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Abstract. Thin liquid films with contact lines are common in nature and in engineer-
ing applications. The existence of free boundaries and singularities poses significant
challenges for both modeling and computation. In this work, we present a unified
framework for the derivation and numerical approximation of a fourth-order thin film
equation with mesoscopic dynamic boundary conditions. The reduced model is sys-
tematically derived using the Onsager variational principle in conjunction with lubri-
cation theory, yielding a thermodynamically consistent formulation that accounts for
capillarity, gravity, and external force. To solve the resulting free boundary problem,
we develop adaptive moving mesh methods based on a discrete Onsager variational
principle, including a stabilized semi-implicit scheme to improve computational effi-
ciency. Numerical results confirm the optimal convergence of the proposed methods
and accurately capture key wetting behaviors, including contact angle hysteresis on
rough substrates. This work offers a robust framework for simulating thin film flows
with complex geometries.
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1 Introduction

The study of interfacial fluid dynamics plays an important role in soft matter physics
and engineering sciences, with wetting phenomena representing one of its most ubiqui-
tous yet challenging manifestations [1–4]. In particular, the dynamics of thin liquid films,
where the size of the flow domain in one direction is essentially smaller in comparison
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with that in the other directions, arise in a variety of natural and industrial processes, in-
cluding tear film on the eye, coating flows in manufacturing, and microfluidic patterning
in biomedical devices [1]. Understanding the behavior of such films with moving contact
lines is essential for both fundamental science and practical applications.

In such thin film configurations, the classical Navier–Stokes equations can be sys-
tematically reduced via the lubrication approximation, yielding a class of fourth-order
nonlinear degenerate parabolic equations known as the fourth-order thin film equation.
A general form of the thin film equation is given by

∂th+∇·(hn∇∆h)=0, n>0, (1.1)

where h denotes the film height, n is a positive parameter. This formulation generalizes
numerous classical flow problems [1, 5–9]. The case n = 1 corresponds to flow of two
immiscible fluids in a Hele-Shaw cell (two parallel plates separated by a narrow gap)
or flow in a porous medium. In the case where n = 3, the equation characterizes the
spreading of a liquid film along a solid substrate. It also applies to the case n=2 where
the fluid is able to ”slip” over the solid.

From a mathematical standpoint, thin film equations represent a nonlinear general-
ization of the biharmonic equation and a fourth-order analogue of the porous medium
equation. Analogous to the well-established theoretical investigations into the properties
of the porous medium equation, including the maximum principle, well-posedness of
solutions, and finite propagation speed at the boundary, the thin film equation has been
the subject of extensive study (e.g., [10–18]). Nevertheless, the development of the math-
ematical theory for such fourth-order degenerate equations poses significantly greater
challenges compared to their second-order counterparts. For example, for sufficiently
large values of n, solutions of the thin film equation (1.1) exhibit positive property. How-
ever, for smaller values of n, computational evidence suggests the emergence of singu-
larities, characterized by h tending to zero in finite time. This phenomenon introduces
substantial difficulties in the formulation and analysis of a weak solution framework for
these equations [5]. Early numerical studies assume the thickness is always positive and
aim to develop positivity-preserving and convergent schemes for lubrication-type equa-
tions in fixed domain (without moving contact lines) [19, 20].

Physically, the case n=3 in the thin film equation arises from the Navier-Stokes equa-
tion coupled with the classical no-slip boundary condition. However, this formulation
leads to the so-called moving contact line paradox [21, 22], wherein the shear stress di-
verges near the contact line, implying unphysical infinite energy dissipation. Two prin-
cipal regularization strategies have been developed to address this singularity. The pre-
cursor film model postulates a microscopically thin, stable layer ahead of the apparent
contact line, regularized through a disjoining pressure potential [23–27]. Alternatively,
the slip model modifies the boundary condition to permit finite slip at the solid-liquid
interface, thereby maintaining a sharp contact line and giving rise to a free boundary
formulation [21, 28–37].
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The precursor film model eliminates the need for explicit moving boundary condi-
tions, thereby facilitating the handling of topological changes such as droplet breakup
and coalescence. However, this approach typically requires the grid resolution near the
contact line to be smaller than the precursor film thickness, which can introduce compu-
tational inefficiencies, particularly in higher-dimensional settings [38–41]. By contrast,
the slip model is more frequently employed in theoretical analysis but inherently in-
volves moving boundaries. In this context, the thin-film equation is formulated as a free
boundary problem. To address such problems, approaches such as arbitrary Lagrangian-
Eulerian (ALE) methods [42–44] or alternative coordinate transformation techniques [45–
48] are commonly utilized. However, the slip length in the model is usually of nano
scale. This induces significant challenges for quantitative numerical simulations for com-
plicated thin film problems. Especially when there exist rough substrates, the complexity
of the boundary conditions further increases, highlighting the need for coarse-graining
models and efficient and robust numerical methods tailored to such scenarios.

A natural and systematic framework for addressing such challenges is provided by
the Onsager variational principle which is a fundamental concept in nonequilibrium ther-
modynamics [49, 50]. The Onsager variational principle formulates the evolution of dis-
sipative systems as a minimization problem of a Rayleighian functional, which combines
the time derivative of the system’s free energy and the dissipation potential. Recent stud-
ies have demonstrated that the Onsager variational principle is not only effective for the
derivation of coarse-grained models in complex systems [51–57] but also advantageous
for the construction of numerical methods [58–61]. In particular, for free boundary prob-
lems arising in interfacial fluid dynamics, the Onsager variational principle offers a uni-
fied approach to model reduction and numerical scheme design.

In this paper, we develop a coarse-graining model and an efficient moving mesh nu-
merical method for complicated thin film problems with moving contact lines. Leverag-
ing the Onsager variational principle and lubrication approximation theory, we derive a
reduced model in the form of a fourth-order thin film equation that naturally incorpo-
rates the effects of capillary forces, gravitational forces, and external fields, along with
dynamic contact line conditions. Building upon the discrete Onsager variational prin-
ciple, and drawing inspiration from recent developments in porous medium flows [60],
we construct an explicit numerical method as well as a stabilized semi-implicit scheme
to enhance computational performance. Numerical experiments demonstrate that both
methods achieve optimal convergence rates in the L2 norm. Moreover, the stabilized
semi-implicit scheme significantly relaxes time step restrictions compared to the explicit
one. The numerical results also validate several widely accepted predictions regarding
advancing and receding contact angles in droplet wetting on rough substrates, providing
further insights into these complex phenomena.

The remainder of the paper is organized as follows. In Section 2, we systematically
derive the fourth-order thin film equations along with the associated dynamic boundary
conditions on rough substrates, based on the Onsager variational principle and lubri-
cation approximation theory. Section 3 is devoted to the construction of moving mesh
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numerical schemes derived from the Onsager variational principle, where a stabilized
semi-implicit method is further introduced to address the time step restrictions of ex-
plicit discretizations. Section 4 presents a series of numerical experiments that validate
the accuracy and efficiency of the proposed methods. Finally, Section 5 concludes the
paper with a summary and discussion of future research directions.

