ş

Bτi

hd´2
j v2pxq À h´2

j

›

›v
›

›

2

0,τi
.

Since ∇u is a constant on τi, we have

›

›∇u
›

›

0,T
“
|T |1{2

|τi|1{2

›

›∇u
›

›

0,τi
À

˜

hd´1
i hj

hdi

¸1{2
›

›∇u
›

›

0,τi
À γj´i

ˇ

ˇu
ˇ

ˇ

1,τi
.

Combining the above two inequalities, we have
ż

τi

∇u ¨∇v “
ż

τi

∇u ¨∇v0 À γj´ih´1
j

ˇ

ˇu
ˇ

ˇ

1,τi

›

›v
›

›

0,τi
, @τi PMi.

By the Cauchy-Schwarz inequality, we obtain the estimate:

aru, vs “
ÿ

τiPMi

ż

τi

∇u ¨∇v À γj´ih´1
j

ÿ

τiPMi

ˇ

ˇu
ˇ

ˇ

1,τi

›

›v
›

›

0,τi

ď γj´ih´1
j

´

ÿ

τiPMi

ˇ

ˇu
ˇ

ˇ

2

1,τi

¯1{2´ ÿ

τiPMi

›

›v
›

›

2

0,τi

¯1{2
“ γj´ih´1

j

ˇ

ˇu
ˇ

ˇ

1

›

›v
›

›

0
.

Hence the result.

Lemma 5.6 (Strengthened Cauchy-Schwarz inequality for interpolations). If u, v P V , let ui :“

pJi ´ Ji´1qu, and vj :“ pJj ´ Jj´1qv, then we have

arui, vjs À γ|i´j|
›

›ui
›

›

A
›

›vj
›

›

A.

Proof. If j ě i, we have vj “ vj ´ Jj´1vj . So }vj}0 “ }vj ´ Jj´1vj}0 À hj}vj}A follows from

Proposition 3.11. If i ě j, we can argue in a similar way. Hence the result follows directly from

Lemma 5.5.

Lemma 5.7 (Estimating K2). Assume that Tj “ SjAjΠj and the subspace smoother Sj : Vj ÞÑ

Vj satisfies
›

›SjAjv
›

›

2

0
À ρ´1

j

`

Ajv, v
˘

, @ v P Vj ,

CHAPTER 5. SUBSPACE CORRECTION PRECONDITIONERS 118

where ρj :“ ρpAjq. Then, if i ă j, we have

pui, TjvqA À γj´i}ui}A}v}A, @ui P Vi, v P V. (5.10)

For 0 ď i, j ď L, we have the strengthened Cauchy-Schwarz inequality

pTiu, TjvqA À γ|j´i|{2pTiu, uq
1
2
A pTjv, vq

1
2
A, @u, v P V. (5.11)

Proof. By applying Lemma 5.5, we get

pui, TjvqA “ arui, Tjvs À γj´ih´1
j }ui}A}Tjv}0.

Furthermore, we have

}Tjv}0 “ }SjAjΠjv}0 À hj}A1{2
j Πjv}0 ď hj}Πjv}A ď hj}v}A.

This proves the first inequality (5.10).

First consider the case when j ě i. By the Cauchy-Schwarz inequality and the inequal-

ity (5.10), we get

pTiu, TjvqA ď pTjTiu, Tiuq
1
2
A pTjv, vq

1
2
A À γpj´iq{2}Tiu}A pTjv, vq

1
2
A.

Also observe that pTiu, TiuqA À }Tiu}ApTiu, uq
1
2
A and the second inequality (5.11) follows imme-

diately.

Convergence analysis of HB preconditioner

Theorem 5.8 (Convergence of HB preconditioner). The multilevel PSC preconditioner BHB

defined in (5.9) satisfies

κpBHBAq À Cdphq,

where C1phq ” 1, C2phq “ | log h|2, and C3phq “ h´1.

Proof. We choose a decomposition v “
řL
l“0 vl :“

řL
l“0pJl ´ Jl´1qv, where J´1 “ 0. With

careful calculations, Proposition 3.12 and Lemma 5.3 (Jl “ Πl in 1D) yield

L
ÿ

l“0

}vl}
2
A À

L
ÿ

l“0

h´2
l }vl}

2
0 –

L
ÿ

l“0

ρl}vl}
2
0 À Cdphq}v}

2
A. (5.12)

On the other hand, we know ω̂0 “ minl ρlλminpSlq À 1. Therefore K1 À Cdphq due to

Lemma 4.24. The strengthened Cauchy-Schwarz inequality (5.11) and Lemma 4.25 give that

K2 À 1. The convergence result then follows directly from the general theory in Theorem 4.22.

CHAPTER 5. SUBSPACE CORRECTION PRECONDITIONERS 119

This theorem shows the HB preconditioner converges very fast when combined with some

Krylov subspace method. However the conditioner number still depends on the meshsize h,

especially in 3D. Now we discuss a little bit on how to remove such dependency.

Define an operator H : V ÞÑ V such that

pHv, wq :“
L
ÿ

l“0

ÿ

xiPG̊pMlqzG̊pMl´1q

hd´2
l

´

pJlv ´ Jl´1vqpxiq, pJlw ´ Jl´1wqpxiq
¯

.

Hence we get

pHv, vq “
L
ÿ

l“0

ÿ

xiPG̊pMlqzG̊pMl´1q

hd´2
l

ˇ

ˇ

ˇ
pJlv ´ Jl´1vqpxiq

ˇ

ˇ

ˇ

2
, @ v P V.

This operator is in fact the inverse of the HB preconditioner, i.e., H “ B´1
HB; see [130]. In fact,

in the proof of Theorem 5.8, we have shown the following norm equivalence result:

}v}2A À pHv, vq “
L
ÿ

l“0

h´2
l }pJl ´ Jl´1qv}

2
0 À Cdphq}v}

2
A. (5.13)

Since Πl is the p¨, ¨qA-projection from V to Vl, it is easy to check that

a
“

pΠi ´Πi´1qv, pΠj ´Πj´1qv
‰

“ 0, @i ‰ j.

We can then obtain that

}v}2A “

›

›

›

L
ÿ

l“0

pΠl ´Πl´1qv
›

›

›

2

A
“

ÿ

0ďi,jďL

a
“

pΠi ´Πi´1qv, pΠj ´Πj´1qv
‰

“

L
ÿ

l“0

a
“

pΠl ´Πl´1qv, pΠl ´Πl´1qv
‰

“

L
ÿ

l“0

ˇ

ˇ

ˇ
pΠl ´Πl´1qv

ˇ

ˇ

ˇ

2

1
.

Notice that this is corresponding to the telescope sum of the Ritz-projections in (5.7). Motivated

by the above norm equivalence and (5.13), one can easily construct another multilevel PSC

method

B “
J
ÿ

j“1

SjΠj .

However, Πj is not good for computation in general except for d “ 1 in which Πj “ Jj is just

the interpolation2. In the next section, we explore the idea of telescope expansion using the

L2-projection (5.7) instead of the interpolation or the Ritz-projection. And it turns out to give

rise to the well-known BPX preconditioner.

2Note that this is equivalent to the HB preconditioner in 1D.

CHAPTER 5. SUBSPACE CORRECTION PRECONDITIONERS 120

5.3 BPX preconditioner

In the previous section, along with the hierarchical basis decomposition, we have also ob-

tained a natural multilevel space decomposition

V “
L
ÿ

l“0

Vl “
L
ÿ

l“0

nl
ÿ

i“1

Vl,i, (5.14)

which contains a lot of “redundancy”. Heuristically, one might want to avoid such redundancy

in their algorithms. However, it turns out these extra subspaces are not redundant for optimal

convergence.

Using the multilevel space decomposition (5.14), we can construct multilevel subspace cor-

rection methods. Among them, the most prominent (multilevel) example of PSC methods is the

BPX preconditioner [28] based on the multilevel subspace decomposition (5.14):

B “
J
ÿ

j“1

SjQj , with J “
L
ÿ

l“0

nl, (5.15)

which is computationally more appealing and converges uniformly. The HB and BPX precon-

ditioners both belong to the class of multilevel nodal basis preconditioners.

Norm equivalence

Now we shall show why the BPX preconditioner is “better” than the HB preconditioner.

We notice that the HB preconditioner is not optimal for higher dimensions than 1D due to the

H1-stability property of the interpolations. Now we can expect it should be better for the L2

projections.

Lemma 5.9 (Telescope sum of L2-projections). For any v P V , we have

ˇ

ˇpQl ´Ql´1qv
ˇ

ˇ

1
– h´1

l

›

›pQl ´Ql´1qv
›

›

0
.

Proof. Using the inverse inequality, Proposition 3.12, we get

ˇ

ˇpQl ´Ql´1qv
ˇ

ˇ

1
À h´1

l

›

›pQl ´Ql´1qv
›

›

0
.

Proposition 3.14, together with the trivial equality

pQl ´Ql´1qv “ pI ´Ql´1qpQl ´Ql´1qv,

gives the other direction.

CHAPTER 5. SUBSPACE CORRECTION PRECONDITIONERS 121

Lemma 5.10 (Strengthened Cauchy-Schwarz inequality for L2-projections). If u, v P V , let

ui :“ pQi ´Qi´1qu, and vj :“ pQj ´Qj´1qv, then we have

arui, vjs À γ|i´j|}ui}A}vj}A.

Proof. If j ě i, Lemma 5.9 shows that }vj}0 À hj}vj}A. Hence the desirable result follows

directly from Lemma 5.5. If i ě j, we can argue in a similar way.

Lemma 5.11 (Norm equivalence). For any v P V , we have

L
ÿ

l“0

›

›pQl ´Ql´1qv
›

›

2

1
– }v}21.

Proof. (i) Since Ql is a L2-projection, we have }Qlv}0 ď }v}0, @ v P L
2pΩq. Furthermore, using

Proposition 3.14, we obtain

}Qlv}1 ď }v}1, @ v P V .

By space interpolation, we have, for any σ P p0, 1
2q, that

}Qlv}σ ď }v}σ, @ v P V .

Let α P p1
2 , 1q. If Πl : V ÞÑ Vl is the standard H1-projection, the finite element theory gives

›

›v ´Πlv
›

›

1´α
À hαl

›

›v
›

›

1
, @ v P V . (5.16)

Let vi :“ pΠi ´ Πi´1qv. Note that ρl “ ρpAlq – h´2
l . It is easy to show, with help from the

inverse inequality (Proposition 3.12) and (5.16), that

›

›pQl ´Ql´1qvi
›

›

2

1
À h´2α

l

›

›pQl ´Ql´1qvi
›

›

2

1´α
À h´2α

l

›

›vi
›

›

2

1´α
À h´2α

l h2α
i

›

›vi
›

›

2

1
– ραl h

2α
i

›

›vi
›

›

2

1
.

Using this inequality and the Cauchy-Schwarz inequality, we can derive that

ÿ

l

ÿ

i,j

`

∇pQl ´Ql´1qvi,∇pQl ´Ql´1qvj
˘

“
ÿ

i,j

i^j
ÿ

l“1

`

∇pQl ´Ql´1qvi,∇pQl ´Ql´1qvj
˘

À
ÿ

i,j

i^j
ÿ

l“1

ραl h
α
i h

α
j }vi}1}vj}1 À

ÿ

i,j

ραi^jh
α
i h

α
j }vi}1}vj}1 À

ÿ

i,j

γα|i´j|}vi}1}vj}1.

Note that here l, i, and j are all level indices and we can apply summation by parts.

We can show that
ř

i,j γ
α|i´j|}vi}1}vj}1 À

ř

i }vi}
2
1 “ }v}

2
1, which, in turn, gives

ÿ

l

›

›pQl ´Ql´1qv
›

›

2

1
À }v}21.

CHAPTER 5. SUBSPACE CORRECTION PRECONDITIONERS 122

(ii) On the other hand, using Lemma 5.10, we obtain

|v|21 “
ÿ

l,m

`

∇pQl ´Ql´1qv,∇pQm ´Qm´1qv
˘

À
ÿ

l,m

γ|l´m|
›

›pQl ´Ql´1qv
›

›

1

›

›pQm ´Qm´1qv
›

›

1
À

ÿ

l

›

›pQl ´Ql´1qv
›

›

2

1
.

Hence we get the norm equivalence using Proposition 1.11.

Remark 5.12 (Fractional norm). We have shown the norm equivalence in H1-norm. In fact,

similar results also hold for HαpΩq with 1
2 ă α ă 3

2 .

Convergence analysis for BPX preconditioner

All subspaces in (5.14) are one-dimensional and, thus, the subspace problems are very easy

to solve. We can write the subspace solver (exact solver on each one-dimensional subspace) as

follows:

S0
l v :“

nl
ÿ

i“1

pAφl,i, φl,iq´1 pv, φl,iqφl,i “
nl
ÿ

i“1

p∇φl,i,∇φl,iq´1 pv, φl,iqφl,i.

Since we are now considering the uniform refinement for the linear finite element discretization,

we can use an approximation of S0
l , for example a local relaxation method:

Slv :“
nl
ÿ

i“1

h2´d
l pv, φl,iqφl,i p« S0

l vq. (5.17)

This simplification helps us to reduce the cost of computation as well as implementation. Ap-

parently, we have

pSlv, vq “ h2´d
l p~v,~vq “ h2

l pv, vq. (5.18)

We have seen that the Richardson method, the damped Jacobi method, and the G-S method

all satisfy such a condition; see (3.23).

Remark 5.13 (Behavior of the smoother). Note that the method (5.17) is just the Richardson

method with a weight ω “ h2´d
l on level l.

Using the above space decomposition and subspace solvers Sl, the PSC method yields the

well-known BPX preconditioner

B “
L
ÿ

l“0

SlQl “

L
ÿ

l“0

IlSlQl “

L
ÿ

l“0

IlSlITl (5.19)

in operator form [28].

Theorem 5.14 (Uniform convergence of BPX). The BPX preconditioner (5.19) is uniformly

convergent, i.e., κpBAq À 1.

CHAPTER 5. SUBSPACE CORRECTION PRECONDITIONERS 123

Proof. We take a decomposition v “
řL
l“0 vl :“

řL
l“0pQl ´ Ql´1qv, where Q´1 “ 0. Then we

can obtain, from Lemmas 5.11 and 5.9, that

pAv, vq –
L
ÿ

l“0

ˇ

ˇpQl ´Ql´1qv
ˇ

ˇ

2

1
–

L
ÿ

l“0

h´2
l }pQl ´Ql´1qv}

2
0 “

´

L
ÿ

l“0

h´2
l pQl ´Ql´1qv, v

¯

.

Define Ã :“
řL
l“0 h

´2
l pQl´Ql´1q. Apparently, pAv, vq – pÃv, vq, @v P V . Using (5.6) and (5.7),

we can easily verify that (see HW 5.17)

Ã´1 “

L
ÿ

l“0

h2
l pQl ´Ql´1q.

Hence

pÃ´1v, vq “
L
ÿ

l“0

h2
l pQlv, vq ´

L
ÿ

l“0

h2
l pQl´1v, vq “ h2

LpQLv, vq `
L´1
ÿ

l“0

p1´ γ2qh2
l pQlv, vq.

Namely, pÃ´1v, vq – pBv, vq. That is to say, pAv, vq – pÃv, vq – pB´1v, vq. Hence it gives the

uniform convergence result by Lemma 2.29.

Remark 5.15 (Multilevel decomposition according to frequencies). From the above analysis,

we find that, for any v P V ,

ˇ

ˇpQl ´Ql´1qv
ˇ

ˇ

1
– h´1

l

›

›pQl ´Ql´1qv
›

›

0
ùñ }∇vl}0 „ }h´1

l vl}0.

This fact draws close comparison with the Fourier expansion. That is to say v “
řL
l“0 vl is a

multilevel decomposition to different frequencies. Hence Ã can be viewed as a multi-resolution

expansion of A and κpÃ´1Aq À 1.

Matrix representation of BPX

Using the matrix representation notations introduced in §3.2 and §3.5, the equation (3.38)

in particular, we immediately obtain the matrix representation of the BPX method:

B u “ Bu “
L
ÿ

l“0

Il SlQl u “
L
ÿ

l“0

Pl ph
2´d
l Mlq pM

´1
l P Tl Mqu “

L
ÿ

l“0

h2´d
l Pl P

T
l M u.

In view of (3.16), we get the matrix form of the BPX preconditioner

B :“ BM´1 “

L
ÿ

l“0

h2´d
l Pl P

T
l . (5.20)

This is the matrix form of the BPX preconditioner when we implement it. To improve efficiency,

we can use prolongation between two consecutive levels to obtain Pl.

CHAPTER 5. SUBSPACE CORRECTION PRECONDITIONERS 124

5.4 Homework problems

Problem 5.16. Give the complete proof of the uniform convergence of the two-level domain

decomposition method (Proposition 5.1). What will happen if we do not include the coarse-level

correction (Remark 5.2)?

Problem 5.17. Let Ã :“
řL
l“0 h

´2
l pQl ´Ql´1q. Show that Ã´1 “

řL
l“0 h

2
l pQl ´Ql´1q.

Problem 5.18. Implement the BPX preconditioner for the Poisson’s equation on a uniform

grid. You can choose your favorite discretization method.

Chapter 6

Geometric Multigrid Methods

Multigrid methods are a group of algorithms for solving differential equations using a hierar-

chy of discretizations. The idea of multigrid was proposed initially by Fedorenko [57] in 1962 for

2D finite difference systems arising from the Poisson’s equation. It accelerates the convergence of

a basic iterative method (known as a relaxation or smoother) by global corrections from time to

time, accomplished by solving a coarse problem approximately. The coarse problem is “similar”

to the fine grid problem, while much cheaper to solve. This recursive process is repeated until

a coarse grid is reached where the cost of direct solution is negligible compared to the cost of

one relaxation sweep on the finest grid. In 1970’s, Widlund, Hackbusch, Brandt et al. [67, 30]

noticed that this iterative procedure was considerably faster than standard relaxation methods

and brought it to attention in the western scientific community.

6.1 Geometric multigrid method

Geometric multigrid (GMG) method is an optimal iterative solver for linear algebraic sys-

tem (2.1) arising from discretizations of partial differential equations. It is based on two impor-

tant observations we have pointed out earlier in Chapter 3:

• A local relaxation method damps out the non-smooth (high-frequency) error components

and the residual becomes relatively smooth after a few relaxation sweeps;

• A smooth (low-frequency) vector can be well approximated on coarse spaces.

GMG establishes and makes use of hierarchical structures. It is also a good example of

the idea of divide and conquer. This idea has been applied in two-grid methods; see §3.4.

Unfortunately, for large-scale problems, the coarse grid problem might be still too large to be

solved efficiently. This makes introducing more than two nested meshes a natural idea. The key

steps in the multigrid method (see Figure 6.1) are listed as follows:

125

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 126

• Smoothing: Reduce high-frequency error using a few smoothing steps based on a simple

iterative method;

• Restriction: Restrict the residual on a finer grid to a coarser grid;

• Coarse grid correction: Solve an approximate problem on a coarse grid;

• Prolongation: Represent the correction computed on a coarser grid to a finer grid.

✻

P
ro

lo
n
ga

ti
on

❄

R
estriction

Coarse Grid

Fine Grid

Figure 6.1: Pictorial representation of a multigrid method with three grid levels.

V-cycle multigrid method

Now we will explain the multigrid algorithms using the P1 finite element method for the

Poisson’s equation on Ω Ă Rd as an example. Suppose we have a sequence of meshes Ml

(l “ 0, . . . , L) generated from an initial mesh M0 by (uniform) regular refinements. Hence

meshsize hl of Ml is proportional to γl with γ P p0, 1q. Clearly,

h0 ą h1 ą h2 ą ¨ ¨ ¨ ą hL “: h.

It is easy to see that a multigrid method can be viewed a recursive two-grid method. So

we only need to introduce how to do the iteration on two consecutive levels. We denote Il´1,l :

Vl´1 ÞÑ Vl pl “ 1, ¨ ¨ ¨ , Lq as the natural embedding and Ql,l´1 “ ITl´1,l : Vl ÞÑ Vl´1 as the

p¨, ¨q-projection. Define Al pl “ 1, ¨ ¨ ¨ , Lq as the operator form of A on the subspace Vl in (5.1).

Then a V-cycle multigrid method is given as follows:

Algorithm 6.1 (One iteration of MG V-cycle). Assume that Bl´1 : Vl´1 ÞÑ Vl´1 is defined and

the coarsest level solver B0 “ A´1
0 is exact. We shall define, recursively, Bl : Vl ÞÑ Vl, which is

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 127

an iterator for the equation Alvl “ rl. Let vl be the initial guess on each level, i.e., vL “ up0q

and vl “ 0 for 0 ă l ă L. Do the following steps:

(1) Pre-smoothing: For k “ 1, 2, . . . ,m, compute

vl Ð vl ` Sl
`

rl ´Alvl
˘

;

(2) Coarse grid correction: Find an approximate solution el´1 P Vl´1 of the residual equation

on level l ´ 1, i.e., Al´1el´1 “ Ql,l´1

`

rl ´Alvl
˘

, by an iterative method:

el´1 Ð Bl´1Ql,l´1prl ´Alvlq, vl Ð vl ` Il´1,lel´1;

(3) Post-smoothing: For k “ 1, 2, . . . ,m, compute

vl Ð vl ` STl
`

rl ´Alvl
˘

.

From this algorithm, we can see this V-cycle multigrid method is just a generalization of Al-

gorithm 3.2 (the abstract two-grid method). Clearly, this geometric multigrid method (with one

G-S iteration as pre-smoothing and one backward G-S iteration as post-smoothing) is actually

a special successive subspace correction (SSC) method based on the following multilevel space

decomposition

V “
J
ÿ

j“1

Ṽj “
ÿ

l“L:´1:1

ÿ

i“1:nl

Vl,i ` V0 `
ÿ

l“1:L

ÿ

i“nl:´1:1

Vl,i,

which is a modification of (5.14). Furthermore, on each one-dimensional subspace Ṽj , the

subspace problem is solved exactly.

According to Lemma 3.36, the error transfer operator of V-cycle on the l-th level can be

written as

El :“ I ´ BlAl “
`

I ´ STl Al

˘

pI ´ Bl´1Al´1Πl´1q
`

I ´ SlAl

˘

,

where Πl´1 is the Ritz-projection from V to Vl´1. By applying this operator recursively, we

obtain the error transfer operator for the MG V-cycle:

EL “ I ´ BLALΠL “
`

I ´ STLAL

˘

¨ ¨ ¨
`

I ´ ST1 A1

˘`

I ´Π0

˘`

I ´ S1A1

˘

¨ ¨ ¨
`

I ´ SLAL

˘

.

Matrix representation of GMG

Similar to the matrix representation of two-grid method discussed in §3.4, we can write the

matrix representation of multigrid method. By definition, we have

pAlul, vlq “ pAul, vlq, @ul, vl P Vl.

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 128

Hence,

pAlQlu,Qlvq “ pITl AIlQlu,Qlvq “ pAIlQlu, IlQlvq, @u, v P V.

It is easy to see that

Al “ ITl AIl ùñ Al “ ITl AIl “ ITl AIl.

This and (3.38), in turn, give the inter-grid transformations:

Âl “MlAl “Ml ITl AIl “MlQlM
´1Â Il “ IlT Â Il, 0 ď l ă L.

Hence we get the matrix form of the coarse level operator

Âl “ P Tl ÂPl, 0 ď l ă L. (6.1)

Anisotropic problems ‹

For GMG, smoothness of error is in the usual geometric sense. But it is not trivial for

problems on unstructured meshes or problems with complicated coefficients. A representative

example is the second-order elliptic problem

´εuxx ´ uyy “ fpx, yq, @ px, yq P Ω, (6.2)

where ε ą 0 is usually small. Other examples include problems with high-contrast coefficients,

problems on anisotropic meshes, etc.

If we just naively apply the standard finite difference discretization in §1.2 on the uniform

n ˆ n tensor-product grid for this problem, or equivalently the P1 finite element discretization

on uniform triangular grid from regular refinements, then the coefficient matrix for (6.2) is

Aε “ I bA1,ε ` C b I, with A1,ε “ tridiagp´ε, 2` 2ε,´εq, C “ tridiagp´1, 0,´1q.

The eigenvalues of A are given

λi,jpAεq “ 2p1` εq ´ 2ε cos
iπ

n` 1
´ 2 cos

jπ

n` 1
“ 4ε sin2 iπ

2pn` 1q
` 4 sin2 jπ

2pn` 1q
,

with eigenvectors

~ξi,j “
´

sin
kiπ

n` 1
sin

ljπ

n` 1

¯

k,l“1,...,n
.

If ε ! 1, then λ1,1 ă λ2,1 ă ¨ ¨ ¨ ă λn,1 ă λ1,2 ă λ2,2 ă ¨ ¨ ¨ . We notice that, unlike the

Poisson’s equation, these eigenvalues are ordered in a different pattern. The geometric low-

frequencies can be highly oscillatory in the x-direction. It is natural to expect such a behavior

from the PDE itself as the x-direction is much less diffusive than the y-direction. We call the

x-direction (with smaller coefficient) the weak direction and the y-direction the strong direction.

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 129

We can also view this problem from a different perspective. Using the LFA analysis in §3.3,

we obtain that the error of the G-S method satisfies

p2` 2εqenew
i,j “ εenew

i´1,j ` εe
old
i`1,j ` e

new
i,j´1 ` e

old
i,j`1, i, j “ 1, . . . , n.

According to the local Fourier analysis, we can obtain that

λpθ1, θ2q :“
αnew
θ

αold
θ

“
εe
?
´1θ1 ` e

?
´1θ2

2` 2ε´ εe´
?
´1θ1 ´ e´

?
´1θ2

.

In this case, the smoothing factor of the G-S method is

ρ̄GS “ λ

ˆ

π

2
, arctan

´ εp1´ ρ̄2
GS
q

2pε` 1qρ̄2
GS

¯

˙

“

?
5ε2 ´ 2ε` 1` 2

5ε` 3
ÝÑ 1, as εÑ 0.

This means the standard G-S method barely have any smoothing effect on the anisotropic

problem when ε is small.

On the other hand, if we apply the line G-S smoother, things will be a lot different. Suppose

we apply the line smoother in natural ordering (from left to right), namely,

p2` 2εqunew
i,j “ εunew

i´1,j ` εu
old
i`1,j ` u

new
i,j´1 ` u

new
i,j`1, j “ 1, . . . , n, i “ 1, . . . , n.

Then the error satisfies

p2` 2εqenew
i,j “ εenew

i´1,j ` εe
old
i`1,j ` e

new
i,j´1 ` e

new
i,j`1, j “ 1, . . . , n, i “ 1, . . . , n.

And we get

λpθ1, θ2q :“
αnew
θ

αold
θ

“
εe
?
´1θ1

2` 2ε´ εe´
?
´1θ1 ´ 2e´

?
´1θ2

.

The maximal smoothing factor is then

ρ̄LGS “ max
! ε

2` ε
,

?
5

5

)

.

If 0 ă ε ď 1, we always have ρ̄LGS “
?

5{5 ă 1 independent of ε.

In the multigrid setting, one can handle such an equation using special techniques like: (1) an line

smoother (group all y-variables corresponding to the same x-coordinate together), or (2) semi-

coarsening (only coarse in y-direction), or (3) operator-dependent interpolations. In the next

chapter, we will turn our attention to the third approach, which leads to algebraic multigrid

methods for solving such difficult problems.

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 130

6.2 Nested iterations

The solve phase approximates corresponding problems by calling a two-grid algorithm recur-

sively. There are different approaches for the solve phase; for example, we have seen the V-cycle

method in §6.1. In this section, we discuss a few popular methods for the solve phase.

V-cycle and its generalizations

The V-cycle iterator B, Algorithm 6.1, is a two-grid method with an inexact coarse-level

solver defined recursively, i.e., the coarse-level iterator Bc is just B on the coarse grid. On the

coarse level, we start from the initial guess uold
c “ 0 and then iterate

unew
c “ uold

c ` Bc
`

fc ´Acu
old
c

˘

, where Bc is the two-grid method for Ac.

In the the V-cycle, we only apply the above iteration once on the coarse-level. Apparently, this

procedure can be generalized. For example, we can iterate multiple steps:

up0qc “ 0, upkqc “ upk´1q
c ` Bc

`

fc ´Acu
pk´1q
c

˘

, k “ 1, . . . , ν.

