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Abstract
Reaction-diffusion equations on surfaces are widely used for modeling various phenomena in
biology. This paper presents a novel numericalmethod for solving a surface reaction-diffusion
system coupled with the evolution of the surface. The coupled system has been used to model
the growth of hard tumors. A stabilized trace finite element method is used to discretize the
reaction-diffusion system on evolving surfaces. The surface motion is computed using a
diffusion-generated method for the level-set function, which involves solving a heat equation
in each time step followed by a redistance operation. Both the trace finite element space for the
reaction-diffusion system and the finite element space for the level-set function are defined
in a narrow band region near the surface on a bulk mesh. The method is fully decoupled
and allows for easy handling of topology changes. Numerical experiments demonstrate the
efficiency of the proposed method for solving this complex problem.

Keywords Reaction diffusion systems · Evolving surfaces · Trace finite element method ·
Diffusion generated motion

1 Introduction

Reaction diffusion systems have plenty of applications in biology. One of the most well-
known models is that for Turing pattern suggested by Alan Turing [1]. This model illustrates
that chemical species may form a patterned distribution of concentrations in space due to
diffusion-driven instability. Furthermore, it has been discovered that the stripes of tigers and
zebras, spots of cheetahs, sea shell patterns, fish patterns, and intricate patterns on animal
feathers are all related to a similarmechanism [2–7]. In addition, the reaction-diffusion system
can also be utilized to model and simulate solid tumor growth, where the system is defined
on an evolving surface [8–10].
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In the community of numerical analysis, there has been much interest in solving partial
differential equations on evolving surfaces recently. As a result, numerous numericalmethods
have been developed (c.f. [11–21, 21, 22]). A Lagrangian framework-based approach, utiliz-
ing a surface finite element method, is a natural method to handle the evolution of the surface
[23–25]. In this approach the transport properties of the finite element space are used to deal
with the convection term in the system. When the surface undergoes significant deformation,
the meshes may have poor qualities, and an arbitrary Eulerian-Langrangian method can be
used instead [26]. In addition to the surface finite element methods, Eulerian framework-
based numerical methods have also been developed, such as the trace finite element method
[15, 27–29], among some others.

The above mentioned methods have also been applied to surface reaction-diffusion sys-
tems.Madzvamuse et al. developed a lumped-massmethod for pattern formationon stationary
surfaces [30, 31]. For more general problems on evolving surfaces, Barreira et al. proposed
a surface finite element method for the phase-field model [32], while the trace finite element
method has been used to study the Allen–Cahn equation on evolving surfaces in [33].

The focus of this paper is on numerical methods for surface reaction-diffusion sys-
tems coupled with surface evolution. As an example, we consider the Brusselator model
of tumor growth, which consists of a reaction-diffusion system with two species (activator
and inhibitor) defined on an evolving surface [8–10]. The surface growth depends on the
activator distribution and the local mean curvature. The model has been solved numerically
by a surface finite element method in [32].

We propose a novel numerical approach for the Brusselator model of tumor growth.
We decouple the entire system by solving the reaction-diffusion equations first, and then
moving the interface. To solve the reaction-diffusion system, we utilize a stabilized trace
finite element method. For surface evolution, we develop a diffusion-generated method that
efficiently solves mean curvature flow. Our method has a first-order accuracy with respect
to the time step size. The numerical results are consistent with previous calculations. One
key advantage of the present method is that we can deal with the topological change of the
surface easily in the Eulerian framework. We present various numerical examples to further
highlight the efficiency of our approach.

The structure of the paper is as follows: In Sect. 2, we provide a brief introduction to the
mathematical model. In Sect. 3, we introduce the semi-discrete in time scheme and the weak
formulae. The fully discrete method is described in details in Sect. 4. In Sect. 5, we present
numerical results and we conclude the paper in the last section.

2 TheMathematical Model

Consider a closed tumor surface�(t) ∈ � changing its shape over time, with outward normal
direction n(x, t). For convenience of notation, we often omit the indicators t and x. There are
two chemical species on the tumor surface, one promoting its growth and the other inhibiting
it, with concentrations u and v, respectively. Assumew is the velocity of the evolving surface,
which satisfies

w = (λu − εH)n, (1)

where λ represents the growth rate, ε characterizes the surface tension of the tumor, and H is
the mean curvature.1 If the surface is convex at a point, the mean curvature there is positive,
otherwise it is negative. The concentrations u and v satisfy the following reaction-diffusion

1 We define the mean curvature as the sum of the principal curvatures rather than the arithmetic mean.
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system on the tumor surface,

u̇ + u∇� · w = D1��u + f1(u, v), on �(t), (2)

v̇ + v∇� · w = D2��v + f2(u, v), on �(t). (3)

Here ∇� is the surface gradient and �� is the Laplace-Beltrami operator. D1 and D2 are
diffusion coefficients. The reaction terms are given by the Brusselator model [9],

( f1, f2) = (γ (a − u + u2v), γ (b − u2v)), (4)

where γ, a and b are given parameters. This model strongly couples the evolution of a curved
surface with the reaction-diffusion system on the surface.