2 Macroscopic modelling for the thin films with moving contact
lines

In this section, we develop a macroscopic model for the motion of incompressible New-
tonian liquid film on a general substrate. Suppose that the height of the film is much
smaller than its radius. We derive the thin film equation and its corresponding dynamic
boundary conditions using the Onsager variational principle. For simplicity, we consider
a two-dimensional problem.

As shown in Figure 1, we assume that the boundary of the substrate is given by
z = R(x), and the liquid profile at time t is located at z = h(x,t) = H(x,t)+R(x), where
H(x,t) represents the thickness of liquid from the liquid-vapor interface to the substrate.
Let γ, γSV and γSL be the surface tensions of the liquid-vapor interface ΓLV , solid-vapor

Figure 1: The shape of droplet on a rough surface.

interface ΓSV and solid-liquid interface ΓSL, respectively. In this setting, the three-phase
contact points are represented as (xa(t),R(xa)) and (xb(t),R(xb)) at time t. The equilib-
rium contact angle θY satisfies the Young equation:

γSV−γSL =γcosθY. (2.1)

As shown in Figure 2, the local dynamic contact angles θa
d and θb

d and the apparent
contact angles θa and θb satisfy the following relationship:

θa
d = θa−θa

g, θb
d = θb+θb

g, (2.2)



5

where θa and θb are given by θa = arctan∂xh(xa,t) and θb = arctan(−∂xh(xb,t)), and θg
characterizes the local slope of the oscillating substrate at the contact line and is given
by θg = arctan∂xR. We set θa

g = θg(xa) and θb
g = θg(xb). Notice that the apparent contact

Figure 2: The relationship of contact angles.

angle θa is obtained by rotating counterclockwise from the positive horizontal x-axis to
the liquid interface. And the apparent contact angle θb is obtained by rotating clockwise
from the negative horizontal x-axis to the liquid interface. The sign of θg depends on the
value of ∂xR(x). By simple calculations, we derive that

cosθb =
1√

1+(∂xh(xb))2
; sinθb =−

∂xh(xb)√
1+(∂xh(xb))2

, (2.3)

cosθa =
1√

1+(∂xh(xa))2
; sinθa =

∂xh(xa)√
1+(∂xh(xa))2

, (2.4)

cosθg =
1√

1+(∂xR)2
; sinθg =

∂xR√
1+(∂xR)2

. (2.5)

The geometric constraints for the liquid at the contact points are as follows:

H=0 when x= xa(t) or x= xb(t). (2.6)

By taking time derivative to the above equation, we are led to

∂tH=−∂x Hẋ when x= xa(t) or x= xb(t). (2.7)

We will derive the equation for H(x,t) by the Onsager variational principle below.
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2.1 The total energy

We first consider the total free energy E in the system, which is composed of three parts,

E=Es+Eg+E f , (2.8)

where Es, Eg and E f are the surface energy, the gravitational potential energy and the
external potential energy, respectively.

The surface energy Es of the system is given by

Es =
∫

ΓSV

γSVds+
∫

ΓSL

γSLds+
∫

ΓLV

γds. (2.9)

By using the Young equation (2.1), we have

Es =
∫

ΓSV∪ΓSL

γSVds+
∫ xb

xa

−γcosθY

√
1+(∂xR)2dx+

∫ xb

xa

γ
√

1+(∂x(H+R))2dx. (2.10)

The gravitational potential energy Eg of the system along the z-axis can be expressed
as follows

Eg =
∫ xb

xa

∫ H(x,t)+R(x)

R(x)
ρgzdzdx=

∫ xb

xa

1
2

ρg((H+R)2−R2)dx, (2.11)

where ρ is the density of the liquid, and g is the gravitational acceleration.
If an external potential is applied to the liquid along the x-axis, the corresponding

external potential energy E f can be expressed as

E f =
∫ xb

xa

∫ H(x,t)+R(x)

R(x)
−ρ f xdzdx=

∫ xb

xa

−ρ f xHdx. (2.12)

To use the Onsager variational principle, we need to compute the rate of change of
total energy with respect to t. By using the contact angle relations (2.3)-(2.5) and the
boundary condition (2.7), we obtain the rate of change of the surface energy Ės

Ės =−
∫ xb

xa

γ
∂xx(H+R)

(1+(∂x(H+R))2)3/2 ∂tHdx

−γ(cosθb
g)
−1(cosθY−cosθb

d)ẋb+γ(cosθa
g)
−1(cosθY−cosθa

d)ẋa.
(2.13)

In thin film regime, we assume that |∂x(H+R)|�1. This leads to the approximation of
the curvature ∂xx(H+R)

(1+(∂x(H+R))2)3/2 ≈∂xx(H+R), so that

Ės≈−
∫ xb

xa

γ∂xx(H+R)∂tHdx

−γ(cosθb
g)
−1(cosθY−cosθb

d)ẋb+γ(cosθa
g)
−1(cosθY−cosθa

d)ẋa.
(2.14)
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Then, by direct calculations from (2.11), the rate of change of the gravitational potential
energy Ėg is given by

Ėg =
∫ xb

xa

ρg(H+R)∂tHdx. (2.15)

Similarly, the rate of change of the external potential energy Ė f is given by

Ė f =−
∫ xb

xa

ρ f x∂tHdx. (2.16)

2.2 The dissipation function

To derive the dynamic equation for the thin film, we then calculate the total energy dis-
sipation in the system. It is known that the standard no-slip boundary condition leads to
infinite energy dissipation near the contact line. This is the so-called moving contact line
paradox. To cure the paradox, a general way is to consider slip of liquid near the contact
lines [2]. Notice that the slip length is generally of nano-meter scale. It is not realistic
to resolve the scale in numerical simulations. Therefore, we divide the fluid into three
distinct regions: the bulk region far from the contact line, the meso-scale wedge-shaped
region near the contact line with a characteristic length l, and the contact line region
within a microscopic scale lc∼ 1nm. We calculate the energy dissipation in the regions
individually and approximately.

Firstly, we compute the viscous energy dissipation in the bulk region, where the lubri-
cation approximation and the no-slip boundary condition can be used. By the lubrication
approximation theory, the viscous energy dissipation is given by

Ψb =
∫ xb−l

xa+l

3µ

H
v2dx, (2.17)

where v(x,t) is the depth-averaged horizontal fluid velocity.
Secondly, we consider the viscous energy dissipation in the wedge-shape region. In

this case, the lubrication approximation does not apply. When the contact angle is small,
the dissipation can be approximated by [2]

Φw1=
3µ

θd
|lnζ|v2

ct, (2.18)

where the dimensionless coefficient ζ= l/lc is a dimensionless cut-off parameter, θd is the
dynamic contact angle, and vct is the velocity of the fluid near the contact line. When the
contact angle is large, the energy dissipation in the wedge-shape region can be calculated
approximately by solving the Stokes equation with some certain boundary conditions
(c.f. [62]), which is given by

Ψw2=
2µ|lnζ|sin2 θd

θd−sinθd cosθd
v2

ct. (2.19)
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When θd�1, equation (2.19) will reduce to equation (2.18). We adopt equation (2.19) to
describe the energy dissipation in wedge-shape region in this paper.

