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We propose a modified threshold dynamics method for wetting dynamics, which signif-
icantly improves the behavior near the contact line compared to the previous method 
(J. Comput. Phys. 330 (2017) 510–528). The new method is also based on minimizing the 
functional consisting of weighted interface areas over an extended domain including the 
solid phase. However, each interface area is approximated by the Lyapunov functional with 
a different Gaussian kernel. We show that a correct contact angle (Young’s angle) is ob-
tained in the leading order by choosing correct Gaussian kernel variances. We also show 
the Gamma convergence of the functional to the total surface energy. The method is sim-
ple, unconditionally stable with O (NlogN) computational complexity per time step and is 
not sensitive to the inhomogeneity or roughness of the solid surface. It is also shown that 
the dynamics of the contact point is consistent with the dynamics of the interface away 
from the contact point. Numerical examples have shown significant improvements in the 
accuracy of the contact angle and the hysteresis behavior of the contact angle.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Wetting describes how a liquid drop spreads on a solid surface. The study of wetting is of critical importance for many 
applications and has attracted much interest in the physics and applied mathematics communities [2,11,16,35,50]. The 
equilibrium configuration of the liquid drop can be obtained by minimizing the total interface energy:

E = γLV |�LV | + γS L |�S L | + γS V |�S V | (1)

where γS V , γS L and γLV are the solid-vapor, solid-liquid and liquid-vapor surface energy densities, respectively and 
|�S V |, |�S L | and |�LV | are the corresponding interface areas. When the solid surface is homogeneous, the contact angle 
for a static drop is given by the famous Young’s equation:

cos θY = γS V − γS L

γLV
, (2)

* Corresponding author.
E-mail addresses: dwang@math.utah.edu (D. Wang), mawang@ust.hk (X.-P. Wang), xmxu@lsec.cc.ac.cn (X. Xu).
https://doi.org/10.1016/j.jcp.2019.04.037
0021-9991/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2019.04.037
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:dwang@math.utah.edu
mailto:mawang@ust.hk
mailto:xmxu@lsec.cc.ac.cn
https://doi.org/10.1016/j.jcp.2019.04.037
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2019.04.037&domain=pdf


292 D. Wang et al. / Journal of Computational Physics 392 (2019) 291–310
Fig. 1. Left: Original domain � = D1 ∪ D2. Right: Extended computational domain �̃ = � ∪ D3.

where θY is the so-called Young’s angle [51]. Analytic solution of the minimization problem of (1) is difficult and the 
numerical solution is also challenging. There have been many numerical methods proposed for simulating the free interface 
problem using front-tracking [25,48], level set method [52] or the phase-field method [9,17].

The threshold dynamics method developed by Merriman, Bence, and Osher (MBO) [29] is an efficient numerical method 
for the motion of the interface driven by the mean curvature. The method alternately diffuses and sharpens characteristic 
functions of regions and is easy to implement and highly efficient. The MBO method has been shown to converge to the 
continuous motion by mean curvature [3,5,15,42] when the interface is away from the solid boundary. Esedoglu and Otto 
[13] generalized this type of method to multiphase flow with arbitrary surface tensions. The method has attracted much 
attention and becomes very popular due to its simplicity and unconditional stability. It has been subsequently extended 
to deal with many other applications including the problem of area or volume preserving interface motion [19,21,41,48], 
image processing [12,28,45], problems of anisotropic interface motions [4,10,31,39], generating quad mesh [43], and foam 
bubble problems [44]. Various algorithms and rigorous error analysis have been carried out to refine and extend the orig-
inal MBO method and related methods for the aforementioned problems (see, for example, [14,18,26,30,37,38,40]). Some 
mesh free methods are also considered to accelerate this type of method [20] based on non-uniform fast Fourier transform 
(NUFFT) [8,24]. Laux et al. [22,23] rigorously proved the convergence of the method proposed in [13]. Recently, a generalized 
target-valued diffusion generated method was studied in [33,34,46,47].

In [49], we proposed an efficient threshold dynamics method for the wetting and interface motion on the rough solid 
surface. The domain is extended to include the solid phase as the third phase and the method is based on the minimization 
of the approximate energy to (1) (as h → 0)

Eh(χD1 ,χD2) = γLV
√

π√
h

ˆ

�̃

χD1 Gh ∗ χD2 dx + γS L
√

π√
h

ˆ

�̃

χD1 Gh ∗ χD3 dx + γS V
√

π√
h

ˆ

�̃

χD2 Gh ∗ χD3 dx, (3)

where

Gh(x) = 1

(4πh)n/2
exp(−|x|2

4h
) (4)

is the Gaussian kernel and χD1 and χD2 are characteristic functions of domain D1, D2 in Fig. 1. An efficient iterative 
algorithm is then designed to find the minimizer of (3) (with volume constraints on D1 and D2). The method is simple, 
efficient, unconditionally stable and insensitive to the inhomogeneity of the solid surface. However, numerical experiments 
in [49] have shown that, although the apparent (macroscopic) contact angle satisfies the Young’s equation, the microscopic 
contact angle at the contact point deviates from the correct Young’s angle. There seems to be a boundary layer on the solid 
surface around the contact points.

In this paper, we show that the method can be improved by using heat kernel with different variances for different 
surface energy terms in (3), i.e.,

Eh1,h2(χD1 ,χD2) = γLV
√

π√
h1

ˆ

�̃

χD1 Gh1 ∗ χD2 dx + γS L
√

π√
h2

ˆ

�̃

χD1 Gh2 ∗ χD3 dx + γS V
√

π√
h2

ˆ

�̃

χD2 Gh2 ∗ χD3 dx, (5)

where we use h1 for approximating the liquid-vapor interface energy and h2 for approximating the solid-liquid and the 
solid-vapor interface energy. We perform asymptotic analysis and show that, to remove the boundary layer near the contact 
point and obtain the correct Young’s angle θY , we need to have h2 = λ2h1 with λ = π cos θY

π−2θY
. We then derive the dynamic 

of the contact point which is consistent with the dynamic of the interface away from the contact point. We show that the 
improved threshold dynamics method still enjoys the energy-decaying property and is unconditionally stable. Furthermore, 
we also prove the 	-convergence of the weighted functional (5) with h2 = λ2h1 to the functional (1). This extends the 
analysis in [13].

This paper is organized as follows. In Section 2, we derive the modified threshold dynamics method and prove that the 
modified method has energy-decaying property which implies the unconditional stability. In Section 3, we use asymptotic 
analysis to derive the dynamic law of the contact point. In Section 4, we prove the 	-convergence result. We present several 
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numerical examples to verify the improvement of our modified method in Section 5. We then draw a conclusion and make 
some discussions in Section 6.

2. A modified threshold dynamics method for the wetting problem

In this section, we introduce a modified threshold dynamics method based on the recent work by Xu et al. [49]. The main 
idea in [49] is to extend the fluid domain � to a larger domain �̃ (see Fig. 1) containing the solid phase. In the extended 
domain, the interface energies between different phases in (1) can be approximated by convolutions between characteristic 
functions and the Gaussian kernel Gh(x) (see details below). In this paper, the interface energies between different phases 
are approximated by the convolutions between characteristic functions and Gaussian kernels with different h′s (e.g., h1 for 
approximating liquid-vapor interface energy and h2 for approximating solid-liquid and solid-vapor interface energy). Using 
the relaxation and linearization procedure introduced in [13], we derive a modified threshold dynamics method for wetting 
problems. From the consistency analysis, we derive the relationship between h1 and h2 so that the contact angle satisfies the 
Young’s equation at the contact point both “microscopically” and “macroscopically”. Here, we refer the local contact angle at 
the contact point as the microscopic angle and the apparent angle as the macroscopic angle. In general, microscopic angle 
is not necessarily equal to the apparent angle (see [7,36,49] and the references therein for more details).