We know that the formation of a Turing pattern for a reaction-diffusion system, e.g. (2)–
(3), must meet certain conditions [8]. Firstly, the reaction terms in the system must exhibit
a certain type of nonlinearity, like that in Eq. (4), known as an activator-inhibitor dynamics.
This implies that the chemical reactions between the species must involve a positive feedback
loop, where the concentration of one species promotes the production of the other, while the
second species inhibits the production of the first. Secondly, the diffusivities of the two
species must be sufficiently different, i.e. D1 and D2 are not close to each other, so that one
species diffuse more slowly than the other. This creates a spatial instability in the system,
where small perturbations in the concentrations of the species can grow and develop into
stable spatial patterns.

2.1 Reformulation of the PDE System

We will use the level-set method to capture the motion of the interface. The method works
well even when the interface evolves with topological changes. Assume� can be represented
implicitly by a level set function φ, i.e.

�(t) = {x ∈ � | φ(x, t) = 0}.
Here we simply assume that φ is negative inside � and positive outside. For any x on �, we
know the material derivative φ̇(x) = 0, i.e.

φt + w · ∇φ = 0.

By Eq. (1) and n = ∇φ
|∇φ| , the equation can be rewritten as

φt + (λu − εH)|∇φ| = 0, on �(t).

The equation can be extended in a neighboring region of �(t) as

φt + (λue − εH)|∇φ| = 0. (5)

Here ue denotes a smooth extension of u from � to the neighboring region, defined as
ue(x) = u( p(x)), where p(x) = x − d(x)n is the projection of x to �. Notice that the mean
curvature H can be written as a function of φ by

H = div
∇φ

|∇φ| . (6)

With the definition of ue, the reaction diffusion Eq. (2) can be rewritten as

∂ue

∂t
+ w · ∇ue + u∇� · w = D1��u + f1(u, v), on �(t).
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Notice the extension ue satisfies n · ∇ue = 0. By the definition of the velocity in Eq. (1), the
equation can be further simplified to

∂ue

∂t
+ u(λu − εH)H = D1��u + f1(u, v), on�(t). (7)

Here we have used the fact that w · ∇ue = (λu − εH)n · ∇ue = 0 and ∇� ·w = ∇� · ((λu −
εH)n) = (λu − εH)∇� · n = (λu − εH)H . Similarly, the Eq. (3) can be rewritten as

∂ve

∂t
+ v(λu − εH)H = D2��v + f2(u, v), on�(t). (8)

In summary, the mathematical model we will study in this paper is a coupled system consist
of Eqs. (5)–(8).

3 A Decoupled Semi-discrete Scheme

In this section, we will do discretization in time and introduce a decoupled semi-discrete
scheme to the system (5)–(8) described in the previous section.

We solve the system (5)–(8) in a time interval [0, T ]. We partition the interval uniformly
as

0 = t0 < · · · < tn−1 < tn < · · · < tN = T ,

with the time step τ = T
N . Suppose that we already have the solution of the system at time

tn−1, that is given by (φn−1, un−1, vn−1). We will compute the solution (φn, un, vn) by a
decoupled scheme.

3.1 A Diffusion GeneratedMethod for the Level-Set Equation

We first consider the time dicretization to Eq. (5) which is a nonlinear partial differential
equation. In general, it is very difficult to solve the equation numerically. Here we introduce
an efficient numerical scheme based on an operator splitting technique. Notice that when φ

is a sign distance function at time tn−1 defined as follows,

φ(x, tn−1) =
{−dist(x, �n−1), x is inside of �n−1,

dist(x, �n−1), otherwise.
(9)

When τ is small, we assume that |∇φ| ≈ 1. Equation (5) can be approximated well by a heat
equation

φt − ε�φ = −λun−1,e, (10)

at time tn−1. This motivates us to consider a diffusion-generated motion method for Eq. (5)
in each time step, as stated below.
Algorithm 1(One step evolution of the surface)

Step 1. Suppose φn−1 and un−1 are given, such that |∇φn−1| = 1. Solve a heat Eq. (6)
for one step by a backward Euler scheme,

ϕ − φn−1

τ
− ε�ϕ = −λun−1,e. (11)
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Step 2.We do redistance ϕ to obtain a signed distance function φn , i.e.

