{VERSION 5 0 "IBM INTEL NT" "5.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 1 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 1 }{CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 1 } {PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Maple Output" -1 11 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }3 3 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Maple Output" -1 12 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 3 0 0 0 0 1 0 1 0 2 2 0 1 }} {SECT 0 {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 6703 "s := array(1..7, [ ]): G := array(1..7, []): L := array(1..7, []):\n\ns[1] := 1: \+ s[2] := a: s[3] := sqrt(a^2 - 2*a*c + 1):\ns[4] := 1: s[5] := a: s[6] := s[3]: s[7] := 1:\nG[1] := 1: G[2] := c: G[3] := (a*c - 1)/s[3]:\nG[4] := -1: G[5] := -c: \+ G[6] := - G[3]: G[7] := 1:\nL[1] := 0: L[2] := t: \+ L[3] := (a*t)/s[3]:\nL[4] := 0: L[5] := -t: L[6] := - L[3 ]: L[7] := 0:\n\nF1d1F1d1 := array(1..6, []): F2d1F2d1 := array(1..6, []):\nF1d1F2d1 := array(1..6, []): F1d1F1d2 := array (1..6, []):\nF1d1F2d2 := array(1..6, []): F1d2F2d1 := array(1..6, []):\nF2d1F2d2 := array(1..6, []): F1d1F3d1 := array(1..6, []): \nF1d1F4d1 := array(1..6, []): F2d1F3d1 := array(1..6, []):\nF1d1 F3d2 := array(1..6, []): F1d2F3d1 := array(1..6, []):\nF1d1F4d2 : = array(1..6, []): F1d2F4d1 := array(1..6, []):\nF2d1F3d2 := arra y(1..6, []): F2d2F3d1 := array(1..6, []):\n\nfor i from 1 to 6 do \nF1d1F1d1[i] := G[i]*G[i]*g11 + 2*G[i]*L[i]*g12 + L[i]*L[i]*g22:\n\n F2d1F2d1[i] := G[i]^4*g1111 + 4*G[i]^2*L[i]^2*g1212 + L[i]^4*g2222 + 4 *G[i]^3*L[i]*g1112 + 2*G[i]^2*L[i]^2*g1122 + 4*G[i]*L[i]^3*g1222:\n\nF 1d1F2d1[i] := G[i]^3*g111 + 2*G[i]^2*L[i]*g112 + G[i]*L[i]^2*g122 + G[ i]^2*L[i]*g211 + 2*G[i]*L[i]^2*g212 + L[i]^3*g222:\n\nF1d1F1d2[i] := G [i]*G[i+1]*g11 + G[i]*L[i+1]*g12 + G[i+1]*L[i]*g12+ L[i]*L[i+1]*g22: \n\nF1d1F2d2[i] := G[i]*G[i+1]^2*g111 + 2*G[i]*G[i+1]*L[i+1]*g112 + G[ i]*L[i+1]^2*g122 + G[i+1]^2*L[i]*g211 + 2*G[i+1]*L[i]*L[i+1]*g212 + L[ i]*L[i+1]^2*g222:\n\nF1d2F2d1[i] := G[i+1]*G[i]^2*g111 + 2*G[i+1]*G[i] *L[i]*g112 + G[i+1]*L[i]^2*g122 + G[i]^2*L[i+1]*g211 + 2*G[i]*L[i+1]*L [i]*g212 + L[i+1]*L[i]^2*g222:\n\nF2d1F2d2[i] := G[i]^2*G[i+1]^2*g1111 + 4*G[i]*G[i+1]*L[i]*L[i+1]*g1212 + L[i]^2*L[i+1]^2*g2222 + 2*G[i]^2* G[i+1]*L[i+1]*g1112 + 2*G[i+1]^2*G[i]*L[i]*g1112+ G[i]^2*L[i+1]^2*g11 22 + G[i+1]^2*L[i]^2*g1122 + 2*G[i]*L[i]*L[i+1]^2*g1222 + 2*G[i+1]*L[i +1]*L[i]^2*g1222:\n\nF1d1F3d1[i] := G[i]^4*e1111 + 3*G[i]^3*L[i]*e1112 + 3*G[i]^2*L[i]^2*e1122 + G[i]*L[i]^3*e1222 + G[i]^3*L[i]*e2111 + 3* G[i]^2*L[i]^2*e2112 + 3*G[i]*L[i]^3*e2122 + L[i]^4*e2222:\n\nF1d1F4d1 [i] := G[i]^5*e11111 + 4*G[i]^4*L[i]*e11112 + 6*G[i]^3*L[i]^2*e11122 + 4*G[i]^2*L[i]^3*e11222 + G[i]*L[i]^4*e12222 + G[i]^4*L[i]*e21111 + 4* G[i]^3*L[i]^2*e21112 + 6*G[i]^2*L[i]^3*e21122 + 4*G[i]*L[i]^4*e21222 + L[i]^5*e22222:\n\nF2d1F3d1[i] := G[i]^5*f11111 + 3*G[i]^4*L[i]*f11112 + 3*G[i]^3*L[i]^2*f11122 + G[i]^2*L[i]^3*f11222 +2*G[i]^4*L[i]*f1211 1 + 6*G[i]^3*L[i]^2*f12112 + 6*G[i]^2*L[i]^3*f12122 + 2*G[i]*L[i]^4*f 12222 + G[i]^3*L[i]^2*f22111 + 3*G[i]^2*L[i]^3*f22112 + 3*G[i]*L[i]^4* f22122 + L[i]^5*f22222:\n\nF1d1F3d2[i] := G[i]*G[i+1]^3*e1111 + 3*G[i ]*G[i+1]^2*L[i+1]*e1112 + 3*G[i]*G[i+1]*L[i+1]^2*e1122 + G[i]*L[i+1]^ 3*e1222 + G[i+1]^3*L[i]*e2111 + 3*G[i+1]^2*L[i]*L[i+1]*e2112 + 3*G[i+ 1]*L[i]*L[i+1]^2*e2122 + L[i+1]^3*L[i]*e2222:\n\nF1d2F3d1[i] := G[i+1 ]*G[i]^3*e1111 + 3*G[i+1]*G[i]^2*L[i]*e1112 + 3*G[i+1]*G[i]*L[i]^2*e11 22 + G[i+1]*L[i]^3*e1222 + G[i]^3*L[i+1]*e2111 + 3*G[i]^2*L[i+1]*L[i ]*e2112 + 3*G[i]*L[i+1]*L[i]^2*e2122 + L[i]^3*L[i+1]*e2222:\n\nF1d1F4 d2[i] := G[i]*G[i+1]^4*e11111 + 4*G[i]*G[i+1]^3*L[i+1]*e11112 + 6*G[i] *G[i+1]^2*L[i+1]^2*e11122 + 4*G[i]*G[i+1]*L[i+1]^3*e11222 + G[i]*L[i+1 ]^4*e12222 + G[i+1]^4*L[i]*e21111 + 4*G[i+1]^3*L[i]*L[i+1]*e21112 + 6 *G[i+1]^2*L[i+1]^2*L[i]*e21122 + 4*G[i+1]*L[i+1]^3*L[i]*e21222 + L[i+1 ]^4*L[i]*e22222:\n\nF1d2F4d1[i] := G[i+1]*G[i]^4*e11111 + 4*G[i+1]*G[i ]^3*L[i]*e11112 + 6*G[i+1]*G[i]^2*L[i]^2*e11122 + 4*G[i]*G[i+1]*L[i]^3 *e11222 + G[i+1]*L[i]^4*e12222 + G[i]^4*L[i+1]*e21111 + 4*G[i]^3*L[i] *L[i+1]*e21112 + 6*G[i]^2*L[i]^2*L[i+1]*e21122 + 4*G[i]*L[i]^3*L[i+1]* e21222 + L[i]^4*L[i+1]*e22222:\n\nF2d1F3d2[i] := G[i]^2*G[i+1]^3*f1111 1 + 3*G[i]^2*G[i+1]^2*L[i+1]*f11112 + 3*G[i]^2*G[i+1]*L[i+1]^2*f11122 \+ + G[i]^2*L[i+1]^3*f11222 +2*G[i]*G[i+1]^3*L[i]*f12111 + 6*G[i]*G[i+1] ^2*L[i]*L[i+1]*f12112 + 6*G[i]*G[i+1]*L[i]*L[i+1]^2*f12122 + 2*G[i]*L [i]*L[i+1]^3*f12222 + G[i+1]^3*L[i]^2*f22111 + 3*G[i+1]^2*L[i]^2*L[i+1 ]*f22112 + 3*G[i+1]*L[i]^2*L[i+1]^2*f22122 + L[i]^2*L[i+1]^3*f22222: \n\nF2d2F3d1[i] := G[i+1]^2*G[i]^3*f11111 + 3*G[i+1]^2*G[i]^2*L[i]*f11 112 + 3*G[i+1]^2*G[i]*L[i]^2*f11122 + G[i+1]^2*L[i]^3*f11222 +2*G[i+1 ]*G[i]^3*L[i+1]*f12111 + 6*G[i+1]*G[i]^2*L[i]*L[i+1]*f12112 + 6*G[i]*G [i+1]*L[i+1]*L[i]^2*f12122 + 2*G[i+1]*L[i+1]*L[i]^3*f12222 + G[i]^3*L [i+1]^2*f22111 + 3*G[i]^2*L[i+1]^2*L[i]*f22112 + 3*G[i]*L[i]^2*L[i+1]^ 2*f22122 + L[i+1]^2*L[i]^3*f22222:\nod:\n\nP1P1 := array(1..6, []): \+ P1P2 := array(1..6, []):\nfor i from 1 to 6 do \nP1P1[i] := s[i]^2*F 1d1F1d1[i] + s[i]^3*x*F1d1F2d1[i] + 1/4*s[i]^4*x^2*F2d1F2d1[i] + 1/3*s [i]^4*x^2*F1d1F3d1[i] + 1/6*s[i]^5*x^3*F2d1F3d1[i] + 1/12*s[i]^5*x^3*F 1d1F4d1[i]:\n\nP1P2[i] := s[i]*s[i+1]*F1d1F1d2[i] + 1/2*s[i]*s[i+1]^2* x*F1d1F2d2[i] + 1/2*s[i+1]*s[i]^2*x*F1d2F2d1[i] + 1/6*s[i]*s[i+1]^3*x^ 2*F1d1F3d2[i] + 1/6*s[i+1]*s[i]^3*x^2*F1d2F3d1[i] + 1/4*s[i]^2*s[i+1]^ 2*x^2*F2d1F2d2[i] + 1/24*s[i]*s[i+1]^4*x^3*F1d1F4d2[i] + 1/24*s[i+1]*s [i]^4*x^3*F1d2F4d1[i] + 1/12*s[i]^2*s[i+1]^3*x^3*F2d1F3d2 [i]+ 1/12*s[ i+1]^2*s[i]^3*x^3*F2d2F3d1[i]:\nod:\n\nCos1 := mtaylor(simplify(P1P2[1 ]) , x=0, 4): Cos2 := mtaylor(simplify(P1P2[2]) , x=0, 4):\nCos3 := \+ mtaylor(simplify(P1P2[3]) , x=0, 4): Cos4 := mtaylor(simplify(P1P2[4 ]) , x=0, 4):\nCos5 := mtaylor(simplify(P1P2[5]) , x=0, 4): Cos6 := \+ mtaylor(simplify(P1P2[6]) , x=0, 4):\n\nSn1:= sqrt(normal(P1P1[1]*P1P1 [2] - P1P2[1]^2)):\nSn2:= sqrt(normal(P1P1[2]*P1P1[3] - P1P2[2]^2)):\n