Lastly, we consider the viscous energy dissipation at the contact lines region. This
dissipation is caused by the friction of the contact lines. The local dissipation is given by

Ψc = ξ0v2
ct, (2.20)

where ξ0 is the viscosity coefficient of the contact lines. The coefficient ξ0 has been di-
rectly measured by experiments in [63], which can be approximated by αµ with α being
a positive parameter.

Combining the above results, we obtain the energy dissipation function of the system,
which is defined as half of the energy dissipated in the system in unit time, as

Φ(H;v, ẋa, ẋb)=
1
2
(Ψb+Ψw2+Ψc). (2.21)

In our settings, there are two contact points, xa and xb. The contact point velocity vct on a
rough substrate is related to ẋ by vct cosθg = ẋ. Direct calculations give

Φ(H;v, ẋa, ẋb)=
1
2

∫ xb−l

xa+l

3µ

H
v2dx+

µ

2cos2 θb
g
F (θb

d)ẋ2
b+

µ

2cos2 θa
g
F (θa

d)ẋ2
a , (2.22)

where

F (θd)=
2|lnζ|sin2 θd

θd−sinθd cosθd
+α. (2.23)

2.3 The dynamic equation

We will derive the dynamic equation for the fluid film on a general substrate using On-
sager variational principle.

Assuming that the fluid does not evaporate, then it satisfies the volume conservation
condition, i.e.

∂tH+∂x(Hv)=0. (2.24)

We define the Rayleighian functional

R(H;∂tH,v, ẋa, ẋb)=Φ(H;v, ẋa, ẋb)+Ė(H;∂tH, ẋa, ẋb). (2.25)

Notice that l�1, we can write

Ė ≈
∫ xb−l

xa+l

(
−γ∂xx(H+R)+ρg(H+R)−ρ f x

)
∂tHdx

−γ(cosθb
g)
−1(cosθY−cosθb

d)ẋb+γ(cosθa
g)
−1(cosθY−cosθa

d)ẋa
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By the Onsager variational principle, the dynamic equation will be obtained by minimiz-
ing the Rayleighian functional under the constraint of volume conservation, i.e.,

min
∂t H,v,ẋa,ẋb

R(H;∂tH,v, ẋa, ẋb)

s.t. ∂tH+∂x(Hv)=0.
(2.26)

To derive the dynamic equation, we define the modified Rayleighian functional by
introducing Lagrange multiplier λ(x),

R̃=Φ(v, ẋa, ẋb)+Ė(H;∂tH, ẋa, ẋb)−
∫ xb−l

xa+l
λ(x)(∂tH+∂x(Hv))dx. (2.27)

The Euler-Lagrange equation corresponding to the variational problem (2.26) is obtained
by setting the first-order variation of R̃ to be zero, i.e. δR̃=0. This leads to

−γ∂xx(H+R)+ρg(H+R)−ρ f x−λ=0,
3µ
H v+H∂xλ=0,
∂tH+∂x(Hv)=0.

(2.28)

in (xa+l,xb−l) and the boundary conditions{
ẋa =−γµ−1cosθa

g(F (θa
d))
−1(cosθY−cosθa

d),
ẋb =γµ−1cosθb

g(F (θb
d))
−1(cosθY−cosθb

d).
(2.29)

Here the Lagrange multiplier λ represents the pressure in the liquid. The first equation
in (2.28) shows a force balance on the surface of the thin film. The second equation in
(2.28) implies a Darcy’s law for the average velocity. From these equations, we obtain a
fourth-order thin film equation

∂tH+
1

3µ
∂x(H3(γ∂xxx(H+R)−ρg∂x(H+R)+ρ f ))=0. (2.30)

When the substrate is flat (i.e. R(x)=0), then height function H(x,t)=h(x,t). In this case,
the equation (2.30) is reduced to the standard thin film fluid model on a flat substrate.
Finally, to close the system, we need also use the geometric constraints that

H(xa+l,t)= l tanθa
d, H(xb−l,t)= l tanθb

d,

where we have used the fact that H(xa,t)=H(xb,t)=0 and the interface is approximated
by a straight line in the vicinity of the contact points. In addition, we will also need the
consitency condition that v(xa)= ẋa and v(xb)= ẋb.
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2.4 The dimensionless equations

In order to facilitate numerical implementation, we nondimensionalize the thin film equa-
tion. Let L represent the characteristic length of the droplet in the x-direction. The corre-
sponding dimensionless length, height, and time are denoted by

x=Lx̄, H=LH̄, t=Tt̄,

where the characteristic time T = 3µL
γ . Introduce two dimensionless parameters, Bo and

Bx, which respectively represent the magnitude of gravitational effects in the vertical
direction and external forces in the horizontal direction,

Bo =
ρgL2

γ
, Bx =

ρ f L2

γ
.

We can derive the dimensionless fourth-order thin film equation

∂t̄H̄+∂x̄(H̄3(∂x̄x̄x̄(H̄+ R̄)−Bo∂x̄(H̄+ R̄)+Bx))=0. (2.31)

For simplicity in presentation, we will drop the bar on the dimensionless variables in the
following context. The dimensionless problem is given by

∂tH+∂x(H3(∂xxx(H+R)−Bo∂x(H+R)+Bx))=0, x∈ I l(t),t>0,
H(xa(t)+l,t)= l tanθa

d, H(xb(t)−l,t)= l tanθb
d, t>0,

ẋa =3cos2 θa
g(F (θa

d))
−1ς(xa), t>0,

ẋb =−3cos2 θb
g(F (θb

d))
−1ς(xb), t>0,

H(x,0)=H0(x), x∈ I l(0).

(2.32)

Here I l(t)=[xa(t)+l,xb(t)−l] is the region where the fluid occupies (without the vicinity
of the contact line), and

ς(x)=−cosθY(cosθg)
−1+1+

1
2
(∂x(H+R)(x))2−∂x(H+R)(x)∂x H(x).

The free boundary conditions and the given initial condition in (2.32) are sufficient to
make the fourth-order thin film equation well-defined. However, rigorously proving the
well-posedness of the solution remains a challenging mathematical problem [64].

For later use, we introduce the dimensionless energy and dissipation functions be-
low. In the dimensionless form, the dimensionless surface energy Es, the gravitational
potential energy Eg and the external potential E f are as follows

Es =
∫ xb

xa

1+
1
2
(∂x(H+R))2dx−cosθY

∫ xb

xa

√
1+(∂xR)2dx,

Eg =
∫ xb

xa

1
2

Bo((H+R)2−R2)dx,

E f =−
∫ xb

xa

BxxHdx.