φn := redist(ϕ),

so that φn has the same zero level set as ϕ and satisfies |∇φn | = 1.

The diffusion generated method originates from the MBO methold [34] for characteristic
functions. The method can be derived either by a Taylor expansion [35] or by using the
Onsager variational principle as an approximation tool [36]. The advantage of the method
is that we need only to solve a linear diffusion equation for one time step plus a standard
re-distance operation. This is much easier than solving a nonlinear geometric PDE for mean
curvature flow.

3.2 A Finite Difference Scheme for the Surface Reaction-Diffusion System

Now we consider the time discretization of the reaction-diffusion system (7)–(8). We simply
use a backward Euler scheme and decouple the system as follows,

un − un−1,e

τ
+ (λun−1,e − εHn)Hnun − D1��u

n = f̃1(u
n−1,e, vn−1,e, un),

on�n, (12)

vn − vn−1,e

τ
+ (λun−1,e − εHn)Hnvn − D2��vn = f̃2(u

n, vn), on�n . (13)

Here �n = {x : φn(x) = 1} and the mean curvature is calculated by

Hn = �φn,

where φn is obtained from Algorithm 1. f̃i are linearized forms to the functions fi , given by

f̃1(u
n−1,e, vn−1,e, un) = γ (a − un + un−1,evn−1,eun),

f̃2(u
n, vn) = γ (b − (un)2vn)).

We choose the semi-implicit scheme which is more stable than an explicit Euler scheme and
easier to solve than a fully implicit scheme. Notice that the above system (12)–(13) is fully
decoupled. We first solve the equation for un and then the equation for vn in each time step.
Both of them are linear equations.

3.3 Weak Formulae

Before we introduce the fully discrete scheme, we give the weak formulae for the Eqs. (11)–
(13). We first consider the weak formulae to Eq. (11). Notice that we are interested only the
evolution of the zero level-set of φ in Algorithm 1. Therefore, we can solve Eq. (11) in a
narrow band region near �n−1. Let O(�n−1) be a neighboring region of �n−1 defined as

O(�n−1) := {x ∈ � : dist(x, �n−1) < δn−1},
where δn−1 > 0 is a positive number making sure that �n ∈ O(�n−1). Let Wn−1 =
H1(O(�n−1)). The weak form for Eq. (11) is to find ϕ ∈ Wn−1, such that
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∫
O(�n−1)

ϕψ + ετ

∫
O(�n−1)

∇ϕ · ∇ψ =
∫
O(�n−1)

φn−1ψ − λτ

∫
O(�n−1)

un−1,eψ,

∀ψ ∈ Wn−1. (14)

We now derive weak formulae to the Eqs. (12)–(13). We first introduce some functional

spaces as in [29]. Define Vn := V�
n
‖·‖Vn , with

V�
n :={v ∈ C2(O(�n)) : ∇v · ∇φn = 0},

‖v‖Vn :=
(
‖v‖2H1(�n)

+ ‖∇v · ∇φn‖2L2(O(�n))

) 1
2
.

Suppose that un−1 and vn−1 belong to V∗
n−1 so that their extensions are defined implicitly.

Then the weak forms for (12)–(13) are given by,∫
�n

[
γ + 1

τ
+ (λun−1 − εHn)Hn − γ un−1vn−1

]
unw + D1

∫
�n

∇�u
n · ∇�w

+ ρn

∫
O(�n)

(n · ∇un)(n · ∇w) = aγ

∫
�n

w +
∫

�n

un−1

τ
w, ∀w ∈ V�

n , (15)

and ∫
�n

[
1

τ
+ (λun − εHn)Hn + γ (un)2

]
vnw + D2

∫
�n

∇�vn · ∇�w

+ ρn

∫
O(�n)

(n · ∇vn)(n · ∇w) = bγ
∫

�n
w +

∫
�n

vn−1

τ
w, ∀w ∈ V�

n . (16)

In the above equations, the integral terms inO(�n) act as a stabilization term and also define
an extension in the neighborhood to the function un and vn , where ρn > 0 is a stabilization
parameter. The choice of δn and ρn will be given in the next section.