2.1. Representation of interface energies in the extended domain

In the following, we let D1, D2 ⊂ � ⊂Rn be the liquid and vapor phases (see Fig. 1), respectively. Let �LV = ∂ D1 ∩ ∂ D2

be the liquid-vapor interface. When h1 	 1, the area of �LV can be approximated by (see [1,32])

|�LV | ≈
√

π√
h1

ˆ
χD1 Gh1 ∗ χD2 dx, (6)

where χDi is the characteristic function of Di and

Gh1(x) = 1

(4πh1)n/2
exp(−|x|2

4h1
) (7)

is the Gaussian kernel in Rn . Gh2 and G1 in the subsequent texts are similarly defined.
In the total energy (1), the second and third term are interface energies defined on the solid surface 	. They are the 

solid-liquid interfacial energy term on �S L = ∂ D1 ∩ 	 and the solid-vapor interfacial energy term on �S V = ∂ D2 ∩ 	. To 
approximate these two terms using the Gaussian kernel, we extend the domain � beyond 	 (see Fig. 1). The extended 
domain is �̃ = � ∪ D3 where D3 is the solid region. Then, the solid surface is 	 = ∂� ∩ ∂ D3, the solid-liquid interface is 
�S L = ∂ D1 ∩ ∂ D3 and the solid-vapor interface is �S V = ∂ D2 ∩ ∂ D3.

From the observation and numerical experiments in [49], the apparent (macroscopic) angle always satisfies the Young’s 
equation while the microscopic angle deviates from the correct Young’s angle. There seems to be a boundary layer on the 
solid surface around the contact points. To modify the scheme, we use the convolutions between characteristic functions 
and the Gaussian kernel with a different parameter h2 to approximate |�S V | and |�S L |. That is,

|�S V | ≈
√

π√
h2

ˆ
χD2 Gh2 ∗ χD3 dx, (8)

|�S L | ≈
√

π√
h2

ˆ
χD1 Gh2 ∗ χD3 dx. (9)

Then, the total energy E in (1) can be approximated by

Eh1,h2(χD1 ,χD2) = γLV
√

π√
h1

ˆ

�̃

χD1 Gh1 ∗ χD2 dx + γS L
√

π√
h2

ˆ

�̃

χD1 Gh2 ∗ χD3 dx + γS V
√

π√
h2

ˆ

�̃

χD2 Gh2 ∗ χD3 dx. (10)

Denote u1 = χD1 and u2 = χD2 . We define an admissible set:

B = {(u1, u2) ∈ B V (�) | ui(x) = 0,1, and u1(x) + u2(x) = 1, a.e. x ∈ �,

ˆ

�

u1 dx = V 0}. (11)

The wetting problem can be approximated by

min
(u1,u2)∈B Eh1,h2(u1, u2). (12)

This is a non-convex minimization problem since B is not a convex set and the energy functional Eh1,h2(u1, u2) is concave.
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2.2. Derivation of the modified threshold dynamics method

In this section, we present the derivation of a threshold dynamics method for the minimization problem (12). The 
derivation is based on the relaxation and linearization procedure introduced in [13]. Note that the problem (12) is to 
minimize a concave energy functional defined on a non-convex admissible set. However, we can relax this problem to an 
equivalent minimization problem in a convex admissible set. The relaxed problem is given by

min
(u1,u2)∈KEh1,h2(u1, u2) (13)

where K is the convex hull of the admissible set B:

K = {(u1, u2) ∈ B V (�)|0 ≤ ui ≤ 1, u1(x) + u2(x) = 1, a.e. x ∈ �,

ˆ

�

u1 dx = V 0}. (14)

The following lemma shows that the relaxed problem (13) is equivalent to the original problem (12).

Lemma 2.1.

min
(u1,u2)∈KEh1,h2(u1, u2) = min

(u1,u2)∈B Eh1,h2(u1, u2).

Proof. Let (ũ1, ̃u2) ∈K be a minimizer of the functional

Eh1,h2(u1, u2).

Since B ⊂K, we have

Eh1,h2(ũ1, ũ2) = min
(u1,u2)∈KEh1,h2(u1, u2)

≤ min
(u1,u2)∈B Eh1,h2(u1, u2).

Therefore, we need only to prove that (ũ1, ̃u2) ∈ B.
We prove by contradiction. If (ũ1, ̃u2) /∈ B, there is a set A ∈ � and a constant 0 < C0 < 1

2 , such that |A| > 0 and

0 < C0 < ũ1(x), ũ2(x) < 1 − C0, for all x ∈ A.

We divide A into two sets A = A1 ∪ A2 such that A1 ∩ A2 = ∅ and |A1| = |A2| = |A|/2. Denote ut
1 = ũ1 + tχA1 − tχA2 and 

ut
2 = ũ2 − tχA1 + tχA2 . When 0 < t < C0, we have 0 < ut

1, u
t
2 < 1 and

ut
1 + ut

2 = ũ1 + ũ2 = 1, and
ˆ

�

ut
1 dx =

ˆ

�

ũ1 dx = V 0.

This implies that (ut
1, u

t
2) ∈K. Furthermore, direct computations give,

d2

dt2
Eh1,h2(ut

1, ut
2) =

√
π√
h1

ˆ

�̃

d

dt
ut

1Gh1 ∗ d

dt
ut

2 dx

=
√

π√
h1

ˆ

�̃

(χA1 − χA2)Gh1 ∗ (χA2 − χA1) dx

= −
√

π√
h1

ˆ

�̃

(χA1 − χA2)Gh1 ∗ (χA1 − χA2) dx

= −
√

π√
h1

ˆ

�̃

(
Gh1/2 ∗ (χA1 − χA2)

) (
Gh1/2 ∗ (χA1 − χA2)

)
dx

≤ 0.

The penultimate step comes from the fact that Gaussian kernel is a self-adjoint operator which is in a semi-group consisting 
of all Gaussian kernels with different values of h1. From above inequality, the functional is concave on the point (ũ1, ̃u2). 
Thus, (ũ1, ̃u2) cannot be a minimizer of the functional. This contradicts the assumption. �



D. Wang et al. / Journal of Computational Physics 392 (2019) 291–310 295
The above lemma implies that we can solve the relaxed problem (13) instead of the original one (12). In the following, 
we show that the relaxed problem can be solved iteratively using a threshold dynamics method.

Assume that in the kth iteration, we have the solution (uk
1, u

k
2), the energy functional Eh1,h2 (u1, u2) can be linearized 

near the point (uk
1, u

k
2) as follows:

Eh1,h2(u1, u2) ≈ Eh1,h2(uk
1, uk

2) + L̂(u1 − uk
1, u2 − uk

2, uk
1, uk

2) + h.o.t.

with

L̂(u1, u2, uk
1, uk

2) =

√
π

⎛
⎜⎝ˆ

�̃

u1

(
γLV√

h1
Gh1 ∗ uk

2 + γS L√
h2

Gh2 ∗ χD3

)
dx +

ˆ

�̃

u2

(
γLV√

h1
Gh1 ∗ uk

1 + γS V√
h2

Gh2 ∗ χD3

)
dx

⎞
⎟⎠ . (15)

Note that, when uk
1 and uk

2 are given, the minimization of L̂(u1 − uk
1, u2 − uk

2, u
k
1, u

k
2) is equivalent to the minimization of 

L̂(u1, u2, uk
1, u

k
2). Thus, instead of minimizing Eh1,h2(u1, u2), we minimize the linearized functional

min
(u1,u2)∈K L̂(u1, u2, uk

1, uk
2) (16)

and set the solution to be (uk+1
1 , uk+1

2 ).
The following lemma shows that the minimization problem (16) is solved via a simple threshold dynamics method.