(2.33)
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The dimensionless dissipation function is expressed as

Φ(H;v, ẋa, ẋb)=
1
2

∫ xb−l

xa+l

v2

H
dx+

1
6cos2 θa

g
F (θa

d)ẋ2
a+

1
6cos2 θb

g
F (θb

d)ẋ2
b. (2.34)

3 The moving mesh methods

In this section, we propose an efficient numerical method for solving the fourth-order
thin film equation (2.32). Notice that the equation is a nonlinear fourth-order partial dif-
ferential equations with dynamic equation. Numerical solution to the equation is highly
challenging. We construct a moving finite element method by using the Onsager varia-
tional principle as an approximation tool.

3.1 Semi-discretization

Introduce a partition for the interval I(t)= [xa(t),xb(t)],

X(t) :={xa(t)= x0(t)< x1(t)< ···< xN(t)= xb(t)}, (3.1)

where the knots may change the position with respect to time. Denote by Ii(t)=[xi−1(t),xi(t)]
the sub-interval in the partition X(t). Then we can define the finite element space Vt

h as

Vt
h :={uh∈C[I(t)] : uh is linear in Ii(t), ∀i=1,...,N}.

Denote the space Vt
h,0={uh∈Vt

h :uh(xa)=uh(xb)=0}, then for any function Hh(x,t)∈Vt
h,0,

it can be expressed as

Hh(x,t)=
N−1

∑
i=1

Hi(t)φi(x,t),

where the function φi(x,t) is a finite element basis function associated with xi, i.e.

φi(x,t)=φl
i+φr =

x−xi−1(t)
xi(t)−xi−1(t)

χIi(x)+
xi+1(t)−x

xi+1(t)−xi(t)
χIi+1(x), (3.2)

where χIi is the characteristic function corresponding to Ii. The time derivative and space
derivative of Hh(x,t) are respectively given by

∂tHh =
N−1

∑
i=1

Ḣi(t)φi(x,t)+
N

∑
i=0

ẋi(t)ψi(x,t),

∂x Hh =
N−1

∑
i=1

Hi(t)∂xφi(x,t),

where ψk =
∂Hh
∂xk

. Denote by H= (H1(t),...,HN−1(t))T and x= (x0(t),...,xN(t))T. We will
derive a dynamic equation for H and x by using the Onsager variational principle.
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Firstly, we discretize the energy functionals in (2.33) and as follows

Eh(H,x;Ḣ,ẋ)=Es,h(H,x;Ḣ,ẋ)+Eg,h(H,x;Ḣ,ẋ)+E f ,h(H,x;Ḣ,ẋ),

where the discrete Es,h, Eg,h and E f ,h are respectively given by

Es,h =
N

∑
i=1

(∫
Ii(t)

1+
1
2
(∂x(Hh+R))2dx−cosθY

∫
Ii(t)

√
1+(∂xR)2dx

)
,

Eg,h =
N

∑
i=1

∫
Ii(t)

1
2

Bo((Hh+R)2−R2)dx,

E f ,h =−
N

∑
i=1

∫
Ii(t)

BxxHhdx.

The rate of change of discrete energy is calculated directly as

Ėh(H,x;Ḣ,ẋ)=
N−1

∑
i=1

∂Eh

∂Hi
Ḣi+

N

∑
i=0

∂Eh

∂xi
ẋi, (3.3)

where

∂Eh

∂Hi
=
∫

I(t)
∂x(Hh+R)∂xφidx+

∫
I(t)

Bo(Hh+R)φidx+
∫

I(t)
−Bxxφidx,

i=1,...,N;
∂Eh

∂xi
=
∫

I(t)
∂x(Hh+R)∂xψidx+

∫
I(t)

Bo(Hh+R)ψidx+
∫

I(t)
−Bxxψidx,

i=1,...,N;
∂Eh

∂x0
=
∫

I(t)
∂x(Hh+R)∂xψ0dx+

∫
I(t)

Bo(Hh+R)ψ0dx+
∫

I(t)
−Bxxψ0dx

+cosθY

√
1+(∂xR(x0))2−(1+ 1

2
∂x(Hh+R)(x0));

∂Eh

∂xN
=
∫

I(t)
∂x(Hh+R)∂xψNdx+

∫
I(t)

Bo(Hh+R)ψNdx+
∫

I(t)
−BxxψNdx

−cosθY

√
1+(∂xR(xN))2+(1+

1
2

∂x(Hh+R)(xN)).

Here that the integral in above equation vanishes out of the support of the basis function
φi or ψi.

Secondly, in order to discretize the dissipation function, we need to pay more atten-
tion to the two boundary intervals. Notice that the integral term

∫
I

vh(x,t)2

2Hh(x,t)dx is singular at
the boundary points(contact points). We need truncate the integral as for the continuous
case, where we introduce a cut-off parameter l�1 and do integration in the bulk region
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Ĩ = [xa(t)+l,xb(t)−l]. Therefore, to derive the discrete energy dissipation, we replace
I1 and IN with Ĩ1 = [x0+l,x1] and ĨN = (xN−1,xN−l], respectively. We choose the func-
tion vh(x,t)=∑N

i=0 vi(t)φi(x,t) in the finite element space Vt
h to approximate the velocity

v(x,t). Denote by v = (v0(t),...,vN(t))T. We then can calculate the discrete dissipation
function

Φh(H,x;v)=
∫

Ĩ1

vh(x,t)2

2Hh(x,t)
dx+

N−1

∑
k=2

∫
Ik

vh(x,t)2

2Hh(x,t)
dx+

∫
ĨN

vh(x,t)2

2Hh(x,t)
dx

+
1

6cos2 θa
g
Fh(θ

a
d)ẋ2

0+
1

6cos2 θb
g
Fh(θ

b
d)ẋ2

N ,
(3.4)

where Fh represents the discrete function obtained by replacing the function H(x,t) in
equation (2.23) with Hh(x,t). Since l is a parameter associated with the meso-scale, we
assume that l�h, i.e., the mesh size is much larger than l. Notice that the parameter also
appears in the form of Fh, where ζ= l/lc.

Assume that the internal free knots move with velocity vh in the Lagrange frame, i.e.

ẋi(t)=vh(xi,t),i=0,...,N. (3.5)

Then the time derivative of Eh in (3.3) can be rewritten as

Ėh(H,x;Ḣ,v)=
N−1

∑
i=1

∂Eh

∂Hi
Ḣi+

N

∑
i=0

∂Eh

∂xi
vi.

By the Onsager variational principle, (Ḣ,v) is obtained by solving the following problem

min
Ḣ,v
Rh(H,x;Ḣ,v) :=Φh(H,x;v)+Ėh(H,x;Ḣ,v)

s.t.
∫

I
(∂tHh+∂x(Hhvh))whdx=0, ∀wh∈Vt

h .
(3.6)

Notice that the continuous equation is satisfied in weak form.
We introduce a discrete Lagrangian multiplier λh = ∑N

i=0 λiφi(x,t) to deal with the
constraint in the above problem. Then, the discrete modified Rayleighian functional is
given by

R̃h =Φh+Ėh−
∫

I
(∂tHh+∂x(Hhvh))λhdx. (3.7)

Under proper assumptions, the problem (3.6) is equivalent to the Euler-Lagrange equa-
tion corresponding to R̃h, i.e.

