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In 1931, Onsager proposed a variational principle which has become the base of many kinetic equations for
nonequilibrium systems. We have been showing that this principle is useful in obtaining approximate solutions
for the kinetic equations, but our previous method has a weakness that it can be justified, strictly speaking,
only for small incremental time. Here we propose an improved method which does not have this drawback.
The improved method utilizes the integral proposed by Onsager and Machlup in 1953, and can tell us which
of the approximate solutions is the best solution without knowing the exact solution. The improved method has
an advantage that it allows us to determine the steady state in nonequilibrium system by a variational calculus.
We demonstrate this using three examples, (a) simple diffusion problem, (b) capillary problem in a tube with
corners, and (c) free boundary problem in liquid coating, for which the kinetic equations are written in second
or fourth-order partial differential equations.
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I. INTRODUCTION

In 1931, Onsager published two papers on the dynamics
of nonequilibrium systems [1,2]. He had shown that if the
rate of change of the system is written as a linear function
of thermodynamic forces, the coefficients must be symmetric
and positive definite. The symmetry of the coefficients is
called reciprocal relation and has become the base of classical
irreversible thermodynamics [3–6].

In the same papers, Onsager proposed a variational princi-
ple which is a direct consequence of the reciprocal relation
and states the essence of his theory (the kinetic equation
plus the reciprocal relation) in a compact form. Many kinetic
equations that have been used to describe the nonequilib-
rium phenomena, such as Stokes equation in hydrodynamics,
Smoluchowskii equation in particle diffusion, Nernst-Planck
equation in electrokinetics, Ericksen-Leslie equation in ne-
matic liquid crystals, etc., can be derived from this princi-
ple [7,8]. The variational principle has also been shown to be
useful to derive time evolution equations for complex systems,
where two or more irreversible processes are coupled or
where the process is constrained by geometry, say, on curved
surfaces or lines.

We have been showing that the variational principle is
useful not only for deriving the time evolution equations
but also useful for obtaining the solutions of the kinetic
equations [9–11]. A way of doing this is to assume certain
forms for the solutions which involve some time-dependent
parameters and determine the parameters by the variational
principle. We have demonstrated the utility of this method
for many examples [11–14] in fluid and soft matter systems.
The method was also applied to the study of solid-state
dewetting [15].

On the other hand, our previous method has a weakness
that it is only valid, strictly speaking, to predict the state in
near future, i.e., to predict the state at time t + �t from the
knowledge of the state at time t for infinitesimally small �t .
Although we can use this method repeatedly to predict the
state at times t + 2�t , t + 3�t , . . . , the error may increase
with time, and we cannot tell which solution is the best among
all possible evolution paths.

Here we propose an alternative variational method which
does not have this weakness. In the alternative method, we
do not use the original variational principle proposed by
Onsager in 1931 but use the integral proposed by Onsager and
Machlup in 1953 [16]. Compared with the previous method,
the calculation of the alternative method is more cumbersome,
but it has an advantage that we can directly determine which
kinetic paths is the best among various possible kinetic paths.
Also, it allows us to determine the steady state directly without
solving the time evolution equations.

In this paper, we first explain the general framework of our
variational method (Sec. II). Next we demonstrate this method
for a few examples, i.e., by solving simple diffusion equation
(Sec. III), and by solving two hydrodynamic problems, the
liquid wetting in a tube (Sec. IV), and a free boundary problem
associated with coating (Sec. V).

II. ONSAGER PRINCIPLE

A. Onsager principle in its original form

First we explain the original variational principle of On-
sager [1,2]. Since our target here is the flow and diffusion in
soft matter, we shall limit our discussion to isothermal systems
where temperature is assumed to be constant.
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We consider a nonequilibrium system which is charac-
terized by a set of state variables x = (x1, x2, . . . , x f ). Our
objective is to calculate the time dependence of x(t ) for a
given initial state x(t = 0). (In this paper, we do not consider
fluctuations, but fluctuations can be included in the present
framework by considering the distribution function of x,
see Ref. [7].) The time evolution of x is obtained by solving
Onsager’s kinetic equations

dxi

dt
= −

∑
j

μi j
∂A

∂x j
, (1)

where A(x) is the free energy of the system and μi j (x) are
kinetic coefficients, both are functions of x. Onsager showed
that if the kinetic equation is written in the form of Eq. (1),
μi j (x) must be positive definite and symmetric,∑

i j

μi j ẋiẋ j � 0 for arbitrary ẋi, (2)

μi j = μ ji. (3)

Equation (3) is called Onsager’s reciprocal relation.
The kinetic equation (1) can be written in the form of

force balance equation. Let ζi j be the inverse matrix of μi j

(
∑

k ζikμk j = δi j). Equation (1) is then written as

− ∂A

∂xi
−
∑

j

ζi j
dx j

dt
= 0. (4)

The first term represents the thermodynamic force that drives
the system to the state of minimum free energy, and the second
term represents the frictional force which resists against this
change.

