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Abstract. We propose an adaptive threshold dynamics method for wetting problems
in three space dimensions. The method is based on solving a linear heat equation
and a thresholding step in each iteration. The heat equation is discretized by a cell-
centered finite volume method on an adaptively refined mesh. An efficient technique
for volume conservation is developed on the nonuniform meshes based on a quick-
sorting operation. By this method, we compute some interesting wetting problems on
complicated surfaces. Numerical results verify some recent theory for the apparent
contact angle on rough and chemically patterned surfaces.
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1 Introduction

Wetting describes how liquid stays and spreads on solid surfaces. It appears in many in-
dustrial processes, e.g. painting, printing, oil recovery, etc. One important phenomenon
in wetting is that the geometric roughness and chemical inhomogeneity of the solid sur-
face can change dramatically the wetting properties. This is the so-called lotus effect. The
property is of critical importance in designing self-cleaning materials and hydrophobic
surfaces with low contact angle hysteresis.

Theoretical studies for wetting phenomena on rough and inhomogeneous surfaces
are enormous(c.f. [3, 12] and the reference therein). The equilibrium wetting problem is
to minimize the total interface energy in a solid-liquid-vapor system. When the solid sur-
face is rough, there are usually many local minimizers. By the homogenization method,
one can show that the local minimizer corresponds to some modified Wenzel and Cassie
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equations [45, 49]. These equations imply that the macroscopic apparent angle is deter-
mined by an average of the chemical and geometric properties along the triple contact
line [11, 26, 33]. This is different from the classical Wenzel and Cassies equations [9, 43],
which use a surface average instead of the average on the contact line.

Even though there are many theoretical studies, there still exist many controversies
and open questions for wetting on rough surfaces [14,16], especially in three dimensional
spaces. The three dimensional wetting problem is much more difficult than that in two
dimensions. In the latter case, the contact line is reduced to a point and the apparent
contact angle has a simple relation to the local Young’s angle at the point [4, 48]. In three
dimensions, the position of the contact line can be very complicated. In general, the
location of the contact line is not known a priori and numerical simulations are needed
to predict the wetting properties of a rough surface.

Numerical simulation for wetting on rough surfaces is quite challenging, since it is
a free interface problem with complex boundary conditions. For example, a phase-field
model for wetting includes a nonlinear boundary condition [10, 32], which is to enforce
the Young’s equation for the microscopic contact angle [50]. The boundary condition
is difficult to implement numerically. In addition, the possible topological change of
the liquid-vapor interface in the Wenzel-Cassie transition on rough surfaces may cause
difficulties to other standard numerical methods [6, 13, 34, 44, 51].

Recently, a threshold dynamics method is developed for wetting problems in two
space dimensions [41,47]. The method alternately diffuses and sharpens the characteristic
function of a domain with a free boundary. It is easy to implement and quite efficient. The
method is motivated by the work of S. Esedoglu and F. Otto [17] and can originate from
the well-known MBO method for motion of interfaces driven by the mean curvature(so-
called mean curvature flow) [30]. Theoretical studies show that the MBO method has first
order convergence when the surface is smooth [20, 22, 27, 39]. The threshold dynamics
method has also been applied to many other problems [15, 19, 31, 37, 40]. It is usually
implemented on uniform meshes so that a fast Fourier transform (FFT) method can be
used. One exception is the work in [23], where a nonuniform FFT is applied.

In this paper, we propose a new adaptive threshold dynamics method for wetting
problems on rough surfaces in three space dimensions. To reduce the computational com-
plexity, the mesh is adaptively refined in the neighborhood of the liquid-vapor interface
and the rough solid surface while it is coarsened elsewhere. Different from the previous
work [47], we do not use the convolution method to diffuse the characteristic functions.
We solve a linear heat equation directly by a cell-centered finite volume method on the lo-
cally refined grids. The discrete heat equations on the adaptive but locally uniform grids
are solved with a fast composite grid iterative method [7, 8, 29], which further improves
efficiency of the algorithm. We also generalize the volume preserving technique in [47] to
the case with non-uniform meshes. The technique is based on a quick-sorting operation
and much more efficient than standard methods.

By the adaptive threshold dynamic method, we compute several wetting problems
on rough surfaces which are of interest in real applications. Numerical results show
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Figure 1: Left: Original domain Ω=D1∪D2. Right: Extended computational domain Ω̃=Ω∪D3.

that the apparent contact angle on a chemically patterned surface can be described by a
modified Cassie equation and the angle on a geometrically rough surface is characterized
by a modified Wenzel equation. This verifies the previous theories for wetting on rough
surfaces [11, 26, 33, 45]. A Cassie-Baxter state for wetting is observed on a highly rough
surface even the droplet is in Wenzel state initially. This shows that our method can easily
deal with the topological changes of the liquid-vapor interface. We also do simulations
for wetting on curved surfaces and on surfaces with chemical gradient, where there is
no equilibrium state in the system. It seems that the method captures the motion of the
droplet which driven by a gradient flow of the total surface energies. The numerical
results are consistent with the observations in experiments and analysis [28].