∂Eh
∂Hi
−
∫

I φiλhdx=0, i=1,...,N−1;∫
I

vhφi
Hh

dx+ ∂Eh
∂xi
−
∫

I(ψi+φi∂x Hh+Hh∂xφi)λhdx=0, i=1,...,N−1;∫
Ĩ

vhφ0
Hh

dx+ Fh(θ
a
d)

3cos2 θa
g
v0+

∂Eh
∂x0
−
∫

I(ψ0+φ0∂x Hh+Hh∂xφ0)λhdx=0,∫
Ĩ

vhφN
Hh

dx+ Fh(θ
b
d)

3cos2 θb
g
vN+ ∂Eh

∂xN
−
∫

I(ψN+φN∂x Hh+Hh∂xφN)λhdx=0,∫
I(∂tHh+∂x(Hhvh))φidx=0, i=0,...,N.

(3.8)
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Due to the relationship ẋ=v, the equation (3.8) can be expressed in the following algebraic
form 

M(x(t))λ(t)= ∂Eh
∂H (x(t),H(t)),

D(x(t),H(t))ẋ(t)=− ∂Eh
∂x (x(t),H(t))+C(x(t),æ(t))λ(t),

MT(x(t))Ḣ(t)+CT(x(t),H(t))ẋ(t)=0,

(3.9)

where M∈RN−1,N+1, D∈RN+1,N+1, C∈RN+1,N+1

Mij(x(t))=
∫

I(t)
φiφjdx;

Cij(x(t),H(t))=
∫

I(t)
Hh∂xφiφjdx;

Dij(x(t),H(t))=
∫

Ĩ(t)

φiφj

Hh
dx+δi0δ0j

Fh(θ
a
d)

3cos2 θa
g
+δiNδNj

Fh(θ
b
d)

3cos2 θb
g

.

Here δij is equal to 1 if i = j and equal to 0 otherwise. Therefore, we obtain the semi-
discrete numerical scheme (3.8) or (3.9).

Similar to the assumptions in [60], we impose the following conditions: (a) The in-
tervals Ii(t),i = 1,...,N are well-defined, i.e., xi−1(t)< xi(t); and (b) The discrete density
function H(t) is non-negative for all t. Under these assumptions, it can be readily verified
that the discrete energy calculated by the semi-discrete numerical scheme always decays
with respect to time.

Proposition 3.1. Let (H(t),x(t)) be the solution of the equations (3.8), and Hh(t,x)∈Vt
h be

the corresponding piecewise linear function. Under the above assumptions (a) and (b),
we have

∂Eh(Hh)

∂t
≤0. (3.10)

In addition, one also has the mass conservation property d
dt

∫ xN
x0

Hhdx=0.

Proof. The mass conservation is directly from the last equation in (3.8) by adding it for i
from 0 to N. For the energy decaying property, it follows from the equations (3.3) and
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(3.8) that

∂Eh(Hh)

∂t
=

N−1

∑
i=1

∂Eh

∂ρi
Ḣi+

N

∑
i=0

∂Eh

∂xi
ẋi

=
N

∑
i=0

∫
I
φiλhdxḢi+

N−1

∑
i=1

(∫
I
(Hh∂xφi)λhdx−

∫
I

vhφi

Hh
dx
)

vi

+
(∫

I
(Hh∂xφ0)λhdx−

∫
Ĩ

vhφ0

Hh
dx−

Fh(θ
a
d)

3cos2 θa
g

v0

)
v0

+
(∫

I
(Hh∂xφN)λhdx−

∫
Ĩ

vhφN

Hh
dx−

Fh(θ
b
d)

3cos2 θb
g

vN

)
vN

=
N

∑
i=0

(∫
I
∂tHhφidx+

∫
I
∂x(Hhvh)φidx

)
λi−

N−1

∑
i=1

∫
Ii

vhφi

Hh
dxvi

−
∫

Ĩ0

vhφ0

Hh
dxv0−

∫
ĨN

vhφN

Hh
dxvN−

Fh(θ
a
d)

3cos2 θa
g

v2
0−
Fh(θ

b
d)

3cos2 θb
g

v2
N

=−2Φh(H,x;v)≤0.

This proves (3.10) as desired.

3.2 Full Discretization

In order to obtain the fully discrete numerical scheme, we need introduce appropriate
temporal discretizations for the semi-discrete numerical scheme. Let the time step be τ
, then we set the solution at t = tn as Hn

i = Hi(tn),xn
i = xi(tn), and the solution at tn+1

as Hn+1
i ,xn+1

i . We define the finite difference operator ∂̄Hn = (Hn+1−Hn)/τ and then
vn+1

i = ∂̄xn
i =(xn+1

i −xn
i )/τ. We first consider an explicit Euler scheme as follows

∫
In

φn
i λn+1

h dx=
∂En

h
∂Hn

i
, i=1,...,N−1; (3.11)

∫
Ĩn

vn+1
h φn

i
Hn

h
dx=−

∂En
h

∂xn
i
+
∫

In
Hn

h ∂xφn
i λn+1

h dx,

i=1,...,N−1; (3.12)∫
Ĩn

vn+1
h φn

0

Hn
h

dx+
Fh(θ

a
d)

3cos2 θa
g

vn+1
0 =−

∂En
h

∂xn
0
+
∫

In
Hn

h ∂xφn
0 λn+1

h dx, (3.13)

∫
Ĩn

vn+1
h φn

N
Hn

h
dx+

Fh(θ
b
d)

3cos2 θb
g

vn+1
N =−

∂En
h

∂xn
0
+
∫

In
Hn

h ∂xφn
Nλn+1

h dx, (3.14)
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∫
In

(N−1

∑
j=1

∂̄Hn
j φn

j

)
φn

i =−
∫

In

( N

∑
j=0

vn+1
j ψn

j

)
φn

i dx−
∫

In
∂x(Hn

h vn+1
h )φn

i dx, i=0,...,N. (3.15)

Here In = (xn
0 ,xn

N) and Ĩn = (xn
0 +l,xn

N−l). The fully discrete numerical scheme can be
rewritten in the matrix form

M(xn)λn+1= ∂Eh
∂H (xn,Hn),

D(xn,Hn)∂̄xn−C(xn,Hn)λn+1=− ∂Eh
∂x (x

n,Hn),
MT(xn)∂̄Hn+CT(xn,Hn)∂̄xn =0.

(3.16)

Notice that λn+1
h and M is not a square matrix. As a consequence, the matrix system (3.23)

is coupled, precluding a sequential solution for λ,ẋ and Ḣ. Since the thin film equation
is a nonlinear fourth-order partial differential equation, the explicit Euler scheme neces-
sitates selecting an appropriately small time step τ to maintain numerical stability.