4 The Fully Discrete Method

In this section, We introduce a fully discrete numerical scheme by discretizing the Eqs. (14)–
(16). We will use a standard finite element method to approximate the level-set function and
a trace finite element method to discretize the surface reaction diffusion system. The discrete
scheme is based on an Eulerian framework and enables us to solve the system easily even
when the surface changes its topology [28].

4.1 The Finite Element Space in a Narrow Band

Let � ⊂ R
3 such that �(t) ⊂ �, for all t ∈ (0, T ). Let Th be a regular triangulation of �

with mesh size h, and Wk
h be the standard conforming kth order finite element space in �,

i.e.

Wk
h :={vh ∈ C(�) : vh |K ∈ Pk,∀K ∈ Th}.

If φn−1
h is given, we define the discrete surface

�n−1
h :=

{
x ∈ � : φn−1

h (x) = 0
}

=
⋃

K∈T �
h

�K , �K :=�n−1
h ∩ K . (17)
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Fig. 1 Definition of a neighboring region around an interface �

Here T �
H := {K ∈ Th : �n−1

h ∩ K 
= ∅}. We assume that �n−1
h is a good approximation to

�n−1. Introduce a narrow band region near the surface �n−1
h ,

Nδn−1(�
n−1
h ):={x ∈ R

3 | dist(x, �n−1
h ) < δn−1}. (18)

Then a neighborhood of �n−1
h consist of all discrete elements intersecting withNδn−1(�

n−1
h )

is given by

S(�n−1
h ):={K ∈ Th : K ∩ Nδn−1(�

n−1
h ) 
= ∅}, O(�n−1

h ):= int(∪K∈S(�h )K ).

Figure1 illustrates the definition of a neighboring region near an interface �. Assume that
�n
h ⊂ O(�n−1) always holds for all n > 1. We define a finite element space in the

neighborhood as

V k
h (O(�n−1

h )):={vh ∈ C(O(�n−1
h )) : vh |K ∈ Pk,∀K ∈ S(�n−1

h )}.

We will introduce the fully discrete problem for the system (14)–(16) below.

4.2 Finite Element Discretization of the Level-Set Equation

We first consider the level-set Eq. (14). We will use a quadratic finite element method to
discretize the level set function. We do not choose a linear finite element space since we need
to calculate themean curvature of the interfacewhich is related to the second order derivatives
of the level set function. We consider the discretization of Eq. (14) in V 2

h (O(�n−1
h )). This is

to find a piecewisely quadratic continuous function ϕh ∈ V 2
h (O(�n−1

h )) such that
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∫
O(�n−1

h )

ϕhψh + ετ

∫
O(�n−1

h )

∇ϕh · ∇ψh =
∫
O(�n−1

h )

φn−1
h ψh − λτ

∫
O(�n−1

h )

un−1,e
h ψh,

∀ψ ∈ V 2
h (O(�n−1

h )). (19)

We then do re-distance to ϕh to compute φn
h , which satisfies |∇φn

h | ≈ 1 and has (almost)
the same zero level-set with ϕh . In applications, the re-distance operation is done in the
neighbouring region of �n

h

φn
h = redist(ϕh), in O(�n

h ),

by some standard techniques, e.g. the fast marching method ([37, 38]).
We briefly introduce the fast marching method below. We introduce some notations.

Notice that both ϕh and φn
h are continuous P2 finite element functions. For each tetrahedron

K ∈ S(�n
h ), the freedoms are defined on the four vertexes and the middle points of all edges

of K . Then we can divide the tetrahedron into four sub-tetrahedra naturally by connecting the
middle points. After division for all the tetrahedra in S(�n

h ), we obtain a refined mesh T ′
h . We

denote by I (ϕh) the piecewise linear interpolation of ϕh on T ′
h . The zero level-set of I (ϕh)

is set to be �′
h . Now we are ready to give the fast marching method. We compute the values

of φh on all the vertexes of T ′
h in two steps: initialization and extension. In the initialization

step, we set the value of φh in a band region T�′
h
consist of all the tetrahedra intersecting

with �′
h by directly computing the distance of the vertex to �′

h . In the extension step, we set
the value of φh in the outer region by a greedy algorithm. We first extend the approximate
distance to the neighbours of T�′

h
and then to neighbours of neighbours. For more details

on the fast marching method for the finite element functions, we refer to Algorithm 7.4.1 in
Sect. 7.4 in [38].

4.3 The Trace Finite Element Method for the Surface Reaction Diffusion System

We will use a trace finite element method to discretize the surface reaction diffusion system.
For simplicity, we use linear finite element method for both u and v.