This gives the following equation

upνqc “ Bcfc ` pI ´ BcAcqu
pν´1q
c “ Bcfc ` Ecupν´1q

c “ ¨ ¨ ¨ “
`

I ` Ec ` ¨ ¨ ¨ ` Eν´1
c

˘

Bcfc,

where Ec :“ I ´ BcAc. We can define a new iterator Bc,ν such that

Bc,νfc :“
`

I ´ Eνc
˘`

I ´ Ec
˘´1Bcfc “

`

I ´ Eνc
˘

A´1
c fc. (6.3)

Motivated by (6.3), we can introduce a polynomial qνptq :“ p1´ tqν P Pν and let

Bc,ν :“
´

I ´ qν
`

BcAc

˘

¯

A´1
c .

Then ν “ 1 yields the V-cycle apparently. The first non-trivial example is the well-known W-

cycle (ν “ 2), which is a simple extension of the V-cycle algorithm; see Figure 6.2. By calling

the coarse correction steps twice as in (6.4), we can obtain Bc,2 (the W-cycle); see HW 6.4. The

parameter ν is often called the cycle index .

Algorithm 6.2 (One iteration of multigrid cycle). Assume that Bl´1 : Vl´1 ÞÑ Vl´1 is defined

and the coarsest level solver B0 “ A´1
0 is exact. We shall recursively define Bl : Vl ÞÑ Vl which

is an iterator for the equation Alv “ rl. Let v “ vp0q be the initial guess.

(1) Pre-smoothing: For k “ 1, 2, . . . ,m, compute

v Ð v ` Sl
`

rl ´Alv
˘

;

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 131

Some schematic description of MG-cycle

Chunsheng Feng

March 24, 2016

Fine

Coarse

Relaxation

Exact solving

Restriction

Prolongation

Figure 1: A schematic description of the V-cycle.

Finest

Coarsest

Relaxation

Exact solving

Restriction

Prolongation

FMG prolongation

Figure 2: A schematic description of the full multigrid algorithm.

V–Cycle W–Cycle

Finest

Coarsest

Relaxation

Exact solving

Restriction

Prolongation

1

Figure 6.2: Multigrid V-cycle (left) and W-cycle (right).

(2) Coarse grid correction: Find an approximate solution el´1 P Vl´1 of the residual equation

on level l ´ 1, i.e., Al´1el´1 “ Ql,l´1

`

rl ´ Alv
˘

using the iteration: Let el´1 “ 0 initially.

For k “ 1, . . . , ν, compute

el´1 Ð el´1 ` Bl´1

´

Ql,l´1prl ´Alvq ´Al´1el´1

¯

; (6.4)

Update the solution with

v Ð v ` Il´1,lel´1;

(3) Post-smoothing: For k “ 1, 2, . . . ,m, compute

v Ð v ` STl
`

rl ´Alv
˘

.

In the above general algorithm, the numbers of pre-smoothing and post-smoothing steps

could be different from each other or level from level. The notation like Vp1, 2q means the

V-cycle multigrid with 1 pre-smoothing and 2 post-smoothing steps.

From the previous discussion, we have seen that there is a lot of freedom in the choice of

qνptq. If ν “ 1, then Algorithm 6.2 is the V-cycle; if ν “ 2, then Algorithm 6.2 is the W-cycle.

Apparently, the cycle index ν on each level does not have to be a fixed integer and one can use

νl´1 ą 0 to balance convergence and computation complexity; see Remark 6.3 for an alternative

scheme.

In V-cycle and W-cycle, the iterators on all the coarser levels are the same. We can also

use different polynomial orders νl on different levels l (0 ă l ă L). For example, we can use a

polynomial qνptq such that qνp0q “ 1 and 0 ď qνptq ă 1 on the spectrum of BcAc. This type of

methods are referred to as the AMLI-cycle (Algebraic Multi-Level Iteration cycle1); see [1] and

references therein for details.

Remark 6.1 (Nonlinear AMLI cycles). Indeed, we can choose some optimal polynomial qνptq

like the Chebyshev polynomials. This reminds us about the Krylov subspace methods discussed

1Here “algebraic” stands for the fact that certain inner polynomial iterations are used in the multilevel cycle.

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 132

in §2.2. Inspired by this similarity, we can apply a preconditioned Krylov methods (like Flexible

CG or GCR methods) on some of the coarse levels to improve convergence. This type of methods

are called Krylov-cycle (K-cycle) methods or Nonlinear AMLI methods [97].

Example 6.2 (A simple AMLI-cycle). A simple AMLI-cycle method is to give l0 ě 1, µ1 ě

µ2 ě 1, and use the following polynomial orders

νl :“

#

µ1, if l “ kl0;

µ2, otherwise.

It is clear that, if l0 “ 1 and µ1 “ µ2 “ 1, then this method is just the standard V-cycle.

Complexity of multigrid iterations

Now we turn our attention to the work estimate of nested iterations. For simplicity, we

consider the AMLI-cycle with µ2 ” 1 only. Denote the work needed by Bl is Wl. Assume the

each smoothing sweep costs OpNlq operations and Nl „ h´dl „ γ´ld. Then it requires 2mOpNlq

operations for the pre- and post-smoothing on level l. The prolongation and restriction also

requires OpNlq operations. Hence, for the AMLI-cycle, we have

Wpk`1ql0 “ µ1O
`

Npk`1ql0

˘

`O
`

Nkl0`1 ` ¨ ¨ ¨ `Nkl0`l0

˘

` µ1Wkl0

“ µ1O
`

Npk`1ql0

˘

` µ1Wkl0

“ µ1O
`

Npk`1ql0

˘

` µ2
1OpNkl0q ` µ

2
1Wpk´1ql0

“ ¨ ¨ ¨ ¨ ¨ ¨

“ O
´

k`1
ÿ

j“2

µk`2´j
1 Njl0

¯

` µk1Wl0

“ O
´

k`1
ÿ

j“1

µk`2´j
1 Njl0

¯

“ O
`

Npk`1ql0

˘

k`1
ÿ

j“1

`

µ1γ
d l0

˘j
.

Let N “ NL be the number of unknowns on the finest grid. This AMLI method costs OpNq

operations in each cycle, if we choose an appropriate µ1 such that µ1γ
d l0 ă 1. Apparently, this

analysis also yields computational complexity of the standard multigrid cycles like V-cycle and

W-cycle quickly.

Remark 6.3 (Variable V-cycle). Sometimes it is very desirable to use more smoothing steps

on the coarse meshes to achieve better convergence. For example, we can modify the V-cycle

algorithm by making the number of smoothing steps vary with the level l. Namely, we can

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 133

replace m in Algorithm 6.1 with ml, where ml “ βlm with a fixed integer β ą 1. Usually

in practice β “ 2 and m “ 1 are taken and then ml “ 2L´l. Note that the computational

complexity is still optimal OpNq as the number of grid points decreases geometrically.

Full multigrid method ‹

The multigrid methods discussed above converge uniformly with respect to the meshsize h

and requires OpNq operations in each cycle. This means the computation cost is OpNq to reach

a fixed tolerance. On the other hand, when we solve a discrete partial differential equation, we

need to solve the linear systems increasingly accurate use smaller tolerances for finer meshes, in

order to obtain discretization accuracy. This leads to the fact that, to reach the discretization

accuracy, the V-cycle multigrid method requires OpN logNq operations.

One way to further improve the cycling algorithms (for example, the V-cycle algorithm) is

to provide good initial guesses using coarse approximations (cheap in computation). This idea

leads to a nested iteration method, i.e., the so-called full multigrid (FMG) cycle; see Figure 6.3.

From this figure, we can see the full multigrid method can be viewed as a sequence of V-cycles

on different levels. Note that FMG prolongations are different than the usual prolongations

because they must control error and decide when to proceed to the next finer level.

Some schematic description of MG-cycle

Chunsheng Feng

March 24, 2016

Fine

Coarse

Relaxation

Exact solving

Restriction

Prolongation

Figure 1: A schematic description of the V-cycle.

Finest

Coarsest

Relaxation

Exact solving

Restriction

Prolongation

FMG prolongation

Figure 2: A schematic description of the full multigrid algorithm.

V–Cycle W–Cycle

Finest

Coarsest

Relaxation

Exact solving

Restriction

Prolongation

1

Figure 6.3: Full multigrid cycle.

We can write the concrete algorithm as follows:

Listing 6.1: Full multigrid method

1 ũ0 Ð A´1
0 f0;

2 for l “ 1, . . . , L

3 u
p0q
l Ð Il´1,lũl´1;

4 u
pkq
l Ð V-cyclepl, fl, u

pk´1q
l q, k “ 1, . . . , ν;

5 ũl Ð u
pνq
l ;

6 end

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 134

Theorem 6.4 (Full multigrid convergence). Assume that the l-th level iteration is a contraction

with contraction factor 0 ă δ ă 1 independent of level l. If ν is large enough, then we have

|||ul ´ ũl||| À hl
ˇ

ˇu
ˇ

ˇ

2
,

where ul is the exact solution of finite element problem on level l and ũl is the full multigrid

approximation solution on the l-th level.

Proof. Let el :“ ul ´ ũl. Apparently, on the coarsest level, we have e0 “ 0 initially. On the l-th

level (0 ă l ď L), we have

|||el||| ď δν |||ul ´ ũl´1||| ď δν
´

|||ul ´ u||| ` |||ul´1 ´ u||| ` |||ul´1 ´ ũl´1|||

¯

ď δν
´

Chl
ˇ

ˇu
ˇ

ˇ

2
` |||el´1|||

¯

.

By iteration, we obtain that

|||el||| ď C
´

δνhl ` δ
2νhl´1 ` ¨ ¨ ¨ ` δ

lνh1

¯

ˇ

ˇu
ˇ

ˇ

2

“ Cδνhl

´

1` δνγ ` ¨ ¨ ¨ ` δpl´1qνγl´1
¯

ˇ

ˇu
ˇ

ˇ

2
.

Furthermore, if δν ă γ,

|||el||| ď
Cδνhl

1´ γ´1δν
ˇ

ˇu
ˇ

ˇ

2
À hl

ˇ

ˇu
ˇ

ˇ

2
.

Hence the result.

The above theorem indicates that, if we do enough number of V-cycles on each level (independent

of meshsize hl), we can obtain an approximate solution within the accuracy of discretization

error. That is to say, |||u´ ũl||| ď |||u´ ul|||` |||ul ´ ũl||| À hl|u|2. This means that FMG can reach

discretization error tolerance within OpNq operations.

6.3 Convergence analysis of multigrid methods

In this section, we show the slash cycle or the sawtooth cycle (i.e., {-cycle) method converges

uniformly (h-independently) using the XZ identity discussed before. For simplicity, we will

only discuss the proof in 1D here. The multidimensional cases and other MG methods can be

analyzed in the subspace correction framework as well, but more technically involved; see [118]

for example.

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 135

Convergence analysis of GMG method

Assume the subspace problems are solved exactly, i.e., Sl,i “ A´1
l,i , for i “ 1, . . . , nl and

l “ 0, . . . , L. We denote the canonical interpolation operators from V to Vl as Jl. That is to

say, for any function v P V ,

`

Jlv
˘

pxq “
nl
ÿ

i“1

vpxliqφ
l
ipxq, l “ 0, . . . , L.

Let J´1v :“ 0, v0 :“ J0v, and vl :“ pJl ´ Jl´1qv, l “ 1, . . . , L. Using the interpolants in

multilevel spaces, we can write

v “ JLv “
L
ÿ

l“0

`

Jl ´ Jl´1

˘

v “
L
ÿ

l“0

vl. (6.5)

We also have

v “
L
ÿ

l“0

vl “
L
ÿ

l“0

nl
ÿ

i“1

vpxliqφ
l
ipxq “:

L
ÿ

l“0

nl
ÿ

i“1

vl,i.

It is easy to check that

pI ´ Jkqv “
L
ÿ

l“k`1

vl “
L
ÿ

l“k`1

nl
ÿ

j“1

vl,j

To estimate the convergence rate, in view of Corollary 4.19, we only need to estimate the

quantity:

c1 :“ sup
|v|1“1

inf
ř

l,i vl,i“v

L
ÿ

l“0

nl
ÿ

i“1

ˇ

ˇ

ˇ
Πl,i

ÿ

pk,jqěpl,iq

vk,j

ˇ

ˇ

ˇ

2

1
.

We now define and estimate

c1pvq :“
L
ÿ

l“0

nl
ÿ

i“1

ˇ

ˇ

ˇ
Πl,i

´

nl
ÿ

j“i

vl,j `
L
ÿ

k“l`1

nl
ÿ

j“1

vk,j

¯ˇ

ˇ

ˇ

2

1
.

We use the same notations introduced in Chapter 4 for projections, Πl,i : V ÞÑ Vl,i is the

p¨, ¨qA-projection. For one-dimensional problems, it is easy to see that Πl “ Jl; see HW 6.2.

This leads to the following identity

Πl,ipI ´ Jlq “ 0, @ 1 ď i ď nl, 0 ď l ď L.

Furthermore, we also have Πl,ip
ř

jěi vl,jq “ Πl,i

`

vl,i ` vl,i`1

˘

. Using these properties, we have

c1pvq “

L
ÿ

l“0

nl
ÿ

i“1

ˇ

ˇΠl,i

`

vl,i ` vl,i`1

˘

`Πl,ipI ´ Jlqv
ˇ

ˇ

2

1

“

L
ÿ

l“0

nl
ÿ

i“1

ˇ

ˇΠl,i

`

vl,i ` vl,i`1

˘ˇ

ˇ

2

1
À

L
ÿ

l“0

nl
ÿ

i“1

|vl,i|
2
1

“

L
ÿ

l“0

h´2
l

›

›pJl ´ Jl´1qv
›

›

2

0
À

L
ÿ

l“0

|vl|
2
1 “ |v|21.

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 136

The last equality is easy to check; see HW 6.3. This estimate shows the convergence rate of MG

is uniformly bounded.

Remark 6.5 (Relation with the HB preconditioner). Note that several places in the above

analysis depend on the one-dimensionality (d “ 1) assumption for simplicity of presentation. In

fact, the decomposition (6.5) used in this proof is the hierarchical basis (HB) decomposition in

§5.2. We have already seen that the convergence rate of the HB method is actually not optimal

in multidimensional cases (d ą 1). So the proof must be changed in higher dimensions. We

will not go into the details using this approach. There are several ways to prove the optimality

of geometric multigrid methods in the literature and we review them briefly in the following

subsection.

Some historical remarks ‹

The theoretical analysis in this note has been closely following the argument of theory of

subspace corrections. We now pause a little and take a quick look at the history of multigrid

convergence theory. It is not possible to review all the relevant literature about multigrid theory

here though; the interested readers are referred to the monographs [69, 85, 20, 44, 110, 114], the

survey papers [118, 131], and the references therein for further reading.

In early 1960’s, the multigrid method was first introduced and analyzed by Fedorenko [57, 58]

for finite difference equations from the Poisson’s equation on the unit square. The result was

extended to a more complex case with variable coefficients by Bakhvalov [5]. Nicolaides [92] gave

an analysis for finite element discretizations of second-order elliptic equations. In the late 1970’s,

Hackbusch [67] and Brandt [30] made the historical breakthrough and showed that the multigrid

technique is highly efficient. These seminar work made the idea of multigrid increasingly popular

and extensive efforts had been made in order to give a general convergence theory since then.

The simplest case is of course a hierarchy with only two levels. Bank and Dupont developed

a two-level hierarchical basis (HB) finite element method [7] and gave the convergence proof

of two-grid methods in the finite element setting [6]. Based on this two-grid theory, in some

circumstances, one can show that the corresponding W-cycle (or more costly) multigrid with

sufficient number of smoothing steps also converges with “similar” efficiency as the two-grid

method; see [6, 68, 69, 110] for example. However, the uniform convergence of the V-cycle

multigrid, which is more important in practice, cannot be proved in this way [68].

Hackbusch [68] and Braess and Hackbusch [18] first gave a general convergence theory for

multigrid, including the V-cycle. The classical book by Hackbusch [69] summarized early de-

velopment of convergence and optimality of multigrid methods. Hackbusch and collaborators

reduced the conditions for the V-cycle convergence to the smoothing and approximation prop-

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 137

erties, namely,

pvl,Alvlq À pvl,B´1
l vlq, @ vl P Vl; (6.6)

pwl,B´1
l wlq À κpwl,Alwlq, @wl PWl :“

pΠl ´Πl´1qv : v P V
(

. (6.7)

If the above conditions hold, then there is a positive mesh-independent constant C such that

V(m, m)-cycle multigrid converges uniformly and

}I ´ BV-cycleA}A ď
C

C `m
,

which indicates the convergence factor goes to zero as the number of smoothing steps increases.

The approximation property (6.7) often requires full elliptic regularity on the boundary value

problem and quasi-uniformness of the underlying meshes. These restrictions made the classical

theory not applicable in many situations where the multigrid methods are still effective. There

are some exceptional cases where full elliptic regularity is not necessary; see, for example, [16, 10].

Bramble and Pasciak [22] introduced a regularity and approximation condition to show conver-

gence of multigrid methods including the V-cycle for any positive m. Bank and Yserentant [10]

presented the classical convergence theory of the multigrid methods from an algebraic point of

view.

An alternative convergence theory is the framework of subspace corrections, with which

inexact subspace solvers can be analyzed, very general meshes can be treated, and restrictive

regularity assumptions can be removed. The subspace correction methods (or the Schwarz meth-

ods) emerged and analyzed in both multigrid and domain decomposition communities. Closely

related to the multigrid methods (which can be viewed as multiplicative Schwarz methods),

additive versions of the multilevel Schwarz method also gained popularity as parallel comput-

ers emerged and became the dominant computing environment. Yserentant [129] and Bank,

Dupont, and Yserentant [8] extended the two-level HB idea to the multilevel case and obtained

the HB preconditioner (additive) and the HBMG method (multiplicative), respectively. The

HB-type methods (see §5.2) are easy to implement and very efficient in many cases, especially

so in 2D.

Bramble, Pasciak, and Xu [28] proposed a parallel version of V-cycle multigrid called the

multilevel nodal basis preconditioner, which is better known as the BPX preconditioner. In

this seminar paper, the authors suggested an L2-type telescope sum (see §5.3) to construct a

stable decomposition, which is a break-through and motivated a lot of research. Such a tool also

allowed Bramble, Pasciak, Wang, and Xu [27, 26] to analyze the V-cycle multigrid and domain

decomposition methods on nonuniform meshes. This analysis gave convergence estimates for the

multilevel Schwarz methods mildly depending on mesh size (i.e., depending on the number of

levels only). Dryja and Widlund [51] also showed similar convergence estimates for the multilevel

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 138

additive Schwarz methods in a more general setting. Later, these results were improved and

the multilevel Schwarz methods were finally shown to converge uniformly with respect to mesh

size and number of levels (without regularity nor quasi-uniformity assumptions) in different

ways [98, 132, 118, 25, 15, 65].

Xu [118] gave a unified theory on subspace correction methods based on stable subspace

decomposition of finite element spaces and laid solid foundation for further studies in this field.

Yserentant [131] reviewed the classical proof and the subspace correction proof for the conver-

gence of multigrid methods. By combining the two convergence theories, Brenner [37] proved

that convergence factor for some V-cycle methods decreases as number of smoothing steps in-

creases without full elliptic regularity assumption. Moreover, Xu and Zikatanov [122] considered

methods of subspace corrections in an abstract setting and showed that the convergence factor

of successive subspace correction methods can be characterized by a precise estimate

}I ´ BV-cycleA}2A “ 1´
1

c1
,

which is known as the XZ identity (Theorem 4.15). This theory does not depend on the number

of smoothing steps explicitly.

By far, we have mainly discussed general convergence theories for the multigrid methods.

These theoretical results indicate that the convergence factor of multilevel iterative methods is

independent of mesh size h without telling how big the convergence rate accurately is. Such

qualitative theories usually do not give satisfactorily sharp or realistic predictions of the actual

convergence factor in practice [110]. This seems contradictory as the XZ identity gives an

exact equality for the convergence factor instead of an upper bound. But an optimal space

decomposition in the XZ identity is not readily available practically speaking and, hence, it

is not always easy to obtain a quantitative convergence estimate with the identity. Algebraic

convergence estimates can be applied to obtain reasonable quantitative convergence speed for

multigrid methods; see [84, 87] for more details. More algebraic convergence analysis results will

be reviewed in Chapter 7.

Although the aforementioned qualitative results show h-independent convergent speed of

multigrid methods, they still do not fully reflect high efficiency of multigrid algorithms (like the

so-called textbook multigrid efficiency). Moreover, these results can not provide much assistance

for designing an optimal algorithm. On the other hand, quantitative analysis tools, including

rigorous Fourier analysis and local Fourier analysis, have been developed in the literature to

analyze practical performance of multigrid methods for rather general problems. For some cases,

they can even provide exact convergence factor of the multigrid algorithms (in the sense this

convergence factor can be obtained by the worst case mode); see [32, 101].

For a particular problem, it was recommended to apply quantitative analysis (especially LFA)

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 139

to get some ideas on how fast the multigrid algorithms could converge. A general procedure for

developing multigrid programs named the LFA ladder was employed in practice:

1. Choose a suitable discretization method for the problem;

2. Find a good smoother with satisfactory convergence factor µ using LFA;

3. Choose transfer operators and find the two-grid LFA convergence factor σ;

4. Check whether the two-grid LFA convergence factor σ is close to µ;

5. Check whether the convergence factor of the multigrid program approximates σ;

6. Apply the full multigrid and check whether the discretization accuracy is obtained.

This procedure help software engineers to make development decisions and improve development

efficiency. We recommend the readers to [110, 117] for more details on these technical tools.

6.4 Two-grid estimates for multigrid analysis

In this section, we introduce a simple tool for estimating convergence speed of the multigrid

methods using the two-grid convergence factor. As we mentioned earlier, although this classical

approach works well for the W-cycle or more complicated cycles only, it is relatively easy to give

practitioners some idea how fast a multigrid code should be quantitatively.

From two-grid to multigrid

It is well-known that, if the exact two-grid method converges sufficiently fast, then the

corresponding W-cycle multigrid method will also converge fast [6, 68, 110]. This is very helpful,

for practical purposes, to assess how fast a multigrid algorithm will work for a particular problem.

A more rigorous analysis has been given by Notay [93] through a closer look at convergence

rate of the inexact (or perturbed) two-grid methods BTG in Algorithm 3.2. As we have seen

earlier, the multigrid methods can be viewed as recursive calls of the two-grid method. Hence

they are indeed inexact two-grid methods. Moreover, we have the following relations between

the general two-grid method BTG and the exact two-grid method BeTG:

λmaxpBTGAq ď λmaxpBeTGAq max
!

λmaxpBcAcq, 1
)

,

λminpBTGAq ě λminpBeTGAq min
!

λminpBcAcq, 1
)

.

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 140

Let ρl :“ ρpIl ´ BlAlq. In view of the above inequalities and (2.10), we obtain the following

estimate

ρW-cycle
l ď 1´

´

1´ ρ eTG
l

¯´

1´
`

ρW-cycle
l´1

˘2
¯

, l “ 2, 3, . . . , L.

If ρ eTG
l ď σ ă 1{2 and ρW-cycle

l´1 ď σ
1´σ , then we can derive, by recursion, that

ρW-cycle
l ď

σ

1´ σ
, l “ 2, 3, . . . , L.

This is a uniform estimate of the “convergence speed” of the W-cycle multigrid method with

respect to the number of levels. This result confirms and quantifies the common wisdom about

the W-cycle convergence speed.

Limitations of two-grid theory for GMG ‹

However, as we mentioned earlier, this approach does not yield uniform convergence estimate

for the V-cycle multigrid. This fact shows there is a fundamental difference between two-level and

V-cycle multigrid iterations in terms of conditions on convergence. When the above technique is

applied to the V-cycle multigrid method, we can easily obtain that: If λmaxpB eTG
l Alq ď 1 holds

for all levels, then

ρV-cycle
l ď 1´

´

1´ ρ eTG
l

¯´

1´
`

ρV-cycle
l´1

˘

¯

, l “ 2, 3, . . . , L.

For example, suppose that ρV-cycle
1 “ ρ eTG

1 and the exact two-grid method converges uni-

formly with ρ eTG
l ď 0.2 for all l ą 0. Then it yields the following non-uniform convergence

estimates for the V-cycle multigrid:

ρV-cycle
2 ď 1´ 0.8ˆ p1´ 0.200q “ 0.360,

ρV-cycle
3 ď 1´ 0.8ˆ p1´ 0.360q “ 0.488,

ρV-cycle
4 ď 1´ 0.8ˆ p1´ 0.488q « 0.590,

ρV-cycle
5 ď 1´ 0.8ˆ p1´ 0.590q « 0.672,

ρV-cycle
6 ď 1´ 0.8ˆ p1´ 0.672q « 0.738,

...

In general, uniform two-grid convergence is not sufficient to guarantee uniform convergence

for the V-cycle multigrid; see [86] for example. To give uniform estimate for the V-cycle multi-

grid, there are additional conditions to be satisfied; see the work by Napov and Notay [88].

Nevertheless, from the above discussion, we find that the analysis for two-grid methods can

improve understanding of the convergence behavior of multilevel iterative methods. It is simple

yet very powerful. Furthermore, the analysis of inexact two-grid methods indicates that it is

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 141

possible to apply the inexact (possibly non-Galerkin) coarse-level operators and might lead to

new multigrid algorithms (particularly, algebraic multigrid methods). More discussions can be

found in the PhD thesis of Xuefeng Xu [126].

6.5 Implementation of multigrid methods

In this section, we will briefly discuss how to implement the multigrid V-cycle (Algorithm 6.1)

for solving the finite element equation Au “ f with A P RNˆN (N is usually very large). There

are a couple of different ways for implementing the multigrid V-cycle algorithm. Here we use a

matrix-based implementation to allow generality.

A sparse matrix data structure

First of all, we discuss how to represent a sparse matrix in practice. Apparently we do not

wish to store all the zeros in A. There are many different ways to store a sparse matrix with

optimal storage complexity. More importantly, which storage format to use usually depends

on the hardware architecture. A widely-used general purpose data structure is the so-called

Compressed Sparse Row (CSR) format [103]. The CSR storage format of a sparse matrix A

consists of three arrays, defined as follows:

1. An integer array of row pointers, IA, of size N ` 1;

2. An integer array of column indices, JA, of size nnz;

3. A double array of non-zero entries corresponding to the column indices, val, of size nnz.

More precisely, the index IA(i) points to the beginning of the i-th row in JA and val. Moreover,

the nonzero entries of a sparse matrix are stored in the array val row after row consecutively,

that is to say, the i-th row begins at val(IA(i)) and ends at val(IA(i` 1)´1). In a similar way,

JA(IA(i)) to JA(IA(i`1)´1) contain the column indices of the nonzeros in row i. Thus IA is of

size N ` 1 (number of rows plus one), JA, and val are of size equal to the number of nonzeros.

The number of nonzeros in the i-th row is then equal to IApi` 1q´IA(i) and the total number

of nonzeros is equal to IApN`1q´IA(1). Note that, as a convention, we always start the indices

from 1 instead of 0.

When the matrix is a boolean (i.e., all entries are either true or false), the actual nonzeros

are not stored because there is no need to store them.

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 142

Example 6.6 (A simple CSR matrix). Consider the following 4ˆ 5 matrix

¨

˚

˚

˚

˚

˚

˝

1.0 1.5 0 0 1.2

0 1.0 6.0 7.0 1.0

3.0 0 6.0 0 0

1.0 0 2.0 0 5.0

˛

‹

‹

‹

‹

‹

‚

When in the CSR format, this matrix is stored in the following way:

• IA is of size 5 and

IA “ 1 4 8 10 13

• JA is of size IAp5q ´ IAp1q “ 12

JA “ 1 2 5 2 4 3 5 1 3 3 5 1

• val is of the same size as JA and

val “ 1.0 1.5 1.2 1.0 7.0 6.0 1.0 3.0 6.0 2.0 5.0 1.0

Note that the indices in JA need not be sorted in ascending order as seen in this example.