The force balance equation (4) can be cast in a form of
minimum principle. Consider the following quadratic function
of the rate of change of the state ẋ = (ẋ1, ẋ2, . . . , ẋ f ):

R(ẋ; x) = 1

2

∑
i, j

ζi j ẋiẋ j +
∑

i

∂A

∂xi
ẋi. (5)

The kinetic equation (4) is equivalent to the condition that
R is minimum with respect to ẋ, ∂R/∂ ẋi = 0, i.e., the time
evolution of nonequilibrium system is determined by the min-
imum principle of R(ẋ; x). This is called Onsager’s variational
principle or simply the Onsager principle.

The function R(ẋ; x) is called Rayleighian. The first term
is called the dissipation function

� = 1

2

∑
i, j

ζi j ẋiẋ j, (6)

and the second term is called the free energy change rate,

Ȧ =
∑

i

∂A

∂x j
ẋi. (7)

The dissipation function is a quadratic function of ẋ, while the
free energy change rate is a linear function of ẋ.

B. Onsager principle as a tool of approximation

Onsager’s variational principle can be used to solve prob-
lems by a variational method. To do this, we assume that

xi(t ) (i = 1, 2, . . . ) is written as a certain function of some
parameter set α = (α1, α2, . . . ), i.e., xi(t ) is written as xi(t ) =
xi[α1(t ), α2(t ), . . .′. Then ẋi is written as

ẋi =
∑

p

∂xi

∂αp
α̇p, (8)

and the Rayleighian is written as

R =
∑

pq

⎛
⎝∑

i j

ζi j
∂xi

∂αp

∂x j

∂αq

⎞
⎠α̇pα̇q +

∑
p

(∑
i

∂A

∂xi

∂xi

∂αp

)
α̇p.

(9)

The time evolution of the parameter α(t ) is determined by
minimizing R with respect to α̇. This method is useful when
we have an idea for the kinetic path and can write down the
functions xi(α). It has been applied to many problems in soft
matter [10–14,17,18].

C. Onsager principle in a modified form

The above variational principle determines the state at
t + �t from the knowledge of the state at time t . It says that
among all possible states allowed for the system to be at time
t + �t , the state chosen by nature is given by the state which
minimizes R{[x(t + �t ) − x(t )]/�t ; x(t )}. This principle can
be used to conduct approximate calculation. Suppose we have
many candidates for the state at time t + �t , then we can tell
which state is the best candidate: The state which gives the
smallest value of the Rayleighian is the best.

This variational principle is a local principle: It can predict
the state in near future but cannot predict the state in far future.
Suppose we have two kinetic paths, starting from the same
initial state x(0) and ending at different states x(t ) and x′(t ),
then we cannot tell which path is better: We can tell which
path is better if t is close to zero but cannot tell if t is far away
from zero.

This problem can be resolved if we use a slightly modified
definition for Rayleighian

R̃(ẋ; x) = R(ẋ; x) − Rmin(x), (10)

where Rmin(x) is the minimum value of R(ẋ; x) in the space
of ẋ. The minimum is given by the velocity

ẋ∗
i (x) = −

∑
j

μi j
∂A

∂x j
. (11)

Note that ẋ∗
i is the actual velocity of the system at state x and

depends only on the state variable x.
With the use of Eq. (11), it is easy to show that R̃(ẋ; x) is

written as

R̃(ẋ; x) = 1

2

∑
i j

ζi j (ẋi − ẋ∗
i )(ẋ j − ẋ∗

j ). (12)

Since ζi j is positive definite, R̃(ẋ; x) is larger than or equal
to zero.
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Now consider the following integral, which is a functional
of certain kinetic path x(t )

O[x(t )] =
∫ t

0
dt ′ R̃[ẋ(t ′); x(t ′)]

= 1

2

∫ t

0
dt ′∑

i j

ζi j[x(t ′)][ẋi(t
′) − ẋ∗

i (t ′)]

× [ẋ j (t
′) − ẋ∗

j (t ′)]. (13)

The integral is positive definite and is equal to zero only when
x(t ) is equal to the actual kinetic path. Hence the variational
principle can be stated simply that nature chooses the path
which minimizes the functional O[x(t )].