To improve computational efficiency, we design a stabilized semi-implicit discrete
scheme. When t= tn+1, we perform a Taylor expansion of the terms ∂Eh

∂H (x(t),H(t)) and
∂Eh
∂x (x(t),H(t)) at the point (xn,Hn), i.e.,

∂Eh

∂H
(xn+1,Hn+1)≈ ∂Eh

∂H
(xn,Hn)+τ

∂2Eh

∂H∂x
(xn,Hn)∂̄xn+τ

∂2Eh

∂H2 (x
n,Hn)∂̄Hn,

∂Eh

∂x
(xn+1,Hn+1)≈ ∂Eh

∂x
(xn,Hn)+τ

∂2Eh

∂x∂H
(xn,Hn)∂̄Hn+τ

∂2Eh

∂x2 (xn,Hn)∂̄xn.

Replace the right hand terms in equation (3.23) by the above expansions, we obtain the
following stabilized semi-implicit discrete scheme

M(xn)λn+1−τ
∂2Eh

∂H∂x
∂̄xn−τ

∂2Eh

∂H2 ∂̄Hn =
∂Eh

∂H
(xn,Hn),

τ
∂2Eh

∂x∂H
∂̄Hn+

(
τ

∂2Eh

∂x2 +D(xn,Hn)
)

∂̄xn−C(xn,Hn)λn+1

=−∂Eh

∂x
(xn,Hn),

MT(xn)∂̄Hn+CT(xn,Hn)∂̄xn =0.

(3.17)

We expect that the stabilized scheme is much more stable than the explicit Euler scheme.
This will be verified by the numerical experiments in the next section.

3.3 Full Discretization

In order to obtain the fully discrete numerical scheme, we need introduce appropriate
temporal discretizations for the semi-discrete numerical scheme. Let the time step be τ
, then we set the solution at t = tn as Hn

i = Hi(tn),xn
i = xi(tn), and the solution at tn+1
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as Hn+1
i ,xn+1

i . We define the finite difference operator ∂̄Hn = (Hn+1−Hn)/τ and then
vn+1

i = ∂̄xn
i =(xn+1

i −xn
i )/τ. We first consider an explicit Euler scheme as follows

∫
In

φn
i λn+1

h dx=
∂En

h
∂Hn

i
, i=1,...,N−1; (3.18)

∫
Ĩn

vn+1
h φn

i
Hn

h
dx=−

∂En
h

∂xn
i
+
∫

In
Hn

h ∂xφn
i λn+1

h dx,

i=1,...,N−1; (3.19)∫
Ĩn

vn+1
h φn

0

Hn
h

dx+
Fh(θ

a
d)

3cos2 θa
g

vn+1
0 =−

∂En
h

∂xn
0
+
∫

In
Hn

h ∂xφn
0 λn+1

h dx, (3.20)

∫
Ĩn

vn+1
h φn

N
Hn

h
dx+

Fh(θ
b
d)

3cos2 θb
g

vn+1
N =−

∂En
h

∂xn
0
+
∫

In
Hn

h ∂xφn
Nλn+1

h dx, (3.21)

∫
In

(N−1

∑
j=1

∂̄Hn
j φn

j

)
φn

i =−
∫

In

( N

∑
j=0

vn+1
j ψn

j

)
φn

i dx−
∫

In
∂x(Hn

h vn+1
h )φn

i dx,

i=0,...,N. (3.22)

Here In = (xn
0 ,xn

N) and Ĩn = (xn
0 +l,xn

N−l). The fully discrete numerical scheme can be
rewritten in the matrix form

M(xn)λn+1= ∂Eh
∂H (xn,Hn),

D(xn,Hn)∂̄xn−C(xn,Hn)λn+1=− ∂Eh
∂x (x

n,Hn),
MT(xn)∂̄Hn+CT(xn,Hn)∂̄xn =0.

(3.23)

Notice that λn+1
h and M is not a square matrix. As a consequence, the matrix system (3.23)

is coupled, precluding a sequential solution for λ,ẋ and Ḣ. Since the thin film equation
is a nonlinear fourth-order partial differential equation, the explicit Euler scheme neces-
sitates selecting an appropriately small time step τ to maintain numerical stability.

To improve computational efficiency, we design a stabilized semi-implicit discrete
scheme. When t= tn+1, we perform a Taylor expansion of the terms ∂Eh

∂H (x(t),H(t)) and
∂Eh
∂x (x(t),H(t)) at the point (xn,Hn), i.e.,

∂Eh

∂H
(xn+1,Hn+1)≈ ∂Eh

∂H
(xn,Hn)+τ

∂2Eh

∂H∂x
(xn,Hn)∂̄xn+τ

∂2Eh

∂H2 (x
n,Hn)∂̄Hn,

∂Eh

∂x
(xn+1,Hn+1)≈ ∂Eh

∂x
(xn,Hn)+τ

∂2Eh

∂x∂H
(xn,Hn)∂̄Hn+τ

∂2Eh

∂x2 (xn,Hn)∂̄xn.

Replace the right hand terms in equation (3.23) by the above expansions, we obtain the
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following stabilized semi-implicit discrete scheme

M(xn)λn+1−τ
∂2Eh

∂H∂x
∂̄xn−τ

∂2Eh

∂H2 ∂̄Hn =
∂Eh

∂H
(xn,Hn),

τ
∂2Eh

∂x∂H
∂̄Hn+

(
τ

∂2Eh

∂x2 +D(xn,Hn)
)

∂̄xn−C(xn,Hn)λn+1

=−∂Eh

∂x
(xn,Hn),

MT(xn)∂̄Hn+CT(xn,Hn)∂̄xn =0.

(3.24)

We expect that the stabilized scheme is much more stable than the explicit Euler scheme.
This will be verified by the numerical experiments in the next section.

4 Numerical Examples

In this section, we will present some numerical results on the fourth-order thin film equa-
tion with moving contact lines. We first test the convergence and stability of the nu-
merical schemes. Then we show that the scheme can be used to simulate the thin film
dynamics on both flat and rough substrates.

4.1 Convergence Test

Since the analytical solution of the fourth-order thin film equation (2.32) remains un-
known, we first consider the following simplified fourth-order model, namely the Hele-
Shaw equation:

∂tH+∂x(H∂xxx H)=0. (4.1)

This equation is primarily used to describe the flow of two immiscible fluids in a Hele-
Shaw cell [1]. It is shown that equation (4.1) has a radially symmetric, compactly sup-
ported self-similar solution [11, 65], given by

H(x,t)=
1

24α
(C−x2α−2)2

+, (4.2)

where α= [5(t+t0)]1/5 and the constant C is determined by the total mass of the initial
condition. For the Hele-Shaw equation, we can specify its corresponding free energy

E=
∫

I(t)

1
2
(∂x H)2dx,

and dissipation function

Φ=
∫

I(t)

1
2

Hv2dx.
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Notice that the dissipation function is well-defined over the region I(t) where the
droplet is in contact with the substrate, and no singularity arises at the moving bound-
ary. By combining homogeneous Dirichlet boundary condition with the mass conserva-
tion constraint, we can similarly derive the Hele-Shaw equation (4.1) using the Onsager
variational principle. The resulting variational structure enables the application of the
same discretization strategies, yielding the explicit Euler scheme (3.23) and the stabilized
semi-implicit scheme (3.24). To assess the accuracy of the numerical methods, we per-
form convergence tests using the known exact self-similar solution. At the final simula-
tion time T, the error in the L2 norm between the numerical solution Hh and the analytical
solution H is computed as

errL2 :=
(∫

I(T)
(H(x,T)−Hh(x,T))2dx

) 1
2
.