With a sparse matrix stored in the CSR format, the matrix-vector multiplication y “ Ax

can be performed in the following simple way:

Listing 6.2: Sparse matrix-vector multiplication

1 for i “ 1, . . . , N

2 tÐ 0;

3 for k “ IApiq, . . . ,IApi` 1q ´ 1

4 j Ð JApkq;

5 tÐ t` valpkq ˚ xpjq;

6 end

7 ypiq Ð t;

8 end

Now we give a pseudo code of the GS method for solving Au “ f . We assume that the initial

guess is stored in the vector u. The pseudo code below uses an ordering given by a permutation

array π, which takes value from 1 to N . Note that if πp`q “ ` for any `, then the code just yields

the forward Gauss–Seidel method. It is important to notice that the positions of the diagonal

entries of A in JA and val are not known in advance.

Listing 6.3: Gauss–Seidel method with ordering

1 for ` “ 1, . . . , N

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 143

2 iÐ πp`q;

3 tÐ fpiq;

4 for k Ð IApiq, . . . ,IApi` 1q ´ 1

5 j Ð JApkq;

6 if (j == i)

7 diag Ð valpkq;

8 else

9 tÐ t´ valpkq ˚ upjq;

10 end

11 end

12 upiq Ð t{diag;

13 end

We immediately notice that this pseudo cod is very similar to the previous matrix-vector mul-

tiplication and can be implemented very easily.

Assembling finite element matrix

Geometric multigrid methods are often implemented in a matrix-free fashion and, hence,

there is no need to assemble the global stiffness matrix. However, we are going to use a matrix-

base implementation. So we now discuss the assembling of finite element matrix first. Consider

the mesh depicted in Figure 6.4. Note that this mesh has two different types of elements,

triangles and quadrilaterals.

4 LUDMIL ZIKATANOV

contain for example the information, which point is on the Dirichlet
boundary or not (i.e. such point is never added to any row)

? end For
• Here is where we clean IB by putting back 0 for all column indexes in row i, so

we can add them later on to other row if necessary.
• end For

s
s

s

s

s s

s

s
ppp

ppp
ppp

pp
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
...

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

........

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..........
...................

...................
...................

...................
...................

...................
...................

...................
...................

...

1

2

3

4

2

4

5

61

7

3

8

Figure 1. A simple triangulation of 4 elements and 8 nodes

It just remains to show how we can perform steps (1) and (2) of the above algorithm 1.3. It
turns out that this can be easily achieved by thinking of the correspondence element�node
as a sparse matrix, of size (elements⇥ nodes). For example the so called element topology
is trivially represented by a 4⇥ 8 matrix E for which Eij = 1 if and only if the node j is in
element i. Otherwise Eij = 0. For our example on Fig 1 E is given below:

E =

0
BB@

0 1 0 0 0 0 1 1
0 0 1 1 1 0 0 1
1 1 0 0 0 1 1 0
0 1 0 0 1 0 0 1

1
CCA

Representing this in compressed row storage gives the following two arrays (IE and JE)

IE = [1, 4, 8, 12, 15]
JE = [7, 8, 2k8, 3, 4, 5k1, 6, 7, 2k2, 5, 8]

This concludes step (1) of the algorithm 1.3. Step (2) is also easy to achieve if we realize
that the columns of E exactly represent the correspondence

node 7! {elements� the� node� belongs� to}.

This means that for step (2) we need Et. If we represent Et as a sparse matrix by using two
arrays (IET and JET), we obtain that

IET = [1, 2, 5, 6, 7, 9, 10, 12, 15]
JET = [3k1, 3, 4k2k2k2, 4k3k1, 3k1, 2, 4]

Figure 6.4: A mesh with 4 elements and 8 nodes

Most finite element basis functions are constructed to be locally supported. Very often, a

“natural” assumption can be made about how a stiffness matrix is constructed from a finite

element mesh:

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 144

We have a nonzero in the stiffness matrix at the pi, jq-entry if and only if the nodes i and j

appear in the same element.

In order to assemble the stiffness matrix, the following two steps are performed:

1. Find the sparsity pattern of the stiffness matrix A, i.e., IA and JA;

2. Loop through elements and compute the actual entries in A.

The second step (the actual assembly of the entries) is usually easier and need to be done case

by case. We will leave this step to the readers as a homework problem. Here we will only explain

the first step in the following abstract algorithm:

Algorithm 6.3 (Finding sparsity). Suppose a finite element mesh M is given.

(1) For each element, find the indices of nodes that belong to it;

(2) For each node, find the indices of elements that it belongs to ùñ Patch(i);

(3) Obtain the sparsity pattern of A:

for i P Nodes(M)

for e P Patch(i)

Add all nodes in element e to the list of possible nonzeros in row i2.

It just remains to show how we can perform steps (1) and (2) of Algorithm 6.3. This can

be easily achieved by thinking of the element–node correspondence as a sparse matrix of size

#elementsˆ#nodes. For example, the so-called element topology is trivially represented by a

4ˆ 8 matrix E for which Eij “ 1 if and only if the node j is in the element i. Using the mesh

in Figure 6.4 as an example, E is given below:

E “

¨

˚

˚

˚

˚

˚

˝

0 1 0 0 0 0 1 1

0 0 1 1 1 0 0 1

1 1 0 0 0 1 1 0

0 1 0 0 1 0 0 1

˛

‹

‹

‹

‹

‹

‚

Since this matrix has value either 1 or 0, we can represent E in the compressed sparse row

format with the sparsity pattern only:

IE “ } 1 | 4 | 8 | 12 | 15 }

JE “ } 7 | 8 | 2 } 8 | 3 | 4 | 5 } 1 | 6 | 7 | 2 } 2 | 5 | 8 }

2Make sure that you do not add anything twice. This can be done using an additional indicator array.

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 145

This concludes Step (1) of Algorithm 6.3.

On the other hand, Step (2) is also easy to achieve because the columns of E represent the

correspondence

Node ÞÑ Patch.

This means that for step (2) we can use the transpose matrix ET .

Remark 6.7 (How to find transpose of a CSR matrix). The nontrivial task here is to perform

the transposition without using any additional memory. There is an algorithm to do that due

to F. Gustavson, which dates to the 1970’s and can be found in [99]. During transposition by

this algorithm, the column indices in each row come out in increasing order, just for free.

Matrix form of transfer operators

As seen in (6.1), we can obtain coarse level stiffness matrices using the algebraic Galerkin

relation:

Al “ P Tl APl, 0 ď l ă L.

Since we can construct Al’s level by level, we only need the prolongation matrix Pl´1,l for

0 ă l ď L. In the operator form, it is trivial to define the prolongation, which is just the

natural inclusion operator. But for implementation, we need to find the algebraic form of the

prolongations. For geometric multigrid methods, we usually have to write the prolongation

subroutines for different cases, and it makes the multigrid code almost a white box.

Here we are going to use a matrix-based implementation. Such a strategy is easy to be

adapted to different discretization methods and have an almost identical structure as the AMG

methods we will discuss next. Since we have seen how to apply a matrix-vector multiplication

and how to apply the smoothers, we are left with construct prolongations as a sparse matrix.

But, of course, obtaining such flexibility will cost us more storage as well as computational time.

To complete the algorithm we have to give the action of P Tl´1,l and Pl´1,l, which are just matrix-

vector multiplications to transfer data between two consecutive levels. The only programming

difficulty here is keeping track of who on the fine grid is interpolated by whom on the coarse

grid. We now focus on the particular case in which Vh is the classical linear finite element space

corresponding to a uniform grid with size 2´L.

Remark 6.8 (Matrix-free implementation of prolongation). One can easily observe that, there

is actually no need for Al´1 to be computed as P Tl´1,lAlPl´1,l because Al´1 is just the stiffness

matrix corresponding to finite element discretization on a grid with size 21´l. In such a case,

we do not need to store P themselves, but only the action of prolongations.

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 146

In the following example, it is shown how to perform the actions of prolongation for l “ 1

of grid with meshsize 1{4 on the unit square. We can easily obtain the finite element matrix on

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

1

2

3

4

5

6

7

8

9

Figure 6.5: Fine and coarse meshes.

the fine mesh; see Table 6.1. Also the matrix corresponding to the coarse grid can be computed.

i j pA1qij

1 1 1.0
1 4 ´0.5
1 2 ´0.5
2 1 ´0.5
2 5 ´1.0
2 2 2.0
2 3 ´0.5
3 2 ´0.5
3 6 ´0.5

i j pA1qij

3 3 1.0
4 1 ´0.5
4 4 2.0
4 5 ´1.0
4 7 ´0.5
5 4 ´1.0
5 5 4.0
5 2 ´1.0

i j pA1qij

5 6 ´1.0
5 8 ´1.0
6 5 ´1.0
6 6 2.0
6 3 ´0.5
6 9 ´0.5
7 4 ´0.5
7 7 1.0

i j pA1qij

7 8 ´0.5
8 7 ´0.5
8 8 2.0
8 5 ´1.0
8 9 ´0.5
9 8 ´0.5
9 9 1.0
9 6 ´0.5

Table 6.1: The nonzero entries of the stiffness matrix A1 on the fine grid.

Let epiq, i “ 1, 2, . . . , 9 be a given vector corresponding to the representation of eH on the coarse

grid. Let rpiq, i “ 1, 2, . . . , 25 be a residual vector on the fine grid. According to the numbering

CHAPTER 6. GEOMETRIC MULTIGRID METHODS 147

given in Figure 6.5, we have the following formulae for computing Pe and P T r:

pPeqp13q “ ep5q;

pPeqp12q “ 0.5 ˚
`

ep4q ` ep5q
˘

;

pPeqp8q “ 0.5 ˚
`

ep2q ` ep5q
˘

;

pPeqp17q “ 0.5 ˚
`

ep4q ` ep8q
˘

;

...

pP T rqp5q “ rp13q ` 0.5 ˚
`

rp7q ` rp8q ` rp12q ` rp14q ` rp18q ` rp19q
˘

;

pP T rqp1q “ rp1q ` 0.5 ˚
`

rp2q ` rp6q ` rp7q
˘

;

pP T rqp4q “ rp11q ` 0.5 ˚
`

rp6q ` rp12q ` rp17q ` rp16q
˘

;

...

The remaining values in Pe and P T r at other grid points can be obtained in similar way.

6.6 Homework problems

HW 6.1. Show the geometric multigrid V-cycle (Algorithm 6.1) is uniformly convergent in Rd.

HW 6.2. If A “ ´∆, show that the interpolant Jl : V ÞÑ Vl is equal to the p¨, ¨qA-projection

Πl : V ÞÑ Vl.

HW 6.3. Let Ω “ p0, 1q and v P Vh be a P1 Lagrange finite element function. Show that

|v|21 “
řL
l“l |vl|

2
1.

HW 6.4. Let qptq “ p1´ tq2. Show that Bc,2 “
`

I ´ qpBcAcq
˘

A´1
c can be obtained by (6.4).

HW 6.5. Show the work estimate of the full multigrid method is OpNq.

Chapter 7

Algebraic Multigrid Methods

Consider the system of equations arising from the Poisson’s equation on unstructured meshes

or the second-order elliptic equation with anisotropic coefficients

Au “ f, where A P RNˆN is SPD and u, f P RN .

Problems with anisotropic coefficients on regular meshes, or problems with isotropic coefficients

but on anisotropic meshes, will cause troubles for geometric multigrid methods. While geometric

multigrid (GMG) essentially relies on the availability of robust smoothers, algebraic multigrid

(AMG) takes a different approach [35, 36, 102] by focusing on constructing suitable coarse space.

AMG is a means to generalize GMG and to improve its robustness. There are several situations

where AMG can be used but GMG is not; for example, problems on complex domain or irregular

triangulation, problems with discontinues coefficients, and purely algebraic problems.

7.1 From GMG to AMG

How to make multigrid methods more robust in practice is a very important question from

the early stage of the method development. And AMG is one of the approaches to improve

robustness. In this section, we first show some motivations for the algebraic multigrid methods.

General procedure of multigrid methods

From our previous discussions, we observe that a typical MG algorithm contains two phases—

the “setup” phase and the “solve” phase. The setup phase automatically initializes a hierarchical

structure, including coarse spaces, prolongations and restrictions, and coarse problem solution

methods for multilevel iterations. Notice that the setup phase only needs to be called once

before iterations; sometimes, the same setup phase can be used at different time levels for time-

dependent problems. For geometric multigrid (GMG) methods, the setup phase is trivial using

148

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 149

the hierarchical grid structure. However, GMG methods are difficult to apply for equations on

general domains with unstructured grids. Algebraic multigrid (AMG) methods can be viewed

as a generalization of geometric multigrid methods; see [125] and references therein for details.

We now explain how to perform multigrid setup phase in a relatively general setting. Once

the setup is done, an appropriate nested iteration scheme should be chosen for the solve phase; see

§6.2. It is immediately clear that we only need to discuss how to setup hierarchical information

in two consecutive grids/levels for multigrid methods. We can summarize a general multigrid

setup procedure as the following steps:

Step 1. Selecting a smoother: Choose a smoother S for Au “ f .

Step 2. Coarsening: Identify a coarse space Vc Ă V , which contains smooth vectors.

Step 3. Constructing a prolongation: Construct a prolongation P in two steps:

3a. Decide, for each fine variable, which coarse variables are used for interpolation;

3b. Determine the weights for prolongation P .

Step 4. Multilevel cycling: Apply the same algorithm one or more times for the coarse

problem Acuc “ fc, where Ac “ P TAP and fc “ P T f .

For GMG methods discussed in Chapter 6, Steps 2–4 are determined by the information of

nested grids and the users can only find an appropriate smoother S. For example, in §1.4, we

have presented a 1D GMG method in a purely algebraic fashion. We have observed that:

(1) GMG coarsening explores the topology of the graph representing the stiffness matrices on

different levels are explicitly clear from the geometric refinement procedure;

(2) Prolongation and restriction for GMG usually depend only on the topological structure of

the graph without knowing the grid coordinates;

(3) For GMG, smoothness of error is in the geometric sense and, in more general settings,

smooth error can be geometrically non-smooth.

The key to an efficient GMG algorithm is to construct effective and cheap smoothers for

the problem at hand. On the contrary, for AMG, we focus on how to pick coarse space and

constructing interpolation to approximate the error components that cannot be effectively re-

duced by smoothing. AMG usually employs a simple relaxation process (typically point-wise

relaxation) and then attempts to construct a suitable operator-dependent interpolation using

the algebraic information of A to treat the error components that cannot be reduced by the

relaxation process.

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 150

Sparse matrices and graphs ‹

A sparse matrix can be represented as a graph. As the sparse matrices that we consider are

mainly symmetric in the following we only discuss undirected graphs here. We first introduce a

few elementary concepts from the graph theory. An undirected graph (or simply a graph) G is a

pair pV,Eq, where V is a finite set of points called vertices and E is a finite set of edges. As set

of vertices we always consider subsets of t1, . . . , Nu. An edge in E is an unordered pair pj, kq

with j, k P V. A graph G0 “ pV0,E0q is called a subgraph of G “ pV,Eq, if V0 Ă V and E0 Ă E.

If pj, kq P E is an edge in an undirected graph G “ pV, Eq, vertices j and k are said to be

adjacent. The set of neighboring vertices of i is the set of all vertices that are adjacent to i; and

it is denoted as Ni Ď V. An independent set of V is a set of vertices of G, no two of which are

adjacent. A maximal independent set (MIS) or maximal stable set is an independent set such

that adding any other vertex to the set will introduce at least one adjacent pair. A graph may

have many MIS’s of different sizes; the largest, or possibly several equally large, MIS of a graph

is called a maximum independent set .

A path from a vertex i to another vertex j is a sequence of edges

pi, j1q, pj1, j2q, . . . , pjl´2, jl´1q, pjl´1, jq
(

Ď E

and the number of edges l is called the length of this path. A vertex j is connected to a vertex

k if there is a path from j to k. The distance between j and k is defined as the length of

the shortest path between these two vertices. Apparently, the distance between two vertices is

equal to 1 if they are adjacent and is set to 8 if they are not connected. An undirected graph

G “ pV, Eq is connected if any pair of vertices are connected by a path, otherwise G is said to

be disconnected.

Let A P RNˆN be a sparse matrix. The adjacency graph of A, denoted by GpAq, is a graph

G “ pV, Eq with V :“ t1, 2, . . . , Nu and

E :“

pj, kq : aj,k ‰ 0
(

.

As a general rule, sparse matrices do not provide any geometric information for the underlying

graph and only the combinatorial/topological properties of GpAq or its subgraphs; see Figure 7.1.

We note that two different discretizations on different meshes could lead to same sparse coefficient

matrix A and, hence, same graph GpAq.

Let A be the coefficient matrix corresponding to the finite element discretization of the

second-order elliptic equation with Neumann boundary condition. Apparently A has zero row

sum. Hence we can write

pAu, vq “
ÿ

pi,jqPE
iăj

´ai,jpui ´ ujqpvi ´ vjq. (7.1)

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 151

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

7

8

9

4 5 6

1

2

3

1

Figure 7.1: Finite element grid (left), difference grid (middle), and graph of their corresponding
stiffness matrices (right).

We can also easily derive the corresponding equality for the Dirichlet boundary condition or the

mixed boundary condition:

pAu, vq “
ÿ

pi,jqPE
iăj

´ai,jpui ´ ujqpvi ´ vjq, if uj “ vj “ 0, @xj P ΓD. (7.2)

M-matrix and Delaunay triangulation ‹

We first introduce the concept of M-matrix. We call A an M-matrix if it is irreducible (i.e.,

the graph GpAq is connected) and

ai,i ą 0, ai,j ď 0 pi ‰ jq, aj,j ě
ÿ

i‰j

ˇ

ˇai,j
ˇ

ˇ, aj,j ą
ÿ

i‰j

ˇ

ˇai,j
ˇ

ˇ for at least one j.

Apparently, the stiffness matrix in (1.27) is an M-matrix . The classical convergence theory

for AMG has been developed for this class of symmetric M-matrices [31, 102]. It is in general

not the case for the stiffness matrices from finite element discretizations, even for the Poisson’s

equation. In fact, whether a stiffness matrix is an M-matrix depends on the underlying mesh

M. In practice, many AMG algorithms use simple filtering schemes to construct an M-matrix

based on A. Xu and Zikatanov [124] introduced the concept of M-matrix relatives to analyze

such cases.

First we introduce a few notations using Figure 7.2. In any give simplicial element τ in R3;

similar definitions can be introduced in Rd for d ě 2. An edge pi, jq has two vertices xi and xj

and denote this edge as E. Let κEpτq :“ Fi
Ş

Fj and θEpτq be the angle between faces Fi and

Fj . Define a quantity

ωEpτq :“
1

dpd´ 1q

ˇ

ˇκEpτq
ˇ

ˇ cot θEpτq. (7.3)

We then have the following result; see [121] for details.

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 152

xi

xj

E

Fi

Fj

θE

κE

1

Figure 7.2: Definition of θE and κE in a simplex in 3D.

Proposition 7.1 (Condition for M-matrix). The stiffness matrix for the Poisson’s equation is

an M-matrix if and only if, for any edge E,
ř

τĄE ωEpτq ě 0 with ωEpτq defined in (7.3).

Remark 7.2 (Delaunay triangulation and M-matrix). In R2, the above proposition simply

means the sum of the angle opposite to any edge is less than or equal to π, which means the

underlying triangulation must be Delaunay. Hence the stiffness matrix for the Poisson’s equation

is an M-matrix if the triangulation is Delaunay. And the condition is almost sharp1.

For a given mesh Mh, the stiffness matrix of P1-finite element method for the Poisson’s

equation is not necessarily an M-matrix. However, it can be estimated by an M-matrix. More

specifically, if we keep all the vertices on Mh and swap internal edges, we can obtain a Delaunay

triangulation MD
h . We have

`

AMD
h
v, v

˘

ď
`

AMh
v, v

˘

, @ v P RN ;

moreover, the equality in the above inequality holds if and only if Mh is Delaunay. We refer

the interested readers to [100] for details. Let φMh
P Vh is a piecewise linear function and

φMh
pxq “

řN
i“1 viφi,Mh

pxq. Then we have

ˇ

ˇφMD
h

ˇ

ˇ

2

1
ď

ˇ

ˇφMh

ˇ

ˇ

2

1
, @ v P RN .

This means the Delaunay triangulation results in lower roughness of finite element functions

among all possible triangulations on a fixed set of vertices.
1The opposite direction is true with a few possible exceptions near the boundary

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 153

Tarjan’s algorithm ‹

By far we have not assigned any kind of ordering for the unknowns in the solution vector.

Sometimes, it is very important for the iterative methods like the Gauss–Seidel method. For

example, in Remark 3.29, we have shown that the ordering is important using the local Fourier

analysis. In AMG methods, the underlying meshes are not accessible and the natural ordering

or C/F ordering can be used. We can also order the unknowns based on algebraic information.

In particular, when we solve a flow problem, we would like to order the unknowns following

the direction of the flow. Such an ordering (or permutation) results in a matrix which has all

its “big” entries in the lower triangle and this technique can enhance the performance of the

Gauss–Seidel smoother.

The first question is of course how to find such an ordering. In this section we present the

Tarjan’s algorithm [109] in the graph theory to find the “best ordering” for the Gauss–Seidel

method. Generally, we do this in two steps:

1. Drop some of the entries in the matrix A, which are considered non-essential. This will

transform the graph corresponding to A to a directed one.

2. Find the strongly connected components in this directed graph. Each one of these com-

ponents will correspond to a diagonal block in the stiffness matrix after the permutation.

In fact, after permutation according to the strongly connected component ordering obtained by

the Tarjan’s algorithm, the matrix A will have the following structure:

A “

»

—

—

—

—

—

—

—

—

–

A11 « ε « ε ¨ ¨ ¨ ¨ ¨ ¨

A21 A22 « ε ¨ ¨ ¨ ¨ ¨ ¨

A31 A32 A33 ¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
. . . ¨ ¨ ¨

AK1 AK2 AK3 ¨ ¨ ¨ AKK

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (7.4)

The actual algorithm for finding the strongly connected components in the digraph will be

written below. Before that, we have a look at Figure 7.3. The bold edges in this figure represent

precisely the strong connections. If we number the blocks from left to right (the unknowns in

each block can be in arbitrary order), the stiffness matrix will have the type of structure as the

one in (7.4).

Imagine now that the graph represents a town, the edges are streets and the vertices are

houses. You are walking along the streets, some of them are one way (directed). You may go

and arrive at a house for the first time; other than that, there are two situations which may

occur:

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 154

flow

Figure 7.3: A sample mesh with a specify flow direction

1. Either you arrive at a house (vertex) you have already visited, or

2. You are at a house with no way out of it, i.e. a vertex with all edges pointing to it.

Having this in mind it is obvious that, if we return at a place we have been before (encountering

a cycle), this corresponds to a so-called strongly connected component. In the second case, it is

precisely the vertex we would like to number last, because all edges are sinking into it, i.e., it is

at the end of the flow. The algorithm then is as follows:

Algorithm 7.1 (Simplified Tarjan’s algorithm). Given a directed graph G with N vertices.

1. If all vertices of G have been numbered, stop.

2. Set i “ 0.

3. Choose any unnumbered vertex v P G.

4. If v has no edge out, we number it N ´ i, set i “ i` 1, and return to Step 3.

5. If v has been visited before (encounter a cycle), then

• Collapse all the vertices in the cycle as a single vertex vmacro;

• Connect vmacro with all vertices which were connected to member(s) of vmacro;

• Thus we obtain a new graph G1. Goto Step 2 and continue with G1.

Example 7.3 (Finding strongly connected components of a graph). The above algorithm is

visualized in Figures 7.4, which we have a 2D flow problem. First we assume that we start from

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 155

R

k j 9 8

ed3

R

k j 4′

d3

R

R

k j 9 8

ed3

R

k j 4′

d3

R

R

k j 4′′

R k 3′

k

R

k j 4′′

R k 3′

k

Figure 7.4: Finding strongly connected components of a directed graph

vertex 1 and then follow the path

1 Ñ 2 Ñ 3 Ñ 4 Ñ 5 Ñ 6 Ñ 4,

and we encounter a cycle. We collapse t4, 5, 6u as a single vertex vmacro “ 41 and return from

the beginning. Following the path

1 Ñ 2 Ñ 3 Ñ 41 Ñ 7 Ñ 8 Ñ 41,

again we have a cycle. We collapse the cycle and set 42 “ t41, 7, 8u. The next step is again

collapsing a cycle t42, 3, 42u to a vertex 31. What is left after this step is a simple graph with

three vertices, which precisely looks like the one corresponding to 1D convection dominated

problem.

Apparently, this algorithm has a drawback that there might be quite a lot of renumbering

when collapsing the cycles. The fix is to use a stack as proposed by Tarjan and do not renumber

anything until the whole connected component is in the stack. This reduces the renumbering

dramatically and such an algorithm is linear in the total number of vertices and edges in the

graph. In turn, for finite element stiffness matrices and their graphs, this algorithm is linear in

the number of unknowns, because these matrices have just a few number of non-zeros per row,

i.e., each vertex is incident with only few edges (only a bounded number independent of the mesh

size h). A computer program realizing the above Tarjan’s algorithm can be found in the article

by Gustavson [66]. A good explanation and a lots of examples related to the Tarjan’s algorithm

are to be found in [61]. A better and more general algorithm is known as the Cross-Wind-Block

method by Wang and Xu [115].

Remark 7.4 (Preprocessing to a get directed graph). We comment that sometimes the graph

corresponding to A (for example, the finite element stiffness matrix of the Poisson’s equation)

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 156

is undirected. However, if we are consider a non symmetric problem, situation could be very

different. In any event, suppose that we can make the graph be directed by “dropping” some

of the “insignificant” entries of A. For example, by setting a threshold ε P p0, 1q, we drop all

aki such that |aki{aik| ă ε. Then we can apply the Tarjan’s algorithm for finding the strongly

connected components in the digraph.

7.2 Motivations of algebraic multigrid methods

In §6.3, we have discussed general convergence theory for multigrid methods. In this section,

we briefly review the convergence theory that are applicable to AMG methods and give on the

construction of AMG methods. Following the seminar work by Brandt et al. [35, 36, 31] on the

convergence analysis applicable to AMG methods, there have been a lot of discussions on the

AMG convergence theory; see [102, 40, 104, 55, 56, 114] for example. The readers are referred

to the recent survey paper by Xu and Zikatanov [124].

Algebraic convergence theory

Since the Fourier analysis is not available, algebraic convergence theory appears to be the

right tool for developing and analyzing AMG algorithms. Since sharp and computable estimates

for general AMG schemes are still lacking [76, 96, 124], we mainly focus on the classical two-level

theory of AMG for symmetric positive-definite (SPD) problems. For the development on non-

symmetric problems, we refer to [78, 94, 80, 79]; for analysis based on aggregation-type AMG

algorithms, we refer to [111, 113, 41, 86, 89, 39].

We have shown the exact convergence factor estimate of two-level methods in Theorem ??.

Now we derive a convergence estimate from an algebraic viewpoint. In particular, we wish to

give conditions on the grid-transfer matrices, like P , such that two-level AMG methods converge.

We mainly follow the argument in a recent survey by MacLachlan and Olson [76]. Throughout

this chapter, we assume that

Assumption 7.5 (General AMG setting). The coefficient matrix A is SPD, the prolongation

P has full column-rank, and the given smoother S itself is A-convergent (i.e., }I ´ SA}A ă 1).

Let V “ RN and Vc “ RNc denote the fine and coarse spaces, respectively. For simplicity, we

focus on Algorithm 3.3, Vp0, 1q two-grid method. The CGC operator corresponds to the matrix

I ´Πc and

Πc “ PA´1
c P TA “ P pP TAP q´1P TA

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 157

is a projection onto rangepP q. The error reduction matrix for the two-gird method in Algo-

rithm 3.3 can then be written as

ETG :“ pI ´ SAqpI ´Πcq. (7.5)

From Theorem ??, the convergence rate of the two-grid method depends on effectiveness

of the smoother S and approximability of the coarse space rangepP q. Our goal is to give an

estimate in the form of

}ETG}
2
A “ sup

e‰0

}pI ´ SAqpI ´Πcqe}
2
A

}e}2A
“ 1´ δ˚, (7.6)

where δ˚ yields the sharp and parameter-independent two-grid convergence factor. Of course,

it is essential to pose conditions only on the prolongation P to ensure convergence, as the rest

components in (7.5) are considered given.

Theorem 7.6 (Convergence factor of two-level algorithm). If there exists δ ą 0 such that

›

›pI ´ SAqe
›

›

2

A
ď }e}2A ´ δ

›

›pI ´Πcqe
›

›

2

A
, @ e P V, (7.7)

then the Vp0, 1q two-grid method satisfies that

}ETG}
2
A “ 1´ δ̂ with δ̂ :“ inf

pI´Πcqe‰0

}e}2A ´ }pI ´ SAqe}
2
A

}pI ´Πcqe}2A
ě δ.