Finally, we would like to remark that there are different approaches for discretizing
the heat equation and general elliptic partial differential equations on non-uniform grids.
Some are node-centered or vertex-centered methods such as the one by Bramble et al. [7].
Some are cell-centered methods such as the one by McCormick and Thomas [29]. We
adapt a cell-centered finite volume method in [29] to discretize the heat equation in this
work. It assumes that the solution is piecewise constant on each cell. This makes it
natural and convenient to compute volumes of cells in a droplet and to sort cells by its
volumes in the volume-preserving step.

The structure of the paper is as follows. In Section 2, we introduce the mathematical
model of wetting problems. In Section 3, we introduce the adaptive threshold dynamics
method, including the theory and the key steps. Some numerical experiments are shown
in Section 4, including the wetting problems on rough and chemically patterned surfaces.
Finally, some concluding remarks are given in Section 5.
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2 The mathematical model

2.1 Minimization of the interface energies

We consider the wetting problem on a rough solid surface. The shape of a droplet on
the solid surface is determined by minimizing the total free energy in the solid-liquid-
vapor system. When the characteristic length of the droplet is smaller than the capillary
length, the gravitational potential energy can be ignored. Then the total energy is a sum
of interface energies,

E=γLV |ΣLV |+γSV |ΣSV |+γSL|ΣSL|. (2.1)

where ΣLV , ΣSV and ΣSL denote respectively the liquid-vapor, solid-vapor and solid-
liquid interfaces, and γLV , γSV and γSL are corresponding interface energy densities. |·|
denotes the area of an interface.

Suppose we consider the wetting problem in a domain Ω (see Figure 1). Part of its
boundary is the solid surface ΓS. Suppose the domain Ω is composed of two parts D1
and D2, representing the liquid region and vapor region. Then we have ΣLV =∂D1∩∂D2,
ΣSL = ∂D1∩ΓS and ΣSV = ∂D2∩ΓS. In equilibrium, the energy is minimized under the
constraint that the volume of droplet is constant. Therefore, the mathematical problem is
written as

min
|D1|=V0,D1∪D2=Ω

E(D1,D2)=γLV |∂D1∩∂D2|+γSV |∂D2∩ΓS|+γSL|∂D1∩ΓS|. (2.2)

Here V0>0 is a given constant number.
The problem is trivial when the solid surface ΓS is planar and homogeneous. The

minimizer corresponds to a droplet with spherical surface and the contact angle given by
the Young’s equation [50]

cosθY =
γSV−γSL

γLV
.

However, it is much more complicated when the solid surface is rough or chemically
inhomogeneous. The shape of the droplet is not spheric and the apparent contact angle
might not be unique. There are many theoretical studies on how the apparent contact
angles depend on the local roughness or chemical inhomogeneity. But there are still
some controversies and open problems in this field [16]. Numerical methods for wetting
problems on rough surfaces are needed.

2.2 An approximation model

Numerical simulations for wetting on rough or chemically patterned surfaces are very
difficult. To solve the problem, different numerical methods are developed according to
different representations of the free energies. For example, if one approximates the en-
ergy in (2.1) by a phase-field function, the energy minimizer can be obtained by solving a
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Cahn-Hilliard equation with a relaxed boundary condition [10]. However, the boundary
condition is nonlinear and still difficult to implement.

In this paper, we utilize an approximation of the interface energy as used in [17, 47].
Given D1,D2∈Rn, with n=3 being the dimension of the space, the area of their interface
can be approximated by

|∂D1∩∂D2|≈
1√
δt

∫
χD1 Gδt∗χD2 dx, (2.3)

where χDi is the characteristic function of Di

χDi =

{
1 if x∈Di,
0 otherwise;

and Gδt is the heat (Gaussian) kernel

Gδt(x)=
1

(4πδt)n/2 exp(−|x|
2

4δt
).

Here we assume δt is a small number. It is proved that the right-hand side term of (2.3)
converges to the left-hand side term when δt goes to zero [1]. The approximation can
be understood as follows. Notice that 1√

δt

∫
χD1 Gδt∗χD2 dx = 1√

δt

∫
D1

Gδt∗χD2 dx. If we
consider Gδt∗χD2 as the solution of a heat equation at δt with the initial condition χD2 ,
the term

∫
D1

Gδt∗χD2 dx is the total heat flow from D2 (with temperature 1) to D1 (with
temperature 0) in the period (0,δt). When δt is small, the flow is proportional to the area
of their interface(with a coefficient

√
δt).

In the wetting problem, we also need to approximate the surface energies on the solid
boundary. For that purpose, we can extend the domain Ω to a larger domain Ω̃, as shown
in Figure 1. The domain D3= Ω̃\Ω represents the solid domain. Then we have

|∂D1∩ΓS|≈
1√
δt

∫
χD1 Gδt∗χD3 dx;

|∂D2∩ΓS|≈
1√
δt

∫
χD2 Gδt∗χD3 dx.