The integral of Eq. (13) was first introduced by Onsager
and Machlup in their discussion on the fluctuation of kinetic
paths described by linear Langevin equation [16]. They have
shown that the probability of finding the kinetic path x(t ) is
proportional to exp{−O[x(t )]/2kBT }. It is easy to show that
their theory can be extended to the general case where both
A and ζi j are functions of x. Indeed in some literature [19],
this form has been referred to as Onsager’s variational princi-
ple. We shall call this variational principle Onsager-Machlup
principle and call the integral of Eq. (13) Onsager-Machlup
integral.

D. Variational calculus using Onsager-Machlup integral

The Onsager-Machlup variational principle can be used to
obtain the best guess for the kinetic path of the system. We
consider certain kinetic path which involves a parameter set
α = (α1, α2, . . . ). The best guess for the actual path is the
path which gives the smallest value of the Onsager-Machlup
integral. In the following sections, we shall show actual calcu-
lation of this method. Here we show a few tips that will help
such calculations.

The Rayleighian that appears in the Onsager-Machlup
integral has two velocities, ẋi and ẋ∗

i . For given kinetic path
x(t ), they are calculated by

ẋi(t ) = dxi(t )

dt
, ẋ∗

i (t ) = −
∑

j

(ζ−1)i j
∂A(x)

∂x j

∣∣∣∣
x=x(t )

. (14)

Here ẋi is defined by the time derivative of the state variables
x(t ), while ẋ∗

i is defined by the thermodynamic force at state
x. The Onsager-Machlup integral becomes minimum when ẋi

is equal to ẋ∗
i .

At first sight, such variational principle may look useless
since to calculate O[x(t )], we need to know ẋ∗

i , but this is the
quantity difficult to calculate; if we can calculate ẋ∗

i , we can
directly use it to solve the time evolution equation, dxi/dt =
ẋ∗

i and there is no need to use such variational principle.
In fact, the variational principle is useful since we have a

freedom to choose the kinetic path x(t ). We need not calculate
ẋ∗

i for a general state; we need to calculate ẋ∗
i only for the state

we have chosen. By proper choice of the kinetic path, ẋ∗
i may

be calculated.
For example, consider the problem of deformation of a

droplet in emulsions under flow [20]. It is difficult to calculate
the shape change of the droplet for general shapes, but it can
be calculated for special cases where the droplet takes simple

shapes such as ellipsoids. Therefore, if the droplet keeps
a form which can be approximated by ellipsoids, then the
variational principle can be used to describe the deformation
of the droplet. We shall see this more clearly in the examples
given later.

E. Note on the dissipation function

So far we have been discussing a simple case where the
dissipation function is given explicitly as a function of ẋ, as in
Eq. (6). In many situations, however, the dissipation function
is not given in this form. Quite often, the dissipation function
is written as a quadratic function of other velocity variables
ẏa (a = 1, 2, . . . , f ′) in an extended space ( f ′ > f ),

�̃ = 1

2

∑
ab

ζ̃abẏaẏb, (15)

subject to constraints that ẋi and ẏa are linearly related to
each other,

ẋi =
f ′∑

a=1

cia(x)ẏa, (16)

where the coefficients cia are some functions of x. Example of
such situation is given in the next section.

The dissipation function � in Eq. (6) is the minimum
of �̃ subject to the constraint of Eq. (16). Hence one can
state the Onsager principle in the extended space spanned by
ẏa(a = 1, 2, . . . , f ′) [7], where the Rayleighian is given by

R(y)(ẏ; x) = 1

2

∑
a,b

ζ̃abẏaẏb +
∑
i,a

∂A

∂xi
ciaẏa. (17)

It is easy to show that the modified Rayleighian in the
extended space is given by

R̃(y)(ẏ; x) = 1

2

∑
a,b

ζ̃ab(ẏa − ẏ∗
a )(ẏb − ẏ∗

b ), (18)

where ẏ∗
a is the velocity which minimizes R(y). The Onsager-

Machlup integral is also given by

O[y(t )] = 1

2

∫ t

0
dt ′∑

a,b

ζ̃ab(ẏa − ẏ∗
a )(ẏb − ẏ∗

b ). (19)