Proof. Notice that }e}2A “ }Πce}
2
A ` }pI ´ Πcqe}

2
A because Πc is an A-orthogonal projection.

Since pI ´Πcqe “ 0 yields pI ´ SAqpI ´Πcqe “ 0 as well, we have

}ETG}
2
A “ sup

e‰0

}pI ´ SAqpI ´Πcqe}
2
A

}e}2A
“ sup
pI´Πcqe‰0

}pI ´ SAqpI ´Πcqe}
2
A

}pI ´Πcqe}2A ` }Πce}2A
.

If ê achieves the above supremum, then pI ´Πcqê also achieves the supremum because

}pI ´ SAqpI ´Πcq
2ê}2A

}pI ´Πcq
2ê}2A ` }ΠcpI ´Πcqê}2A

“
}pI ´ SAqpI ´Πcqê}

2
A

}pI ´Πcqê}2A
ě
}pI ´ SAqpI ´Πcqê}

2
A

}ê}2A
.

So the convergence factor achieves the supremum when Πcê “ 0. That is to say, from the

definition (7.6),

›

›ETG

›

›

2

A
“ sup
pI´Πcqe‰0

›

›pI ´ SAqe
›

›

2

A
›

›pI ´Πcqe
›

›

2

A

.

Hence the result.

Note that, if we further assume that the parameter δ̂ in Theorem 7.6 is bounded uniformly on all

levels, we can also obtain a uniform bound for the V-cycle convergence factor by recursion [84].

This bound also gives reasonable estimates numerically [87].

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 158

Basically, the assumption (7.7) implies that the smoother S is efficient for the components

that cannot be treated by CGC efficiently. On the one hand, for the error components that

cannot be reduced by CGC, the smoother S must be effective uniformly; on the other hand, for

the error components that can be reduced by CGC efficiently, S is allowed to be ineffective. The

components for which S is ineffective are called smooth and they have to be in the range of the

interpolation, rangepP q, roughly. So (7.7) is natural to assume in order to get an efficient TG

algorithm.

However, such a δ̂ is difficult to obtain in practice and we need to give some positive lower

bounds of δ̂. So we introduce a nonnegative function gpeq ě 0 and define

αgpeq :“
}e}2A ´ }pI ´ SAqe}

2
A

gpeq
and βgpeq :“

}pI ´Πcqe}
2
A

gpeq
.

Let α̂g :“ infgpeq‰0 αgpeq and β̂g :“ supgpeq‰0 βgpeq. Due to the fact

}ETGe}
2
A ď

›

›pI ´Πcqe
›

›

2

A
´ α̂gg

`

pI ´Πcqe
˘

ď
›

›pI ´Πcqe
›

›

2

A
´ α̂gβ̂

´1
g

›

›pI ´Πcqe
›

›

2

A

“

´

1´ α̂gβ̂
´1
g

¯

›

›pI ´Πcqe
›

›

2

A
(7.8)

ď

´

1´ α̂gβ̂
´1
g

¯

›

›e
›

›

2

A
, (7.9)

we have δ̂ ě α̂gβ̂
´1
g , i.e.,

}ETG}
2
A ď 1´ α̂gβ̂

´1
g .

In view of the above estimate, we can give two separate assumptions:

›

›pI ´ SAqe
›

›

2

A
ď }e}2A ´ ᾱg gpeq, @ e P V, (7.10)

and

D β̄g, s, such that
›

›pI ´Πcqe
›

›

2

A
ď β̄g, s gpeq, @ e P V. (7.11)

The condition (7.10) is a smoothing property and the condition (7.11) is a type of approximation

property. The condition (7.11) is oftentimes called the strong approximation assumption. In view

of (7.8), we can further weaken this condition and assume the weak approximation assumption:

D β̄g,w, such that
›

›pI ´Πcqe
›

›

2

A
ď β̄g,w g

`

pI ´Πcqe
˘

, @ e P V. (7.12)

From the above analysis, we can easily deduce the following theorem.

Theorem 7.7 (Convergence estimate of two-level AMG). If (7.10) and (7.11) (or its weaker

version (7.12)) hold, then V(0, 1) two-grid method satisfies

}ETG}
2
A ď 1´ ᾱg β̄

´1
g .

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 159

Remark 7.8 (Strong and weak approximation properties). The strong approximation assump-

tion (7.11) can be used to show convergence of V-cycle AMG methods via a recursion [84, 102].

But the weak approximation assumption (7.12) is not sufficient for V-cycle to converge [31].

It is worthy to notice that, even if we are able to provide simple conditions on coarsening such

that the approximation assumptions hold to obtain a convergent two-level or multilevel AMG

method, it is still not clear how to provide an algorithm to meet these assumptions based on

pure algebraic information. Actually it is difficult to do so in a strict sense. The coarsening

process consists of identifying coarse variables and constructing prolongation matrices. And

these two procedures are usually coupled together. In the rest of this chapter, we shall discuss

more practical steps on constructing the coarsening space.

Interpolation operators

Now the question is how to choose such a function gpeq? Furthermore, how to apply The-

orem 7.7 to enforce convergence conditions on the prolongation (or interpolation) matrix P to

guarantee good AMG performance?

In case gpeq :“ }pI ´ Πcqe}
2
A, we have α̂g “ δ̂ and β̂g ” 1. Another possible choice is given

by Ruge and Stüben [102]:

gpeq :“ }e}2AD´1A.

In this case, by definition, the strong approximation assumption (7.11) can be rewritten as

inf
ecPVc

}e´ Pec}
2
A ď β̄s }e}

2
AD´1A, @ e P V. (7.13)

On the other hand, we have

›

›pI ´Πcqe
›

›

2

A
“

`

pI ´Πcqe, pI ´Πcqe
˘

A
“

`

pI ´Πcqe, pI ´Πcqe´ Pec
˘

A

ď
›

›pI ´Πcqe
›

›

AD´1A
¨
›

›pI ´Πcqe´ Pec
›

›

D

If we assume, instead of (7.13), that

inf
ecPVc

}e´ Pec}
2
D ď β̄w }e}

2
A, @ e P V, (7.14)

then

›

›pI ´Πcqe
›

›

2

A
ď

›

›pI ´Πcqe
›

›

AD´1A
¨
›

›pI ´Πcqe´ Pec
›

›

D

ď
›

›pI ´Πcqe
›

›

AD´1A
¨ β̄

1
2
w

›

›pI ´Πcqe
›

›

A
,

which yields the weak approximation property (7.12). In this way, we obtained two alternative

bounds (7.13) and (7.14) for the strong and weak approximation assumptions, respectively.

Using (7.14), we can also get convergence bound for the two-level method.

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 160

As we mentioned before, the weak approximation property (7.14) is usually not sufficient to

guarantee a good interpolation P for V-cycle. More conditions shall be enforced for practical

construction of AMG methods.

Let Q P RNˆN be a projection onto rangepP q. So, by definition, it can be written as Q “ PR,

where R P RNcˆN satisfies RP “ Ic. If Rs :“ pP TAP q´1P TA, then it is easy to see that

Qs “ PRs “ Πc is such an example. We can also give a simplified choice Rw :“ pP TDP q´1P TD.

For any vector 0 ‰ e P V , we can assume that

inf
ecPVc

›

›e´ Pec
›

›

2

A

}e}2
AD´1A

ď

›

›e´Qe
›

›

2

A

}e}2
AD´1A

ď β̄s and inf
ecPVc

›

›e´ Pec
›

›

2

D

}e}2A
ď

›

›e´Qe
›

›

2

D

}e}2A
ď β̄w, (7.15)

to give upper bounds for the strong and weak approximation assumptions, respectively. These

inequalities give bounds for constructing P such that the two-level method converges according

to Theorem 7.7.

We notice that, in the above inequality, the measure like

µDpQ, eq :“
}pI ´Qqe}2D

}e}2A
, @ e ‰ 0

can be generalized to

µXpQ, eq :“
}pI ´Qqe}2X

}e}2A
, @ e ‰ 0,

where X is an SPD matrix. We assume that µXpQ, eq ď κ. Then

inf
ecPVc

›

›e´ Pec
›

›

2

X

}e}2A
ď

›

›e´Qe
›

›

2

X

}e}2A
“ µXpQ, eq ď κ. (7.16)

If we minimize supe‰0 µXpPR, eq to find the “best possible” interpolation operator P , then it is

the so-called ideal interpolation [55, 127].

In particular, if X “ S
´1

, then ᾱ ” 1 for the smoothing assumption and the convergence

factor of TG is bounded by

}ETG}
2
A ď 1´

1

κ
. (7.17)

Algebraic smooth error

In §3.4 (Theorem ??, in particular), we have seen the following theoretical result: For any

given smoother S, the best coarse space of dimension Nc is given by

V opt
c :“ spantφku

Nc
k“1, (7.18)

where tφku
Nc
k“1 are the eigenfunctions corresponding to the smallest eigenvalues λkpSAq. So the

desirable coarse space should well approximate the lower end of the spectrum of SA, which can

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 161

also be called the near-null space. However, it is difficult to find small eigenvalues of SA in

practice.

A good interpretation of smooth error in algebraic sense could lead to an efficient AMG

method. In view of (3.26), we know that the standard pointwise relaxation methods, like the

Richardson, weighted Jacobi, and Gauss–Seidel methods, satisfy that

ρ´1
A

`

v, v
˘

A
À

`

SAv, v
˘

A
À

`

v, v
˘

A
.

Together with (7.10), it motivates the following definition of the algebraic smooth vector:

Definition 7.9 (Algebraic smoothness). Let ε P p0, 1q be a small parameter. If e P V satisfies

`

SAe, e
˘

A
ď ε

`

e, e
˘

A
,

then e is algebraically ε-smooth (or the ε-algebraic low-frequency) with respect to A.

By adding and subtraction and (2.13), we immediately have

´

`

I ´ SA
˘

e, e
¯

A
ě p1´ εq

`

e, e
˘

A
ùñ

›

›pI ´ SAqe
›

›

2

A
›

›e
›

›

2

A

ě 1´ ε.

Apparently, the contraction factor for this error component e is close 1 if ε is small. Basically,

this means the algebraically smooth error components are those which the smoother S or S

cannot damp efficiently. That is to say, an error cannot be eliminated by the smoother is a

smooth error; see Remark 1.24 for geometric smooth error.

Since S is SPD, the algebraically smooth vectors satisfy

›

›e
›

›

2

A
“

`

S
1
2Ae, S

´ 1
2 e
˘

ď
`

SAe,Ae
˘1{2 `

S
´1
e, e

˘1{2
ď ε1{2

›

›e
›

›

A

`

S
´1
e, e

˘1{2
.

Then we can derive the following estimate

›

›e
›

›

2

A
ď ε

›

›e
›

›

2

S
´1 , (7.19)

which can be viewed as an alternative characterisation of algebraically smooth vectors. Similar

to algebraic low-frequency components, we can define algebraic high-frequency as follows

Definition 7.10 (Algebraic high-frequency). Let ζ P p0, 1s. If e P V satisfies

›

›e
›

›

2

A
ě ζ

›

›e
›

›

2

S
´1 ,

then e is called the ζ-algebraic high-frequency vector with respect to A.

With this notion, we can obtain the following convergence estimate [124]:

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 162

Theorem 7.11 (Convergence estimate based on space decomposition). Let Vc Ă V be the

coarse space and Vhf consist of ζ-algebraic high frequencies. Suppose V “ Vc ` Vhf is a stable

decomposition, i.e., for any v P V , there exist vc P Vc and vhf P Vhf such that v “ Pvc ` vhf and

}vhf}
2
A ď β}v}2A. Then the resulting two-level AMG satisfies

}ETG}A ď 1´ ζβ´1.

Proof. Since we have the following estimate

inf
wcPVc

›

›v ´ Pwc
›

›

2

S
´1 ď

›

›vhf

›

›

2

S
´1 ď

1

ζ

›

›vhf

›

›

2

A
ď

β

ζ

›

›v
›

›

2

A
,

we can prove the theorem using (7.17).

Remark 7.12 (Local adaptation of AMG). In AMG methods, it is not important whether S

smooths the error in any geometric sense or not. On the contrary, the key point is that the error

after smoothing sweeps can be characterized algebraically to a degree which makes it possible

to construct coarse levels and define interpolations which are locally adapted to the properties

of the given smoother.

Remark 7.13 (Smooth error and Classical AMG). A simpler characterization of smooth error is

used in methods like the Classical AMG. If the vector e corresponds to the low-end of eigenvalues,

then we have Ae ! 1 in the entry-by-entry sense. According to (7.1) and (7.19), the algebraically

smooth error e satisfies that

pAe, eq “
ÿ

iăj

´ai,jpei ´ ejq
2 ! 1. (7.20)

This inequality provides an important motivation for the Classical AMG: Smooth error varies

slowly in the direction of relatively large (negative) coefficients of the matrix. And it motivates

the notion of strongly negative coupled variables.

Construction of coarse spaces

We now discuss a few guidelines on how to construct coarse spaces and prolongation matrices

based on the AMG theory developed above. In §6.1, we have discussed a general procedure of

multigrid setup phase. The coarsening algorithms are automatic procedures for determining the

coarse-level variables. Such algorithms are usually based on selecting or combining vertices in

the adjacency graph corresponding to the (filtered) coefficient matrix A. We shall discuss more

concrete examples of coarsening algorithms in the following sections.

A natural choice of the coarse-level DOFs is to use a subset of fine-level DOFs. Under proper

re-ordering (coarse variables first and then fine variables) R “ pI, 0q P RNcˆN . According to

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 163

Theorem ??, we can use the diagonal matrix D P RNˆN of A to analyze the smoother S defined

by the point-wise Gauss–Seidel method. This result motivates that we should construct a coarse

space, such that
›

›v ´QDv
›

›

2

D
“ inf

vcPVc

›

›v ´ vc
›

›

2

D
ď β

›

›v
›

›

2

A
, @ v P V,

where the constant β should be small and uniform with respect to interested parameters (like

the meshsize h). If v is smooth, i.e., }∇v} is small, then v can be approximated well in the coarse

space Vc. This condition is a sufficient condition for the convergence of the two-grid method.

Motivated by Lemma 3.31, we can further simplify it and just choose D :“ }A}I, for example.

Heuristically, the error becomes quite smooth after a few relaxation steps and we can expect

the coarse space can approximate a smooth vector v rather accurately if the coarse space is

chosen appropriately. Motivated by Theorem 7.7 and (7.15), we give Assumption 7.14, which is

equivalent to that Vc reproduces local constant.

Assumption 7.14 (Weak approximability).
›

›pI ´ PRqv
›

›

D
ď β}v}A, @ v P V.

In view of Remark 3.41, we assume that the prolongation operator preserves the constant

(Assumption 7.15). In fact, from the weak approximation property (Assumption 7.14) and let

D :“ }A}I, we have

}A}1{2
›

›v ´ PRv
›

› ď β}v}A.

If v is in the near-null space of A, i.e., }v}A « 0, then PRv « v. Hence we get the following

simplified assumption:

Assumption 7.15 (Constant preserving). P1Nc “ 1N .

Unlike in the geometric setting, it is not meaningful to only look at the convergence in the

algebraic multigrid context. This is because, the computation complexity of each AMG cycle

could be prohibitively large; compare with GMG complexity discussed in §6.2. Even a uniformly

convergent AMG method could be very slow. Hence complexity of the multilevel hierarchy for

AMG is crucial.

Remark 7.16 (Operator complexity). When constructing the prolongation P , we must control

the sparsity of the coarse level matrices. For efficient overall performance, convergence speed

is only one aspect. An equally important aspect is the complexity (sparsity) of the coarser

level matrices produced by AMG. We now define a measurement of sparsity, i.e., the operator

complexity

CA :“

řL
l“0 nnzpAlq

nnzpAq
,

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 164

where nnzp¨q is the number of nonzeros of a matrix. Apparently, CA ě 1 is always true and

CA “ 1 corresponds to the one-level case. When constructing an interpolation operator, we

would like to make CA as close to 1 as possible while keeping good convergence performance.

This is not always the case when using the Galerkin-type coarse operator as we discussed in

this note. Usually, the coarser matrices Al´1 becomes more dense than Al. This problem

becomes more serious when solving very large linear systems. Sometimes, we have to truncate

the “insignificant” nonzero entries or specify sparse patterns to maintain low complexity [54].

7.3 Classical algebraic multigrid methods

The original AMG [35] idea (the classical AMG) was developed under the assumption that

such a problem with A being an M-matrix was solved. The multilevel hierarchy is constructed

based on the coefficient matrix only. Later, the AMG algorithm was further generalized using

many heuristics that served to extend its applicability to more general problems. For simplicity,

we suppose that A “ pai,jq P RNˆN is an SPD M-matrix and G “ pV,Eq is the corresponding

graph of A.

General AMG setup phase

We have presented a rather abstract framework for multigrid methods in §7.1. Now we

give a general two-level setup phase suitable for AMG methods (including the classical AMG

and aggregation-based AMG methods). This algorithm can be applied recursively to obtain a

multilevel hierarchy until Nc is small enough or Ac is too dense to continue.

Algorithm 7.2 (General algebraic setup algorithm). Given a sparse matrix A P RNˆN .

1. Filter A to obtain a suitable matrix for coarsening Af (usually Af “ A);

2. Define coarse space with Nc variables;

3. Construct the interpolation P P RNˆNc :

3.1. Give a sparsity pattern for the interpolation P ;

3.2. Determine weights of the interpolation P ;

4. Construct the restriction R P RNcˆN (for example, R “ P T);

5. Form the coarse-level coefficient matrix (for example, Ac “ RAfP);

6. Give a sparser approximation of Ac if necessary.

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 165

The above framework is abstract and general enough to describe a variety of algorithms.

Now we give a few comments on this algorithm:

1. If the coefficient matrix A is not symmetric or not an M-matrix, we might want to perform

a preprocessing step to get a more suitable matrix Af . This step can also be used as a

way to introduce auxiliary space method.

2. In the classical AMG methods, we use the so-called C/F splitting, namely, split all N

variables into Nc C-variables and Nf F-variables, i.e., N “ Nc ` Nf ; on the other hand,

in the aggregation-based AMG, we form aggregates of F-variables.

3. As we observed before, forming an interpolation P that satisfies the weak approximation

property is crucial for convergence. This task can be further divided into two stages:

(1) giving sparsity pattern and (2) determine weights of P . Sometimes, we can truncate

some of the small entries if it is not sparse enough.

4. For symmetric problems, it is natural to use the Galerkin relation to assume R “ P T . But

for nonsymmetric problems, we might need to construct R as well.

5. In GMG, the coarse-level problems can also be given by discretization on a coarser grid.

But in AMG, we must use the restriction, interpolation, and the fine-level coefficient

matrices to compute Ac using the triple-matrix product, which can easily become the most

time-consuming part of the setup phase. Implementation of this part requires attention,

especially for parallel efficiency.

6. Sometimes, Ac might not be sparse enough even after P is truncated when the Galerkin

relation is employed. In this case, one might have to further modify Ac to obtain a sparser

approximation.

Strength of connections

In coarsening, we need to find coarse-level variables. Let θstr P p0, 1q be a given real num-

ber, usually called relative strength parameter. In view of Remark 7.13, we give the following

definition: If a pair of indices pi, jq satisfies that

´ai,j ě θstr

ˇ

ˇmin
k
ai,k

ˇ

ˇ,

then this pair is called strongly negatively coupled or strongly n-coupled . More precisely, we say

that the variable i is strongly negatively coupled to the variable j. Note that, by this definition,

pi, jq and pj, iq are two different pairs. We can easily generalize this concept to strongly coupling

by considering the positive coupling.

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 166

Remark 7.17 (Alternative definitions for strong coupling). There are different ways to define

strongly coupled pairs. For example, we can call i and j strongly negatively coupled, if

ai,j ă 0 and |ai,j | ą θstr
?
ai,iaj,j

or

´ai,j ą θstr
?
ai,iaj,j .

Such definitions will be used to define aggregation-based methods in the next section.

Denote further

Si :“

j P Ni : j strongly coupled to i
(

and STi :“

j P V : i P Sj
(

.

So Si is the set of indices which affects i and STi is the ones which are affected by i. After finding

the strongly coupled variables, we can filter the coefficient matrix to obtain a filtered matrix AS

by removing non-strongly coupled connections.

The above definition of strongly coupled variables applies to the direct connections. Some-

times we also need to consider indirect (i.e., long-range) connections; for example, in aggressive

coarsening (see Remark 7.20). A variable i is said strongly connected to another variable j along a

path of length l if there exists a sequence of edges

pi, j1q, pj1, j2q, . . . , pjl´2, jl´1q, pjl´1, jq
(

Ď E

such that jk`1 P Sjk . If there exist at least one path of length less than or equal to ` such that

i strongly connects to j, then we say that i is `-strongly connects to j and denoted by j P S`i .

We note that, based on the nonzero pattern of the original matrix A` or a filtered matrix

A`S, one can tell whether there are paths between i and j of length ` or not. For example, if

we consider five-point stencil finite difference scheme on the mesh given in Figure 7.5 (left).

Consider the vertex at the center, the point 13. Then

S13 “ t12, 8, 14, 18u and S2
13 “ t12, 8, 14, 18, 11, 3, 15, 23, 7, 9, 19, 17u.

And we give the weights of A and A2 in Figure 7.5. See Figures 7.6, 7.7, and 7.8 for details.

C/F splitting

The classical Ruge-Stüben method is to split the set of vertices V to a sum of two non-

intersecting sets, the fine variables F and the coarse variables C, such that all the indices in F

will be affected by some index in C, while C is expected to contain as few entries as possible.

Then F will be chosen as the set of indices of finer grid nodes, and C will be chosen as the set of

indices of coarse grid nodes. The indices of nodes are assigned to be coarse or fine successively.

Denote by U the set of indices of nodes that have not been assigned yet, and we summarize the

algorithm in the following subroutine:

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 167

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

4

-1

-1 -1

-1

20

-8

-8 -8

-8

2

2

2

2

1

1

1

1

1

Figure 7.5: Finite difference grid (left), strong connections and weights inA of vertex 13 (middle),
and 2-strong connections and weights in A2 of 13 (right).

Figure 7.6: The stiffness matrix A for five-point stencil finite difference scheme on the mesh
given in Figure 7.5 (left).

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 168

Figure 7.7: The matrix A2 for five-point stencil finite difference scheme on the mesh given in
Figure 7.5 (left).

Figure 7.8: The matrix A3 for five-point stencil finite difference scheme on the mesh given in
Figure 7.5 (left).

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 169

Listing 7.1: Classical C/F splitting method

1 UÐ V, CÐ Ø, FÐ Ø;

2 while U ‰ Ø

3 λi Ð 2|STi
Ş

F| ` |STi
Ş

U|, i P U;

4 k Ð arg maxtλi, i P Uu;

5 CÐ C
Ť

tku, UÐ Uztku;

6 FÐ F
Ť

STk , UÐ UzSTk ;

7 end

Note that λi is a measure of importance—It is a measurement about how many points are

affected by i. If λi is big, we would like to include this point in C. In this way, we can make

C contains less points to get bigger coarsening ratio, which is very important for the classical

AMG because it usually yields relatively small coarsening ratio.

• We weight more on |STi
Ş

F| than |STi
Ş

U| due to the fact that the first part has already

been determined to be on the fine grid.

• In the early stage of coarsening procedure, F does not contain many points, the above

algorithm selects a coarse point with as many as neighbors that strongly coupled to it.

• In the later stage, vertices that strongly coupled to many F-variables are preferred to be

selected.

There are a few special cases which require careful treatment during the C/F splitting pro-

cedure. We now summarize them in the following remarks:

Remark 7.18 (Isolated points). Before we start the above algorithm, we usually need to filter

out the isolated points (like the Dirichlet boundary points) and define them as F-variables.

Similarly, if a point has very strong diagonal dominance, we can also call them isolated and

move them to F. These are the trivial cases.

Remark 7.19 (Termination of C/F splitting). If successfully terminated, the set C is an in-

dependent set of vertices of the underlying graph G. All F-variables have at least one strongly

negatively coupled C-variable, except the trivial ones in the previous remark. However, there

might be some U-variables left (with measure λi “ 0)—They are not strongly negatively coupled

to any C-variables or themselves. Furthermore, there are no F-variables are strongly negatively

coupled to these points. In order to interpolate at these points, we can add them as F-variables

and interpolate indirectly through the F-variables, to which they are strongly coupled.

Remark 7.20 (Aggressive coarsening). In practice, the standard C/F splitting scheme given

above usually results in high operator complexity (refer to Remark 7.16), which leads to high

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 170

Coarsening method Standard Aggressive

Operator complexity 2.889 1.606
Setup time (sec) 1.536 1.036
Number of iterations 6 38
Solve time (sec) 0.791 3.293
Time per iteration (sec) 0.132 0.087

Table 7.1: Solving 2D five-point stencil of the Poisson’s equation with 1 million DOF using
different coarsening methods in the classical AMG method (stopping criteria for PCG is the
relative residual smaller than 10´6).

computational and storage demands; see Table 7.1. In such cases, we can apply the so-called

aggressive coarsening by considering strong connections of length `. Oftentimes a small `, for

example ` “ 2, is used. However, A2
S is expensive to compute and we can apply the regular C/F

splitting twice—At the first pass, find C-variables among all variables using AS; at the second

pass, apply the C/F splitting on the selected C-variables from the first pass using A2
S (but on C

only, we don’t need all entries of A2
S).

Example 7.21 (Anisotropic elliptic PDE). To illustrate the effect of the above C/F splitting

algorithm, we consider an anisotropic diffusion example in §6.1. The computational domain is

a unit square. Let us consider the anisotropic diffusion equation

´εuxx ´ uyy “ 0 pε ą 0q.

Roughly speaking, we have ε}uxx} « }uyy}. This means the solution is smooth in y-direction

(low-frequencies); but rough in x-direction (high-frequencies). We consider the five-point stencil.

The difference equation at the node pxi, yjq is

´ε
2ui,j ´ ui`1,j ´ ui´1,j

h2
x

´
2ui,j ´ ui,j´1 ´ ui,j`1

h2
y

“ 0.

If ε
h2
x
! 1

h2
y
, then ui,j depends on ui,j`1 and ui,j´1 only. Thus if we process the C/F procedure,

the coarsening will take place indeed in one direction only (semi-coarsening); see Figure 7.9.

Construction of prolongation

After obtaining a C/F splitting, upon a reordering of indices, we can always assume that the

indices of the nodes in C is from 1 to Nc, and those in F are from Nc ` 1 to N . We can write

the stiffness matrix in the following block structure

˜

AC,C AC,F

AF,C AF,F

¸˜

uC

uF

¸

“

˜

fC

fF

¸

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 171

217

6.11 C/F

6.11 6.6

C/F

C/F

6.9 (d) C/F

6.12 1 3 5 7 9 11 13 15 17 19 21 23

25

 6.12 C/F

21
8

,

0,
xx

yy
u

u
f

u
ε

−
=

Ω

=
∂Ω

(6
.9

3)

ε
(6

.9
3)

21
[

]
1

2(
1

)
1

hL
h

ε ε ε−

=

−
+

−

−

(6
.9

3)
C

/F

ε
3

10
−

6.
13

6.
13

C
/F

 6
.5

.
ε

4
10

−
,

5
10

−
C

/F
ε

3
10

−

6.
13

x
ε

3
10

−

(6
.9

3)
x

y

x

Figure 7.9: C/F splitting for the 2D elliptic problem with ε “ 1 (left) and ε ! 1 (right), where
the red points are C-variables and the black points are F-variables.

Let eH P RNc be a vector corresponding to the variables on the coarse grid. We now consider

how to prolongate it to eh P RN corresponding to the variables on the fine grid.

We first use the geometric multigrid method for linear finite element method on uniform

grids for the 1D Poisson’s equation as an example. Let tφhi u
N
i“1 be the basis of the fine space V

and tφHj u
Nc
j“1 be the basis of the coarse space Vc. From the geometrical multigrid point of view,

it is natural to expect

apφHj , φ
h
i q “ 0, j P C, i P F. (7.21)

In fact, the fine grid (high-frequency) part can be captured by the fine grid approximation, i.e.,

apuh ´ΠHu
h, φhq “ apuh, φhq,

if φh is a basis function corresponding to the difference between fine and coarse grid functions.