Thus the total energy E(D1,D2) in (2.2) is approximated by

Eδt(χD1 ,χD2)=
γLV√

δt

∫
χD1 Gδt∗χD2 dx+

γSL√
δt

∫
χD1 Gδt∗χD3 dx

+
γSV√

δt

∫
χD2 Gδt∗χD3 dx. (2.4)

We introduce a functional space for the characteristic functions that

B=
{
(u1,u2)|ui∈BV(Ω),ui(x)=0 or 1,u1(x)+u2(x)=1,

∫
Ω

u1dx=V0

}
(2.5)
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Using this approximation, the problem (2.2) is reduced to

min
(χD1 ,χD2 )∈B

Eδt(χD1 ,χD2) (2.6)

In the following, we develop an efficient numerical method for the problem (2.6).

3 Numerical methods

3.1 Derivation of the threshold dynamics scheme

We will propose an iterative method to minimize the modified energy in (2.6). For a given
liquid domain D(k)

1 and a vapor domain D(k)
2 =Ω\D(k)

1 , we will find two new domains
D(k+1)

1 and D(k+1)
2 so that the energy decays

Eδt(χ
D(k+1)

1
,χ

D(k+1)
2

)<Eδt(χ
D(k)

1
,χ

D(k)
2
). (3.1)

For that purpose, we will first linearize Eδt(χD1 ,χD2) near (χ
D(k)

1
,χ

D(k)
2
) that

Eδt(χD1 ,χD2)=Eδt(χ
D(k)

1
,χ

D(k)
2
)+L(χD1−χ

D(k)
1

,χD2−χ
D(k)

2
,χ

D(k)
1

,χ
D(k)

2
)+h.o.t., (3.2)

where

L(χD1−χ
D(k)

1
,χD2−χ

D(k)
2

,χ
D(k)

1
,χ

D(k)
2
)=L(χD1 ,χD2 ,χ

D(k)
1

,χ
D(k)

2
)

−L(χ
D(k)

1
,χ

D(k)
2

,χ
D(k)

1
,χ

D(k)
2
),

and

L(χD1 ,χD2 ,D(k)
1 ,D(k)

2 )=

1√
δt

(∫
χD1 Gδt∗(γLVχ

D(k)
2
+γSLχD3)dx+

∫
χD2 Gδt∗(γLVχ

D(k)
1
+γSVχD3)dx

)
. (3.3)

We first minimize the linear functional L(χD1 ,χD2 ,χ
D(k)

1
,χ

D(k)
2
) in B. The following

lemma shows that the minimizer can be obtained by a simple thresholding approach.

Lemma 3.1. Denote

φ(x)=
1√
δt

Gδt∗
[
γLV(χD(k)

2
−χ

D(k)
1
)+(γSL−γSV)χD3

]
, (3.4)

Let
D(k+1)

1 ={x∈Ω| φ(x)<δ} (3.5)

for some δ such that |D(k+1)
1 |=V0. Define D(k+1)

2 =Ω\D(k+1)
1 . Then (χ

D(k+1)
1

,χ
D(k+1)

2
) minimizes

L(χD1 ,χD2 ,χ
D(k)

1
,χ

D(k)
2
) in B.
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Proof. By definition, we have χD1+χD2 = χΩ. Then the linear functional L can be
rewritten as

L(χD1 ,χD2 ,χ
D(k)

1
,χ

D(k)
2
)=

1√
δt

∫
χD1 Gδt∗

[
γLV(χD(k)

2
−χ

D(k)
1
)+(γSL−γSV)χD3

]
dx

+
1√
δt

∫
χΩGδt∗(γLVχ

D(k)
1
+γSVχD3)dx

=I1+ I2.

Since I2 is a constant independent of (χD1 ,χD2), we need only to minimize I1. Notice that

I1=
1√
δt

∫
D1

Gδt∗
[
γLV(χD(k)

2
−χ

D(k)
1
)+(γSL−γSV)χD3

]
dx=

∫
D1

φ(x)dx.

Clearly, the minimizer of this integral with respect to D1⊂Ω such that |D1|=V0 is given
by the set defined in (3.5). This ends the proof of the lemma.

More importantly we can prove the following theorem. It is the basis of our numerical
method.

Theorem 3.1. Suppose (χ
D(k+1)

1
,χ

D(k+1)
2

)∈B is obtained by the process defined in Lemma 3.1. We
have

Eδt(χ
D(k+1)

1
,χ

D(k+1)
2

)≤Eδt(χ
D(k)

1
,χ

D(k)
2
), (3.6)

for all δt>0. Furthermore, the equality holds only when D(k+1)
1 =D(k)

1 and D(k+1)
2 =D(k)

2 .