Once φn
h is given, we have �n

h = {x : φn
h (x) = 0}. We first compute the mean curvature

by

Hn
h = ∇ · G∇φn

h

|G∇φn
h | ,

whereG∇φn
h is a higher order approximationof∇φn

h obtainedby applying agradient recovery
technique [39, 40]. We briefly introduce this technique below. Suppose G∇φn

h ∈ (W 2
h )3 is a

second order vector finite element function.We need only determine the value ofG∇φn
h on all

the vertexes and the middle points of all edges in S(�n
h ). Let xi be a vertex of a tetrahedron

in S(�n
h ) and ω(xi ) := {K |xi ∈ K } be the neighbouring region of xi consists of all the

tetrahedra which has xi as a vertex. We fit a polynomial pxi of degree 3 to the values in all
nodes of ω(xi ) by a least square approach∑

z∈N (ω(xi ))

|φh(z) − pxi (z)|2 = min
p∈P3

∑
z∈N (ω(xi ))

|φh(z) − p(z)|2.

HereN (ω(xi )) consist of all the vertexes and middle points of all edges inω(xi ). We assume
there is a unique solution pxi . (Notice that we may include more neighbours into ω(xi ) if the
solution is not unique.) We define G∇φn

h (xi ) = ∇ pxi (xi ). For xi j which is a middle point
of an edge with nodes xi and x j , we simply set G∇φn

h (xi j ) = 1
2 (∇ pxi (xi ) + ∇ pxi (x j )).
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Then we can derive a fully discrete problem for (15)–(16) in V 1
h (O(�n

h )) by using the
trace finite element method [28, 29]. The methods reads as follows.

We first find a unh ∈ V 1
h (O(�n

h )) such that∫
�n
h

[
γ + 1

τ
+ (λun−1

h − εHn
h )Hn

h − γ un−1
h vn−1

h

]
unhwh + D1

∫
�n
h

∇�u
n
h · ∇�wh

+ ρn

∫
O(�n

h )

(nnh · ∇unh)(n
n
h · ∇wh) = aγ

∫
�n
h

wh +
∫

�n
h

un−1
h

τ
wh, ∀wh ∈ V�

n . (20)

Then we find a discrete function vnh ∈ V 1
h (O(�n

h )) such that∫
�n
h

[
1

τ
+ (λunh − εHn

h )Hn
h + γ (unh)

2
]

vnhwh + D2

∫
�n
h

∇�vnh · ∇�wh

+ ρn

∫
O(�n

h )

(nnh · ∇vnh )(n
n
h · ∇wh) = bγ

∫
�n
h

wh +
∫

�n
h

vn−1
h

τ
wh, ∀wh ∈ V�

n . (21)

Here nnh = ∇φn
h . Notice that in both equations, we solve the problem in a narrow band region

O(�n
h ). Most terms are defined on �n

h , where the trace of the finite element space is used to
calculate integrals. That is why the method is called the trace finite element method in [15].
Finally, we would like to remark that in implementation we actually calculate the integration
in an approximate surface (�n

h )
′, which is the zero level set of I (φn

h ). This does not affect the
convergence rate for the linear trace finite element method [15, 41].

4.4 The Fully Discrete Algorithm

In summary,we derive a fully decoupled algorithm to solve themathematicalmodel described
in Sect. 2 as follows.

Algorithm 2

Step 0. Given �, make a partition to get Th . Given the initial level set function φ0 that
implicitly defines the initial surface, compute its P2 interpolation φ0

h . Prepare the initial
value functions u0h and v0h . Set the time step τ and the end time T . Set n = 1.
Step 1. For given φn−1

h , solve Eq. (19), to get ϕh . Compute φn
h = redist(ϕh) in O(�n

h ) by
a fast marching method.
Step 2. Solve the reaction-diffusion Eqs. (20)–(21) on O(�n

h ) to get unh and vnh .
Step 4. Set n = n + 1. If nτ > T , stop. Otherwise, return Step 2.

In Step 2, we need determine the parameters δn and ρn . We should first choose δn large
enough so that �n

h ∈ O(�n−1
h ). We estimate the normal velocity by computing w∞ :=

max(λun−1
h − εHn−1

h ) and let δn = c0(w∞τ + h) where c0 > 1 is a constant. The choice
of ρn has been discussed in [29]. In general we can choose ρn = c1(δn + h)−1 with c1 is
a constant. Such a choice guarantees both the accuracy and stability of the stabilized trace
finite element method. In our numerical experiments, we simply set c0 = 3 and c1 = 1.