Lemma 2.2. Denote

φ = 1√
h1

Gh1 ∗ (uk
2 − uk

1) − cos θY√
h2

Gh2 ∗ χD3 . (17)

Let

Dk+1
1 = {x ∈ �| φ < δ} (18)

for a proper δ such that |Dk+1
1 | = V 0 . Define Dk+1

2 = � \ Dk+1
1 . Then (uk+1

1 , uk+1
2 ) = (χDk+1

1
, χDk+1

2
) is the solution to (16).

Proof. Since L̂ is a linear functional, we need only to prove

L̂(uk+1
1 , uk+1

2 , uk
1, uk

2) ≤ L̂(u1, u2, uk
1, uk

2), (19)

for all (u1, u2) ∈ B.
For each (u1, u2) ∈ B, we know u1 = χD̂1

and u2 = χD̂2
for some open sets D̂1, D̂2 in �, such that D̂1 ∩ D̂2 = ∅, 

D̂1 ∪ D̂2 = � and |D̂1| = V 0. Let A1 = D̂1 \ Dk+1
1 = Dk+1

2 \ D̂2 and A2 = D̂2 \ Dk+1
2 = Dk+1

1 \ D̂1. We must have |A1| = |A2|
because of the volume conservation property. Since A1 ⊂ Dk+1

2 , we have

φ(x) ≥ δ, uk+1
1 (x) − u1(x) = −1, ∀x ∈ A1.

Similarly, since A2 ∈ Dk+1
1 , we have

φ(x) < δ, uk+1
1 (x) − u1(x) = 1, ∀x ∈ A2.

Therefore, using uk+1
1 − u1 + uk+1

2 − u2 = 0 and cos θY = γS V −γSL
γLV

, we have

L̂(uk+1
1 , uk+1

2 , uk
1, uk

2) − L̂(u1, u2, uk
1, uk

2)

=√
π

ˆ

�̃

(uk+1
1 − u1)

(
γLV√

h1
Gh1 ∗ uk

2 + γS L√
h2

Gh2 ∗ χD3

)
+ (uk+1

2 − u2)

(
γLV√

h1
Gh1 ∗ uk

1 + γS V√
h2

Gh2 ∗ χD3

)
dx

=√
π

ˆ

�̃

(uk+1
1 − u1)

(
γLV√

h1
Gh1 ∗ (uk

2 − uk
1) + γS L − γS V√

h2
Gh2 ∗ χD3

)
dx
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=√
πγLV

⎛
⎜⎝ˆ

A2

φ dx −
ˆ

A1

φ dx

⎞
⎟⎠

≤δ

ˆ

A2

dx − δ

ˆ

A1

dx = 0. �

Now, we are led to the following threshold dynamics method:

Algorithm 1 A modified threshold dynamics method for solid wetting dynamics.

Given initial D0
1, D0

2 ⊂ � and solid domain D3 , such that D0
1 ∩ D0

2 = ∅, D0
1 ∪ D0

2 = � and |D0
1| = V 0 . Set a tolerance parameter ε > 0, equilibrium angle θY , time step 

h1 , and time step h2 .

1: For given sets (Dk
1, Dk

2), calculate

φk = 1√
h1

Gh1 ∗ (χDk
2
− χDk

1
) − cos θY√

h2
Gh2 ∗ χD3 . (20)

2: Find a δ such that the set

D̃δ
1 = {x ∈ �|φ < δ} (21)

satisfies |D̃δ
1| = V 0. Denote Dk+1

1 = D̃δ
1 and Dk+1

2 = � \ Dk+1
1 .

3: If |Dk
1 − Dk+1

1 | ≤ ε, stop; otherwise, go back to Step 1.

Remark 2.1.

1. The choice of h1 and h2 will be studied in the consistency analysis in Section 3.
2. The convolutions at the Step 1 can be efficiently computed using Fast Fourier transform (FFT).
3. At the Step 2, it is easy to check that φ(x) we defined is monotone across the liquid-vapor, solid-liquid, and solid-vapor 

interface. Denote V (δ) = |D̃δ
1|, then V (δ) is strictly monotone with respect to δ when δ is around 0 and therefore the 

root of V (δ) − V 0 exists uniquely. One may apply traditional iterative methods (e.g., the bisection method, the Newton’s 
method, the fixed point iteration, and so on) to find the unique root of V (δ) − V 0 which is the value of δ preserving 
the volume of D1. However, the bisection method usually converges slow and the Newton’s method or the fixed point 
iteration is sensitive to the initial guesses. In [49], we proposed an efficient and stable algorithm to find the root of 
V (δ) − V 0 based on the quick-sort algorithm.

2.3. Stability analysis

In this section, we will show that Algorithm 1 is stable, in the sense that the total energy of Eh1,h2 always decreases in 
the algorithm for any h1 > 0 and h2 > 0. We have the following theorem.

Theorem 2.1. Denote (uk
1, u

k
2) = (χDk

1
, χDk

2
), k = 0, 1, 2, ..., obtained in Algorithm 1. We have

Eh1,h2(uk+1
1 , uk+1

2 ) ≤ Eh1,h2(uk
1, uk

2), (22)

for all h1 > 0 and h2 > 0.

Proof. By the definition of the linearization L̂ and Lemma 2.2, we know that

Eh1,h2(uk
1, uk

2) +
√

πγLV√
h1

ˆ

�̃

uk
1Gh1 ∗ uk

2 dx = L̂(uk
1, uk

2, uk
1, uk

2)

≥ L(uk+1
1 , uk+1

2 , uk
1, uk

2) = Eh1,h2(uk+1
1 , uk+1

2 )

+
√

πγLV√
h1

⎛
⎜⎝ˆ

�̃

uk+1
1 Gh1 ∗ uk

2 dx +
ˆ

�̃

uk+1
2 Gh1 ∗ uk

1 dx −
ˆ

�̃

uk+1
1 Gh1 ∗ uk+1

2 dx

⎞
⎟⎠ .

This leads to

Eh1,h2(uk
1, uk

2) ≥ Eh1,h2(uk+1
1 , uk+1

2 ) + I, (23)
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Fig. 2. Set up for the consistency analysis.

with

I = γLV
√

π√
h1

(ˆ
�̃

uk+1
1 Gh1 ∗ uk

2 dx +
ˆ

�̃

uk+1
2 Gh1 ∗ uk

1 dx −
ˆ

�̃

uk+1
1 Gh1 ∗ uk+1

2 dx −
ˆ

�̃

uk
1Gh1 ∗ uk

2 dx
)

= −γLV
√

π√
h1

ˆ

�̃

(uk+1
1 − uk

1)Gh1 ∗ (uk+1
2 − uk

2) dx.

By the fact that uk
1 + uk

2 = uk+1
1 + uk+1

2 , we have

I = γLV
√

π√
h1

ˆ

�̃

(uk+1
1 − uk

1)Gh1 ∗ (uk+1
1 − uk

1) dx

= γLV
√

π√
h1

ˆ

�̃

(
Gh1/2 ∗ (uk+1

1 − uk
1)

)(
Gh1/2 ∗ (uk+1

1 − uk
1)

)
dx ≥ 0.

Combining this inequality with (23) yields (22). �
3. Consistency analysis

In this section, we perform asymptotic analysis to determine h1 and h2 in Algorithm 1 with a very basic level of consis-
tency with the correct contact angle at the contact point, in the sense that one step of Algorithm 1, acting on a set of liquid 
domain with smooth liquid-vapor interface and fixed solid surface (see Fig. 2). As for the dynamic of liquid-vapor interface 
away from the contact point, it is easy to check that our algorithm reduces the original two-phase volume preserving MBO 
method due to the exponentially decaying property of Gh2 (i.e., the effect from χD3 can be neglected when considering 
the behavior of the interface away from the solid surface). As for the behavior around the contact point, we perform the 
asymptotic analysis to derive the condition for the contact angle and the dynamic law of the contact point.