Proof. We first rewrite Eδt(χ
D(k+1)

1
,χ

D(k+1)
2

) as:

Eδt(χ
D(k+1)

1
,χ

D(k+1)
2

)=Eδt(χ
D(k)

1
,χ

D(k)
2
)+L(χ

D(k+1)
1

,χ
D(k+1)

2
,χ

D(k)
1

,χ
D(k)

2
)

−L(χ
D(k)

1
,χ

D(k)
2

,χ
D(k)

1
,χ

D(k)
2
)

− γLV√
δt

∫
(χ

D(k+1)
1
−χ

D(k)
1
)Gδt∗(χD(k+1)

1
−χ

D(k)
1
)dx

By the above lemma, we know

L(χ
D(k+1)

1
,χ

D(k+1)
2

,χ
D(k)

1
,χ

D(k)
2
)≤L(χ

D(k)
1

,χ
D(k)

2
,χ

D(k)
1

,χ
D(k)

2
).

Therefore, we have

Eδt(χ
D(k+1)

1
,χ

D(k+1)
2

)≤Eδt(χ
D(k)

1
,χ

D(k)
2
)

− 1√
δt

∫
(χ

D(k+1)
1
−χ

D(k)
1
)Gδt∗(χD(k+1)

1
−χ

D(k)
1
)dx

≤Eδt(χ
D(k)

1
,χ

D(k)
2
).
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In the last equation, the equality holds only when D(k+1)
1 =D(k)

1 . This ends the proof of
the theorem.

By the above analysis, for give characteristic functions (χ
D(k)

1
,χ

D(k)
2
) ∈ B, we find a

simple way to find new functions (χ
D(k+1)

1
,χ

D(k+1)
2

)∈B such that

Eδt(χ
D(k+1)

1
,χ

D(k+1)
2

)≤Eδt(χ
D(k)

1
,χ

D(k)
2
).

They are given by two steps:

• (Convolution) Compute φ(x)= 1√
δt

Gδt∗
[
γLV(χD(k)

2
−χ

D(k)
1
)+(γSL−γSV)χD3

]
.

• (Thresholding) Find a δ>0 to make sure the domain D(k+1)
1 ={x∈Ω| φ(x)<δ} has

a volume V0(i.e. |D(k+1)
1 |=V0). Then we set D(k+1)

2 =Ω\D(k+1)
1 .

3.2 Numerical solution of the heat equation

One key step in the process is to compute the convolution φ for given domains D(k)
1

and D(k)
2 . They represent respectively the liquid and vapor domains. It is known that

the convolution of a function and a Gaussian kernel is a solution of a heat equation in
R3 with the initial condition given by the function. The function φ can be computed as
follows. First solve the equation under some proper boundary condition,{

∂tu−∆u=0, 0< t<δt

u(x,0)=γLV(χD2−χD1)+(γSL−γSV)χD3 , t=0,
(3.7)

and then set φ(x) = u(x,δt) after scaling. Theoretically, we need to propose a periodic
boundary condition for the equation. For that purpose, we have to extend Ω̃ to a larger
domain symmetrically. This will increase the degree of freedoms by times. For simplicity,
we assume the liquid domain D1 is always inside Ω and far from the boundary of Ω̃.
Then we can use a Dirichlet or Neumann boundary condition on ∂Ω̃. When δt is small,
the effect of the boundary condition on the threshold dynamics method can be ignored.
In our simulations, the boundary values of u(x,t) on ∂Ω̃ are fixed in the time interval
(0,δt), i.e., all the same as the initial u(x,0).

If the domain Ω̃ is partitioned uniformly, the standard FFT method can also be used
to solve the heat equation. However, the uniform mesh may be very inefficient when
the solid surface Γ is rough. Suppose the roughness can be characterized by a small
parameter ε�1. In that case, a very fine mesh with mesh size h<ε is needed to resolve the
local geometry properties. Then the total degree of freedoms is scaled as O(h−3), which
is much larger than O(ε−3). To improve the efficiency, a natural idea is to use adaptively
refined meshes. In this case, the resulting problem will have a degree of freedoms of order
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Figure 2: The adaptive mesh for droplet with different shape in two space dimensions.

O(ε−2). The adaptive method decreases largely the computational complexity when ε is
small.

The problem (3.7) can be solved by many standard numerical methods. In our sim-
ulations, time integration of the heat equation is done by the backward Euler method to
avoid time step restriction; space discretization and the resulting discrete equations are
handled with adaptive mesh refinement and multilevel composite grid iteration tech-
niques [7, 8, 29].

The adaptive multilevel method is briefly described as follows. At the very beginning
of the numerical solution, the domain Ω̃ is discretized into a uniform Cartesian mesh
with mesh size h0� δt. In each time step, including the first one, the region near the
boundary of D1 is locally refined so that a sequence of locally refined grids are generated
(see Figure 2 for a composite grid generated by the method in two dimensions). In the
adaptive mesh refinement, the refinement factor between two consecutive grids is fixed
to be two and a rule is imposed to guarantee that the ratio of edge lengths between any
two adjacent cells/sides on the resulting composite grid is not greater than two.