It is trivial to see that, we should have pPeHqj “ eHj , if j P C. Define

P :“

˜

IC

Q

¸

,

where I P RNcˆNc is the identity matrix and Q P RpN´NcqˆNc . In the matrix form, the condi-

tion (7.21) can be written as

˜

0 0

0 IF

¸˜

AC,C AC,F

AF,C AF,F

¸˜

IC

Q

¸

“

˜

0

0

¸

.

That is to say, AF,C ` AF,FQ “ 0 or Q “ ´A´1
F,FAF,C. It is easy to check that this prolongation

matrix P satisfies Assumption 7.15 if the row-sum of A is zero. However, this prolongation is

too expensive to compute in practice and there are many different ways to approximate Q by a

simpler sparse matrix W .

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 172

1) Direct interpolation scheme

For the error eh P RN , we have

AF,Fe
h
F `AF,Ce

h
C ! 1 ùñ

N
ÿ

j“1

ai,je
h
j « 0, i P F.

Motived by the above observation, we can assume

ai,ie
h
i `

ÿ

jPNi

ai,je
h
j “ 0, i P F. (7.22)

This would be an interpolation scheme itself if all points in Ni are C-variables. Of course, it is

not always the case. Alternatively, we can throw out the entries that are not strongly negatively

coupled and obtain

ai,ie
h
i `

ÿ

jPSi

ai,je
h
j “ 0, i P F. (7.23)

We approximate the above equation (7.22) with

ai,ie
h
i ` αi

ÿ

jPNi
Ş

C

ai,je
h
j “ 0, αi “

ř

kPNi
ai,k

ř

kPNi
Ş

C ai,k
, i P F.

If the i-th row has zero row-sum, then αi “ ´
ai,i

ř

kPNi
Ş

C ai,k
and we get an interpolation method

ehi “
ÿ

jPNi
Ş

C

wi,je
H
j and wi,j “

ai,j
ř

kPNi
Ş

C ai,k
. (7.24)

In this case, the matrix form is just W “
`

diagpAF,C1q
˘´1

AF,C. It is straightforward to show

that Assumption 7.15 holds in this case.

We can make W more sparse by shrinking the support slightly. Define an interpolation set

(support) Pi :“ Si
Ş

C for i P F. After further sparsifying the interpolation (by keeping the

strongly negatively coupled C-variables only), we get

ai,ie
h
i ` αi

ÿ

jPPi

ai,je
h
j “ 0, αi “

ř

kPNi
ai,k

ř

kPPi
ai,k

, @ i P F.

If the i-th row has zero row-sum, then this gives the well-known direct interpolation

ehi “
ÿ

jPPi

wi,je
H
j and wi,j “

ai,j
ř

kPPi
ai,k

. (7.25)

2) Standard interpolation scheme

In the equation (7.22), we can first eliminate all ehj for j P Si
Ş

F, using the j-th equation,

by the approximation

ehj :“ ´
1

aj,j

ÿ

kPNj

aj,ke
h
k .

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 173

This results in a new equation for ehi :

âi,ie
h
i `

ÿ

jPN̂i

âi,je
h
j “ 0, i P F,

with N̂i “ tj ‰ i : âi,j ‰ 0u. Define a new interpolation set P̂i “ p
Ť

jPSi
Ş

F Sjq
Ť

pSi
Ş

Cq.

Then we apply the above direct interpolation for this new equation and arrive at the so-called

standard interpolation scheme.

3) Jacobi interpolation scheme

We can rewrite the equation (7.23) as

ai,ie
h
i `

ÿ

jPPi

ai,je
H
j `

ÿ

jPSizPi

ai,je
h
j “ 0, i P F.

Therefore, in order to obtain an interpolation matrix Q, we just need to approximately solve

the above equations for ehi pi P Fq. For example, we can just apply one Jacobi iteration using

ẽhj «

ř

kPPi
ai,ke

h
k

ř

kPPi
ai,k

as the initial guess of ehj , j P F pj ‰ iq. Then the prolongation can be defined

as
$

’

&

’

%

ehi “ eHi , i P C

ai,ie
h
i `

ř

jPPi
ai,je

H
j `

ř

jPSizPi
ai,j

ř

kPPi
ai,ke

h
k

ř

kPPi
ai,k

“ 0, i P F.
(7.26)

This is the so-called Jacobi interpolation method.

Remark 7.22 (Some simple alternatives). The biggest advantage of the above approach is that

it is simple and local: For the i-th entry, we only need the information on the i-th row of the ma-

trix. We can improve this prolongation matrix P using some straightforward modifications. For

example, the initial guess for the same entry can be different for different entries; an alternative

initial guess could be

ẽhj «

ř

kPPj
aj,ke

h
k

ř

kPPj
aj,k

, j P F.

And a few more steps of Jacobi iteration might improve performance.

Remark 7.23 (Initial guess of weights). If the initial guess W p0q preserves constants, then we

get

Q´W pkq “

´

I ´D´1
F,FAF,F

¯k
`

Q´W p0q
˘

.

Since both Q and W p0q preserves constants, all improved weights W pkq also preserve constants

by iteration.

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 174

7.4 Aggregation-based algebraic multigrid methods

In this section, we consider the aggregation-base AMG methods whose easy-to-implement

feature has drawn a lot of attention recently. The idea is to sub-divide the set of vertices into

non-intersecting sets (or aggregates), i.e., V “
Ť

j“1,...,Nc
Cj . Each aggregate Cj corresponds to

a coarser variable.

Unsmoothed aggregation AMG

There are several different sophisticated ways to form aggregates. In principle, any combina-

torial graph partitioning algorithms can be applied to form aggregation. We first give a simple

greedy algorithm to form such an aggregation based on the concept of maximum independent

set discussed in §7.1.

Listing 7.2: A greedy aggregation method

1 Nc Ð 0, UÐ V;

2 for i P U

3 if Ni Ď U

4 Nc Ð Nc ` 1;

5 CNc Ð tiu
Ť

Ni, UÐ UzCNc;

6 end

7 end

It is possible to have some “left-over” vertices which do not belong to any aggregate after the

above procedure. We can, for example, add them to their neighboring aggregates with least

points.

C1 C2 C3 C4

1 2 3 4 5 6 7

1

Figure 7.10: Aggregates and prolongation corresponding to (7.27).

Whence an aggregation is given, it is easy to define the prolongation matrix, for 1 ď i ď N

and 1 ď j ď Nc, by

`

P
˘

i,j
“

#

1, if i P Cj ;

0, if i R Cj .

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 175

With this interpolation, it is straight-forward to see that P1Nc “ 1N . We now give an example

to explain P in one dimension. Let

P “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 1 0

0 0 0 1

0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

P RNˆNc . (7.27)

Figure 7.10 shows the aggregation corresponding to the prolongation P in (7.27).

Of course, there are different ways to form aggregates and we give another approach here.

The algorithm to construct coarse grid and prolongation based on the concept of strong coupling

is

Listing 7.3: Another aggregation method

1 UÐ V;

2 for i P U

3 Si Ð tj P U : j is strongly coupled to iu;

4 construct a column of prolongation P based on Si;

5 UÐ Uz
`

tiu
Ť

Si
˘

;

6 end

Smoothed aggregation AMG

The unsmoothed aggregation methods are very simple but usually converge slowly. There

are two ways to improve their convergence behavior. One way is to employ a more complicated

multilevel iteration, like the K-cycle multigrid method discussed in §6.2. And the other way is

to enlarge the aggregates and smooth out the basis functions. The latter approach gives the

smoothed aggregation AMG methods, which is based on the idea of minimizing the energy of

the coarse basis functions among the set of all functions with same L2-norm.

Assume that all variables are partitioned into non-overlapping subsets

Ci
(Nc
i“1

. We further

assume that each Ci has at least one interior point, i.e., there exists an index ki P Ci such that
`

A
˘

ki,j
“ 0 for any j R Ci. Suppose that 1 is in the null space of A, namely, A1 “ 0. Define a

vector for each aggregate:

1ipxjq :“

#

1pxjq, if j P Ci;

0, otherwise.

Apparently,
ř

i 1i “ 1 and
`

A1i
˘

ki
“ 0.

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 176

We now smooth out these piecewise basis functions by, for example, one step of weighted

Jacobi iteration

ψi “ pI ´ ωD
´1Aq1i.

Hence we have the partition of unity

ÿ

i

ψi “ pI ´ ωD
´1Aq

ÿ

i

1i “ pI ´ ωD
´1Aq1 “ 1.

Thus we can obtain

1pxkiq “
ÿ

j

ψjpxkiq “
ÿ

j

pI ´ ωD´1Aq1ipxkiq “ 1ipxkiq ´ ωD
´1A1ipxkiq,

which implies that D´1A1ipxkiq “ 0 and ψipxkiq “ 1.

We can define the prolongation

PSA :“
`

ψ1, ψ2, . . . , ψNc
˘

.

Define 1c :“ p1, . . . , 1qT P RNc . Hence we have PSA1c “ 1. Furthermore, the coarse level matrix

Ac “ P TSAAPSA satisfies that

Ac1c “ pP
T
SAAPSAq1c “ P TSAA1 “ 0.

By applying this definition recursively, we can finish the AMG setup for the smoothed aggrega-

tion method.

Listing 7.4: Smoothed aggregation method

1 UÐ V;

2 for i P U

3 Si Ð tj P U : j is strongly coupled to iu;

4 construct a column of prolongation P based on Si;

5 UÐ Uz
`

tiu
Ť

Si
˘

;

6 end

7 Smooth the basis functions using the weighted Jacobi method PSA “ pI ´ ωD
´1AqP;

We have mentioned in the previous subsection that there are different ways to form aggre-

gates. After forming aggregates one can apply UA or SA to give prolongation. Now we do

preliminary tests on aggregation methods for solving the 2D Poisson’s equation using the five-

point stencil; see Table 7.2. The AMG methods are applied as preconditioners of PCG. Note

that, for the SA method, we use the standard V-cycle multigrid in the solve phase; on the other

hand, for the UA methods, we use the K-cycle multigrid for better convergence behavior.

CHAPTER 7. ALGEBRAIC MULTIGRID METHODS 177

Aggregation method SA [111] UA [111] Pairwise UA [95]

Number of levels 5 5 7
Operator complexity 1.364 1.264 1.332
Setup time (sec) 0.557 0.171 0.277
Number of iterations 16 21 12
Solve time (sec) 1.223 1.696 1.336

Table 7.2: Solving 2D five-point stencil of the Poisson’s equation with 1 million DOF using
aggregation-based AMG methods (stopping criteria for PCG is the relative residual smaller
than 10´6).

Part III

Applications of Multilevel Iterative

Methods

178

Chapter 8

Fluid Problems

Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical

analysis and algorithms to solve and analyze fluid problems. Computers are used to perform

the calculations required to simulate liquids or/and gases with surfaces defined by boundary

conditions. The fundamental basis of most CFD problems are the Navier–Stokes (NS) equations,

which define single-phase fluid flows. These equations can be simplified by removing terms

describing viscous actions to yield the Euler equations. These equations can be simplified by

dropping the nonlinear convection term to yield the Stokes equation. In this chapter, we discuss

multilevel iterative methods suitable for problems arising from CFD.

8.1 The Navier–Stokes equations ‹

The Navier–Stokes equations describe the motion of viscous fluid substances. These balance

equations arise from applying the Newton’s second law to fluid motion, together with the as-

sumption that the stress in the fluid is the sum of a diffusing viscous term (proportional to the

gradient of velocity) and a pressure term.

Flow map

Let Ω0 be an open bounded set in Rd (d “ 2, 3). As a convention, we denote the location of a

particle in Ω0 by X “ pX1, . . . , Xdq. This is the configuration at time t “ 0, which is also called

the initial configuration. To describe movement of particles, we denote the current configuration

as Ωt at any time t ě 0. The position of a particle at time t is denoted by x “ px1, . . . , xdq; see

Figure 8.1. The Lagrangian specification of the flow field is a way of looking at particle motion

where the observer follows an individual particle as it moves through space and time; see the

right figure in Figure 8.1. The Eulerian specification of the flow field is a way of looking at

179

CHAPTER 8. FLUID PROBLEMS 180

Figure 8.1: From initial configuration Ω0 to current configuration Ωt.

particle motion that focuses on specific locations in the space through which the fluid flows as

time passes; see the left figure in Figure 8.1.

For a vector-valued function f : Ωt ÞÑ Rd, the divergence operator can then be written as

∇ ¨ f :“
řd
i“1 Bifi. The gradient tensor ∇f with p∇fqi,j “ Bjfi. Let a P Rd be a constant

vector field and pa ¨ ∇qf “ přd
i“1 aiBiqf . We define an inner product of two gradient matrices

∇f : ∇g “
řd
i“1 ∇fi ¨ ∇gi. Let up¨, tq : Ωt ÞÑ Rd be the velocity field at a fixed time t. The

gradient of u is denoted by ∇u “ pBjuiqi,j . Furthermore, ∇u is often divided into the symmetric

part and the anti-symmetric part. The symmetric gradient is denoted as εpuq :“ 1
2p∇u`∇uT q

and it is the so-called strain rate.

We are ready to introduce an important concept to describe trajectory of particles, namely,

the flow map xpX, tq, which is the trajectory of a particle X along time. We define that

9x “
dxpX, tq

dt
“ upx, tq and xpX, 0q “ X. (8.1)

This simple one-dimensional ordinary differential equation (ODE) is called the characteristic

equation. Hence xp¨, tq is a mapping from the initial configuration Ω0 to the current configuration

Ωt, or deformation. The deformation gradient and its determinant are then defined as

F :“
Bx

BX
and J :“ |F | “ detpF q, (8.2)

respectively. F is also called the Jacobian matrix.

For any function fp¨, tq : Ωt ÞÑ R, we can easily derive that

9f :“
dfpx, tq

dt
“ ∇f ¨ dx

dt
` ft “ ft ` u ¨∇f, (8.3)

CHAPTER 8. FLUID PROBLEMS 181

which is usually called the material derivative of f . Apparently, F and J are functions of t.

Using the well-known Jacobi’s formula in matrix calculus, we can show that

9J “ J trpF´1 9F q. (8.4)

Hence we can immediately obtain

9J “ J trp
BX

Bx

B 9x

BX
q “ J trp∇uq “ Jp∇ ¨ uq. (8.5)

This way, we get an ODE for J , i.e.

9J “ p∇ ¨ uqJ and Jp0q “ 1. (8.6)

In fact, we can also obtain the variation of the determinant of F ,

δ|F | “ |F | trpF´1δF q.

We can also derive similar results for the deformation gradient F itself:

9F “
d

dt
p
Bx

BX
q “

B 9x

BX
“
Bu

BX
“ ∇uF. (8.7)

We can easily immediately see that

Ft ` u ¨∇F “ ∇uF and F p0q “ I. (8.8)

Volume and mass conservation

A very useful trick for doing calculus in continuum mechanics is the pull-back (from Ωt to

Ω0) and push-forward (from Ω0 to Ωt) argument. We first give an example:

d

dt

ż

Ωt

fpx, tq dx “
d

dt

ż

Ω0

fpxpX, tq, tqJ dX

“

ż

Ω0

d

dt
fpxpX, tq, tqJ dX `

ż

Ω0

fpxpX, tq, tq 9J dX

“

ż

Ω0

pft ` u ¨∇f ` f∇ ¨ uqJ dX

“

ż

Ωt

9f ` f∇ ¨ u dx “
ż

Ωt

ft `∇ ¨ pfuq dx. (8.9)

This identity is often called the transport formula.

Lemma 8.1 (Transport formula). For a function f : Ωt ÞÑ R and upx, tq :“ dxpX,tq
dt , we have

d

dt

ż

Ωt

fpx, tq dx “

ż

Ωt

ft `∇ ¨ pfuq dx “

ż

Ω0

pft ` u ¨∇f ` f∇ ¨ uqJ dX.

CHAPTER 8. FLUID PROBLEMS 182

For a domain Ω Ă Rd, we denote its volume (or area) as |Ω|. We then find that

|Ωt| “

ż

Ωt

1 dx “

ż

Ω0

J dX “ J |Ω0|

For incompressible fluids, we have that the volume preserving property

|Ωt| ” |Ω0| or Jptq ” 1.

From the equation (8.6), we can derive that ∇ ¨ u “ 0. This is the so-called divergence-free

condition.

Denote the density of the material occupying Ωt by ρpx, tq. According to the equation (8.9),

for any region ωt Ă Ωt, we have that

d

dt

ż

ωt

ρpx, tq dx “

ż

ωt

ρt `∇ ¨ pρuq dx

Since this identity holds for any ω, we immediately see that

ρt `∇ ¨ pρuq “ 0 and 9ρ` ρ∇ ¨ u “ 0, (8.10)

which is called the equation of mass conservation or the continuity equation.

It is clear that integrating the density over any domain ωt gives the mass. Due to mass

conservation, we have that
ż

ω0

ρ0pXq dX “

ż

ωt

ρpx, tq dx “

ż

ω0

ρpxpX, tq, tqJ dX.

Hence, we have the relation

ρpxpX, tq, tq “
ρ0pXq

J
. (8.11)

If the incompressible condition ∇ ¨ u “ 0 holds, we obtain that ρpxpX, tq, tq “ ρ0pXq.

If ρ ” ρ0 is a constant, then (8.10) gives the divergence-free condition immediately. On the

other hand, if we assume incompressibility, we can get a simplified equation:

ρt ` pu ¨∇qρ “ 0 or 9ρ “ 0. (8.12)

Together with ρpX, 0q “ ρ0 being a constant, we can get ρ ” ρ0 for all time t P r0, T s.

Balance of momentum

Now we consider the incompressible Newtonian fluids. Due to the Newton’s Second Law, we

have the balance of momentum

d

dt

ż

Ωt

ρu dx “ ForcepΩtq. (8.13)

CHAPTER 8. FLUID PROBLEMS 183

The left-hand side of the above equation is the rate of change for the momentum. Using the

transport formula (Lemma 8.1), we derive that

d

dt

ż

Ωt

ρu dx “

ż

Ω0

pρt ` u ¨∇ρqu` ρput ` u ¨∇uq dX.

Due to the mass conservation and incompressibility (8.12), we then have

d

dt

ż

Ωt

ρu dx “

ż

Ωt

ρput ` u ¨∇uq dx. (8.14)

On the other hand, the right-hand side of the Newton’s Second Law is the total force acting on

Ωt. We have, from the divergence theorem, that

ForcepΩtq :“

ż

Ωt

f dx`

ż

BΩt

T ¨ n dS “

ż

Ωt

f `∇ ¨T dx,

where f is the total external body force (like gravity), T is the traction tensor on the boundary

of Ωt, and n is the outer normal direction on the boundary BΩt. The exact form of T depends

on the underlying constitutive laws. For Newtonian fluids, the traction can be defined as

T :“ ´pI ` 2µεpuq, (8.15)

where p is the pressure and µ is the viscosity.

For incompressible fluids, we have ∇ ¨ u “ 0. In turn, we can obtain (see HW 8.1) that

`

∇ ¨ p2εpuqq
˘

j
“

d
ÿ

i“1

Bipui,j ` uj,iq “
d
ÿ

i“1

Bjui,i `
d
ÿ

i“1

Biuj,i “ ∆uj ,

which means

2∇ ¨ εpuq “ ∆u. (8.16)

This way we can get the momentum equation (balance of force) for incompressible Newtonian

fluids:

ρput ` u ¨∇uq “ ´∇p` µ∆u. (8.17)

If the density ρ is a constant, we further simplify the above equation (by modifying the definition

of p and µ) to give

ut ` u ¨∇u “ ´∇p` µ∆u. (8.18)

CHAPTER 8. FLUID PROBLEMS 184

Mathematical models

To summarize, we have derived the mathematical model for incompressible Newtonian fluids,

i.e., the Navier–Stokes (NS) equations:

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

ρput ` u ¨∇uq ´ µ∆u`∇p “ f , Ωt balance of momentum;

ρt `∇ ¨ pρuq “ 0, Ωt conservation of mass;

∇ ¨ u “ 0, Ωt incompressibility;

u “ 0, BΩt no-slip boundary;

u|t“0 “ u0, Ωt initial condition.

(8.19)

If we assume the density ρ is a constant, then we can write (8.19) as follows:

$

’

’

’

’

’

&

’

’

’

’

’

%

ut ` u ¨∇u´ µ∆u`∇p “ f , Ωt momentum equation;

∇ ¨ u “ 0, Ωt continuity equation;

u “ 0, BΩt no-slip boundary;

u|t“0 “ u0, Ωt initial condition.

(8.20)

Now we have the mathematical model for incompressible viscous Newtonian fluids. If we

consider ideal fluids (viscosity µ “ 0) and assume that there is no external body force (f “ 0),

then we get the incompressible Euler equations:

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

ρput ` u ¨∇uq `∇p “ 0, Ωt balance of momentum;

ρt `∇ ¨ pρuq “ 0, Ωt conservation of mass;

∇ ¨ u “ 0, Ωt incompressibility;

u ¨ n “ 0, BΩt no-flow boundary;

u|t“0 “ u0, Ωt initial condition.

(8.21)

If the density ρ is a constant, then we have the following simplified form:

$

’

’

’

’

’

&

’

’

’

’

’

%

ut ` u ¨∇u`∇p “ 0, Ωt momentum equation;

∇ ¨ u “ 0, Ωt continuity equation;

u ¨ n “ 0, BΩt no-flow boundary;

u|t“0 “ u0, Ωt initial condition.

(8.22)

For numerical simulation of the Navier–Stokes and Euler equations, there are several tech-

nical difficulties. First of all, the incompressibility condition is a constraint on the velocity field

and appropriate finite element spaces need to be selected to discretize this mixed problem. Sec-

ondly, these equations have a nonlinear convection term; when the viscosity coefficient µ is small

(corresponding to high Reynolds number), the convection is essentially dominant.

CHAPTER 8. FLUID PROBLEMS 185

8.2 The Stokes-type equations

For simplicity, we now focus on a linearized problem of the Navier–Stokes equation, namely

the Stokes equation.

The time-dependent Stokes equation

On an open bounded set Ω Ă Rd, we consider
$

’

’

’

’

’

&

’

’

’

’

’

%

ut ´ µ∆u`∇p “ f , Ω;

∇ ¨ u “ 0, Ω;

u “ 0, BΩ;

u|t“0 “ u0, Ω.

(8.23)

This set of equations is usually referred to as the time-dependent Stokes equations. After time

discretization, we need to solve the Stokes-like equations
$

’

’

&

’

’

%

pI ´ ε2∆qu`∇p “ f , Ω;

∇ ¨ u “ 0, Ω;

u “ 0, BΩ.

(8.24)

We can further simplify the discussion and only consider the following steady-state Stokes

equations, i.e.,
$

’

’

&

’

’

%

´∆u`∇p “ f , Ω;

∇ ¨ u “ 0, Ω;

u “ 0, BΩ.

(8.25)

Let V :“
“

H1
0 pΩq

‰d
and Q :“ L2

0pΩq “

q P L2pΩq :
ş

Ω q “ 0
(

. The weak form of the Stokes

equation (8.25) can be written as: Find u P V and p P Q, such that
$

’

&

’

%

2

ż

Ω
εpuq : εpvq dx` pp, ∇ ¨ vq “ pf ,vq, @v P V ;

p∇ ¨ u, qq “ 0, @ q P Q.

(8.26)

The derivation is straightforward and hence leave to the readers; see HW 8.2.

Remark 8.2 (Constrained energy minimization). We can view the Stokes equations as a con-

strained energy minimization problem

min
vPZ

ż

Ω
εpvq : εpvq dx´

ż

Ω
f ¨ v dx,

where Z :“ tv P V : ∇ ¨ v “ 0u is the subspace of divergence-free functions. The equation

(8.26) is the first-order optimality condition of this constrained minimization problem and p is

the Lagrange multiplier.

CHAPTER 8. FLUID PROBLEMS 186

The Brezzi theory

Let V 1 and Q1 be the dual spaces of V and Q, respectively. Generally speaking, we can put

the Stokes problem in an abstract framework and consider the following saddle-point problem:

For any given pf, gq P V 1ˆQ1, find a pair pu, pq P V ˆQ, such that the following system holds

$

&

%

aru, vs ` brv, ps “ 〈f, v〉 , @v P V ;

bru, qs “ 〈g, q〉 , @q P Q.
(8.27)

Here ar¨, ¨s : V ˆ V ÞÑ R and br¨, ¨s : V ˆQ ÞÑ R are continuous bilinear forms, i.e.,

aru, vs ď Ca}u}V }v}V , @u, v P V ,

bru, ps ď Cb}u}V }p}Q, @u P V , p P Q.

We can identify a linear operator A : V ÞÑ V 1 such that

〈Au, v〉 “ aru, vs, @u P V , v P V

and another linear operator B : V ÞÑ Q1 (or its adjoint BT : Q ÞÑ V 1) such that

〈Bu, p〉 “
〈
u,BT p

〉
“ bru, ps, @u P V , p P Q.

Hence (8.27) can be written in the following operator form

$

&

%

Au` BT p “ f,

Bu “ g.

We now analyze under what condition(s) the weak formulation (8.27) is well-posed. We

define the kernel space of B as

Z :“ nullpBq “

v P V : brv, qs “ 0, @q P Q
(

Ă V .

Because br¨, ¨s is continuous, Z is closed. Hence we can give an orthogonal decomposition

V “ Z ‘Z K “ nullpBq ‘ nullpBqK.

For any u P V , we have u “ u0 ` uK, with u0 P nullpBq and uK P nullpBqK.

In order to solve Bu “ g, we only need to solve BuK “ g. Using the inf-sup theory discussed

in §1.1, we can see that, if B is surjective, namely,

inf
qPQ

sup
vPV

brv, qs

}v}V }q}Q
“ β ą 0, (8.28)

CHAPTER 8. FLUID PROBLEMS 187

then uK exists. Furthermore, it is easy to see that uK is also unique1. Hence we have B : Z K ÞÑ

Q1 and BT : Q ÞÑ pZ Kq1 are isomorphisms.

Now we only need to show the existence and uniqueness of the following problem: Find

u0 P Z , such that

aru0, vs “ 〈f, v〉´ aruK, vs, @ v P Z .

According to the Nečas Theorem 1.16, we know that the existence and uniqueness of u0 is

equivalent to the following inf-sup conditions

inf
uPZ

sup
vPZ

aru, vs

}u}V }v}V
“ inf

vPZ
sup
uPZ

aru, vs

}u}V }v}V
“ α ą 0. (8.29)

With the conditions (8.29) and (8.28), we obtain a unique solution u “ u0 ` uK.

We can find the solution for the pressure variable by solving

BT p “ f ´Au. (8.30)

For any v P Z “ nullpBq, it is easy to see that

〈f ´Au, v〉 “
〈
BT p, v

〉
“ 〈p,Bv〉 “ 0.

Hence, f ´ Au P pZ Kq1 “ tw P V 1 : 〈w, v〉 “ 0, @v P Z u. Because BT : Q ÞÑ pZ Kq1 is an

isomorphism, there is a unique solution to (8.30).

Hence we obtain the following well-posedness result [42, Theorem 1.1]:

Theorem 8.3 (Brezzi Theorem). For continuous bilinear forms ar¨, ¨s and br¨, ¨s, the saddle-point

problem (8.27) is well-posed if and only if (8.29) and (8.28) hold. Furthermore, the solution

pu, pq satisfies the stability condition

}u}V ` }p}Q À }f}V 1 ` }g}Q1 .

Remark 8.4 (Inf-sup condition of the mixed formulation). Let X :“ V ˆQ. We define a new

bilinear form ã : X ˆX ÞÑ R

ãrpu, pq, pv, qqs :“ aru, vs ` brv, ps ` bru, qs.

Then the saddle-point problem (8.27) is equivalent to finding pu, pq PX such that

ãrpu, pq, pv, qqs “ 〈f, v〉` 〈g, q〉 , @pv, qq PX . (8.31)

If both ar¨, ¨s and br¨, ¨s are continuous, then ãr¨, ¨s is also continuous. If ar¨, ¨s and br¨, ¨s satisfy

the standard Brezzi conditions (8.29) and (8.28), respectively, then ãr¨, ¨s satisfies the inf-sup

condition as well.

1Suppose there is another solution ũK, then BpuK ´ ũKq “ 0. In turn, we have uK ´ ũK is in nullpBq. Due to
uK ´ ũK P nullpBqK, we find uK ´ ũK “ 0.