Remark 1 There are some difficulties to do error estimates to the present numerical method.
Firstly, the surface reaction diffusion system is nonlinear and non-monotone. The diffusion
coefficients are not equal. This induces instability corresponding to emergence of patterns of
the solutions [42]. Secondly, the coupling between the surface reaction diffusion system and
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the evolution of the surface make the numerical analysis even more difficult. To address these
difficulties, we may first consider a reaction-diffusion system on evolving surface with given
velocity. Then we consider a simpler coupling between the surface PDEs and the geometric
motion of the surface[43]. We will leave the numerical analysis for future work.

5 Numerical Experiments

In this section, we present some numerical experiments obtained by Algorithm 2. We first
show some convergence tests for the algorithm and then present some interesting examples
on stationary and evolving surfaces.

5.1 Accuracy Check

Since the problem does not have an analytical solution, we consider a simple case inwhich the
solution can be solved numerically in high accuracy. We then use the solution as a reference
to compute the numerical errors. Here we take D1 = D2 which avoid the generation of
Turing patterns. Initially, � is the spherical surface with radius R0 and both u0 and v0 are
constants. In this setup, the solution u(t) and v(t) will always be constant and do not depend
on the position of the spherical surface. In this case, the system (2)–(3) and Eq. (1) can be
simplified to ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
+ u(λu − ε

2

R
)
2

R
= f1(u, v),

∂v

∂t
+ v(λu − ε

2

R
)
2

R
= f2(u, v),

∂R

∂t
= (λu − ε

2

R
).

(22)

This is a system of ordinary differential equations(ODEs) which can be solved in high accu-
racy by some standard ODE solvers. We solve the ODE system by an implicit Euler scheme
under sufficiently small time step and regard the numerical solutions (u(t), v(t)) as a ref-
erence. Since the solution is homogeneous in space, we test only the convergence behavior
with respect to the time step size. For simplicity, we consider only the errors for u, which in
L∞ norm is defined by

Err(�t) = max
i∈{1,2,··· ,T /�t}{‖uh(x, ti ) − û(ti )‖L∞(�h(t))}. (23)

Here ti = i�t , uh(x, ti ) represents the numerical solution at time ti calculated by Algorithm
2.�t represents the time step size in numerical experiments. The other parameters as chosen
as D1 = D2 = 10, u0 = 2, v0 = 0, R0 = 1, γ = 10, a = 0.1, b = 0.9.

We set the bulk region � = (−2, 2)3 which is discretized uniformly with mesh size
h = 1/16. We first test the case with a stationary surface by setting λ = ε = 0. The time
evolving of the constant solution uh(t) and the errors are shown in Fig. 2. We could see that
when the time step size become smaller, the numerical solution converges to the reference
solution. The convergence rate in L∞ norm is shown in the left column in Table 1. We can
see that it is of the first order convergence with respect to the time step. This is reasonable
for the fully decoupled scheme(Algorithm 2), where the backward Euler scheme is used.

We also do numerical tests for the case with evolving surface. The numerical results
are shown in Fig. 3. Similarly to the stationary surface case, the numerical solution for u
converges to the reference solution for all time t ∈ (0, T ).
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Fig. 2 Numerical solutions of Eq. (22) on a stable surface (λ = 0, ε = 0) compared to exact solutions (left)
and the difference between numerical and exact solutions (right) at different time steps. The termination time
is T = 5

Table 1 Convergence rate of numerical results for Eq. (22) on stable and evolving surfaces

Stationary surface Evolving surface
�t Err Rate �t Err Rate

0.02 0.170 – 0.02 0.180 –

0.01 0.084 1.019 0.01 0.095 0.92

0.005 0.042 1.015 0.005 0.053 0.84

0.0025 0.021 1.010 0.0025 0.030 0.83

0.00125 0.010 1.005 0.00125 0.017 0.805

Fig. 3 Numerical solutions of Eq. (22) to exact one on evolving surfaces (λ = 0.05, ε = 0.005, R̂(T ) = 1.135)
(left) and the difference between the numerical solution and the exact one (right) at different time steps. The
termination time of the solution T = 3

The errors and the convergence rate are shown in the right column in Table 1. We can see
that it is close to the first order convergence with respect to the time step. This is reasonable
for the fully decoupled scheme(Algorithm 2), where the backward Euler scheme is used for
the reaction diffusion system and a diffusion generated method is used for evolution of the
surface. The convergence rate is slightly worse for the evolving surface than the stationary
surfaces.
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Table 2 Convergence rate with respect to the mesh size for the system (24)–(25)