For simplicity, we focus on the 2-dimensional case. Without loss of generality, we assume the liquid-vapor interface 
is represented by x2 = g(x1) (x1 ≥ 0) where g(0) = 0 and g(x) is a smooth function defined on [0, +∞), the solid-liquid 
interface is represented by x1 = 0 (x2 ≥ 0), and the solid-vapor interface is represented by x1 = 0 (x2 < 0). The main idea is 
to formally expand φ(x) and find the δD1,2

h1,2
level set of the expanded φ(x) which is the updated interface at one time step 

according to Algorithm 1. Here, δD1,2
h1,2

(depending on h1, h2, D1, and D2) is the value for volume preserving at the Step 2 in 
Algorithm 1. Now, we first write

φ(x) = 1√
h1

Gh1 ∗ (χD2 − χD1) − cos θY√
h2

Gh2 ∗ χD3

= 1√
h1

⎛
⎜⎝¨

R2

Gh1(x − y)(χD2(y) − χD1(y)) dy − cos θY
√

h1√
h2

¨

R2

Gh2(x − y)χD3(y) dy

⎞
⎟⎠

= 1√
h1

⎛
⎜⎝ 1

4πh1

¨

D2

exp(−|x − y|2
4h1

) dy − 1

4πh1

¨

D1

exp(−|x − y|2
4h1

) dy

−cos θY
√

h1√
h2

1

4πh2

¨

D

exp(−|x − y|2
4h2

) dy

⎞
⎟⎠ (24)
3
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= 1√
h1

⎛
⎜⎝ 1

4πh1

+∞ˆ

0

g(y1)ˆ

−∞
exp(− (x1 − y1)

2 + (x2 − y2)
2

4h1
) dy2dy1

− 1

4πh1

+∞ˆ

0

+∞ˆ

g(y1)

exp(− (x1 − y1)
2 + (x2 − y2)

2

4h1
) dy2dy1

−cos θY
√

h1√
h2

1

4πh2

0ˆ

−∞

+∞ˆ

−∞
exp(− (x1 − y1)

2 + (x2 − y2)
2

4h2
) dy2dy1

⎞
⎠ .

Evaluating φ(x) at x1 = 0 (i.e., the contact point only moves on the solid surface), we have

φ(0, x2) = 1√
h1

(I1 − I2 − I3) (25)

where

I1 = 1

4πh1

+∞ˆ

0

+∞ˆ

−∞
exp(− (y1)

2 + (x2 − y2)
2

4h1
) dy2dy1,

I2 = 1

2πh1

+∞ˆ

0

+∞ˆ

g(y1)

exp(− (y1)
2 + (x2 − y2)

2

4h1
) dy2dy1,

I3 = cos θY
√

h1√
h2

1

4πh2

0ˆ

−∞

+∞ˆ

−∞
exp(− (y1)

2 + (x2 − y2)
2

4h2
) dy2dy1.

Direct calculation gives

I1 = 1

2
, (26)

I3 = cos θY
√

h1

2
√

h2
. (27)

Now, we only need to evaluate I2 in the rest. For the convenience, we denote ε = √
h1, ỹ1 = y1

ε , and ỹ2 = y2
ε . Also, we 

assume that x2 ∼ O (ε2) (i.e., the motion of contact point is at the O (h1) time scale) and denote x̃2 = x2
ε2 which is the 

velocity of the contact point along the tangential direction of the solid surface. Then, we have

I2 = 1

2π

+∞ˆ

0

+∞ˆ

g(ε ỹ1)

ε

exp(− ỹ2
1 + (ε x̃2 − ỹ2)

2

4
) dỹ2dỹ1

=I I1 − I I2 − I I3 (28)

where

I I1 = 1

2π

+∞ˆ

0

+∞ˆ

0

exp(− ỹ2
1 + (ε x̃2 − ỹ2)

2

4
) dỹ2dỹ1,

I I2 = 1

2π

+∞ˆ

0

ỹ1 g′(0)+ε
ỹ2

1
2 g′′(0)ˆ

0

exp(− ỹ2
1 + (ε x̃2 − ỹ2)

2

4
) dỹ2dỹ1,

I I3 = 1

2π

+∞ˆ

0

g(ε ỹ1)

εˆ

ỹ1 g′(0)+ε
ỹ2

1
2 g′′(0)

exp(− ỹ2
1 + (ε x̃2 − ỹ2)

2

4
) dỹ2dỹ1.
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Note that because of the exponentially decaying and smoothness of the Gaussian kernel, we have for a given ε , there exists 
an M > 0 with Mε = o(1) such that

ˆ

|x|>M

G1(x)dx = exp(− M2

4
) = o(ε). (29)

Also, given a M , since g(x) is smooth at [0, +∞), we have∣∣∣∣∣ g(ε ỹ1)

ε
− ỹ1 g′(0) − ε

ỹ2
1

2
g′′(0)

∣∣∣∣∣ ≤ Cε2 ỹ3
1 (30)

for any ỹ1 ∈ [0, M] and some constant C > 0. Here, for ỹ1 ∈ [0, M], we have ε ỹ = o(1) from Mε = o(1). Hence the constant 
C can be chosen as the maximum value of g(3)(ξ) for ξ ∈ [0, 1] which is independent of M and ε .

Then, using (29) and (30), we have the following estimate on I I3:

I I3 = 1

2π

M̂

0

g(ε ỹ1)

εˆ

ỹ1 g′(0)+ε
ỹ2

1
2 g′′(0)

exp(− ỹ2
1 + (ε x̃2 − ỹ2)

2

4
) dỹ2dỹ1

+ 1

2π

+∞ˆ

M

g(ε ỹ1)

εˆ

ỹ1 g′(0)+ε
ỹ2

1
2 g′′(0)

exp(− ỹ2
1 + (ε x̃2 − ỹ2)

2

4
) dỹ2dỹ1

= 1

2π

M̂

0

g(ε ỹ1)

εˆ

ỹ1 g′(0)+ε
ỹ2

1
2 g′′(0)

exp(− ỹ2
1 + (ε x̃2 − ỹ2)

2

4
) dỹ2dỹ1 + o(ε)

≤ 1

2π

M̂

0

ỹ1 g′(0)+ε
ỹ2

1
2 g′′(0)+Cε2 ỹ3

1ˆ

ỹ1 g′(0)+ε
ỹ2

1
2 g′′(0)−Cε2 ỹ3

1

exp(− ỹ2
1 + (ε x̃2 − ỹ2)

2

4
) dỹ2dỹ1 + o(ε) (31)

= 1

2π

M̂

0

exp(− ỹ2
1

4
)

ỹ1 g′(0)+ε
ỹ2

1
2 g′′(0)+Cε2 ỹ3

1ˆ

ỹ1 g′(0)+ε
ỹ2

1
2 g′′(0)−Cε2 ỹ3

1

exp(− (ε x̃2 − ỹ2)
2

4
) dỹ2dỹ1 + o(ε)

≤ Cε2

π

M̂

0

ỹ3
1 exp(− ỹ2

1

4
)dỹ1 + o(ε)

= Cε2

π

⎡
⎣(

−2 ỹ2
1 exp(− ỹ2

1

4
)

)∣∣∣∣∣
M

0

−
(

8 exp(− ỹ2
1

4
)

)∣∣∣∣∣
M

0

⎤
⎦ + o(ε)

= Cε2

π

[
−2M2 exp(− M2

4
) − 8 exp(− M2

4
) + 8

]
+ o(ε) = o(ε).