CHAPTER 8. FLUID PROBLEMS 188

Well-posedness of the Stokes equation

In view of the general theory developed in the previous subsection, we can define

aru,vs :“ 2

ż

Ω
εpuq : εpvq dx A :“ ´∆ (8.32)

brv, qs :“ ´

ż

Ω
∇ ¨ v q dx B :“ ´∇¨, BT :“ ∇ (8.33)

In this case, the inf-sup condition (8.29) is trivial since the coercive condition holds, i.e.,
ż

Ω
εpuq : εpuq ě α}u}21, @u P rH1

0 pΩqs
d.

Hence we only need to check the inf-sup condition for br¨, ¨s.

Lemma 8.5 (Inf-sup condition for divergence operator). For any q P Q “ L2
0pΩq, there exists

v P V “ rH1
0 pΩqs

d such that

∇ ¨ v “ q and }v}1 À }q}0.

So the inf-sup condition (8.28) holds.

Proof. This non-trivial result goes back to Nečas and a proof can be found in [60, III.3.1].

Remark 8.6 (Existence of solution). It has been shown in the above lemma that rangepBq “
L2pΩq{R – Q. Or equivalently, we have nullpBT qŞQ “ t0u.

Using the previous lemma and the Brezzi theorem, we can easily get the following result:

Theorem 8.7 (Well-posedness of the Stokes equation). There exists a unique solution pu, pq P

rH1
0 pΩqs

d ˆ L2
0pΩq to the weak form of the Stokes equation (8.26) and

}u}1 ` }p}0 À }f}´1.

Penalty method for the Stokes equation ‹

In general, there are two approaches to approximate the Stokes problem. The first one is to

approximate (8.26) directly. An alternative method is to formulate the original problem using

a penalty method as

Find u P V : 2

ż

Ω
εpuq : εpvq dx` γp∇ ¨ u, ∇ ¨ vq “ pf ,vq, @v P V . (8.34)

The above equation can also be seen in the linear elasticity problems and it is known for

causing the locking phenomena2 for many finite element methods when γ is big. This is usually

caused by overly constraint on the velocity space. To cure such a problem, penalty methods

introduce selective or reduced integration procedures. It has been shown that penalty methods

are sometimes equivalent to mixed methods [77].
2The computed velocity is vanishing or unnaturally small for big λ.

CHAPTER 8. FLUID PROBLEMS 189

8.3 Mixed finite element methods

In this section, we consider conforming mixed finite element methods for the Stokes equations.

Let Vh Ă V “ rH1
0 pΩqs

d and Qh Ă Q “ L2
0pΩq be finite dimensional spaces. Find uh P Vh and

ph P Qh, such that
$

’

&

’

%

2

ż

Ω
εpuhq : εpvhq dx´ pph, ∇ ¨ vhq “ pf ,vhq, @vh P Vh,

p∇ ¨ uh, qhq “ 0, @ qh P Qh.

(8.35)

The existence of the discrete solution puh, phq is straightforward due to the conformity of the

approximation spaces.

Well-posedness and convergence

Let Zh “ nullpBhq be the kernel of the discrete divergence operator. In fact, the coercivity

of ar¨, ¨s yields that

inf
uhPZh

sup
vhPZh

aruh,vhs

}uh}1}vh}1
“ αh ą 0. (8.36)

If Zh Ă Z and the coercivity condition holds, we have the following optimal approximation

property by the Céa’s lemma (Lemma 3.2):

}u´ uh}V ď
Ca
αh

inf
vhPZh

}u´ vh}V .

However, it is not easy to make the finite element kernel space Zh Ă Z . A sufficient condition

for this inclusion property is BpVhq Ă Qh, which suggests Qh should be large enough for a fixed

space Vh. In fact, we have

Bhuh “ 0, in Q1h ðñ pBuh, qhq “ 0, @qh P Qh.

Furthermore, we also have

Buh “ 0, in Q1 ðñ pBuh, qq “ 0, @q P Q.

If uh P Zh and q P Q, then pBuh, qq “ pBuh, q0 ` qKq “ pBuh, q0q ` pBuh, qKq “ 0, where

q “ q0`qK with q0 P Qh. Notice that pBuh, qKq “ 0 because the inclusion condition BpVhq Ă Qh.

If Zh Ć Z , then there is a variational crime and we have following estimate:

}u´ uh}V ď
´

1`
Ca
αh

¯

inf
vPZh

}u´ v}V `
1

αh
sup

wPZhzt0u

ˇ

ˇaru´ uh,ws
ˇ

ˇ

}w}V
.

For w P Zh, we have

aru´ uh,ws “ aru,ws ´ pf ,vq “ ´brw, ps “ ´brw, p´ qs,

CHAPTER 8. FLUID PROBLEMS 190

for any q P Qh. Because br¨, ¨s is continues, we find that

ˇ

ˇaru´ uh,ws
ˇ

ˇ ď Cb}w}V }p´ q}Q.

We can then conclude with the following best approximation result:

Lemma 8.8 (Quasi-optimality for velocity). Let Vh Ă V and Qh Ă Q. If the bilinear form

ar¨, ¨s is coercive, then we have

}u´ uh}V ď
´

1`
Ca
αh

¯

inf
vPZh

}u´ v}V `
Cb
αh

inf
qPQh

}p´ q}Q.

We have the identity

pBhuh, qhq “ bruh, qhs “ pBuh, qhq, @qh P Qh.

In the other words, Bhuh is the L2-projection of Buh onto Qh. If nullpBTh q is not trivial, then

rangepBhq is strictly included in Qh. This could lead to ill-posed problems. For a fixed Qh, the

velocity approximation space Vh should be rich enough in order to guarantee the discrete inf-sup

condition:

inf
qhPQh

sup
vhPVh

bpvh, qhq

}vh}1}qh}0
“ βh ą 0. (8.37)

The condition nullpBTh q “ t0u is necessary for the inf-sup condition above. If nullpBTh q is non-

trivial, then the numerical solution ph is not unique, namely, ph ` sh is also a solution when

sh P nullpBTh q. In this case, we usually find the computed pressure is oscillatory and, hence,

nullpBTh q is often referred to as the space of spurious pressure modes.

Theorem 8.9 (Quasi-optimality). Let Vh Ă V and Qh Ă Q. If the bilinear form ar¨, ¨s is

coercive and the inf-sup condition (8.37) holds with βh ě β0 ą 0, then we have

}u´ uh}V ` }p´ ph}Q À inf
vPZh

}u´ v}V ` inf
qPQh

}p´ q}Q.

Some stable finite element pairs ‹

From the above discussions, we conclude that: To balance computational efforts and conver-

gence rates for the velocity in rH1
0 pΩqs

d and the pressure in L2
0pΩq, it is better to use pk` 1q-th

degree of polynomials for Vh and k-th degree of polynomials for Qh.

Remark 8.10 (Constraint ratio). An empirical approach has been used to check the balance

between velocity and pressure approximation spaces. The so-called constraint ratio is defined as

Cr :“ dimQh{dimVh.

Apparently, if Cr ą 1 then number of constraints exceeds the number of variables, which will

usually cause locking. On the other hand, if Cr is too small, then divergence free condition is

not approximated accurately enough.

CHAPTER 8. FLUID PROBLEMS 191

The easiest and seemingly natural choice for the mixed finite element spaces is the pair of

the lowest order polynomials P 1,0
h –P 0

h . Unfortunately, this pair does not satisfy the discrete

inf-sup condition and we have to either enlarge velocity field finite element space or restrict the

pressure space. There are many possible stable pairs; see the survey paper [14] and references

therein for more details. Here we just name a few:

•
“

P k,0h

‰d
–P k´1,0

h for k ě 2, Taylor–Hood

•
“

Qk,0h
‰d

–Qk´1,0
h for k ě 2, Taylor–Hood

•
“

P 1,0
h ‘ B3

τ

‰2
–P 0

h , where B3
τ are cubic bubble functions, MINI

•
“

P 1,0
h{2

‰2
–P 0

h

•
“

P 2,0
h

‰d
–P 0

h , important theoretically, but degree not matching

•
“

P 2,0
h ‘ B3

τ

‰2
–P 1,´1, Crouzeix–Raviart

•
“

P 2,0
h ‘ B4

τ

‰3
–P 1,´1, Crouzeix–Raviart

•
“

P 1,NC
h

‰d
–P 0

h , non-conforming Crouzeix–Raviart

•
“

P k,0h

‰2
–P k´1,´1

h for k ě 4, Scott–Vogelius

•
“

Qk,0h
‰d

–P k´1,´1
h for k ě 2

Figure 8.2: A sample discretization using the MAC scheme

CHAPTER 8. FLUID PROBLEMS 192

Constructing stable finite difference schemes for the Stokes equation lacks of theoretical

guidance like the Babuška–Brezzi condition discussed above. However we can expect that the

standard five-point stencil does not work for the Stokes equation. This is because the five-point

stencil can be viewed as Q1,0
h ´Q1,0

h finite element with a specific quadrature rule. If we change

the pressure discretization to the center of cells, then it yields Q1,0
h ´ Q0,´1

h . And, apparently,

both finite element pairs are not stable. The main idea of the Marker-and-Cell (MAC) scheme is

to place the degrees of freedom for velocity and pressure at different locations. More specifically,

the pressure p is defined at the cell centers, the velocity component u1 is defined at the middle

points of vertical edges, and the velocity component u2 defined at the middle points of horizontal

edges; see Figure 8.2. This method is same as the RT0 finite element on rectangular grids.

Mixed methods for the Poisson’s equation ‹

Mixed finite element methods have been applied to our model problem, the Poisson’s equa-

tion, as well. By introducing an artificial variable p, a general mixed formulation of the Poisson’s

equation can be written as
$

’

’

’

’

&

’

’

’

’

%

u´∇p “ f , in Ω;

∇ ¨ u “ g, in Ω;

u ¨ n “ 0, on BΩ

(8.38)

In this section, we use this model problem to further explain how to construct preconditioners

arising from the saddle-point problems.

Sometimes the mixed formulation of the Poisson’s equation is used for numerical treatment:

Find pu, pq P H0pdiv,Ωq ˆ L2
0pΩq such that

$

&

%

pu,vq ` pp, ∇ ¨ vq “ xf ,vy, @v P H0pdiv,Ωq;

p∇ ¨ u, qq “ xg, qy, @ q P L2
0pΩq.

(8.39)

Here Hpdiv,Ωq consists of all functions in rL2pΩqsd with divergence in L2pΩq and H0pdiv,Ωq

contains the Hpdiv,Ωq-functions with vanishing normal components on the boundary BΩ. Define

an inner product

pu,vqH0pdiv,Ωq :“ pu,vq ` p∇ ¨ u,∇ ¨ vq. (8.40)

This problem corresponds to the mixed formulation of the Poisson’s equation with the Neumann

boundary condition.

If u P Z is divergence free, then }u}H0pdiv,Ωq “ }u}0,Ω. Hence we can easily verify the Brezzi

conditions hold for this problem. As a consequence, the operator

Ã0 “

˜

I ´ grad

div 0

¸

: H0pdiv,Ωq ˆ L2
0pΩq ÞÑ H0pdiv,Ωq1 ˆ L2

0pΩq

CHAPTER 8. FLUID PROBLEMS 193

is an isomorphism. The canonical preconditioner is a block diagonal isomorphism

D̃p1q0 “

˜

pI ´ grad divq´1 0

0 I

¸

: H0pdiv,Ωq1 ˆ L2
0pΩq ÞÑ H0pdiv,Ωq ˆ L2

0pΩq.

There is an alternative mixed formulation for the Poisson’s equation: Find pu, pq P rL2pΩqsdˆ
`

H1pΩq
Ş

L2
0pΩq

˘

such that

$

&

%

pu,vq ´ p∇p,vq “ xf ,vy, @v P rL2pΩqsd;

´pu,∇qq “ xg, qy, @ q P H1pΩq
Ş

L2
0pΩq.

(8.41)

The Brezzi conditions can be verified using the Poincaré’s inequality. Hence Ã is also well-defined

on rL2pΩqsd ˆ
`

H1pΩq
Ş

L2
0pΩq

˘

. And in this case, the canonical preconditioner is

D̃p2q0 “

˜

I 0

0 p´∆q´1

¸

: rL2pΩqsd ˆ
`

H1pΩq
č

L2
0pΩq

˘1
ÞÑ rL2pΩqsd ˆ

`

H1pΩq
č

L2
0pΩq

˘

.

Apparently, this preconditioner is significantly different than the one given in the previous

subsection. As a result, different choices of approximation space and its norm can yield very

different solution methods.

8.4 Canonical preconditioners

In this section, we discuss how to construct canonical preconditioners for the saddle-point

problems, like the Stokes equation and the time-dependent Stokes equation. The basic idea

follows the discussion in §2.2.

Preconditioning the Stokes equation

We notice that the corresponding operator of the Stokes system

Ã :“

˜

´∆ ´ grad

div 0

¸

is an isomorphism mapping from rH1
0 pΩqs

dˆL2
0pΩq onto rH´1pΩqsdˆL2

0pΩq. A natural precon-

ditioner would be the classical block diagonal preconditioner

D̃ “
˜

p´∆q´1 0

0 I

¸

.

This observation immediately motivates the classical block diagonal preconditioner [23].

CHAPTER 8. FLUID PROBLEMS 194

Similar to the continuous case, we can construct natural preconditioners based on the map-

ping properties. Let tXhu be a family of finite element spaces and it is conforming in the sense

that Xh Ă X :“ rH1
0 pΩqs

d ˆ L2
0pΩq. Consider the discrete Stokes problem: Find puh, phq P Xh

such that

ãrpuh, phq, pvh, qhqs “ 〈f,vh〉 , @pvh, qhq P Xh.

The corresponding linear map Ãh : Xh ÞÑ X 1h is given by

xÃhx, yy “ ãrx, ys, @x, y P Xh.

Note that, in this case, ã is not positive definite and the system Ãh can be singular.

According to Remark 8.4, the stable discretizations can be characterized by a discrete inf-sup

condition: There exists a constant α0, independent of h, such that

inf
xPXh

sup
yPXh

ãrx, ys

}x}X }y}X
ě α0 ą 0. (8.42)

This condition does not follow from the corresponding continuous inf-sup condition. Similar to

the continuous case, we can define a preconditioner D̃h : X 1h ÞÑ Xh by

pD̃hf, yqX “ xf, yy, @y P Xh.

That is to say

D̃h :“

˜

p´∆hq
´1 0

0 I´1
h

¸

. (8.43)

Apparently, if Ãh is symmetric, D̃hÃh is symmetric with respect to p¨, ¨qX and

}D̃hÃh}L pXh;Xhq ď Ca, }pD̃hÃhq
´1}L pXh;Xhq ď α´1

0 .

Hence the condition number κpD̃hÃhq is uniformly bounded.

Preconditioning the time-dependent Stokes equation ‹

Now we are in position to develop preconditioners for the time-dependent Stokes prob-

lem (8.23). Like in many other applications, it is crucial to get robust or parameter-independent

performance for problems with small or large parameters. One of the useful technique is to define

proper parameter-dependent spaces and norms, such that the operator-norms of the coefficient

operator can be bounded uniformly with respect to the parameters [83].

According to the classical theory of intersections and sums of Hilbert spaces [13], we can

introduce the norms for X1
Ş

X2 and X1 `X2 as

}u}X1
Ş

X2
:“

´

}u}2X1
` }u}2X2

¯
1
2

CHAPTER 8. FLUID PROBLEMS 195

and

}u}X1`X2 :“ inf
u“u1`u2

u1PX1,u2PX2

´

}u1}
2
X1
` }u2}

2
X2

¯
1
2
.

If X1
Ş

X2 is dense in both X1 and X2, then

pX1

č

X2q
1 “ X 1

1 `X 1
2 and pX1 `X2q

1 “ X 1
1

č

X 1
2 .

If F P L pX1; Y1q
Ş

L pX2; Y2q, then

F P L
`

X1

č

X2; Y1

č

Y2

˘

č

L
`

X1 `X2; Y1 ` Y2

˘

.

For our purpose, we assume that X1 and X2 are real separable Hilbert spaces and X2 Ă X1.

Hence it is natural to assume }u}X1 ď }u}X2 . For a real positive parameter ε ą 0, we consider

the norm for the space X1
Ş

εX2 and its dual, respectively, by

}u}X1
Ş

εX2
:“

´

}u}2X1
` ε2}u}2X2

¯
1
2
, }f}X 1

1`ε
´1X 1

2
:“ inf

f“f1`f2

f1PX 1
1 ,f2PX 1

2

´

}f1}
2
X 1

1
` ε´2}f2}

2
X 1

2

¯
1
2
.

Apparently, Xε :“ X1
Ş

εX2 is the same as X2 as a set. Furthermore, as ε tends to zero, the

norm of Xε approaches the norm of } ¨ }X1 . Similarly, X 1
ε :“ X 1

1 ` ε
´1X 1

2 , as a set, is the same

as X 1
2 and its norm approaches } ¨ }X 1

1
when ε tends to zero.

Consider preconditioning the time-dependent Stokes problem (8.24) where the coefficient

operator is defined as

Ãε :“

˜

I ´ ε2∆ ´ grad

div 0

¸

For this problem, we shall construct a preconditioner which is uniformly convergent with respect

to both h and ε.

1○ In view of §8.3, we know that Ã0 is bounded from H0pdiv,ΩqˆL2
0pΩq into its dual space.

Hence we consider the operator Ãε on

Xε :“
´

H0pdiv,Ωq
č

εrH1
0 pΩqs

d
¯

ˆL2
0pΩq and X 1

ε :“
´

H0pdiv,Ωq1`ε´1rH´1pΩqsd
¯

ˆL2
0pΩq.

In this case, the two Brezzi conditions holds and Ãε is an isomorphism. In turn, the canonical

preconditioner is of the form

D̃p1qε “

˜

pI ´ grad div´ε2∆q´1 0

0 I

¸

.

2○ We have seen that Ã0 is also bounded on rL2pΩqsdˆ
`

H1pΩq
Ş

L2
0pΩq

˘

into its dual space.

Furthermore, in order to guarantee the inf-sup condition, the proper norm for the pressure

unknown is [81, 82]:

sup
vPrH1

0 pΩqs
d

pq,∇ ¨ vq
}v}L2

Ş

εH1

“ }∇q}L2`ε´1H´1 „ }q}H1`ε´1L2 .

CHAPTER 8. FLUID PROBLEMS 196

Motivated by these observations, we can consider

Xε :“
”

L2pΩq
č

εH1
0 pΩq

ıd
ˆ

´

H1pΩq
č

L2
0pΩq ` ε

´1L2
0pΩq

¯

and

X 1
ε :“

”

L2pΩq ` ε´1H´1pΩq
ıd
ˆ

´

`

H1pΩq
č

L2
0pΩq

˘1
č

εL2
0pΩq

¯

.

This choice of spaces gives a preconditioner of the form

D̃p2qε “

˜

pI ´ ε2∆q´1 0

0 p´∆q´1 ` ε2I

¸

.

Along this line, we can construct discrete block diagonal preconditioners for the time-

dependent Stokes problem [52, 21].

Preconditioning the heat equation ‹

In order to introduce a uniform preconditioner for the time-dependent Stokes equation, we

still need to give a reasonable solver for I´ ε2∆ in D̃p2qε . And this problem is in fact much more

general. For example, it also appears in a simpler scalar time-dependent problem—the heat

equation:
$

’

’

&

’

’

%

ut ´∆u “ f, Ω;

u “ 0, BΩ;

u|t“0 “ u0, Ω.

(8.44)

We discretize the first equation in (8.44) using the Backward Euler method for the time

variable to obtain that
um ´ um´1

tm ´ tm´1
´∆um “ fm,

where um and fm are approximations to u and f , respectively, at time level tm. Since u0 is

given, we can iteration over m to obtain approximate solutions tumum“0,1,... to uptm, ¨q, namely

pI ´ ε2∆qum “ f 1m. (8.45)

In this case, ε2 :“ tm´tm´1 equals the time step-size and f 1m :“ um´1`ptm´tm´1qfm is known.

So we need to find out how to construct a preconditioner for operators like Aε :“ I ´ ε2∆

corresponding to the reaction-diffusion equation.

In particular, in order to solve the reaction-diffusion equation Aεu “ f in Ω and u|BΩ “ 0 in

the previous subsection, we have

Xε :“ L2pΩq
č

εH1
0 pΩq and X 1

ε “ L2pΩq ` ε´1H´1pΩq.

As ε goes to zero, both norms approaches the L2-norm and Aε also tends to the identity.

CHAPTER 8. FLUID PROBLEMS 197

In this setting, we have

xf, pI ´ ε2∆q´1fy “ xpI ´ ε2∆qpI ´ ε2∆q´1f, pI ´ ε2∆q´1fy

“ xpI ´ ε2∆q´1f, pI ´ ε2∆q´1fy ´ ε2x∆pI ´ ε2∆q´1f, pI ´ ε2∆q´1fy

“ }f0}
2
0 ` ε

´2}f1}
2
´1,

where f0 :“ pI ´ ε2∆q´1f and f1 :“ ´ε2∆pI ´ ε2∆q´1f . Furthermore, we can get (cf. [83,

Example 4.1])

}f}2X 1
ε
“ xf, pI ´ ε2∆q´1fy “ xpI ´ ε2∆qu, uy.

We can easily see the natural norm is

}u}Xε “ }u}L2
Ş

εH1
0

:“
´

}u}20 ` ε
2}∇u}20

¯
1
2
.

Hence, it is clear that

}u}Xε “ }f}X 1
ε
.

Although I ´ ε2∆ is norm preserving from the above analysis, it is not yet clear how to

construct a practical algorithm to solve it. We notice that the above semi-discrete problem or

temporal discrete problem resembles our model problem—the Poisson’s equation. In order to

construct an efficient preconditioner for this equation, we can use the BPX preconditioner (5.19)

in §5.3. In view of (5.18), on level l, we wish to have a smoother Sl behaves like

`

Slv, v
˘

“
h2
l

h2
l ` ε

2

`

v, v
˘

, @ v P Vl.

This smoother then defines the corresponding BPX preconditioner for the semi-discrete prob-

lem (8.45). Such a simple example shows how to handle a new problem from geometric point of

view and it can be used as a component when solving the time-dependent Stokes problem.

8.5 Block preconditioners

In the previous section, we discussed how to construct canonical (natural) preconditioners

based on the mapping property of the continuous Stokes equation. Now we shall consider the

discrete Stokes problem arising in the mixed finite element method (such as the Taylor–Hood

finite element method) in algebraic setting, i.e.,

Ã

˜

u

p

¸

“

˜

f

g

¸

and Ã :“

˜

A BT

B 0

¸

. (8.46)

Suppose A P Rnˆn, B P Rmˆn, u P Rn, and p P Rn. Let N “ n `m. Assume that A is SPD

and B has full rank. It is well-known that the coupled system Ã is symmetric, indefinite, and

non-singular.

CHAPTER 8. FLUID PROBLEMS 198

Block diagonal and lower triangular method

If we consider the block diagonal preconditioner given in the previous section, the precondi-

tioner can be written as

D̃ :“

˜

A´1 0

0 M´1
p

¸

, (8.47)

where Mp is the mass matrix corresponding to the pressure approximation space and, hence, it

is well-conditioned; see Remark 3.23. It is easy to check that (8.47) is exactly the algebraic form

of (8.43). Because both A and Mp are symmetric positive definite matrices, the preconditioner

is well-defined.

Remark 8.11 (Block factorizations). We can apply the following block factorizations to the

matrix Ã such that
˜

A BT

B 0

¸

“

˜

Iu 0

BA´1 Ip

¸˜

A 0

0 S

¸˜

Iu A´1BT

0 ´Ip

¸

“

˜

A 0

B S

¸˜

Iu A´1BT

0 ´Ip

¸

“

˜

Iu 0

BA´1 ´Ip

¸˜

A BT

0 S

¸

,

where the matrix S :“ BA´1BT is the Schur complement. In fact, D̃ in (8.47) can be viewed

as an approximation of diagpA´1, S´1q.

Remark 8.12 (Schur complement). Since the A is SPD, the Schur complement S “ BA´1BT

is symmetric and positive semi-definite. Moreover, if B has full rank, S is also SPD and we can

apply the CG method to solve the Schur complement equation. However, generally speaking,

S´1p cannot be computed efficiently with acceptable computational cost. Hence the Schur

complement S should be approximated by some approximation Ŝ. There are many different

ways based on approximation of the Schur complement; see the survey paper [11].

We can also use the block lower triangular matrix to construct a preconditioner

T̃ :“

˜

A 0

B Ŝ

¸´1

. (8.48)

In particular, if we replace A by its diagonal part D in the LU decomposition of Remark 8.11,

then we get the so-called SIMPLE preconditioner

T̃SIMPLE :“

˜

Iu D´1BT

0 ´Ip

¸´1 ˜

A 0

B BD´1BT

¸´1

. (8.49)

The name comes from the widely-used SIMPLE method for fluid problems.

CHAPTER 8. FLUID PROBLEMS 199

Augmented Lagrangian method

One of the most well-known iterative method for solving (8.46) is probably the Uzawa

method. As the last decomposition in Remark 8.11, we can factorize the coefficient matrix

as
˜

A BT

B 0

¸

“

˜

Iu 0

BA´1 ´Ip

¸˜

A BT

0 S

¸

.

This means the original linear system can be rewritten as
˜

A BT

0 S

¸˜

u

p

¸

“

˜

f

BA´1f ´ g

¸

.

As discussed in Remark 8.12, the pressure Schur complement equation might be too expensive

to be solved exactly. We can apply an iterative method to solve it. For example, we can apply

the Richardson’s iteration for the second equation in the above system, i.e.,

pnew “ pold ` ω
´

BA´1f ´ g ´ Spold
¯

“ pold ´ ω
´

g ´BA´1f `BA´1BT pold
¯

.

Hence we can write the above iteration as an alternative direction method

Aunew “ f ´BT pold, pnew “ pold ´ ωpg ´Bunewq. (8.50)

The method (8.50) is called the Uzawa iteration and it is just the Richardson iteration for

the Schur complement equation. As we have discussed in §2.1, the method converges with an

appropriate scaling factor ω but the convergence rate is usually very slow. One way to speedup

the convergence is to apply the Augmented Lagrangian method (cf., for example, [59]):

pA` ε´1BTBqunew “ f ` ε´1BT g ´BT pold, pnew “ pold ´ ε´1pg ´Bunewq. (8.51)

Remark 8.13 (Uzawa method and Augmented Lagrangian method). It is easy to see that the

Augmented Lagrangian (AL) method is just the Uzawa method for the modified equation

Ãε

˜

u

p

¸

“

˜

f ` ε´1BT g

g

¸

, where Ãε :“

˜

A` ε´1BTB BT

B 0

¸

. (8.52)

Furthermore, the damping factor ω is chosen to be ε´1.

Theorem 8.14 (Convergence rate of Augmented Lagrangian method). Let pup0q, pp0qq be a

given initial guess and pupmq, ppmqq be the iterates obtained via the Augmented Lagrangian

method (8.51). Then we have

›

›p´ ppmq
›

›

0
ď

´ ε

ε` λ1

¯m›
›p´ pp0q

›

›

0
,

›

›u´ upmq
›

›

A
ď
?
ε
›

›p´ ppm´1q
›

›

0
ď
?
ε
´ ε

ε` λ1

¯m´1›
›p´ pp0q

›

›

0
,

where λ1 is the minimal eigenvalue of S “ BA´1BT .

CHAPTER 8. FLUID PROBLEMS 200

Sketch of proof. From (8.51) and (8.52), we have

pA` ε´1BTBq
`

u´ upmq
˘

“ ´BT
`

p´ ppm´1q
˘

and

p´ ppmq “
´

I ´BpεA`BTBq´1BT
¯

`

p´ ppm´1q
˘

.

By the Shermann–Morrison–Woodburry formula, we have

Z :“ BpεA`BTBq´1BT “ Sε ´ SεpI ` Sεq
´1Sε, Sε :“ ε´1BA´1BT .

It is easy to verify that

I ´BpεA`BTBq´1BT “ I ´ Sε ` SεpI ` Sεq
´1Sε “ pI ` Sεq

´1.