Stationary surface Evolving surface
h Err Rate h Err Rate

0.25 0.0379650 – 0.5 0.124676 –

0.125 0.0175934 1.11 0.25 0.0642842 0.96

0.0625 0.00592568 1.57 0.125 0.0203089 1.66

0.03125 0.00126699 2.23 0.0625 0.0101490 1.00

To further test the convergence of the method with respect to the spacial mesh size, we
consider a different problem. We set λ = 0 and the motion of the surface is given by a mean
curvature flow vn = H . Suppose initially the surface is a sphere with radius R0. Then the
surface will be spherical with surface R(t) determined by

dR

dt
= −2ε

R
.

The solution is given by R(t) =
√
R2
0 − 4εt . In this case, the original system (2)–(3) is

reduced to

∂u

∂t
− 4ε

R2 u = D1��u + f1(u, v),

∂v

∂t
− 4ε

R2 v = D2��v + f1(u, v).

In this setup, it is still not easy to find an analytical solution to the problem. Hence we
slightly change the problem by adding extra right hand side terms to the problem. Suppose
that (u, v) = (ũ, ṽ) are the solutions of

∂u

∂t
− 4ε

R2 u = D1��u + f1(u, v) + F1(x, y, t), (24)

∂v

∂t
− 4ε

R2 v = D2��v + f1(u, v) + F2(x, y, t). (25)

Here we set F1(x, y, t) = ∂ ũ
∂t − 4ε

R2 ũ − D1�� ũ − f1(ũ, ṽ) and F2(x, y, t) = ∂ṽ
∂t − 4ε

R2 ṽ −
D1��ṽ − f1(ũ, ṽ). In our numerical tests, we set ũ = x and ṽ = y. The parameters are
chosen as R0 = 1, D1 = D2 = 1, ε = 0.05 and T = 0.036. In the formulae of f1 and
f2, we set γ = 1, a = 0.1 and b = 0.1. We set �t = 5 × 10−4 so that the time step
is small enough. In Table 2, we show the errors for u in L2 norm. We test two cases with
evolving surfaces or stationary surfaces(ε = 0). It seems that the convergence rate is about
O(h) for the evolving surface case and about O(h2) for the stationary case. It seems that the
convergence rate is sub-optimal in the evolving surface case. The might be due to the fact
that the mean curavature is not computed accurately enough in the present method.

5.2 Turing Pattern on Stationary Surfaces

In this subsection, we present some interesting numerical examples for stationary surfaces.
For our experiments, we have chosen parameters D1 = 1, D2 = 10, a = 0.1, b = 0.9, u0 =
1, and w0 = 0.9. It is worth noting that D1 and D2 are not equal, and this difference in
diffusion constants may induce instability in the reaction-diffusion system, leading to the
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Fig. 4 Pattern formation on stable unit sphere. Parameters:γ = 200,�t = 0.001

emergence of Turing patterns. Additionally, we set λ = ε = 0 so that the surface remains
stationary and does not change with time. The choice of other parameters may differ for
different numerical examples.

Example 1.We first simulate the formation of a Turing pattern on a stationary unit sphere.
The numerical results are displayed in Fig. 4. The level-set function of the unit sphere is
expressed as:

�(x) = |x|2 − 1.

The bulk domain is � = (−2, 2)3, which is discretized uniformly with a mesh size of
h = 1/32. Initially, the solution is almost constant. However, due to the instability induced
by cross-diffusion and reaction, the solutions are not stable, and patterns gradually emerge
over time. In the final states, we observe a dotted pattern for u. The numerical results are
consistent with previous simulations, such as those in [32].

Example 2. The setup of the experiment is almost the same as in the previous example. We
change the shape of the substrate and consider a dumbbell-shaped surface, which is given by
the following level-set function,

�dumbbell(x) =
(
25x21
4

+ 441x22
25

+ 25x23
4

+ 9

10

)2

− 64x22 − 13

10
.

The numerical examples are displayed in Fig. 5. As observed, the numerical results are similar
to those obtained on a spherical surface. The constant functions are unstable, and patterns
gradually emerge over time. However, it appears that the patterns emerge later than those
observed on the unit sphere since we have chosen a smaller γ for these experiments.