For I I1, we have

I I1 = 1

2π

+∞ˆ

−ε x̃2

+∞ˆ

0

exp(− ỹ2
1 + ỹ′ 2

2

4
) dỹ1dỹ′

2

= 1

2π

+∞ˆ

0

+∞ˆ

0

exp(− ỹ2
1 + ỹ′ 2

2

4
)dỹ′

2dỹ1 + 1

2π

0ˆ +∞ˆ

0

exp(− ỹ2
1 + ỹ′ 2

2

4
) dỹ1dỹ′

2 (32)
−ε x̃2



300 D. Wang et al. / Journal of Computational Physics 392 (2019) 291–310
=1

2
+ 1

2π

0ˆ

−ε x̃2

+∞ˆ

0

exp(− ỹ2
1 + ỹ′ 2

2

4
) dỹ1dỹ′

2

=1

2
+ 1

2
√

π

0ˆ

−ε x̃2

exp(− ỹ′ 2
2

4
) dỹ′

2

=1

2
+ 1

2
√

π

0ˆ

−ε x̃2

(1 − ỹ′ 2
2

4
+ ỹ′ 4

2

422! − ỹ′ 6
2

433! + · · · ) dỹ′
2 = 1

2
+ ε x̃2

2
√

π
+ o(ε).

For I I2, using (29) to make the integrating range of ỹ1 belong to the radius of convergence of the expansion of G1(x), we 
then have

I I2 = 1

2π

M̂

0

ỹ1 g′(0)+ε
ỹ2

1
2 g′′(0)ˆ

0

exp(− ỹ2
1 + (ε x̃2 − ỹ2)

2

4
) dỹ2dỹ1 + o(ε)

= 1

2π

M̂

0

ỹ1 g′(0)+ε
ỹ2

1
2 g′′(0)−ε x̃2ˆ

−ε x̃2

exp(− ỹ2
1 + ỹ′ 2

2

4
) dỹ′

2dỹ1 + o(ε) (33)

= 1

2π

M̂

0

exp(− ỹ2
1

4
)(I I I1 + I I I2 + I I I3) dỹ1 + o(ε)

where

I I I1 =
0ˆ

−ε x̃2

exp(− ỹ′ 2
2

4
) dỹ′

2,

I I I2 =
ỹ1 g′(0)ˆ

0

exp(− ỹ′ 2
2

4
) dỹ′

2,

I I I3 =
ỹ1 g′(0)+ε

ỹ2
1

2 g′′(0)−ε x̃2ˆ

ỹ1 g′(0)

exp(− ỹ′ 2
2

4
) dỹ′

2.

For I I I1, we have

I I I1 =
0ˆ

−ε x̃2

(1 − ỹ′ 2
2

4
+ ỹ′ 4

2

422! − ỹ′ 6
2

433! + · · · ) dỹ′
2 = ε x̃2 + o(ε).

Then,

1

2π

M̂

0

exp(− ỹ2
1

4
)I I I1 dỹ1 = ε x̃2

2
√

π
+ o(ε). (34)

Similarly, for I I I3, we have

I I I3 =
ỹ1 g′(0)+ε

ỹ2
1

2 g′′(0)−ε x̃2ˆ

˜ ′

(1 − ỹ′ 2
2

4
+ ỹ′ 4

2

422! − ỹ′ 6
2

433! + · · · ) dỹ′
2

y1 g (0)
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=ε

⎛
⎝ ỹ2

1

2
g′′(0) − x̃2 − (

ỹ2
1

2 g′′(0) − x̃2)( ỹ1 g′(0))2

4
+ (

ỹ2
1

2 g′′(0) − x̃2)( ỹ1 g′(0))4

422! − · · ·
⎞
⎠ + o(ε)

=ε

(
ỹ2

1

2
g′′(0) − x̃2

)
exp(− ( ỹ1 g′(0))2

4
) + o(ε).

Then,

1

2π

M̂

0

exp(− ỹ2
1

4
)I I I3dỹ1 = ε

2π

+∞ˆ

0

(
exp(− ỹ2

1(1 + (g′(0))2)

4
)

)(
ỹ2

1

2
g′′(0) − x̃2

)
dỹ1 + o(ε)

= ε

2
√

π
√

1 + (g′(0))2

(
g′′(0)

1 + (g′(0))2
− x̃2

)
+ o(ε). (35)

For I I I2, we have

1

2π

M̂

0

exp(− ỹ2
1

4
)I I I2dỹ1 = 1

2π

+∞ˆ

0

exp(− ỹ2
1

4
)

ỹ1 g′(0)ˆ

0

exp(− ỹ′ 2
2

4
) dỹ′

2dỹ1 + o(ε)

= 1

2π

π
2 −�ˆ

0

+∞ˆ

0

exp(− r2

4
)r drdθ + o(ε) (36)

=
π
2 − �

π
+ o(ε)

where � = π/2 − arctan(g′(0)) (see Fig. 2).
Combining (34), (35), and (36) yields:

I I2 = ε x̃2

2
√

π
+ ε

2
√

π
√

1 + (g′(0))2

(
g′′(0)

1 + (g′(0))2
− x̃2

)
+

π
2 − �

π
+ o(ε)

=
π
2 − �

π
+ ε

2
√

π

((
1 − 1√

1 + (g′(0))2

)
x̃2 + g′′(0)

(1 + (g′(0))2)
3
2

)
+ o(ε). (37)

Combining (31), (32), and (37) yields:

I2 =1

2
+ ε x̃2

2
√

π
−

π
2 − �

π
− ε

2
√

π

((
1 − 1√

1 + (g′(0))2

)
x̃2 + g′′(0)

(1 + (g′(0))2)
3
2

)
+ o(ε)

=1

2
−

π
2 − �

π
+ ε

2
√

π

(
x̃2√

1 + (g′(0))2
− g′′(0)

(1 + (g′(0))2)
3
2

)
+ o(ε). (38)

Combining (26), (27), and (38) yields:

φ(0, x2) =1

ε

(
π
2 − �

π
− cos θY

√
h1

2
√

h2
− ε

2
√

π

(
x̃2√

1 + (g′(0))2
− g′′(0)

(1 + (g′(0))2)
3
2

)
+ o(ε)

)
. (39)

Let

φ(0, x2) = δ
D1,2
h1,2

(40)

with δD1,2
h1,2

∼ O (1), collecting all the terms at the order of O ( 1
ε ) in (40), we have:

π
2 − �

π
= cos θY

√
h1

2
√

h2
(41)

which is

� = π

2
(1 − cos θY

√
h1√

h2
). (42)
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Fig. 3. Relationship between λ and θY where λ =
√

h2√
h1

.

Fig. 4. Relationship between � and θY when h1 = h2.

Define

λ(θY ) =
√

h2√
h1

= π cos θY

π − 2θY
, θY ∈ [0,π ] (43)

with λ(π
2 ) = π

2 (see Fig. 3) and therefore we have

h2 =
(

π cos θY

π − 2θY

)2

h1. (44)

Submitting (44) into (42) gives us � = θY for any θY ∈ [0, π ].

Remark 3.1. We remark here that from (42), we get that the angle condition is independent of the initial condition and thus 
implying that there is no relaxation dynamics of the contact angle in this specific model. To keep the consistency of the 
scheme, we impose � = θY to get the relation between h1 and h2. One can also interpret that this model is in the regime 
where the relaxation dynamics of the contact angle is at a very fast time scale.