The above equality shows ρpZq ď 1 and p´ ppmq “ pI `Sεq
´1
`

p´ ppm´1q
˘

. So the first estimate

follows immediately. The second estimate is obtained by observing

›

›u´ upmq
›

›

2

A
“

´

pA` ε´1BTB ´ ε´1BTBq
`

u´ upmq
˘

, u´ upmq
¯

ď ε
`

Zpp´ ppm´1qq, p´ ppm´1q
˘

and then applying the first estimate.

According to Theorem 8.14, we can make the convergence as fast as we want by adjusting

the parameter ε. However, the price to pay is that, in each iteration, we have to solve a nearly-

singular system with coefficient matrix A` ε´1BTB, which was discussed in [75]. We can also

apply the Augmented Lagrangian method as a preconditioner

T̃AL :“

˜

A` ε´1BTB 0

B εI

¸´1

, (8.53)

which is often referred to as the AL preconditioner [12].

The method is closely related to the grad-div stabilization [43] of the Stokes (or Navier–

Stokes) problem:
$

’

’

&

’

’

%

pI ´ µ∆qu´ ε´1∇∇ ¨ u`∇p “ f , Ω;

∇ ¨ u “ 0, Ω;

u “ 0, BΩ.

(8.54)

In this modified problem, the coercivity condition automatically holds on the discrete level for

the H0pdivq-norm defined by (8.40). After discrezation by some mixed finite element method, we

obtain discrete systems in the form of (8.51). We can apply the block preconditioners discussed

in the previous subsection to solve the resulting discrete problems; see the survey and numerical

experiments by He and Vuik [70].

CHAPTER 8. FLUID PROBLEMS 201

8.6 Multigrid methods for the Stokes equation

Using a general multilevel iterative procedure, we can construct coupled geometric multigrid

methods for the saddle-point problem (8.46) as well. For the transfer operators, by applying the

similar ideas as in multigrid methods for scalar equations, we can construct prolongations and

restrictions for velocity and pressure variables separately. Coarse-level solvers can also apply the

same multilevel cycles as in §6.2. So we only discuss smoothers for the Stokes system. Analysis

and numerical experiments using different smoothers have been reviewed in the survey by Larin

and Reusken [74]. Apparently, the block preconditioners discussed in the previous section can

also be applied as smoothers for coupled multigrid methods. In this section, we discuss two

other widely-used smoothers in practice.

Braess–Sarazin smoother

The Braess–Sarazin smoother was introduced in [19] and can be written as

˜

upm`1q

ppm`1q

¸

“

˜

upmq

ppmq

¸

`

˜

ωD BT

B 0

¸´1 «˜

f

0

¸

´

˜

A BT

B 0

¸˜

upmq

ppmq

¸ff

, (8.55)

where ω is a positive parameter. This method mimics the damped Jacobi smoother for the

Poisson’s equation.

We need to solve, in each smoothing step, the following the linear system

˜

ωD BT

B 0

¸˜

δupmq

δppmq

¸

“

˜

f ´Aupmq ´BT ppmq

´Bupmq

¸

.

The second equation ensures the discrete divergence free condition, i.e.,

Bupm`1q “ B
`

upmq ` δupmq
˘

“ 0, m “ 1, 2, . . .

Apparently, the Braess–Sarazin smoother can be reduced to an auxiliary pressure equation

`

BD´1BT
˘

δppmq “ ωBupmq `BD´1
`

f ´Aupmq ´BT ppmq
˘

.

The coefficient matrix Ŝ :“ BD´1BT is similar to a scaled discrete Laplace operator on the

pressure space. In practice, we can solve it approximately using an iterative method for example.

Vanka smoother

Next we introduce a smoother originally proposed by Vanka [112]. In the context of finite

element methods, the Vanka-type smoothers are just block Gauss–Seidel (or Jacobi) methods.

Each block contains degrees of freedom in an element or a set of elements. One of the popular

CHAPTER 8. FLUID PROBLEMS 202

variant of Vanka-type smoothers is the so-called pressure-oriented Vanka smoother for continuous

pressure approximations. We only discuss this special case of Vanka smoother here.

For each pressure variable indexed by i (1 ď i ď m), let the set of velocity indices that are

“connected” to i as

Si :“ t1 ď j ď n : bi,j ‰ 0u,

where bi,j is the pi, jq-entry of the matrix B. So we can define an injection to the set of variables

tuj pj P Siq, piu, i.e.,

Ii “

˜

Iu,i 0

0 Ip,i

¸

P Rp|Si|`1qˆpn`mq,

where Ip,ip “ pi and Iu,iu “ pujqjPSi are the corresponding injection matrices for velocity and

pressure, respectively.

We can then apply a multiplicative Schwarz method (or the so-called Full Vanka smoother):

I ´ T̃FVankaÃ “
m
ź

i“1

´

I ´ ITi Ã
´1
i IiÃ

¯

, (8.56)

where

Ãi “ IiÃI
T
i “

˜

Ai BT
i

Bi 0

¸

P Rp|Si|`1qˆp|Si|`1q.

We can also use a simplified version (i.e., the Diagonal Vanka smoother):

I ´ T̃DVankaÃ “
m
ź

i“1

´

I ´ ITi D̃
´1
i IiÃ

¯

, (8.57)

where

D̃i “

˜

Di BT
i

Bi 0

¸

P Rp|Si|`1qˆp|Si|`1q.

In this case, due to the special nonzero pattern of D̃i, it can be solved very efficiently.

8.7 Homework problems

HW 8.1. Show the equation (8.16). Hint: In R2, taking divergence of the symmetric gradient,

we get

∇ ¨ εpuq “

¨

˝

B2
1u1 `

1
2B2pB2u1 ` B1u2q

B2
2u2 `

1
2B1pB1u2 ` B2u1q

˛

‚

“

¨

˝

1
2pB

2
1u1 ` B

2
2u1q `

1
2B1pB1u1 ` B2u2q

1
2pB

2
1u2 ` B

2
2u2q `

1
2B2pB1u1 ` B2u2q

˛

‚“
1

2
∆u`

1

2
∇∇ ¨ u.

CHAPTER 8. FLUID PROBLEMS 203

HW 8.2. Derive the weak form (8.26) of the Stokes equations (8.25).

HW 8.3. Give the complete proof of Theorem 8.14.

Chapter 9

Optimization Problems

Mathematical optimization (mathematical programming or optimization) is the selection

of a “best” element (with regard to certain criterion) from some set of available alternatives.

Many optimization problems can be written as variational inequalities (VIs); for example, many

problems in economics, operations research, and transportation equilibrium problems. In this

chapter, we discuss multilevel iterative methods for solving finite-dimensional variational in-

equalities.

9.1 Model problems

VIs arise from a wide range of application areas, like mechanics, control theory, engineering,

and finance. After several decades of development, this subject has become very rich on both

theory and numerics. For a general discussion on the existence and regularity, we refer the

interested readers to [72]. For a comprehensive discussion on numerical methods for VIs, we

refer to Glowinski [62].

A model variational inequality

Let ar¨, ¨s and fp¨q be a symmetric bilinear form and a linear form, respectively, and χ P

H1
0 pΩq be an admissible obstacle (for simplicity, we assume the zero boundary condition). Con-

sider the following elliptic variational inequality (or the obstacle problem): Find u P Kχ :“ tv P

H1
0 pΩq : v ě χu, such that

aru, v ´ us ě fpv ´ uq, @ v P Kχ. (9.1)

After transformation w :“ u´χ, we arrive at a new problem with a simple inequality constraint:

Find w P K0 :“ tv P H1
0 pΩq : v ě 0u, such that

arw, v ´ ws ě f0pv ´ wq :“ fpv ´ wq ´ arχ, v ´ ws, @ v P K0. (9.2)

204

CHAPTER 9. OPTIMIZATION PROBLEMS 205

For problem (9.1), the Lagrange multiplier can be defined as σ1 such that

〈σ1puq, ϕ〉 :“ fpϕq ´ aru, ϕs, @ ϕ P H1
0 pΩq. (9.3)

On the other hand, for (9.2), notice, for any ϕ P H1
0 pΩq, that

〈σ2pwq, ϕ〉 “ f0pϕq ´ arw,ϕs “ fpϕq ´ aru, ϕs “ 〈σ1puq, ϕ〉 .

It is easy to see that

〈σ1puq, v ´ u〉 ď 0, @ v P Kχ, (9.4)

or

〈σ2pwq, v ´ w〉 ď 0, @ v P K0.

On the other hand, if σ is the Lagrange multiplier of (9.1), we have

〈σpvq ´ σpuq, ϕ〉 “ ´arv ´ u, ϕs, @ ϕ P H1
0 pΩq.

Hence,

〈σpvq ´ σpuq, v ´ u〉 “ ´arv ´ u, v ´ us “ ´ |||v ´ u|||2 , @ v, u P H1
0 pΩq. (9.5)

Hence, we have 〈σpvq ´ σpuq, v ´ u〉 ď 0, for any v, u P H1
0 pΩq, i.e., σ is a monotone operator.

Remark 9.1 (Uniqueness of solution). Notice that if both u1 and u2 are solutions of the

variational inequality (9.1), by the monotonicity of σ, |||u1 ´ u2||| “ 0 and then we obtain the

uniqueness.

As before, we assume that A : H1
0 pΩq ÞÑ H´1pΩq be the operator corresponding to ar¨, ¨s.

An frequently equivalent formulation of (9.1) is the so-called linear complementarity problem

(LCP): Find a solution u P H1
0 pΩq such that

$

’

’

’

&

’

’

’

%

Au´ f ě 0

u´ χ ě 0

〈Au´ f, u´ χ〉 “ 0.

(9.6)

The last equation is the so-called complementarity condition.

Proof. If u is a solution of LCP (9.6), then for any v P H1
0 pΩq and v ě χ we have

〈Au´ f, u´ v〉 “ 〈Au´ f, χ´ v〉 ď 0,

in view of the complementarity condition and the sign condition of Au´ f . On the other hand,

if u is solution of (9.1), it is trivial to see that u satisfies the first two conditions of LCP. The

complementarity condition is obtained by taking v “ u` pu´ χq and v “ χ.

CHAPTER 9. OPTIMIZATION PROBLEMS 206

Finite element discretization for VIs

As discussed in §3.1, the domain Ω is partitioned into a quasi-uniform simplexes of size h;

this mesh is denoted by Mh. Let Vh ĂW 1,8
0 pΩq be the continuous piecewise linear finite element

space associated with Mh. The obstacle problem (9.2) can be approximated by a finite element

function uh P K0
Ş

Vh satisfying:

aruh, vh ´ uhs ě f0pvh ´ uhq, @ vh P K0

č

Vh. (9.7)

As before, we denote all the interior nodes of the partition Mh by G̊pMhq. Let tφzuzPG̊pMhq

be the canonical linear finite element basis of the mesh Mh. Let u “ uh :“
ř

zPG̊pMhq
uzφz

and u “ puzqzPG̊pMhq
, the discrete solution and its nodal value vector (primal vector form),

respectively. Hence we have the following linear system

pv ´ uqT pAu´ ~f0q ě 0, @ v ě 0, (9.8)

where A is the corresponding stiffness matrix of the bilinear form and ~f0 is the dual vector form

of f0.

Remark 9.2. One can prove (see for example [34]) that the l2-error between the exact solution

u of (9.8) and any approximation solution v satisfies that

}v ´ u}0 À }p~f0 ´Avq`}0,

where the vector p~f0 ´Avq` is defined element-wise by

p~f0 ´Avq`,i “

#

p~f0 ´Avqi if vi ą 0

mintp~f0 ´Avqi, 0u if vi “ 0.

Error and residual

As usual, we define the energy functional as following

Fpvq :“
1

2
arv, vs ´ fpvq.

Then it follows that

Fpvq ´ Fpuq “ 1

2
|||v ´ u|||2 ´ 〈σ, v ´ u〉 , @ v P Kχ. (9.9)

Consider finite element solutions, uh and wh for problems (9.1) and (9.2), respectively. The

differences, in terms of energy, between the finite element solutions and the exact solutions can

be written as

Fpuhq ´ Fpuq “ 1

2
|||uh ´ u|||

2
´ 〈σ, uh ´ u〉

Fpwhq ´ Fpwq “ 1

2
|||wh ´ w|||

2
´ 〈σ,wh ´ w〉 .

(9.10)

CHAPTER 9. OPTIMIZATION PROBLEMS 207

It is easy to see that the variational inequality (9.2) can be written as the following quadratic

minimization problem:

min
wPK0

1

2
arw,ws ´ f0pwq. (9.11)

For finite element approximation, we compute the finite dimensional minimization problem

min
whPVh

ŞK0

1

2
arwh, whs ´ f0pwhq. (9.12)

Suppose ŵh is an approximate solution of the above minimization problem. Then the defect

eh :“ wh ´ ŵh satisfies

min
ŵh`ehPVh

ŞK0

1

2
arŵh ` eh, ŵh ` ehs ´ f0pŵh ` ehq “

1

2
areh, ehs ´ f0pehq ` arŵh, ehs ` C,

i.e.,

min
ŵh`ehPVh

ŞK0

1

2
areh, ehs ´ 〈σpŵhq, eh〉 . (9.13)

Notice that it is in the same form as (9.12) but replacing f0 by σpŵhq. Hence the above problem

can be viewed as the error problem; compare this with the error equation in the linear case (1.38).

Whence we have eh, we can update wh “ ŵh ` eh as in the linear case.

9.2 Nonlinear equation and unconstrained minimization

We first consider the unconstrained optimization problem

u “ argmin
vPV

Fpvq. (9.14)

If F : V ÞÑ R is a convex function, then the problem is called a convex optimization (or

convex programming). If F is differentiable, a minimizer satisfies the well-known first-order

optimization condition

Gpuq :“ F 1puq “ 0, (9.15)

where G : V ÞÑ R is the Frechet derivative of F . If F is convex, then (9.14) is equivalent

for solving the nonlinear equation (9.15). In particular, if F is quadratic, then the problem is

called a quadratic optimization. Apparently, if F is a convex quadratic functional, then the

problem (9.14) is equivalent to our model problem (2.1), Au “ f , with an SPD operator A “ G1.

Nonlinear solvers

In general, the problem (9.14) is much more difficult to solve than (2.1) due to its nonlin-

earity. We can employ a nonlinear iterative solver to linearize (9.15) to obtain a linear (differ-

ential) equation, i.e., linearization then discretization. For example, we may use the standard

CHAPTER 9. OPTIMIZATION PROBLEMS 208

approaches, like the Picard method or the Newton–Raphson method. Another strategy is to dis-

cretize the continuous problem (9.14) or (9.15) in order to obtain a nonlinear algebraic problem

u “ argmin
vPRN

Fpvq (9.16)

or

Gpuq “ 0. (9.17)

The idea of coarse-grid correction used in Algorithm 3.1 does not apply any more here because the

classical residual equation is linear. There are basically two approaches to apply the multilevel

idea on this problem—The first approach is to linearize the problem and then apply multigrid

methods to linear problems; The second one is to apply multigrid directly to the nonlinear

problem using the so-called Full Approximation Scheme (FAS).

Newton–Raphson method

There are different ways to linearize a nonlinear problem like (9.15). For simplicity, we

now only consider discrete version of the nonlinear equation, i.e., V “ RN . The most popular

approach is the so-called Newton–Raphson (or Newton) linearization. We apply second-order

Taylor expansion to approximate the objective function near the current iteration upkq P RN ,

i.e.,

Fpupkq ` eq « Fpupkqq ` p∇Fpupkqq, eq ` 1

2
p∇2Fpupkqqe, eq.

In order to find a good incremental correction step, we can consider

epkq “ argmin
ePRN

1

2
p∇2Fpupkqqe, eq ` p∇Fpupkqq, eq “ ´

“

∇2Fpupkqq
‰´1∇Fpupkqq.

This is the Newton–Raphson iteration

upk`1q “ upkq ´
“

∇2Fpupkqq
‰´1∇Fpupkqq. (9.18)

In the above iteration step, we need to solve a linear system, the Jacobian equation:

Aepkq :“
“

∇2Fpupkqq
‰

epkq “ ´∇Fpupkqq “: rpkq. (9.19)

We can employ the methods discussed in the previous chapters to solve such equations.

Listing 9.1: Newton–Raphson method

1 Given an initial guess u P V and set r Ð ´∇Fpuq;
2 while }r} ą ε

3 solve the Jacobian equation ∇2Fpuqe “ r;

4 find a good stepsize α ą 0;

5 uÐ u` α e; r Ð ´∇Fpuq;
6 end

CHAPTER 9. OPTIMIZATION PROBLEMS 209

The Newton-Raphson method converges very fast (second-order convergence) if the initial

guess is close enough to the exact solution. So if a good initial guess is available, the main

computation cost of the above algorithm is assembling the Jacobian systems and solving it to

acceptable accuracy. If we apply a multigrid algorithm to solve the Jacobian systems, then this

method is usually called Newton-Multigrid method. Similarly, another wide-used approach to

apply a domain decomposition preconditioned Krylov method to solve the Jacobian systems,

then this method is called Newton-Schwarz-Krylov method. Note that we might not need to

assemble the Jacobian system explicitly; instead, we can use a Jacobian-free scheme.

Full approximation scheme

For the nonlinear equation (9.15), the residual corresponding to an approximate solution v

can be defined as

r :“ ´Gpvq “ Gpuq ´ Gpvq (9.20)

However, because G is not linear, r ‰ Gpu ´ vq. In FAS, instead of considering the residual

equation as in the linear case, the full equation is solved on the coarse grids.

We now use the following two-grid method to demonstrate the basic idea of FAS. Let up1q

be an approximate solution on the fine grid after several steps of relaxation. On the coarse grid,

according to (9.20), we need to solve the following nonlinear equation

Gc
`

up1qc
˘

´ Gc
`

ITc up1q
˘

“ rc “ ITc r “ ´ITc G
`

up1q
˘

. (9.21)

This means, on the coarse level, a problem similar to the original problem (with different right-

hand side) should be solved

Gc
`

up1qc
˘

“ Gc
`

ITc up1q
˘

´ ITc G
`

up1q
˘

. (9.22)

Usually the right-hand side of the above equation is denoted as τcpu
p1qq and is called the tau

correction. Note that the coarse-level equation Gc can be obtained from the discretization on

the coarse grid. We can also use the Galerkin method

Gcpucq :“ ITc GpIcucq.

Once the problem (9.22) is solved, we correct the approximation as

up2q “ up1q ` Ic
`

up1qc ´ ITc up1q
˘

. (9.23)

Apparently the above idea can be applied recursively as we discussed in §6.2. Because the

coarse-grid problem is solved for the full approximation, rather than the error, the method is

named as the Full Approximation Scheme. In this algorithm, evaluating the nonlinear function

is usually the most expensive part computationally. We summarize the two-grid FAS algorithm

as follows:

CHAPTER 9. OPTIMIZATION PROBLEMS 210

Listing 9.2: Full Approximation Scheme

1 Given an initial guess u P V ;

2 Solve the nonlinear equation Gcpucq “ GcpITc uq ´ ITc Gpuq;
3 uÐ u` Icpuc ´ ITc uq;

Subspace correction methods for convex minimization

Apparently, the idea of subspace correction methods can be easily extended to unconstrained

convex minimization problems here. The convergence analysis of SSC and PSC methods has

been given by Tai and Xu [108].

9.3 Constrained minimization

In this section, we consider multilevel solvers for constrained minimization problems

u “ argmin
vPK0

Fpvq :“
1

2
arv, vs ´ fpvq, (9.24)

which is equivalent to the variational inequality (9.2).

Projected full approximation method

Since the the above problem is nonlinear, we can apply the Full Approximation Scheme

introduced in the previous section to solve this problem. And this is the so-called Projected

Fully Approximation Scheme (PFAS) by Brandt and Cryer [34].

As we have discussed in the previous chapters, we first need to find a relatively simple iterative

procedure which is able to dump the high-frequency part of the error quickly. In order to obtain

a smoother for (9.24), we can employ the simple iterative methods discussed in §2.1 and then

apply a projection step to ensure the new iteration stays in the feasible set. For example, if uold

is the previous iteration and uGS is the iteration after one or several Gauss-Seidel sweeps, then

unew :“ maxt0, uGSu P K0 is the new iteration. This method is naturally called the Projected

Gauss-Seidel (PGS) method.

At some point PGS will not reduce error efficiently any more, we then apply FAS to approx-

imate the error on a coarser level and continue this procedure until the coarsest level where the

nonlinear problem can be solved quickly and accurately. To ease the notation, we explain the

idea using a two-grid algorithm for now. We first solve the general LCP problem on a fine level

with a given right-hand side fl
$

’

’

’

&

’

’

’

%

Au ě f

u ě 0

〈Au´ f, u〉 “ 0.

CHAPTER 9. OPTIMIZATION PROBLEMS 211

using the PGS method or some other smoother to obtain an approximate solution up1q. Then

we solve the above LCP on a coarse level with the right-hand side

fc :“ ITc
`

f ´Aup1q
˘

`Ac ITc up1q

to obtain an approximation u
p1q
c . In turn, an improved approximation is given by

up2q “ up1q ` Ic
`

up1qc ´ ITc up1q
˘

.

Interior point method

For simplicity, we now consider the constrained minimization problem (9.2) on the finite

dimensional space RN , that is to say

u “ argmin
vě0, vPRN

Fpvq :“
1

2
vTAv ´ fT v. (9.25)

In this case, the Lagrange multiplier σ P RN satisfies that σ “ ´Gpuq. Then we have the

first-order optimality condition

σ ` Gpuq “ 0, σ ď 0,

Uσ “ 0, u ě 0.

Here we use a convention often employed in the literature U :“ diagtu1, . . . , uNu; similarly, we

will denote Σ :“ diagtσ1, . . . , σNu.

The condition Uσ “ 0 (or equivalently, uiσi “ 0 for any i “ 1, . . . , N) is usually called the

complementarity condition. We now try to relax this condition such that Uσ “ µ1, where µ is

a positive penalty parameter and 1 is an all-one vector. At the same time, we try to maintain

the iterative solution pu, σq strictly in the primal-dual feasible set, i.e., u ą 0 and σ ă 0. Hence

we need to solve a system of nonlinear equations:
#

σ ` Gpuq “ 0,

Uσ ´ µ1 “ 0.

We apply the Newton’s method for this system and obtain an iterative method
#

Aδu` δσ “ ´σ ´ Gpuq
Σδu` Uδσ “ µ1´ Uσ

or

˜

A I

Σ U

¸˜

δu

δσ

¸

“

˜

f ´Au´ σ

µ1´ Uσ

¸

.

Upon solving this linear system, we can obtain a new iteration. Furthermore, in the above

system, I, Σ, and U are all known diagonal matrices, we only need to solve the Schur complement

problem

pA´ U´1Σqδu “ µU´11` f ´Au. (9.26)

Moreover, since σ ă 0 and u ą 0, the above equation is well-defined and the coefficient matrix

is SPD. We can then apply a multilevel iterative method discussed in the previous chapters to

solve it efficiently; see [9] for details.

CHAPTER 9. OPTIMIZATION PROBLEMS 212

Monotone multigrid method

Now suppose we hierarchical meshes, tM0
h, . . . ,M

j
hu and let Al, bl, l “ 0, . . . , j are the

stiffness matrices and right-hand-side vectors corresponding to the partition Ml
h, respectively.

As usual, Mj
h is the finest mesh. We denote the linear finite element space by V l

h associated

with mesh Ml
h.

We need two kinds of orthogonal projections onto the finite element space V l
h. The L2-

projections Ql : V j
h Ñ V l

h are defined by

pQlvh, φlq “ pvh, φlq, φl P V
l
h, (9.27)

and the energy projections Πl : V j
h Ñ V l

h by

arΠlvh, φls “ arvh, φls, φl P V
l
h. (9.28)

We first define multigrid methods recursively. For a given initial guess w
p0q
j P V j

h

ŞK0. A

coarse grid correction is performed: computing the approximate defect e
p0q
j´1 “ Πj´1pwh´w

p0q
j q P

V j´1
h as the solution of the quadratic programming problem

min
e
p0q
j´1PV

j´1
h , w

p0q
j `e

p0q
j´1

ŞK0

1

2
are

p0q
j´1, e

p0q
j´1s ´ xσpw

p0q
j q, e

p0q
j´1y. (9.29)

Then let w
p1q
j “ w

p0q
j ` e

p0q
j´1. Then we apply m steps of post-smoothing scheme, like projected

SOR to obtain w
pm`1q
j . For the coarse correction step, instead of solving the problem on the

coarser level j ´ 1 exactly, we can solve it by the same multigrid procedure described here. In

this way, we obtain a recursive multigrid V-cycle. If we perform coarse grid correction twice at

each level, then we get a W-cycle.

One problem with this procedure is that ej´1 and wj are in different levels. To avoid this

difficulty, we propose the following coarse grid correction scheme instead of (9.29):

min
d
p0q
j´1PV

j´1
h

ŞK0

1

2
ard

p0q
j´1, d

p0q
j´1s ´ xσpw

p0q
j q, d

p0q
j´1y. (9.30)

And then w
p1q
j “ w

p0q
j ` d

p0q
j´1 which is always in K0 because both w

p0q
j and d

p0q
j´1 are in K0 by

definition. It is easy to check that the local obstacles in this method are monotone in the sense

of Kornhuber [73]. Then we get the similar V-cycle or W-cycle multigrid method as for linear

problems expect we need to add a projection step to project the iterates to K0.

Remark 9.3. This method is shown to be not very good by Tai’s test example. The reason

is that the coarse grid correction only works when the current approximation is less than the

exact solution in the method.

CHAPTER 9. OPTIMIZATION PROBLEMS 213

9.4 Constraint decomposition method

It is known the general V-cycle can be written as a successive subspace correction method.

For a sequence of search directions tφiu
N
i“1 such that V j

h :“ spantφiu
N
i“1. We can construct

a numerical method for find the minimizer of (9.12) as a sequential quadratic programming

method. Starting from an initial guess w
p0q
j P V j

h

ŞK0, at each iteration, we solve

min
w
p0q
j `αφ1PV

j
h

ŞK0

1

2
arw

p0q
j ` αφ1, w

p0q
j ` αφ1s ´ f0pw

p0q
j ` αφ1q. (9.31)

Similar to the discussion in the previous section, we need to solve a discrete problem

min
w
p0q
j `αφ1PV

j
h

ŞK0

1

2
arφ1, φ1sα

2 ´ xσpw
p0q
j q, φ1yα. (9.32)

Then the new iterate is obtained by w
p1q
j “ w

p0q
j `αφ1. Similarly, we start from w

p1q
j and search

in the direction φ2 to obtain w
p2q
j , and so on.

If we choose spantφiu
N
i“1 as the canonical nodal basis of V j

h , then it is just usual nonlinear

or projected Gauss-Seidel method. To take advantage of multilevel basis, it is natural to choose

spantφiu
N
i“1 “ tφj1, . . . , φ

j
Nj
, φj´1

1 , . . . , φj´1
Nj´1

, . . . , φ1
1, . . . , φ

1
N1
u. It falls into the category of ex-

tended relaxation methods. The problem with this procedure is that φi might not be in the finest

level j, which costs extra computation effort to enforce the constraints w
pi´1q
j ` αφi P V

j
h

ŞK0.

See Tai [107] for details.

Bibliography

[1] O. Axelsson. A survey of algebraic multilevel iteration (AMLI) methods. BIT Numerical

Mathematics, 43:863–879, 2003.

[2] O. Axelsson and G. Lindskog. On the eigenvalue distribution of a class of preconditioning

methods. Numerische Mathematik, 48(5):479–498, 1986.

[3] O. Axelsson and G. Lindskog. On the rate of convergence of the preconditioned conjugate

gradient method. Numerische Mathematik, 48(5):499–523, 1986.

[4] I. Babuška. Error-bounds for finite element method. Numerische Mathematik, 16(4):322–

333, 1971.

[5] N. S. Bakhvalov. On the convergence of a relaxation method with natural constraints

on the elliptic operator. USSR Computational Mathematics and Mathematical Physics,

6(5):101–135, 1966.

[6] R. E. Bank and T. Dupont. An optimal order process for solving finite element equations.

Mathematics of Computation, 36(153):35–51, 1981.

[7] R. E. Bank and T. F. Dupont. Analysis of a two-level scheme for solving finite element

equations. Technical report, 1980.

[8] R. E. Bank, T. F. Dupont, and H. Yserentant. The hierarchical basis multigrid method.

Numerische Mathematik, 52(4):427–458, 1988.