Example 3. Our third example involves a stationary “tooth"-like surface represented by
the level-set function given by:

�tooth(x) = 256x41 − 16x21 + 256x42 − 16x22 + 256x43 − 16x23 .
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Fig. 5 Pattern formation on stationary “dumbell" surface. Parameters: γ = 100, �t = 0.01

We will use the same parameters as in Example 2. The shape of the surface and the numerical
results are displayed in Fig. 6, which clearly shows the emergence of Turing patterns on the
surface.

5.3 Numerical Simulations for Evolving Surfaces

Wewill now consider the fully coupled system (1)–(3), which we will solve using Algorithm
2. We will use some parameters that were chosen for the stationary surface, i.e., D1 =
1, D2 = 10, a = 0.1, b = 0.9, u0 = 1 and w0 = 0.9. Additionally, we will set λ = 0.1 and
ε = 0.01 to ensure that the surface evolves over time. We have selected ε to be much smaller
than λ to ensure that the concentration of the activator u mainly controls the surface’s normal
velocity. We will conduct experiments for various examples.

Example 4.We begin by considering a spherical surface with an initial radius of R0 = 1,
and the numerical results are displayed in Fig. 7. As observed, Turing patterns gradually
emerge due to the instability of the reaction-diffusion system. In the early stages, the surface
undergoes minimal changes. However, as the Turing pattern emerges, the concentration of
u increases, leading to faster growth of the surface in areas where the density of u is higher.
Consequently, the surface’s shape is no longer spherical, and the enclosed volume increases
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Fig. 6 Pattern formation on stationary “tooth" surface. Parameters: γ = 100, �t = 0.01

dramatically in later stages, while the pattern remains similar. These numerical results are
consistent with those presented in [32], which used a similar approach to model solid tumor
growth. In comparison with the method used in [32], the advantage of our method is that we
can deal with problems with topology changes easily, while this is difficult for the evolving
finite element method. This will be shown in the next example. We would also like to remark
that the degree of freedoms in our method are usually larger than that in the evolving FEM
with the same mesh size h. However, the solution of the surface-reaction systems are of the
same order since our method is defined in a narrow band region with width of order h.

Example 5. In the last example, we examine the evolving surface problem with an initial
surface represented by a level-set function

�donut (x) =
√(√

x21 + x22 − 1

)2

+ x23 − 3

5
.

The initial surface has a “donut" shape. The other parameters used in this example are
similar to those in the previous one. Figure8 displays the numerical results, which indicate
that the phenomena observed are similar to those with an initial spherical surface. However,
the difference is that topology changes occur as the surface expands. This topology change
can not be computed directly by the previous Lagrangian type numerical methods, where
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Fig. 7 The evolution and pattern formation of a surface that is initially a unit sphere. Parameters: γ =
200,�t = 0.005

the surface triangulation moves in accordance with the surface motion. Nevertheless, our
algorithm, which utilizes an Eulerian type method, where the surface is represented by a
level-set function and its evolution is obtained by a diffusion-generated numerical scheme,
is not affected by the topology changes, as demonstrated by the numerical results.

6 Conclusion

Wehave developed a numericalmethod for a surface reaction-diffusion system that is coupled
with the evolution of the surface. Our approach uses the trace finite element method to
discretize the surface partial differential equations and applies a diffusion-generated method
for the evolution of the surface, which is represented by a level-set function. Our numerical
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Fig. 8 Pattern formation on evolving initial “donut" surface. Parameters: γ = 100, �t = 0.01

scheme is fully decoupled, and we only need to solve some linear equations in a narrow band
region in each time step. Numerical simulations have shown that the method has an first-
order convergence rate with respect to the time step size and second order convergence with
respect to the spacial mesh size. We have also presented several examples that demonstrate
some key features of the algorithm. Firstly, both the surface reaction-diffusion system and the
level-set functions are discretized on the same bulk mesh. The coupling between them can
be handled without any difficulty, and there is no need to do interpolation among different
meshes. Secondly, the algorithm is based on an Eulerian framework, which makes it easy to
deal with the large deformation and topology changes of the surface. The diffusion-generated
method for the evolution of the surface avoids solving a nonlinear geometric PDE for the
surface, making the method more efficient.

In the future, we plan to perform numerical analysis on the proposed algorithm. We
will study the stability and error estimates of the fully discrete algorithm. It would also be
interesting to develop some higher-order numerical schemes for the coupled system. For that
purpose, we should consider higher order trace-finite element method [39, 44, 45] and higher
order diffusion generatedmethod [46].With thesemethods, we can simulate some interesting
phenomena on dynamic propagation for Turing patterns on surfaces [47].
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