Note that, when h1 = h2, Algorithm 1 reduces to the original threshold dynamics method proposed in [49]. Then, the 
contact angle � satisfies

� = π

2
(1 − cos θY ) (45)

as plotted in Fig. 4. It is consistent with the observation and numerical experiments in [49].
Collecting all the terms at the order of O (1) in (40) yields:

x̃2√
1 + (g′(0))2

− g′′(0)

(1 + (g′(0))2)
3
2

= −2
√

πδ
D1,2
h1,2

. (46)

Then, we further have

x̃2 =
√

1 + (g′(0))2

(
g′′(0)

(1 + (g′(0))2)
3
2

− 2
√

πδ
D1,2
h1,2

)
. (47)

From the definition of g(x1) and �, fundamental calculations give that 
√

1 + (g′(0))2 = √
1 + cot(�)2 = 1

sin �
and κ =

g′′(0)

(1 + (g′(0))2)
3
2

where κ is the mean curvature defined at (0, 0) by the limit along the liquid-vapor interface. Then, we 

have:
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Fig. 5. The diagram for the motion law at the contact point and liquid-vapor interface away from the solid surface.

x̃2 = 1

sin�

(
κ − 2

√
πδ

D1,2
h1,2

)
, (48)

where 2
√

πδ
D1,2
h1,2

is a parameter dependent on D1, D2, h1 and h2 for the volume preserving. Formally, 2
√

πδ
D1,2
h1,2

= κ̄ where 
κ̄ is the average of κ along the liquid-vapor interface. Since x̃2 is the velocity of the contact point moving along the solid 
surface which is consistent with the motion law at the interface away from the solid surface (see Fig. 5 and see [26] for 
more details on the derivation of the motion law for the two-phase interface with no contact points).

4. Gamma-Convergence of the weighted functional

In this section, we will study the 	-convergence of the weighted functional Eh1,h2 with h2 = λ2h1 to the total surface 
energy E for any given λ. For clarity, we first introduce some notations. Denote the functional space

X := {u ∈ B V (�̃) : u = χ�1 ,�1 ⊂ �, |�1| = V 0}. (49)

In X, the norm of a function u is defined as

‖u‖B V = ‖u‖L1(�̃)
+
ˆ

�̃

|Du|.

By definition,ˆ

�̃

|Du| = sup
φ

{ˆ
�̃

udivφdx : φ ∈ C1
c (�̃,Rn)

}
.

We also rewrite the modified energy functional Eh1,h2 (�1, �2) with h2 = λ2h1 as a functional on u = χ�1 ∈X,

Ẽh(u) =
√

πγLV√
h

ˆ

�̃

uGh ∗ (χ� − u) dx +
√

πγS L√
λ2h

ˆ

�̃

uGλ2h ∗ χ�3 dx +
√

πγS V√
λ2h

ˆ

�̃

(χ� − u)Gλ2h ∗ χ�3 dx.

Using the Young’s equation γS V − γS L = γLV cos θY , a simple computation leads to

Ẽh(u) =
√

πγLV√
h

ˆ

�̃

uGh ∗ (χ� − u) dx −
√

πγLV cos θY√
λ2h

ˆ

�̃

uGλ2h ∗ χ�3 dx +
√

πγS V√
λ2h

ˆ

�̃

χ�Gλ2h ∗ χ�3 dx. (50)

Similarly, the functional (3) without rescaling reduces to

Eh(u) =
√

πγLV√
h

ˆ

�̃

uGh ∗ (χ� − u) dx −
√

πγLV cos θY√
h

ˆ

�̃

uGh ∗ χ�3 dx +
√

πγS V√
h

ˆ

�̃

χ�Gh ∗ χ�3 dx. (51)

We note the energy functional E can be rewritten as

E(u) = γLV |�LV | − γLV cos θY |�S L | + γS V |	| (52)

= γLV

ˆ

�̃

(|Du| + |D(χ� − u)| − |Dχ�|) − γLV cos θY

ˆ

�̃

(|Du| + |D(χ�3)| − |D(u + χ�3)|) + γS V |	|

where 	 is the interface between � and �3.
We first state a result on the convergence of Eh to E , as given in the following proposition.

Proposition 4.1. The functional Eh 	-converges to E in X as h goes to zero.
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The proof of the proposition is essentially given in [13], where the 	-convergence is proved for a multi-phase problem. 
Here we will not repeat the details of the proof and refer to the Appendix in [13].

We aim to show the 	-convergence of Ẽh to E . It turns out the result can not be proved directly by the method in [13]. 
In the following we will use an indirect method to prove the result. We introduce a few more notations. Denote

Fh(u) = −
√

πγLV cos θY√
h

ˆ

�̃

uGh ∗ χ�3 dx +
√

πγS V√
h

ˆ

�̃

χ�Gh ∗ χ�3 dx, (53)

and

F(u) = −γLV cos θY

ˆ

�̃

(|Du| + |D(χ�3)| − |D(u + χ�3)|) + γS V |�|. (54)

We will prove the following proposition.

Proposition 4.2. The functional Fh converges to F continuously in X as h goes to zero.

We recall the definition of continuous convergence in [27]. A series of functional Fh converge to F continuously in X, 
if for given u ∈X and for any small positive number ε, there exists a h0 > 0 and a neighborhood N (u) of u such that

|Fh(v) −F(u)| < ε, ∀ v ∈ N (u). (55)

To prove Proposition 4.2, we need a few more preparations. We will prove two simple lemmas.

Lemma 4.1. For any χ
�̂1

, χ
�̂2

∈X, if �̂1 ∩ �̂2 = ∅, we have

ˆ

�̃

|D(χ
�̂1

− χ
�̂2

)| =
ˆ

�̃

|D(χ
�̂1

)| +
ˆ

�̃

|D(χ
�̂2

)|.

Proof. Since �̂1 ∩ �̂2 = ∅, for any φ ∈ C1
c (�̃), we have

ˆ

�̃

(χ
�̂1

− χ
�̂2

)divφ dx =
ˆ

�̂1

divφ dx −
ˆ

�̂2

divφ dx =
ˆ

∂∗�̂1

φ · n1 dHn−1(x) −
ˆ

∂∗�̂2

φ · n2 dHn−1(x),

where ∂∗�̂i is the reduced boundary of �̂i and ni are the outer normal of corresponding domain �̂i , i = 1, 2. Suppose 
∂∗�̂1 ∩ ∂∗�̂2 = 	̂, then we have n1 = −n2 on 	̂. Suppose we can choose a φ ∈ C1

c (�̃) such that φ = n1 on ∂∗�̂1 and −n2

on ∂∗�2 \ 	̂. When the boundary ∂∗�̂i are smooth, such a φ always exists in C1
c (�̃). Otherwise, we can choose a series of 

functions in C1
c (�̃) to approximate φ. For such a choice of φ, we have

ˆ

�̃

(χ
�̂1

− χ
�̂2

)divφ dx = |∂∗�̂1| + |∂∗�̂2|

Using the basic relation 
´
�̃

|Dχ
�̂i

| = |∂∗�i |, the above equation reads

ˆ

�̃

(χ
�̂1

− χ
�̂2

)divφ dx =
ˆ

�̃

|Dχ
�̂1

| +
ˆ

�̃

|Dχ
�̂2

|.

By the definition, we deduceˆ

�̃

|D(χ
�̂1

− χ
�̂2

)| ≥
ˆ

�̃

|Dχ
�̂1

| +
ˆ

�̃

|Dχ
�̂2

|.

Together with the triangle inequality,ˆ

�̃

|D(χ
�̂1

− χ
�̂2

)| ≤
ˆ

�̃

|Dχ
�̂1

| +
ˆ

�̃

|Dχ
�̂2

|,

we have proved the lemma. �
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The statement in the next lemma is already given in [13]. Here we state it clearly for convenience of readers.

Lemma 4.2. For any χ
�̂

∈X, we have

|
√

π√
h

ˆ

�̃

χ
�̂

Gh ∗ χ
�̂c dx| ≤

ˆ

�̃

|D(χ
�̂1

)|,

where �̂c = �̃ \ �̂ and c0 is a constant independent of the choice of �̂.