Space discretization of the heat equation on the locally refined composite grid is done
with a cell-centered finite volume method, which is different from but similar to the one
by McCormick [29]. Associated with the center of a regular cell, whose neighboring cells
all have the same size, the finite volume stencil for the Laplacian operator takes the same
form as the standard one on a uniform grid. Associated with the center of an irregu-
lar cell, some of whose neighboring cells may be larger or smaller than itself, the finite
volume stencil is modified. The finite volume stencil there is constructed by weak con-
tinuity of the solution and conservation of the numerical flux across the coarse-fine grid
interface. Figure 3 shows finite volume stencils, ignoring the h−2 factors, for the negative
Laplacian operator on a composite grid in two space dimensions by the method. The
values at cell centers in Figure 3 are diagonal entries of the coefficient matrix of the finite
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volume system. The values at cell edges in Figure 3 are the off-diagonal coefficients in the
finite volume stencils associated with the corresponding cell centers. Details of the finite
volume discretization of the heat equation and the corresponding multilevel/multigrid
iteration for the discrete equations on the locally refined grids in two and three space
dimensions are omitted here and will be reported separately somewhere else.

Figure 3: Cell-centered finite volume stencils (omitting the h−2 factors) for the negative Laplacian operator(with
Dirichlet boundary condition) on a composite grid in two space dimensions.

3.3 Volume conservation

The other important step of the process in Section 3.1 is to preserve the volume of the
fluid domain. This is to find a δ to make sure |D(k+1)

1 |= V0. Usually, it is not an easy
problem to compute δ and the standard method is by the Newton method [25, 36, 38].
In [47], a technique based on fast sorting scheme is developed to find δ efficiently in the
case of uniform meshes. In two dimensions, let {φij} be the value of φ on the grid points.
If we sort φij in monotonely increasing order and denote the sequence as Φ, then one can
simply let δ=(Φ[M]+Φ[M+1])/2, where M=[V0/h2

1] is the integer part of V0/h2
1 and h1

is the mesh size of the uniform mesh. We will generate this method to three dimensional
case with non-uniform meshes.

For simplicity, we denote by φi the value of φ at the ith cell. Volume of the ith cell is
denoted as ai. We sort φi in monotonely increasing order into a sequence Φ. The order
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of ai will be changed accordingly. We denote the sequence as A. We compute the sum of
volumes of the first k cells in the sequence A and denote it as

Sk =
k

∑
i=1

A[i].

We choose M to be the integer so that

SM <V0<SM+1

and set δ as

δ=(Φ[M]+Φ[M+1])/2. (3.8)

This is used in the thresholding step to define D(k+1)
1 ={x∈Ω : φ<δ}.

We assume that the adaptive mesh is almost uniform locally in a narrow band near
the liquid-vapor interface. The local mesh size is h. Then the volume of each cell in the
narrow band is given by h3. It is easy to see that the numerical errors for the volume
|D(k+1)

1 | generated by the above method is of order O(h3).

3.4 The algorithms

Combining the above analysis, we obtain the following threshold dynamics method for
wetting problems on solid surfaces.
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Algorithm 1:

Step 0. Given initial D0
1,D0

2⊂Ω, such that D0
1∩D0

2=∅, D0
1∪D0

2=Ω and |D0
1|=V0. Set

a tolerance parameter ε>0, the smallest mesh size h and δt=O(h).

Step 1. Solve the heat equation{
∂tu−∆u=0, 0< t<δt
u(x,0)=γLV(χDk

2
−χDk

1
)+(γSL−γSV)χD3 , t=0.

on an adaptively refined triangulation Th and set φ(x)=u(x,δt).

Step 2. Find a δ by the technique in Section 3.3 so that the set

D̃δ
1 ={x∈Ω|φ<δ.}

satisfies |D̃δ
1|=V0. Denote Dk+1

1 = D̃δ
1 and Dk+1

2 =Ω\Dk+1
1 .

Step 3. If |Dk
1−Dk+1

1 |≤ ε, stop. Otherwise, go back to Step 1.

One key parameter in the threshold dynamics method is the time step size δt. It can
not be too small. Otherwise, motion of the level-set of the solution of the heat equation
in one iteration is too little so that the threshold step will make the domain of the liquid
phase unchanged and the method will fail. The standard choice of time step satisfies
δt≥ c0δx [30]. For a mean-curvature flow problem, when the free interface is smooth, the
accuracy of the method is of order O(δt). However, when there is a triple junction, con-
vergence rate of the threshold dynamics method is of order O(δt1/2) [35, 47]. To improve
the accuracy, we can use the time-adaptive technique [47]. Then we obtain an algorithm
as illustrated below. The main steps are the same as the previous algorithm. One key
difference is that we add a step 4 to adjust the time step δt.

Algorithm 2:

Step 0. Given initial D0
1,D0

2⊂Ω, such that D0
1∩D0

2=∅, D0
1∪D0

2=Ω and |D0
1|=V0. Set

a tolerance parameter ε>0, a mesh size h>0, δt=O(h) and a constant c1.