[9] R. E. Bank, P. E. Gill, and R. F. Marcia. Interior methods for a class of elliptic variational

inequalities. In L. T. Biegler, M. Heinkenschloss, O. Ghattas, and B. van Bloemen Waan-

ders, editors, Large-Scale PDE-Constrained Optimization, pages 218–235. 2003.

[10] R. E. Bank and H. Yserentant. Multigrid convergence: A brief trip down memory lane.

Computing and Visualization in Science, 13(4):147–152, 2010.

214

BIBLIOGRAPHY 215

[11] M. Benzi, G. H. Golub, and J. Liesen. Numerical solution of saddle point problems. Acta

Numerica, 14:1–137, May 2005.

[12] M. Benzi and M. A. Olshanskii. An Augmented Lagrangian-based approach to the Oseen

problem. SIAM Journal on Scientific Computing, 28(6):2095–2113, 2006.

[13] J. Bergh and J. Lofstrom. Interpolation spaces: an introduction, volume 223. Springer

Science & Business Media, 2012.

[14] D. Boffi, F. Brezzi, and M. Fortin. Finite elements for the Stokes problem. In Mixed Fi-

nite Elements, Compatibility Conditions, and Applications, pages 45–100. Springer Berlin

Heidelberg, 2008.

[15] F. Bornemann and H. Yserentant. A basic norm equivalence for the theory of multilevel

methods. Numerische Mathematik, 64(1):455–476, 1993.

[16] D. Braess. The contraction number of a multigrid method for solving the poisson equation.

Numerische Mathematik, 37(3):387–404, 1981.

[17] D. Braess. Finite elements. Cambridge University Press, Cambridge, second edition, 2001.

Theory, fast solvers, and applications in solid mechanics, Translated from the 1992 German

edition by Larry L. Schumaker.

[18] D. Braess and W. Hackbusch. A new convergence proof for the multigrid method including

the V-cycle. SIAM journal on numerical analysis, 20(5):967–975, 1983.

[19] D. Braess and R. Sarazin. An efficient smoother for the Stokes problem. Applied Numerical

Mathematics, 23(1):3–19, feb 1997.

[20] J. Bramble. Multigrid methods. Pitman research notes in mathematics series. Longman

Scientific & Technical, 1993.

[21] J. Bramble and J. Pasciak. Iterative techniques for time dependent Stokes problems.

Computers Math. Applic., 33:13–30, 1997.

[22] J. H. Bramble and J. E. Pasciak. New convergence estimates for multigrid algorithms.

Mathematics of computation, 49(180):311–329, 1987.

[23] J. H. Bramble and J. E. Pasciak. A preconditioning technique for indefinite systems

resulting from mixed approximations of elliptic problems. Mathematics of Computation,

50(181):1, jan 1988.

BIBLIOGRAPHY 216

[24] J. H. Bramble and J. E. Pasciak. The analysis of smoothers for multigrid algorithms.

Mathematics of Computation, 58(198):467–488, 1992.

[25] J. H. Bramble and J. E. Pasciak. New estimates for multilevel algorithms including the

V-cycle. Mathematics of computation, 60(202):447–471, 1993.

[26] J. H. Bramble, J. E. Pasciak, J. P. Wang, and J. Xu. Convergence estimates for multigrid

algorithms without regularity assumptions. Mathematics of Computation, 57(195):23–45,

1991.

[27] J. H. Bramble, J. E. Pasciak, J. P. Wang, and J. Xu. Convergence estimates for product

iterative methods with applications to domain decomposition. Mathematics of Computa-

tion, 57(195):1–21, 1991.

[28] J. H. Bramble, J. E. Pasciak, and J. Xu. Parallel multilevel preconditioners. Mathematics

of Computation, 55(191):1–22, Jul. 1990.

[29] J. H. Bramble and J. Xu. Some estimates for a weighted L2 projection. Mathematics of

Computation, 56:463–476, 1991.

[30] A. Brandt. Multi-level adaptive solutions to boundary-value problems. Mathematics of

Computation, 31(138):333–390, 1977.

[31] A. Brandt. Algebraic multigrid theory: The symmetric case. Applied Mathematics and

Computation, 19(1-4):23–56, jul 1986.

[32] A. Brandt. Rigorous Quantitative Analysis of Multigrid, I. Constant Coefficients Two-

Level Cycle with L2-Norm. SIAM Journal on Numerical Analysis, 31(6):1695–1730, 1994.

[33] A. Brandt. Multigrid guide. Technical report, 2011.

[34] A. Brandt and C. W. Cryer. Multigrid algorithms for the solution of linear complemen-

tarity problems arising from free boundary problems. SIAM J. Sci. Statist. Comput.,

4(4):655–684, 1983.

[35] A. Brandt, S. McCormick, and J. Ruge. Algebraic multigrid (amg) for automatic multi-

grid solutions with application to geodetic computations. Report, Inst. for computational

Studies, Fort collins, colo, 1982.

[36] A. Brandt, S. McCormick, and J. W. Ruge. Algebraic multigrid for sparse matrix equa-

tions. In D. Evans, editor, Sparsity and its Application, pages 257–284. Cambridge Uni-

versity Press, 1984.

BIBLIOGRAPHY 217

[37] S. Brenner. Convergence of the multigrid V-cycle algorithm for second-order boundary

value problems without full elliptic regularity. Mathematics of Computation, 71(238):507–

525, 2002.

[38] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods,

volume 15 of Texts in Applied Mathematics. Springer-Verlag, New York, second edition,

2002.

[39] M. Brezina. An improved convergence analysis of smoothed aggregation algebraic multi-

grid. Numerical Linear Algebra with Applications, 19:441—-469, 2012.

[40] M. Brezina, A. J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones, T. A. Manteuffel, S. F.

Mccormick, and J. W. Ruge. Algebraic multigrid based on element interpolation (AMGe).

SIAM J. Sci. Comput., 22:1570–1592, 2000.

[41] M. Brezina, R. Falgout, S. MacLachlan, T. a. Manteuffel, S. Mccormick, and J. Ruge.

Aggregation (αSA) Multigrid. SIAM Review, 47(2):317–346, 2005.

[42] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising

from lagrangian multipliers. ESAIM: Mathematical Modelling and Numerical Analysis -

Modélisation Mathématique et Analyse Numérique, 8(R2):129–151, 1974.

[43] F. Brezzi, M. Fortin, and L. D. Marini. Mixed finite element methods with continuous

stresses. Mathematical Models and Methods in applied sciences, 3(02):275–287, 1993.

[44] W. L. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid Tutorial. Siam, 2000.

[45] L. Chen. Deriving the XZ identity from auxiliary space method. In Domain Decomposition

Methods in Science and Engineering XIX, pages 309–316. Springer, 2011.

[46] P. G. Ciarlet. The Finite Element Method for Elliptic Problems, volume 4 of Studies in

Mathematics and its Applications. North-Holland Publishing Co., Amsterdam-New York-

Oxford, 1978.

[47] R. Courant and D. Hilbert. Methods of Mathematical Physics. Number v. 1 in Methods

of Mathematical Physics. Wiley, 1991.

[48] R. a. DeVore. Nonlinear approximation. Acta Numerica, 7:51, nov 2008.

[49] M. Dryja and O. Widlund. Additive schwarz methods for elliptic finite element problems in

three dimensions. In Fifth International Conference on Domain Decomposition Methods.

SIAM, 1992.

BIBLIOGRAPHY 218

[50] M. Dryja and O. B. Widlund. Some domain decomposition algorithms for elliptic problems.

In Iterative Methods for Large Linear Systems. Academic Press Professional, Inc., 1989.

[51] M. Dryja and O. B. Widlund. Additive schwarz methods for elliptic finite element problems

in three dimensions. In Parallel Algorithms for Partial Differential Equations Proceedings,

Kiel 1990. New York University. Courant Institute of Mathematical Sciences., 1991.

[52] H. C. Elman, D. J. Silvester, and A. J. Wathen. Finite elements and fast iterative solvers:

with applications in incompressible fluid dynamics. Oxford University Press, USA, 2005.

[53] L. C. Evans. Partial Differential Equations. American Mathematical Society, 1998.

[54] R. D. Falgout and J. B. Schroder. Non-Galerkin coarse grids for algebraic multigrid. SIAM

J. Sci. Comput., 36:C309–C334, 2014.

[55] R. D. Falgout and P. S. Vassilevski. On generalizing the algebraic multigrid framework.

SIAM J. Numer. Anal., 42:1669–1693, 2004.

[56] R. D. Falgout, P. S. Vassilevski, and L. T. Zikatanov. On two-grid convergence estimates.

Numerical Linear Algebra with Applications, 12(5-6):471–494, 2005.

[57] R. P. Fedorenko. A relaxation method for solving elliptic difference equations. USSR

Computational Mathematics and Mathematical Physics, 1(4):1092–1096, 1962.

[58] R. P. Fedorenko. The speed of convergence of one iterative process. USSR Computational

Mathematics and Mathematical Physics, 4(3):227–235, 1964.

[59] M. Fortin and R. Glowinski. Augmented Lagrangian methods: applications to the numerical

solution of boundary-value problems, volume 15. Elsevier, 2000.

[60] G. P. Galdi. An introduction to the mathematical theory of the Navier-Stokes equations:

Steady-state problems. Springer Science & Business Media, 2011.

[61] A. Gibbons. Algorithmic graph theory. Cambridge university press, 1985.

[62] R. Glowinski. Numerical methods for nonlinear variational problems. Springer-Verlag,

New York, 1984.

[63] R. Glowinski, T.-W. Pan, and J. Periaux. A fictitious domain method for dirichlet problem

and applications. Computer Methods in Applied Mechanics and Engineering, 111(3-4):283–

303, 1994.

BIBLIOGRAPHY 219

[64] G. H. Golub and C. F. Van Loan. Matrix Computations, Third Edition, volume 10 of

Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press,

1996.

[65] M. Griebel and P. Oswald. On the abstract theory of additive and multiplicative Schwarz

algorithms. Numerische Mathematik, 180:163–180, 1995.

[66] F. Gustavson. Finding the block lower triangular form of a sparse matrix. In Sparse matrix

computations, pages 275–289. Elsevier, 1976.

[67] W. Hackbusch. Ein iteratives verfahren zur schnellen auflösung elliptischer randwertprob-

leme. Technical report, 1976.

[68] W. Hackbusch. Multi-grid convergence theory. In Multigrid methods, pages 177–219.

Springer, 1982.

[69] W. Hackbusch. Multi-grid methods and applications. Springer, 1985.

[70] X. He and C. Vuik. Comparison of some preconditioners for the incompressible Navier-

Stokes equations. Numerical Mathematics: Theory, Methods and Applications, 9(02):239–

261, 2016.

[71] C. Johnson. Numerical Solution of Partial Differential Equations by the Finite Element

Method. Cambridge University Press, Cambridge, 1987.

[72] D. Kinderlehrer and G. Stampacchia. An introduction to variational inequalities and their

applications, volume 88 of Pure and Applied Mathematics. Academic Press Inc. [Harcourt

Brace Jovanovich Publishers], New York, 1980.

[73] R. Kornhuber. Monotone multigrid methods for elliptic variational inequalities. I. Numer.

Math., 69(2):167–184, 1994.

[74] M. Larin and A. Reusken. A comparative study of efficient iterative solvers for generalized

Stokes equations. Numerical Linear Algebra with Applications, 15(November 2007):13–34,

2008.

[75] Y. Lee, J. Wu, J. Xu, and L. Zikatanov. Robust subspace correction methods for nearly

singular systems. Mathematical Models and Methods in Applied Sciences, 17(11):1937–

1963, 2007.

[76] S. P. MacLachlan and L. N. Olson. Theoretical bounds for algebraic multigrid performance:

review and analysis. Numerical Linear Algebra with Applications, 21(2):194–220, 2014.

BIBLIOGRAPHY 220

[77] D. S. Malkus and T. J. Hughes. Mixed finite element methods—reduced and selective

integration techniques: a unification of concepts. Computer Methods in Applied Mechanics

and Engineering, 15(1):63–81, 1978.

[78] J. Mandel. Multigrid convergence for nonsymmetric, indefinite variational problems and

one smoothing step. Appl. Math. Comput., 19(1-4):201–216, 1986. Second Copper Moun-

tain conference on multigrid methods (Copper Mountain, Colo., 1985).

[79] T. A. Manteuffel, S. Münzenmaier, J. Ruge, and B. S. Southworth. Nonsymmetric

reduction-based algebraic multigrid. SIAM J. Sci. Comput., 41:S242–S268, 2019.

[80] T. A. Manteuffel, J. Ruge, and B. S. Southworth. Nonsymmetric algebraic multigrid based

on local approximate ideal restriction (`AIR). SIAM J. Sci. Comput., 40:A4105–A4130,

2018.

[81] K.-A. Mardal and R. Winther. Uniform preconditioners for the time dependent stokes

problem. Numerische Mathematik, 98(2):305–327, 2004.

[82] K.-A. Mardal and R. Winther. Erratum: Uniform preconditioners for the time dependent

stokes problem. Numerische Mathematik, 103(1):171–172, 2006.

[83] K.-A. Mardal and R. Winther. Preconditioning discretizations of systems of partial dif-

ferential equations. Numerical Linear Algebra with Applications, 18(1):1–40, Jan 2011.

[84] S. F. McCormick. Multigrid methods for variational problems: general theory for the

V-cycle. SIAM Journal on Numerical Analysis, 22(4):634–643, 1985.

[85] S. F. McCormick. Multigrid methods. SIAM, 1987.

[86] A. C. Muresan and Y. Notay. Analysis of aggregation-based multigrid. SIAM Journal on

Scientific Computing, 30(2):1082–1103, 2008.

[87] A. Napov and Y. Notay. Comparison of bounds for V-cycle multigrid. Appl. Numer. Math,

60(3):176–192, 2010.

[88] A. Napov and Y. Notay. When does two-grid optimality carry over to the V-cycle? Nu-

merical linear algebra with applications, 17(2-3):273–290, 2010.

[89] A. Napov and Y. Notay. Algebraic analysis of aggregation-based multigrid. Numerical

Linear Algebra with Applications, 18(3):539–564, 2011.

BIBLIOGRAPHY 221

[90] J. Nečas. Sur une méthode pour résoudre les équations aux dérivées partielles du type

elliptique, voisine de la variationnelle. Annali della Scuola Normale Superiore di Pisa-

Classe di Scienze, 16(4):305–326, 1962.

[91] S. Nepomnyaschikh. Decomposition and fictitious domains methods for elliptic boundary

value problems. In Fifth International Symposium on Domain Decomposition Methods for

Partial Differential Equations, pages 62–72. Philadelphia: SIAM, 1992.

[92] R. Nicolaides. On the `2 convergence of an algorithm for solving finite element equations.

Mathematics of Computation, 31(140):892–906, 1977.

[93] Y. Notay. Convergence analysis of perturbed two-grid and multigrid methods. SIAM

journal on numerical analysis, 45(3):1035–1044, 2007.

[94] Y. Notay. Algebraic analysis of two-grid methods: The nonsymmetric case. Numerical

Linear Algebra with Applications, 17(1):73–96, jan 2010.

[95] Y. Notay. An aggregation-based algebraic multigrid method. Electronic transactions on

numerical analysis, 37(6):123–146, 2010.

[96] Y. Notay. Algebraic theory of two-grid methods. Numerical Mathematics: Theory, Meth-

ods and Applications, 8(2):168–198, 2015.

[97] Y. Notay and P. S. Vassilevski. Recursive Krylov-based multigrid cycles. Numerical Linear

Algebra with Applications, 15(July 2007):473–487, 2008.

[98] P. Oswald. On discrete norm estimates related to multilevel preconditioners in the finite

element method. In Constructive Theory of Functions, Proc. Int. Conf. Varna, pages

203–214, 1991.

[99] S. Pissanetzky. Sparse matrix technology. Academic Press Inc. [Harcourt Brace Jovanovich

Publishers], London, 1984.

[100] S. Rippa. Minimal roughness property of the Delaunay triangulation. Comput. Aided

Geom. Design, 7:489–497, 1990.

[101] C. Rodrigo, F. J. Gaspar, and L. T. Zikatanov. On the validity of the local Fourier analysis.

arXiv:1710.00408, 2017.

[102] J. W. Ruge and K. Stüben. Algebraic multigrid. in Multigrid Methods, Frontiers Appl.

Math., SIAM, Philadelphia, 3:73–130, 1987.

BIBLIOGRAPHY 222

[103] Y. Saad. Iterative Methods for Sparse Linear Systems. Number 4. SIAM, second edition,

2003.

[104] K. Stüben. An introduction to algebraic multigrid. In Multigrid by U. Trottenberg, C.

Oosterlee, and A. Schüller, pages 413–532. 2001.

[105] K. Stüben and U. Trottenberg. Multigrid methods: Fundamental algorithms, model prob-

lem analysis and applications. 1982.

[106] D. B. Szyld. The many proofs of an identity on the norm of oblique projections. Numerical

Algorithms, 42(3-4):309–323, 2006.

[107] X.-C. Tai. Rate of convergence for some constraint decomposition methods for nonlinear

variational inequalities. Numerische Mathematik, 93:755–786, 2003.

[108] X.-C. Tai and J. Xu. Global and uniform convergence of subspace correction methods

for some convex optimization problems. Mathematics of Computation, 71(237):105–124,

2002.

[109] R. Tarjan. Depth-first search and linear graph algorithms. SIAM journal on computing,

1(2):146–160, 1972.

[110] U. Trottenberg, C. W. Oosterlee, and A. Schuller. Multigrid. Elsevier, 2000.

[111] P. Vaněk, J. Mandel, and M. Brezina. Algebraic multigrid by smoothed aggregation for

second and fourth order elliptic problems. Computing, 56(3):179–196, Sep 1996.

[112] S. P. Vanka. Block-implicit multigrid solution of Navier-Stokes equations in primitive

variables. Journal of Computational Physics, 65:138–158, 1986.

[113] P. Vaněk, M. Brezina, J. Mandel, et al. Convergence of algebraic multigrid based on

smoothed aggregation. Numerische Mathematik, 88(3):559–579, 2001.

[114] P. S. Vassilevski. Multilevel Block Factorization Preconditioners. 2008.

[115] F. Wang and J. Xu. A crosswind block iterative method for convection-dominated prob-

lems. SIAM Journal on Scientific Computing, 21(2):620–645, 1999.

[116] O. B. Widlund. Some schwarz methods for symmetric and nonsymmetric elliptic prob-

lems. In Fifth International Symposium on Domain Decomposition Methods for Partial

Differential Equations, number 55, page 19. SIAM Philadelphia, PA, 1992.

BIBLIOGRAPHY 223

[117] R. Wienands and W. Joppich. Practical Fourier analysis for multigrid methods. CRC

press, 2004.

[118] J. Xu. Iterative methods by space decomposition and subspace correction. SIAM Review,

34:581–613, 1992.

[119] J. Xu. A new class of iterative methods for nonselfadjoint or indefinite problems. SIAM

journal on numerical analysis, 29(2):303–319, 1992.

[120] J. Xu. The auxiliary space method and optimal multigrid preconditioning techniques for

unstructured grids. Computing, 56:215–235, 1996.

[121] J. Xu and L. Zikatanov. A monotone finite element scheme for convection-diffusion equa-

tions. Mathematics of Computation, 68(228):1429–1446, 1999.

[122] J. Xu and L. Zikatanov. The method of alternating projections and the method of subspace

corrections in Hilbert space. Journal of The American Mathematical Society, 15:573–597,

2002.

[123] J. Xu and L. Zikatanov. Some observations on Babuška and Brezzi theories. Numerische

Mathematik, 94(1):195–202, mar 2003.

[124] J. Xu and L. Zikatanov. Algebraic multigrid methods. Acta Numer., 26:591–721, 2017.

[125] J. Xu and L. T. Zikatanov. Algebraic multigrid methods. ArXiv e-prints, Nov. 2016.

[126] X. Xu. Algebraic Theory of Multigrid Methods. PhD thesis, University of Chinese Academy

of Sciences, 2019.

[127] X. Xu and C.-S. Zhang. On the ideal interpolation operator in algebraic multigrid methods.

SIAM J. Numer. Anal., 56:1693–1710, 2018.

[128] K. Yoshida. Functional Analysis. Springer-Verlag, 1971.

[129] H. Yserentant. On the multi-level splitting of finite element spaces. Numerische Mathe-

matik, 49(4):379–412, 1986.

[130] H. Yserentant. Two preconditioners based on the multi-level splitting of finite element

spaces. Numerische Mathematik, 58(1):163–184, 1990.

[131] H. Yserentant. Old and new convergence proofs for multigrid methods. Acta Numerica,

2(1993):285–326, 1993.

[132] X. Zhang. Multilevel schwarz methods. Numerische Mathematik, 63(1):521–539, 1992.

BIBLIOGRAPHY 224

[133] L. T. Zikatanov. Two-sided bounds on the convergence rate of two-level methods. Numer.

Linear Algebra Appl., 15(5):439–454, 2008.

Index

Algebraic high-frequency, 161

Algebraic low-frequency, 161

Algebraic smoothness, 161

AMLI-cycle, 131

Auxiliary space lemma, 102

Auxiliary space method, 102, 109

Banach–Nečas theorem, 14

BPX preconditioner, 120

CGC, 82

Coarse grid correction, 82

Coercivity, 18

Complementarity condition, 205

Complementarity problem, 205

Condition number, 38

Conjugate gradient method, 50

Cycle index, 130

Discrete Sobolev inequality, 68

Effective condition number, 51

Error propagation operator, 39

Error reduction operator, 39

Expanded equation, 97

Expanded system, 97

F-cycle, 133

Fictitious domain lemma, 109

Fictitious space lemma, 109

Full multigrid, 133

Galerkin orthogonality, 64

Gauss–Seidel method, 26

Gauss–Seidel smoother, 26

Geometric multigrid, 125

GMG, 125

Hierarchical basis preconditioner, 116

Ideal interpolation, 160

Independent set, 150

Interpolation error estimate, 67

Inverse equality, 68

Iteration matrix, 27

K-cycle, 132

Kato’s lemma, 82

Laplace equation, 11

Lax-Milgram theorem, 18

Lemma of oblique projections, 83

LFA Ladder, 139

Local Fourier analysis, 75, 138

M-matrix, 151

Matrix representation, 70

Maximal independent set, 150

Maximum independent set, 150

Method of subspace corrections, 94

225

INDEX 226

MG-cycle, 130

Multigrid method, 32

Nečas theorem, 16

Non-singular operator, 38

Operator complexity, 163

Poincaré inequality, 13

Poisson’s equation, 10

Richardson method, 26

Richardson smoother, 26

Ritz projection, 64

Smoothing factor, 77

Sobolev embedding theorem, 13

Sobolev number, 12

Sobolev space, 12

SOR method, 26

SOR smoother, 26

Spectral radius, 38

Strong approximation assumption, 158

Strongly n-coupled, 165

Strongly negatively coupled, 165

Symmetrized iteration, 41

Textbook multigrid efficiency, 138

Trace theorem, 13

Twogrid method, 81

V-cycle, 126

Variable V-cycle, 132

W-cycle, 131

Weak approximation assumption, 158

Weak approximation property, 163

Weighted Jacobi method, 26

Weighted Jacobi smoother, 26

XZ identity, 103

	Contents
	General Theory of Multilevel Iterative Methods
	Introduction
	The model equation
	Derivation and classical solution
	Sobolev spaces
	Weak formulation
	Well-posedness of the weak problem
	A simple model problem
	High-frequency and locality

	Discretization methods
	Finite difference method
	Finite element method
	Adaptive approximation

	Simple iterative solvers
	Some examples
	A simple observation
	Smoothing effect of Jacobi method

	Multigrid method in 1D
	Nested grids
	Smoothers
	Prolongation and restriction
	Multigrid algorithm

	Tutorial of FASP
	Homework problems

	Iterative Solvers and Preconditioners
	Stationary linear iterative methods
	Preliminaries and notation
	Convergence of stationary iterative methods
	Symmetrization
	Convergence rate of stationary iterative methods
	An example: modified G-S method

	Krylov subspace methods
	Gradient descent method
	Conjugate gradient method
	Effective condition number
	Generalizing KSM to Hilbert spaces

	Condition number and preconditioning
	Construction of preconditioners
	Preconditioned conjugate gradient method
	Preconditioning v.s. iteration
	Stopping criteria

	Domain decomposition methods
	Divide and conquer
	Overlapping DD methods
	Classical convergence results of overlapping DDMs

	Homework problems

	Twogrid Methods
	Finite element methods
	Galerkin approximation
	Finite element
	Properties of finite element methods
	Error analysis

	Matrix representations
	Vector and matrix representations
	Finite element matrices
	Matrix and operator forms of simple iterative methods

	Smoothers and smoothing effect
	A numerical example
	Local Fourier analysis
	Smoothing effect
	Smoother as preconditioner

	Twogrid methods
	General twogrid methods
	Convergence analysis of twogrid method
	Optimal coarse space

	Matrix representation of the twogrid method
	Grid transfer operators in matrix form
	Coarse problem in matrix form
	Twogrid iterator in matrix form

	Homework problems

	Subspace Correction Methods
	Successive and parallel subspace corrections
	Abstract framework for subspace corrections
	SSC and PSC methods

	Expanded system and block solvers
	Expansion of the original problem
	Block solvers for expanded equation
	Convergence of block solvers

	Convergence analysis of SSC
	A technical lemma
	The XZ identity

	Convergence analysis of PSC
	Relating PSC to SSC
	Condition number of PSC
	Estimates of K1 and K2

	Auxiliary space method
	Homework problems

	Examples of Multilevel Iterative Methods
	Subspace Correction Preconditioners
	Two-level overlapping DDM
	Two-level space decomposition
	Convergence analysis of DDM

	HB preconditioner
	Nested space decomposition
	Telescope expansions
	Hierarchical basis preconditioner
	Strengthened Cauchy-Schwarz inequality
	Convergence analysis of HB preconditioner

	BPX preconditioner
	Norm equivalence
	Convergence analysis for BPX preconditioner
	Matrix representation of BPX

	Homework problems

	Geometric Multigrid Methods
	Geometric multigrid method
	V-cycle multigrid method
	Matrix representation of GMG
	Anisotropic problems

	Nested iterations
	V-cycle and its generalizations
	Complexity of multigrid iterations
	Full multigrid method

	Convergence analysis of multigrid methods
	Convergence analysis of GMG method
	Some historical remarks

	Two-grid estimates for multigrid analysis
	From two-grid to multigrid
	Limitations of two-grid theory for GMG

	Implementation of multigrid methods
	A sparse matrix data structure
	Assembling finite element matrix
	Matrix form of transfer operators

	Homework problems

	Algebraic Multigrid Methods
	From GMG to AMG
	General procedure of multigrid methods
	Sparse matrices and graphs
	M-matrix and Delaunay triangulation
	Tarjan's algorithm

	Motivations of algebraic multigrid methods
	Algebraic convergence theory
	Interpolation operators
	Algebraic smooth error
	Construction of coarse spaces

	Classical algebraic multigrid methods
	General AMG setup phase
	Strength of connections
	C/F splitting
	Construction of prolongation

	Aggregation-based algebraic multigrid methods
	Unsmoothed aggregation AMG
	Smoothed aggregation AMG

	 Applications of Multilevel Iterative Methods
	Fluid Problems
	The Navier–Stokes equations
	Flow map
	Volume and mass conservation
	Balance of momentum
	Mathematical models

	The Stokes-type equations
	The time-dependent Stokes equation
	The Brezzi theory
	Well-posedness of the Stokes equation
	Penalty method for the Stokes equation

	Mixed finite element methods
	Well-posedness and convergence
	Some stable finite element pairs
	Mixed methods for the Poisson's equation

	Canonical preconditioners
	Preconditioning the Stokes equation
	Preconditioning the time-dependent Stokes equation
	Preconditioning the heat equation

	Block preconditioners
	Block diagonal and lower triangular method
	Augmented Lagrangian method

	Multigrid methods for the Stokes equation
	Braess–Sarazin smoother
	Vanka smoother

	Homework problems

	Optimization Problems
	Model problems
	A model variational inequality
	Finite element discretization for VIs
	Error and residual

	Nonlinear equation and unconstrained minimization
	Nonlinear solvers
	Newton–Raphson method
	Full approximation scheme
	Subspace correction methods for convex minimization

	Constrained minimization
	Projected full approximation method
	Interior point method
	Monotone multigrid method

	Constraint decomposition method

	Bibliography