Proof. Use the definition of the Gaussian kernel. A direct computation shows that
√

π√
h

ˆ

�̃

χ
�̂

Gh ∗ χ
�̂c dx =

√
π√
h

ˆ

�̃

χ
�̂
(x)

ˆ

Rn

Gh(y − x)χ
�̂c (y) dydx

=
√

π√
h

ˆ

�̃

χ
�̂
(x)

ˆ

Rn

Gh(ξ)χ
�̂c (x + ξ) dξdx

=
√

π√
h

ˆ

�̃

χ
�̂
(x)

ˆ

Rn

G1(ξ)χ
�̂c (x + √

hξ) dξdx

=
√

π√
h

ˆ

Rn

G1(ξ)

ˆ

�̃

χ
�̂
(x)χ

�̂c (x + √
hξ) dxdξ

= √
π

∞̂

0

rnG(r)
1

r
√

h

ˆ

Sn−1

ˆ

�̃

χ
�̂
(x)χ

�̂c (x + √
hξ) dxdSdr

≤ √
π

∞̂

0

rnG(r)dr sup
r

∣∣∣ 1

r
√

h

ˆ

Sn−1

ˆ

�̃

χ
�̂
(x)(χ

�̂c (x + √
hξ) − χ

�̂c (x)) dxdS
∣∣∣

Further calculation gives

| 1

r
√

h

ˆ

Sn−1

ˆ

�̃

χ
�̂
(x)(χ

�̂c (x + √
hξ) − χ

�̂c (x)) dxdS
∣∣∣

≤| 1

r
√

h

ˆ

Sn−1

ˆ

�̃

|(χ
�̂c (x + √

hξ) − χ
�̂c (x)) dxdS

∣∣∣
≤|Sn−1|

ˆ

�̃

|Dχ
�̂
|.

Notice that |Sn−1| ́ ∞
0 rnG(r)dr = √

π , we have proved the lemma. �
Proof of Proposition 4.2. We will prove the proposition by definition. Firstly, it is known that (see [1,32])

lim
h→0

√
πγS V√

h

ˆ

�̃

χ�Gh ∗ χ�3 dx = γS V |�|.

Therefore, for any ε, there exists a constant h0 such that for any h < h0,∣∣∣√πγS V√
h

ˆ

�̃

χ�Gh ∗ χ�3 dx − γS V |�|
∣∣∣ ≤ ε

4
. (56)

Similarly, for any given u ∈X and for any ε, there exists a h1 > 0, such that for any h < h1,∣∣∣ −
√

πγLV cos θY√
λ2h

ˆ
uGh ∗ χ�3 dx + γLV cos θY

ˆ
(|Du| + |D(χ�3)| − |D(u + χ�3)|)

∣∣∣ ≤ ε

4
. (57)
�̃ �̃
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Combine them together, we have

|Fh(u) −F(u)| ≤ ε

2
, (58)

for all h < h∗ = min(h0, h1).
Denote u = χ�1 . For any v ∈ X, we know that v = χ

�̂1
for some �̂1 ⊂ �. Then u − v = χ�1 − χ

�̂1
= χ

�1\�̂1
− χ

�̂1\�1
, 

with (�1 \ �̂1) ∩ (�̂1 \ �1) = ∅. Then we have

|Fh(u) −Fh(v)| =
√

πγLV | cos θY |√
h

∣∣∣ˆ
�̃

(u − v)Gh ∗ χ�3 dx
∣∣∣

=
√

πγLV | cos θY |√
h

∣∣∣ ˆ

�1\�̂1

Gh ∗ χ�3 dx −
ˆ

�̂1\�1

Gh ∗ χ�3 dx
∣∣∣

≤
√

πγLV | cos θY |√
h

( ˆ

�1\�̂1

Gh ∗ χ
(�1\�̂1)c dx +

ˆ

�̂1\�1

Gh ∗ χ
(�̂1\�1)c dx

)

≤ γLV | cos θY |
(ˆ

�̃

|Dχ
(�1\�̂1)

| +
ˆ

�̃

|Dχ
(�̂1\�1)

|
)

= γLV | cos θY |
ˆ

�̃

|Dχ
(�1\�̂1)

− Dχ
(�̂1\�1)

| = γLV | cos θY |
ˆ

�̃

|D(u − v)|,

where we have used Lemma 4.2 in last third equation and Lemma 4.1 in the last equation. Therefore, for any ε and u, we 
choose a neighborhood N (u) := {v ∈X, ‖u − v‖B V ≤ ε

2γLV | cos θY | } of u. Then for any v ∈ N (u), we have

|Fh(v) −Fh(u)| ≤ ε

2
. (59)

Combine the above analysis, we have

|Fh(v) −F(u)| ≤ |Fh(v) −Fh(u)| + |Fh(u) −F(u)| ≤ ε

2
+ ε

2
= ε,

for any v ∈N 0(u) and h < h∗ . This finishes the proof. �
By the Proposition 4.1 and 4.2, we are led to the following 	-convergence result for the modified functional Ẽh .

Theorem 4.1. Ẽh(u) 	-converges to E(u) in X.

Proof. The basic idea is to use the following property of 	-convergence (see Proposition 6.20 in [27]) that, if F (1)
ε

	-converges to F (1) and F (2)
ε continuously converges to F (2) in the same topology space, and both F (2)

ε and F (2) are fi-
nite everywhere, then F (1)

ε + F (2)
ε 	-converges to F (1) + F (2) .

Notice that Ẽh = (Eh −Fh) +Fλ2h . By the Propositions 4.1 and 4.2, we use the property twice and the proof is done. �
5. Numerical experiments

In this section, we use several numerical experiments to illustrate the improvement of the modified algorithm. We 
implemented the Algorithm 1 in MATLAB installed on a laptop with a 2.7GHz Intel Core i5 processor and 8GB of RAM. The 
convolutions at the first step in the Algorithm 1 are efficiently evaluated using the fast Fourier transform (FFT).

5.1. Example 1: contact angle in the dynamics

In this example, we check the accuracy of the contact angle when h2 = λ2h1 (see (44)) and h2 = h1 (i.e., original algo-
rithm in [49]). In two cases, we set the equilibrium angle θY = π/3 and θY = 2π/3 and we get λ = 1.5. Then, we perform 
the following experiment when h2 = λ2h1 = 2.25h1 and h2 = h1 for different values of h1:

1. Set the initial condition as a half circle liquid droplet with radius π/2 on the solid surface, y = −π/2 (see Fig. 6).
2. Evaluate

φ = 1√ Gh1 ∗ (χD2 − χD1) − cos θY√ Gh2 ∗ χD3 .
h1 h2
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Fig. 6. The half circle initial condition on the solid surface.

Table 1
Errors of the contact angle when h2 = 2.25h1 and h2 = h1 with θY = π/3
and h1 = π/128, π/256, π/512, and π/1024.

h1 Contact angle 
when h2 = 2.25h1

Error Contact angle 
when h2 = h1

Error

π/128 0.9939 0.0533 0.6630 0.3842
π/256 1.0098 0.0374 0.6748 0.3724
π/512 1.0235 0.0237 0.6850 0.3622
π/1024 1.0399 0.0073 0.6982 0.3490

Table 2
Errors of the contact angle when h2 = 2.25h1 and h2 = h1 with θY =
2π/3 and h1 = π/128, π/256, π/512, and π/1024.

h1 Contact angle 
when h2 = 2.25h1

Error Contact angle 
when h2 = h1

Error

π/128 2.0628 0.0316 2.4324 0.3380
π/256 2.0727 0.0217 2.4335 0.3391
π/512 2.0798 0.0145 2.4289 0.3345
π/1024 2.0853 0.0091 2.4279 0.3335

3. Use the function named contour in Matlab, we find a set of discrete points on the δD1,2
h1,2

-levelset of φ. Among these 
points, find the point C1 = (x1, y1) which is closest to the surface in either the rightmost or leftmost. Then, we find the 
closest point, C2 = (x2, y2), to C1 away from the solid surface.