Step 1. Solve the heat equation{
∂tu−∆u=0, 0< t<δt
u(x,0)=γLV(χDk

2
−χDk

1
)+(γSL−γSV)χD3 , t=0.

on an adaptively refined triangulation Th and set φ(x)=u(x,δt).

Step 2. Find a δ by the technique in Section 3.3 so that the set

D̃δ
1 ={x∈Ω|φ<δ.} (3.9)

satisfies |D̃δ
1|=V0. Denote Dk+1

1 = D̃δ
1 and Dk+1

2 =Ω\Dk+1
1 .
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Figure 4: Left: The initial shape of a droplet. Right: The final shape of the droplet(θY = 2π
3 ).

Step 3. If |Dk
1−Dk+1

1 |≤ ε, go to Step 4. Otherwise, go back to Step 1.

Step 4. If δt< c1h2, stop. Otherwise, set δt=δt/2. Go back to Step 1.

In our simulations, we simply set c1 = 1. The optimal accuracy of Algorithm 2 is of
the first order with respect to the spacial mesh size h. This is due to a discrete character-
istic function to approximate the liquid domain. To further improve the accuracy of the
method, one can use a signed distance function as in [18]. In addition, to improve the
local accuracy near the contact line, the technique of using different scaled parameters in
the approximation of the interface energies can also be used [41].

4 Numerical experiments

4.1 Accuracy check of the algorithms

We first test the numerical method by considering a simple wetting problem on a planar
surface. In this case, the equilibrium state of a droplet is known explicitly. The liquid
droplet has a spherical surface and a contact angle equal to the Young’s angle.

In this example, we set Ω = (−1,1)×(−1,1)×(0,1.25), ΓS = {x|x3 = 0}. We can set
Ω̃ = (−1,1)×(−1,1)×(−0.75,1.25). Let ΓLV = 1 and ΓSV−ΓSL = cosθY with θY = 120o.
Initially, D0

1 ={x | |x|<0.3} which is the hemisphere.
Figure 4 shows the initial shape and final shape of the droplet. It is clear to see that

the equilibrium state is correctly obtained. Furthermore, we list the errors in Table 1 com-
puted by Algorithm 1. Here the mesh size denotes the smallest grid size in the adaptive
triangulation. Here we set δt=h. We could see that the convergence rate is slightly better
than the optimal convergence order O(δt1/2). The convergence rate can be further im-
proved if a time-adaptive method (Algorithm 2) is used. The results are given in Table 2.
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Table 1: Accuracy check for computational errors by Algorithm 1

δt=h L∞ error Convergence L2 error Convergence
rate rate

1/16 0.2394 – 0.2229 –
1/32 0.1169 1.03 0.1102 1.02
1/64 0.0625 0.90 0.0577 0.93
1/128 0.0332 0.91 0.0324 0.83
1/256 0.0218 0.61 0.0211 0.62

Table 2: Accuracy check for computational errors by Algorithm 2

h L∞ error Convergence L2 error Convergence
rate rate

1/16 0.1572 – 0.1258 –
1/32 0.0778 1.01 0.0632 0.99
1/64 0.0411 0.92 0.0363 0.80
1/128 0.0217 0.92 0.0204 0.83
1/256 0.0118 0.89 0.0113 0.85

The convergence rate is almost of order O(h). That is because we use the time adaptive
technique in Algorithm 2 and the stop criteria is δt≤ c1h2.

Notice that the accuracy of the threshold dynamics methods depends mainly on the
mesh size near the surface of a droplet. Therefore, the adaptive method has almost the
same accuracy with the standard threshold dynamics method using uniform meshes [47]
when their mesh sizes are the same near the surface. However, the computational costs of
the adaptive method can be much smaller than the standard method. To see this clearly,
we illustrate the total number of freedoms for the two methods in Table 3. Notice that
the total number of freedoms Nadp in the adaptive method can changes when the shape
of a droplet evolves in one simulation. We show the largest number for Nadp in each case
in Table 3. It is easy to see that Nadp increases in an order of O(h−2) with respect to the
decreasing mesh size h. That is because we refine the mesh mainly in the vicinity of the
surface of the droplet. In comparison, the total number of freedoms Nuni for the method
on uniform meshes increases in an order of O(h−3) for a three dimensional problem.
When h becomes smaller, the adaptive method has much less freedoms than the standard
threshold dynamics method. In addition, although the adaptive method needs some
extra cost to refine and coarse the meshes during simulations, the cost is relatively smaller
than other operations in the algorithm. Overall our method is more efficient than the
standard method on uniform meshes.
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Table 3: Number of freedoms(NoF)

h Adaptive NoF Rate α Uniform NoF Ratio
(Nadp) (Nadp ∝ h−α) (Nuni) (Nuni/Nadp)

1/16 1.80×104 – 3.27×104 1.82
1/32 7.64×104 2.08 2.62×105 3.43
1/64 3.13×105 2.04 2.10×106 6.69
1/128 1.28×106 2.03 1.68×107 13.13
1/256 5.17×106 2.02 1.34×108 25.96

Figure 5: Two droplets merge on a planar surface with Young’s angle θY = π
3 .