Sn3:= sqrt(normal(P1P1[3]*P1P1[4] - P1P2[3]^2)):\nSn4:= sqrt(normal(P1 P1[4]*P1P1[5] - P1P2[4]^2)):\nSn5:= sqrt(normal(P1P1[5]*P1P1[6] - P1P2 [5]^2)):\nSn6:= sqrt(normal(P1P1[6]*P1P1[1] - P1P2[6]^2)):\n\nSin1:=mt aylor(Sn1, x=0, 4): Sin2:=mtaylor(Sn2, x=0, 4):\nSin3:=mtaylor(Sn3, \+ x=0, 4): Sin4:=mtaylor(Sn4, x=0, 4):\nSin5:=mtaylor(Sn5, x=0, 4): \+ Sin6:=mtaylor(Sn6, x=0, 4):\n\n\nCt1:=Cos1/Sin1:Ct2:=Cos2/Sin2:Ct3:=Co s3/Sin3:Ct4:=Cos4/Sin4:Ct5:=Cos5/Sin5:Ct6:=Cos6/Sin6:\n\nCot1:=mtaylor (Ct1, x=0, 4): Cot2:=mtaylor(Ct2, x=0, 4):\nCot3:=mtaylor(Ct3, x=0, \+ 4): Cot4:=mtaylor(Ct4, x=0, 4):\nCot5:=mtaylor(Ct5, x=0, 4): Cot6: =mtaylor(Ct6, x=0, 4):\nL1:=mtaylor(P1P1[1]+P1P1[2]-2*P1P2[1],x=0,4); \+ L2:=mtaylor(P1P1[2]+P1P1[3]-2*P1P2[2],x=0,4);\nL3:=mtaylor(P1P1[3]+P1P 1[4]-2*P1P2[3],x=0,4); L4:=mtaylor(P1P1[4]+P1P1[5]-2*P1P2[4],x=0,4);\n L5:=mtaylor(P1P1[5]+P1P1[6]-2*P1P2[5],x=0,4); L6:=mtaylor(P1P1[6]+P1P1 [1]-2*P1P2[6],x=0,4);\n\nArea2 :=1/2*(Sin1 + Sin2 + Sin3 + Sin4 + Sin5 + Sin6):\n\na0 := simplify(tcoeff(Area2,x)); a1 := simplify (coeff(Area2,x));\nSumCot:=Cot1*L1+Cot2*L2+Cot3*L3+Cot4*L4+Cot5*L5+Cot 6*L6:\nSumAreaCot:=1/2*Area2-1/8*SumCot:\nb0 := simplify(tcoeff(SumAre aCot,x)); b1 := simplify(coeff(SumAreaCot,x));" }}{PARA 12 " " 1 "" {TEXT -1 0 "" }}{PARA 12 "" 1 "" {TEXT -1 0 "" }}{PARA 12 "" 1 "" {TEXT -1 0 "" }}{PARA 12 "" 1 "" {TEXT -1 0 "" }}{PARA 12 "" 1 "" {TEXT -1 0 "" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#a0G,$*$-%%sqrtG6#*( )%\"tG\"\"#\"\"\",&*$)%$g12GF-F.!\"\"*&%$g22GF.%$g11GF.F.F.)%\"aGF-F.F .\"\"$" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#a1G\"\"!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#b0G**%\"tG\"\"#,&*$)%$g12GF'\"\"\"!\"\"*&%$g22G F,%$g11GF,F,F,%\"aGF'*()F&F'F,F(F,)F1F'F,#F-F'" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#b1G\"\"!" }}}{PARA 12 "" 1 "" {TEXT -1 0 "" }} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}}{MARK "0 4 0" 0 } {VIEWOPTS 1 1 0 1 1 1803 1 1 1 1 }{PAGENUMBERS 0 1 2 33 1 1 }