Taking the self-similar solution (4.2) with parameters t0 = 1.5 and C = 4 as the ini-
tial condition, and setting the final time T = 2, we assess the numerical performance of
both the explicit and stabilized semi-implicit schemes. As shown in Tables 1 and 2, both
methods exhibit second-order convergence in the L2 norm. However, the choice of time
step size has a pronounced impact on the performance of the schemes. The time step
for the explicit Euler scheme needs to be sufficiently small to ensure numerical stabil-
ity, whereas the stabilized semi-implicit scheme has much less stringent requirements on
the time step size. This enhanced stability arises from the fact that the stabilized semi-
implicit method serves as a consistent approximation to the fully implicit scheme and
thus is much more stable than the explicit scheme. To improve computational efficiency,
all subsequent numerical simulations in this section are carried out using the stabilized
semi-implicit scheme.

Table 1: The convergence rate of explicit Euler method.

Number τ L2-error Order
12 1

10000 6.4859×10−3

24 1
40000 1.7649×10−3 1.8778

48 1
160000 4.7666×10−4 1.8886

96 1
640000 1.1266×10−4 2.0810

Table 2: The convergence rate of stabilized semi-implicit method.

Number τ L2-error Order
12 1

10 6.7422×10−3

24 1
40 1.8957×10−3 1.8305

48 1
160 4.7617×10−4 1.9932

96 1
640 1.1732×10−4 2.0210
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It is worth noting that the stabilized semi-implicit scheme (3.24) does not strictly pre-
serve total mass. To evaluate the extent of mass loss, we consider the same initial con-
dition given by the self-similar solution (4.2) with t0 = 1.5 and C = 4, and set the final
time T=2, at which point the total mass is 1.4222. As shown in Table 3, the error in total
numeircal mass exhibits a second-order convergence rate with respect to the mesh size.

Table 3: The convergence rate of numerical mass at T=2.

Number τ Error of numerical mass Order
12 1

10 1.0612×10−3

24 1
40 2.6076×10−4 2.0249

48 1
160 6.3130×10−5 2.0463

96 1
640 1.5359×10−5 2.0392

4.2 Dynamic Wetting on a Flat Substrate

In this subsection, we investigate the dynamic wetting behavior of a droplet on a flat
substrate, corresponding to the case where the roughness function satisfies R(x)=0. Let
θY = 1, l = 10−6, and lc = 10−10, with lnζ = ln(l/lc). The initial shape of the droplet is
denoted as

H(x)=1−x2. (4.3)

Assuming that gravitational effects and external forces are negligible, i.e., Bo =0 and
Bx = 0, the evolution of the droplet is governed solely by capillary forces. Under these
conditions, the evolution of the droplet profile and the velocity of the contact lines are
depicted in Figure 3. As illustrated in Figure 3(a), the droplet undergoes spreading driven
by capillary forces, expanding both vertically and laterally until it reaches an equilibrium
configuration. Meanwhile, the contact line velocities ẋa and ẋb converge to zero, as shown
in Figure 3(b).

Figure 4 presents the numerical simulation results for the droplet evolution under the
combined effects of capillary forces and gravity, with parameters set as Bo=1 and Bx=0,
while other conditions remain unchanged. Compared to the capillary forces-dominated
case, the presence of gravity significantly alters the droplet dynamics and final configu-
ration. The droplet spreads more extensively and attains a lower stationary state height,
reflecting the competition between surface tension, which favors curvature-driven con-
traction, and gravity, which promotes flattening by redistributing mass downward.

Figure 5 illustrates the numerical simulation of a droplet subjected to capillary forces,
gravity, and an additional horizontal external force, with Bo = 1 and Bx = 0.5. The re-
sults show that the droplet gradually deforms and eventually evolves into a traveling
wave that moves rightward at a constant speed [42]. This steady propagation reflects a
balance between capillary-driven surface tension, gravitational spreading, and horizon-
tal forcing. In particular, capillary forces tend to minimize surface curvature, promoting
spreading, while the external force introduces a persistent directional motion that breaks
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(b) The velocity of the contact lines

Figure 3: Temporal evolution of droplet for Bo =0 and Bx =0 on a flat surface.
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(b) The velocity of the contact lines

Figure 4: Temporal evolution of droplet for Bo =1 and Bx =0 on a flat surface.

the symmetry of the shape. Gravity contributes to lowering the center of mass and sup-
pressing height, thereby enhancing lateral extension.

When the external force increases to Bx = 0.8, as illustrated in Figure 6, the droplet
develops a more pronounced asymmetry characterized by a thin trailing film and a pro-
nounced capillary ridge at the front. This behavior arises from the nonlinear competition
between capillarity and strong external forcing: while capillary forces resist sharp gra-
dients and promote smoother profiles, the stronger horizontal force continuously pulls
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fluid forward, generating a sharp front and leaving a thin layer behind. The overall foot-
print of the droplet increases significantly, indicating transition into the so-called ”large-
droplet” regime described by Benilov and Benilov [66]. This transition underscores the
sensitivity of wetting dynamics to external driving, and highlights the capability of the
proposed model to capture complex interfacial phenomena in forced spreading scenar-
ios.
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Figure 5: Temporal evolution of droplet for Bo =1 and Bx =0.5 on a flat surface.
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Figure 6: Temporal evolution of droplet for Bo =1 and Bx =0.8 on a flat surface.
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Finally, we investigate the spatial convergence behavior of the numerical model at a
fixed time. Specifically, we consider the case with Bo =1 and Bx =0.5, while maintaining
all other initial conditions unchanged. The droplet is evolved from the initial state up
to the final time T = 20. As shown in Figure 7, the computed droplet profiles exhibit
consistent convergence as the spatial mesh is refined. This demonstrates the robustness
and accuracy of the proposed numerical scheme in capturing the long-time behavior of
the system under the combined effects of capillarity, gravity, and external forcing.
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Figure 7: The convergence of model at T=20.

4.3 Effectiveness of the macroscopic boundary conditions

To further assess the robustness of the macroscopic boundary condition and to elucidate
the roles played by different dissipation mechanisms, we conduct a series of numerical
tests focusing on the meso-scale wedge region adjacent to the moving contact line on a
flat substrate.