In the end of this subsection, we show a numerical example for wetting with topology
changes, similar simulations have been done in [42] in two dimensions. As shown in
Figure 5, two spherical droplets with radius r = 0.2 are set on a planar substrate with
Young’s angle θY = π

3 . The center of the two droplets are respectively (0.25,0,0) and
(−0.25,0,0) and the initial contact angles are equal to π

2 . Since the Young’s angle of the
substrate is smaller than π

2 , the two droplets will spread outward to minimize the total
surface energy. Then they merge into a bigger droplet and its shape evolves gradually
to spherical. In the final state, the contact angle is almost equal to the Young’s angle π

3 .
This example shows that the threshold dynamics method can easily dual with topology
changes.
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Figure 6: The shape of a droplet on the chemically patterned surface with Young’s angle θY1 = 60o and
θY2 =90o(left) and the corresponding contact line on the patterned surface(right).

4.2 Wetting on chemically patterned surfaces

We then consider a wetting problem on a chemically inhomogeneous surface. For sim-
plicity, suppose the solid is composed of two materials with different contact angles θY1
and θY2. The distribution of two materials in the flat surface is described by a function
θY(x1,x2) which is defined as follows,

θY(x1,x2)=


θY1 if |x|<0.2;
θY1 if 0.2< |x|<0.8,0≤Nφ−2[Nφ

2π ]π< 2π
3 ;

θY2 if 0.2< |x|<0.8, 2π
3 ≤Nφ−2[Nφ

2π ]π<2π;
θY1 if |x|>0.8.

(4.1)

Here N is the number of period of the patterns and φ is the angle from the x axis to vector
(x,y). In figure 6, we show a droplet on such a chemically patterned surface.

In this example, we are interested in the macroscopic contact angle θa of a droplet on
the surface. The most well-known equation to determine the apparent contact angle on
chemically patterned surface is the Cassie’s equation [9]. It reads

cosθa =λcosθY1+(1−λ)cosθY2, (4.2)

where λ is the area fraction of material 1 in the surface. The equation is proved to be
correct when one considers the global minimizer of the system. However, the equation
is not correct when local minimizers are considered [2]. It is proved that the local mini-
mizers can be described by a modified Cassie equation [49]. A similar equation has also
been proposed in [33]. The modified Cassie equation reads

cosθa = λ̃cosθY1+(1−λ̃)cosθY2, (4.3)
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Table 4: Verification of the modified Cassie equation

θY1 θY2 numerical Modified Cassie Classic Cassie
results equation equation

60o 120o 96.3o 99.6o 79.3o

90o 120o 106.3o 109.5o 99.0o

30o 60o 47.4o 51.5o 41.3o

where λ̃ is the line fraction of the projection of the contact line in material 1. The definition
is as follows. Suppose the homogenized contact line is a circle, then λ̃ is equal to the
fraction of the length of the arc located in material 1. Here we will verify the equation by
numerical simulations.

We first consider the case θY1 =
π
3 and θY2 =

2π
3 . We test for different N = 15,20,30.

The initial shape of the droplet is a hemisphere with radius r0 =0.5. A typical numerical
result is given in Figure 6 for N=20. We could see that there are small oscillations near
the contact line in the surface. The apparent contact angle is computed approximately
as follows. Firstly, we search for a spherical surface which has minimal distance from
the liquid surface. The apparent contact angle is the angle between the spherical surface
and the bottom surface. In this way, we find that the apparent contact angles are respec-
tively 94.9o, 96.3o and 96.3o for N=15,20,30 cases. It is close to the value predicted by the
modified Cassie equation that θa =arccos(cos(π/3)/3+2cos(2π/3)/3)≈99.6o. The dis-
crepancy between the theoretical and numerical results are due to numerical errors in the
computation. In the calculations, we choose h=δt=1/256. In comparison, the contact an-
gle computed by the Cassie equation is θa=arccos(λcos(π/3)+(1−λ)cos(2π/3))≈79.3o

with the area fraction of material 1 be λ≈0.6858.
We also make simulations for some other cases. The results are illustrated in Table 4.

We could find that the modified Cassie equation always fits much better with the numer-
ical results than the classical Cassie equation.

4.3 Wetting on geometrically rough surfaces

We consider wetting on a geometrically rough solid surface. We consider several different
shapes of the solid surface. The first surface is given by a function z=h(x,y)

h(x,y)=


0 if |x|<0.3 or |x|>0.8;
φ−2[Nφ

2π ]π/N if 0.2< |x|<0.8,0≤Nφ−2[Nφ
2π ]π<π;

2([Nφ
2π ]+1)π/N−φ if 0.2< |x|<0.8,π≤Nφ−2[Nφ

2π ]π<2π.
(4.4)

The shape is carefully chosen so that it is radially symmetric as shown in Figure 7. The
slope of the rough surface is about 1. We would like to verify the modified Wenzel equa-
tion [45]. If we assume that the contact line is also radially symmetric, the modified
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Figure 7: The shape of the droplet on a geometrically rough surface.