4. Calculate θ = arctan(
y2−y1
x2−x1

).
In Table 1, we list the errors of the contact angle when h2 = 2.25h1 and h2 = h1 with θY = π/3 and h1 = π/128, π/256, 

π/512, and π/1024, separately. When h2 = 2.25h1, it is obvious to see that the angle converges to π/3 ≈ 1.04720 when 
we decrease the value of h1. However, when h2 = h1, the angle converges to an incorrect angle. Interestingly, we note that 
the angles are close to π/4 ≈ 0.78540 which is consistent with the results in (45) and Fig. 4.

In Table 2, we list the errors of the contact angle when h2 = 2.25h1 and h2 = h1 with θY = 2π/3 and h1 = π/128, 
π/256, π/512, and π/1024, separately. Again, when h2 = 2.25h1, the contact angle converges to 2π/3 ≈ 2.09440. When 
h2 = h1, the angle seems to converge to an incorrect angle which is close to 3π/4 ≈ 2.35619 showed in (45) and Fig. 4.

In both numerical experiments, we use 4096 × 4096 grid points to discretize the computational domain [−π, π ] ×
[−π, π ].
5.2. Example 2: contact angle in the equilibrium state of the solid wetting problem

In this example, we check the accuracy of the contact angle for the equilibrium state. We apply the adaptive in time 
strategy proposed in [49] on Algorithm 1 to get the equilibrium state when θY = π/3 and 2π/3 on discretized grids with 
mesh size dx = π/64, π/128, π/256, and π/512 when h2 = λ2h1 and h2 = h1, respectively. Here, we choose a relatively 
large initial h1 = 3dx since we use the adaptive in time strategy. We refer the details of the adaptive in time strategy to 
[49]. The convergence criterion is that D1 doesn’t change both between two iteration steps in the current discretization and 
halving the value of h1. Table 3 and 4 list the errors of the contact angle and the CPU time when h2 = λ2h1 and h2 = h1
with the equilibrium angle θY = 2π/3 and π/3. In both cases, λ = 1.5. Obviously, from both tables, the angles converge to 
the corresponding expected angles θY when h2 = 2.25h1 while the angles deviate from the correct angles when h2 = h1.

5.3. Example 3: contact angle hysteresis on a rough surface

In this section, we compare the improved algorithm to the original algorithm [49] in the simulation of the contact angle 
hysteresis on geometrically rough surfaces. When a droplet spreads on a rough surface, the contact angle can take a range 
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Table 3
Errors of the contact angle at equilibrium state when h2 = 2.25h1 and h2 = h1 with θY = π/3.

dx Initial h1 Contact angle 
when h2 = 2.25h1

Error CPU time 
(seconds)

Contact angle 
when h2 = h1

Error CPU time 
(seconds)

π/64 3π/64 0.8004 0.2468 0.07 0.7100 0.3372 0.25
π/128 3π/128 0.8570 0.1902 0.59 0.6614 0.3858 0.59
π/256 3π/256 0.9960 0.0512 5.5 0.6244 0.4228 5.9
π/512 3π/512 1.0227 0.0245 43.2 0.6053 0.4419 43.6

Table 4
Errors of the contact angle at equilibrium state when h2 = 2.25h1 and h2 = h1 with θY = 2π/3.

dx Initial h1 Contact angle 
when h2 = 2.25h1

Error CPU time 
(seconds)

Contact angle 
when h2 = h1

Error CPU time 
(seconds)

π/64 3π/64 1.8127 0.2817 0.08 2.2554 0.1610 0.11
π/128 3π/128 1.9232 0.1712 0.58 2.4058 0.3114 0.52
π/256 3π/256 2.0205 0.0739 4.8 2.4995 0.4051 4.8
π/512 3π/512 2.1225 0.0281 43.5 2.5247 0.4303 42.2

Fig. 7. Diagrams of the solid surface and the effective angle.

of values. The highest (lowest) stable contact angle is termed the advancing (receding) angle �a (�r ). The contact angle 
hysteresis �� = �a − �r is an important quantity and determines many properties of the rough surface. To simulate the 
hysteresis process, we consider the quasi-static spreading of a drop as volume of the drop is gradually increased (advancing) 
or decreased (receding). We compute the equilibrium state of the drop after liquid is added or extracted in each time step. 
Theoretically, in each period, when the volume of the droplet is increasing (decreasing) gradually, the apparent contact angle 
should be approaching to the advancing (receding) angle.

In this experiment, the computational domain is [−π, π ] ×[−π, π ], and the solid surface of is then given by a sawtooth 
function

y = −π

2
+ π tan(α)

2k
s(2kx)

where s(x) is a sawtooth periodic function with period 2π defined as

s(x) =
{−1 − x−π

π −π ≤ x ≤ 0;
x
π 0 < x ≤ π,

α is the angle between solid surface and horizontal direction, and 2k denotes the number of the period of the sawtooth on 
the solid surface (see Fig. 7 (a) for an example when k = 10 and α = π/6). For a rough surface, it is more meaningful to see 
how the effective contact angle behaves when the volume of the drop is increased or decreased [6]. The effective contact 
angle is defined as the angle between the contact line and the horizontal surface (see Fig. 7 (b)). The computational domain 
[−π, π ] × [−π, π ] is discretized by 4096 × 4096 grid points and the initial time step is h1 = π

2048 .
Fig. 8 displays the behavior of the effective contact angle when k = 10, α = π

6 . In this case, the Young’s angle of the solid 
surface is θY = π

3 , the theoretical advancing angle is π/3 + π/6 = π/2 and the theoretical receding angle is π/3 − π/6 =
π/6. In Fig. 8, we use solid lines to denote the line of the theoretic advancing angle and the theoretic receding angle. The 
results show significant improvement of hysteresis behavior obtained by the new algorithm.

The red dashed line represents the behavior of advancing angle when we increase the volume gradually from 0.2 to 8
and the blue dashed line represents the behavior of the receding angle when we decrease the volume gradually from 8 to 
0.2 using the improved threshold dynamics method proposed. In the first figure of Fig. 8, when the volume of the droplet 
is increasing (decreasing) gradually, we see that in each period, the apparent contact angle is approaching to the advancing 
(receding) angle accordingly. It matches the theoretic results well.
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Fig. 8. Advancing and receding contact angles for rough surfaces with θY = π/3 and k = 10 when h2 = λ2h1 and h2 = h1, separately. (For interpretation of 
the colors in the figure(s), the reader is referred to the web version of this article.)

However, if we use the original algorithm (i.e., h2 = h1) to add volume gradually from 0.2 to 8 and then decrease from 
8 to 0.2, the results are displayed by the green dashed line and the light blue dashed line in the second figure of Fig. 8. 
When the volume of the droplet is increasing (decreasing) gradually, we see that in every period, the apparent contact 
angle is approaching to an incorrect advancing (receding) angle. They deviate from the theoretic result a lot. In fact, the 
advancing angle is close to π/4 + π/6 = 5π/12 and the receding angle is close to π/4 − π/6 = π/12. This observation is 
also consistent with the asymptotic results in (45) and Fig. 4.

6. Conclusions and future work

In this paper, we developed a modified threshold dynamics method for wetting dynamics. The method is simple, efficient, 
and unconditionally stable. We showed that the contact angle is consistent with the Young’s angle and the dynamics at the 
contact point is consistent with the dynamics of the interface away from the contact point. We extended the analysis in 
[13] to prove the modified functional 	-converges to the original functional. We used some numerical examples to verify 
the improvement of the modified method comparing to the method in [49].
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