We consider a sliding liquid film along a substrate under gravity and an external
force in the x direction. We set Bo = 1 and Bx = 0.8. The other parameters are chosen
as in Section 4.2. We consider two situations: with and without using the macroscopic
boundary condition. In the latter case, we simply set F (θd)=α instead of the expression
in (2.23). In both cases, we test two different choices for the parameter l, i.e., l=10−2 and
l=10−7. Some typical results are shown in Figure 8.
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Firstly, Figure 8(a) shows the profile of the film in different cases at t=20. We observe
that without using the macroscopic boundary condition, the film advances much more
rapidly than in the case with the condition. This discrepancy is most pronounced for
l=10−2, since the dissipation in the wedge region near the contact line is neglected. The
discrepancy becomes smaller when a smaller parameter l=10−7 is chosen. This indicates
that the results are very sensitive to the choice of the parameter l in this scenario. On the
other hand, when the macroscopic boundary condition is used, the numerical results are
close to each other whether we set l = 10−2 or l = 10−7. In other words, the numerical
results are robust with respect to the choice of l when the macroscopic boundary condi-
tion is employed. This is because the dissipation in the wedge region is included in the
macroscopic boundary condition and because the parameter ζ in (2.23) also depends on
l.

Figure 8(b) shows the long-time profiles of the film at t = 100. The results are sim-
ilar and even more pronounced. Without using the macroscopic boundary condition,
the solution for l=10−2 fails to develop the characteristic front–ridge and rear–film mor-
phology associated with driven thin-film flows. In contrast, when using the macroscopic
boundary condition, the correct morphological structure emerges for both values of l,
and the resulting profiles remain close despite a five-order-of-magnitude difference in l.
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Figure 8: Comparison of droplet profiles for different dissipation configurations under gravity and external forcing
(Bo=1,Bx=0.8).

Overall, the numerical experiments reported herein lead to two key conclusions. First,
the dissipation in the meso-scale wedge region plays a crucial role in the motion of the
contact line. Without the macroscopic model, one must choose a very small cut-off pa-
rameter l. On the other hand, our macroscopic model incorporates wedge-region dissi-
pation. As a result, the numerical scheme exhibits strong robustness with respect to the
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choice of l, even when its value varies by several orders of magnitude. These findings
highlight the advantages of the modeling framework adopted in this work.

4.4 Dynamic Wetting on a Rough Substrate

This subsection investigates the wetting dynamics of a droplet on rough substrates, where
the substrate profile satisfies R(x) 6=0. Let θY=1, l=10−6, and lc=10−10, with lnζ=ln(l/lc).
The initial shape of the droplet is prescribed by (4.3), and the substrate roughness is de-
scribed by

R(x)=
1
10

sin(5x). (4.4)

We first consider the case where the droplet dynamics is governed solely by capillar-
ity, i.e., Bo =0 and Bx =0. As shown in Figure 9, the droplet undergoes initial spreading
and eventually reaches a stationary equilibrium configuration. This behavior is qualita-
tively similar to that observed on flat substrates, although the final shape is modulated
by the underlying topography.
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Figure 9: Temporal evolution of droplet for Bo =0 and Bx =0 on a rough surface.

Subsequently, we consider the shape evolution of the droplet under the influence of
capillary forces, gravity, and external forces. For Bo = 1 and Bx = 0.5, the droplet de-
forms and evolves toward a pinned equilibrium state, as illustrated in Figure 10. The
roughness-induced pinning effect prevents sustained motion, under moderate external
forcing in x direction.

To explore the transition beyond pinning, we increase the external force to Bx = 0.8.
The substrate and initial droplet configurations remain the same as in (4.4) and (4.3).
The droplet evolves from time zero to T=1200, as depicted in Figure 11(a). During this
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Figure 10: Temporal evolution of droplet for Bo =1 and Bx =0.5 on a rough surface.

process, the droplet shape becomes increasingly asymmetric, and contact angle hysteresis
is observed. The temporal evolution of the apparent contact angles θa and θb is shown in
Figure 11(c), while the corresponding contact line velocities and positions are reported in
Figures 11(b) and 11(d), respectively. These results reflect the dynamic wetting resistance
induced by substrate roughness and the nonlinear coupling between contact line motion
and substrate geometry.

Further increasing the external force to Bx = 1 yields enhanced droplet mobility, as
shown in Figure 12. In this regime, the droplet advances more rapidly, and significant
deformation occurs at the receding edge. Notably, the rear contact line can exhibit nega-
tive apparent contact angles when interacting with negatively sloped substrate regions,
as demonstrated in Figure 12(b).

To explore the influence of substrate roughness, we consider a new substrate profile
R(x)= 1

100 sin(10x), with the initial droplet shape described by (4.3), and parameters Bo=1
and Bx =1. As shown in Figure 13(a), the droplet eventually develops a traveling-wave-
like profile reminiscent of the “large droplet” regime on flat substrates. Contact angle
hysteresis persists, as evidenced in Figure 13(b), although its magnitude is diminished.
The reduced roughness scale introduces multiscale features at the contact line, which
poses additional challenges for numerical resolution and requires finer discretization to
accurately capture the localized wetting behavior.

5 Conclusion

This study investigates the dynamic wetting behavior of droplets on rough substrates.
Utilizing the Onsager variational principle as an approximation tool, we systematically
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Figure 11: Temporal evolution of droplet for Bo =1 and Bx =0.8 on a rough surface.

derive a reduced fourth-order nonlinear thin film model (2.32), accompanied by appro-
priate dynamic boundary conditions that account for contact line motion. Building on the
discrete Onsager variational principle and inspired by recent advances in the numerical
treatment of porous medium equation [60], we developed an explicit numerical scheme
and further proposed a stabilized semi-implicit scheme. Numerical results indicate that
both schemes achieve second-order accuracy in the L2 norm. Notably, the semi-implicit
approach effectively relaxes the stringent time step constraints typically encountered in
the numerical solution of fourth-order nonlinear PDEs. A series of simulations were
conducted to explore the interplay between capillarity, gravity, and external forcing in
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Figure 12: Temporal evolution of droplet for Bo =1 and Bx =1 on a rough surface.
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Figure 13: Temporal evolution of droplet for Bo =1 and Bx =1 on a rough surface.

driving droplet dynamics on rough surfaces. The results capture several key physical
features, including the transition from symmetric spreading to directional transport, the
onset of contact angle hysteresis under strong external forces, and the emergence of pin-
ning effects due to substrate roughness. These findings are consistent with theoretical
predictions and prior studies, and they underscore the capability of the proposed varia-
tional framework to accurately model complex interfacial phenomena.

Due to the intrinsic coupling between temporal and spatial scales in free boundary
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problems, accurately resolving the motion of the moving contact line necessitates care-
ful adjustment of the time step, particularly as substrate roughness reduces gradually.
In the limit of vanishing roughness, the numerical resolution of the associated thin film
equation becomes increasingly stiff and computationally demanding. To address this
challenge, future research will aim to incorporate coarse-grained or effective boundary
models that capture the macroscopic influence of microscale substrate features, as exem-
plified in [67], thereby enabling efficient and accurate simulations of droplet wetting on
complex surfaces.
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