Wenzel’s equation will be reduced to

cosθa =RcosθY, (4.5)

where R≈
√

2 is the ratio between the length of the contact line to its projection on the
effective flat surface. We choose θY =70o so that the condition

|cosθY|max
√

1+|∇h|2<1

is satisfied. The condition makes sure the Cassie-Baxter state does not appear. By the
modified Wenzel’s equation (4.5), we have θa≈61o. A typical numerical result is shown
in Figure 7. We could find that there are some oscillations of the contact line. We then
compute an apparent contact angle by the same method as that in the case with a chem-
ically patterned surface. The computed apparent contact angle is about 63.8o. We find
that it is close to the theoretic prediction.

In the following, we will show some numerical results on a more general rough sur-
face. The solid surface is given by a function z=h(x,y) that

h(x,y)=0.1sin(2πNx)sin(2πNy), (4.6)

with N = 6 and the Young’s angle is chosen as θY = 135o. In Figure 8, we show some
numerical results. The initial shape of the droplet is almost a hemisphere. There is no
air between the droplet and the solid surface. We could see that the droplet gradually
gets to an equilibrium state, where the apparent contact angle is much larger than the
Young’s angle. This is related to the lotus effect. We could also see that there is some air
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Figure 8: The shapes of a droplet on a general rough surface(from an initial state to an equilibrium state.

trapped below the droplet. This is the so-called Cassie-Baxter state [9]. Our numerical
method can naturally deal with the topology change in the transition from the Wenzel to
Cassie-Baxter state.

4.4 Droplet on curved solid surface

In the last subsection, we will consider examples of some wetting problems on curved
solid surfaces. We first consider wetting on the surface of a fiber. The solid surface is
the surface of a thin cylinder. We assume that the surface is chemically inhomogeneous
in the sense that the Young’s angle has a constant gradient along the fiber surface. The
droplet on such a surface will move due to the wetting gradient [5]. We will simulate this
phenomena by our method.

The set-up of the example is as follows. The radius of the fiber is 0.1. The length of
the fiber is 2. Along the fiber, we set a coordinate system with the z axis along the central
line of the cylinder. The origin is in the middle of the central line so that z∈ (−1,1). The
Young’s angle on the surface is a function of z given by

θY(z)=
(1+z)

2
π

3
+
(1−z)

2
2π

3
.
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Figure 9: The shape of the droplet on a rod in different steps.

Figure 10: The shape of the droplet on the surface of a cone in different steps.

The initial droplet is spherical as shown in the first sub-figure of Figure 9. The spherical
surface has a radius 0.3 and is centered at (0,0,0.5). By the threshold dynamics method,
the droplet changes positions and shapes in the direction of decreasing the total surface
energy. Numerical results are shown in Figure 9. We can see that the topology of the
liquid surface changes in the process.

We then study motion of a droplet on a geometrically inhomogeneous surface, whose
mean curvature is not constant [5]. As shown in Figure 10, we consider wetting on the
surface of a cone. The Young’s angle is π

2 . We put a small droplet in the outer surface
of the cone. Evolution of the droplet is given in Figure 10. We could see that when the
droplet is put outside of the cone, the droplet will move outward. This is consistent with
the previous physical experiments and analysis [24, 28].

Finally, we would like to remark that the pictures in this subsection show qualitative
properties of the motion of a droplet. We have not considered viscous dissipations in the
fluid yet. For quantitative study on wetting problems, we may use a recently developed
approximation method by the Onsager principle [21,46]. This will be left for future work.
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5 Conclusion

In this paper, we propose an adaptive threshold dynamics method for wetting problems
on complicated solid surfaces. The method is efficient and easy to implement. In every
step, we only need to solve a linear heat equation up to a small time δt. The heat equa-
tion is discretized efficiently by an adaptive cell-centered finite volume method and the
discrete equations can be solved with a fast multilevel composite grid iterative method.
It is remarkable that, in contrast with a vertex-centered finite volume or finite element
method, the cell-centered finite volume discretization is especially convenient for com-
puting cell volumes and sorting cells by volumes. A time-adaptive technique is further
used to improve the accuracy. The above numerical techniques might also be useful in
other applications, like the multi-phase mean curvature flows in three dimensions.

Some numerical examples are presented to show the efficiency of the numerical method.
We verify some previous theoretical analysis results for the apparent contact angles on
rough or chemically inhomogeneous surfaces, which have not been fully understood in
wetting [14, 16]. Some interesting droplet motion problems on curved solid surfaces are
studied qualitatively. The method can easily deal with topology changes which appear
when the solid surface is complicated, e.g. in the case of the Wenzel-Cassie transition.

Finally, to further improve the accuracy of the method, one can use a signed distance
function as that in [18]. The usage of the level-set function instead of the characteristic
function may improve the convergence order far from the contact lines.
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