Equations (18) and (19) includes two velocities, ẏa and
ẏ∗

a . The former is determined by the assumed kinetic path
x[α(t )], while the latter is determined by the thermodynamic
forces acting at state x[α(t )]. If the kinetic equations are
solved rigorously, then they agree with each other, and R̃(y)

is equal to zero. In our approximate treatment, we determine
the parameter α so that R̃(y) becomes minimum. This is the
general strategy that we will use in the subsequent examples.

III. DIFFUSION

A. Diffusion equation

As the first example, we consider the diffusion of particles.
The state variable in this problem is n(r), the number density
of particles at position r, and we consider the time evolution
of this function n(r; t ). The “velocity” of the state variable is
ṅ = ∂n/∂t , but it is not possible to write down the dissipation
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function in terms of ṅ. This is because in diffusion, ṅ must
satisfy the conservation equation

ṅ = −∇ · j, (20)

where j(r) be the flux of the particles. Equation (20) repre-
sents the kinetic constraints that n can change only by diffu-
sion and that there is no process (such as chemical reaction)
which creates or annihilates the particles. The variable j,
introduced to represent such constraints, is an example of the
variables ẏa given in the previous section. The Rayleighian for
the diffusion problem can be constructed using j.

The free energy of the system is written as

A =
∫

dr f (n(r)), (21)

where f (n) is the free energy density of the particles. Ȧ is then
calculated by Eqs. (20) and (21) as

Ȧ =
∫

dr
∂ f

∂n
ṅ = −

∫
dr

∂ f

∂n
∇ · j =

∫
dr j · ∇

(
∂ f

∂n

)

=
∫

dr( j · ∇n)
∂2 f

∂n2
. (22)

The dissipation function � is proportional to the square of
the particle velocity vp = j/n and can be written as

� = 1

2

∫
drnζv2

p = 1

2

∫
dr

1

n
ζ j2, (23)

where ζ is the friction constant of one particle.
From Eqs. (22) and (23), the Rayleighian is given by

R = 1

2

∫
dr

1

n
ζ j2 +

∫
dr( j · ∇n)

∂2 f

∂n2
. (24)

The minimum of this is given by

j∗ = − n

ζ

∂2 f

∂n2
∇n. (25)

Therefore the time evolution equation for n is given by

∂n

∂t
= ∇ · [D(n)∇n], (26)

where D(n) = (n/ζ )∂2 f /∂n2. Equation (26) is the standard
diffusion equation [8].

B. Onsager principle as an approximation tool

We now demonstrate how to use Onsager principle to
obtain approximate solutions. For simplicity, we consider the
diffusion in one-dimension system and in dilute solution. The
conservation equation (20) is written as

ṅ = −∂ j

∂x
. (27)

The free energy of the system is given by

A = kBT
∫

dx n(x) ln n(x), (28)

and the Rayleighian is given by [see Eq. (24)]

R =
∫

dx

(
1

2

1

n
ζ j2 + kBT

j

n

∂n

∂x

)
. (29)

This becomes minimum when j is equal to

j∗ = −D
∂n

∂x
, (30)

where D = kBT/ζ . Equation (30) and the conservation equa-
tion (27) give the one-dimensional diffusion equation

∂n

∂t
= D

∂2n

∂x2
. (31)

The exact solution of this equation for the initial condition
n(x, 0) = N0δ(x) is given by

n(x; t ) = N0√
4πDt

exp

(
− x2

4Dt

)
. (32)

To use the variational principle, we assume that n(x, t ) is
approximated by the following polynomial function:

n(x, t ) = N

{
1 −

[ |x|
a(t )

]m}
, N = N0

m + 1

2m

1

a
, (33)

where m is a positive integer, a(t ) is a parameter characteriz-
ing the particle spreading, and N is a constant which has been
determined by the condition

∫∞
−∞ dxn(x, t ) = N0.

We shall derive the kinetic equations for a(t ) using On-
sager principle. From Eqs. (28) and (33), the free energy is
calculated as

A = kBT
∫ a

−a
dxN

[
1 −

( |x|
a

)m]
ln N

[
1 −

( |x|
a

)m]

= kBT
∫ 1

−1
dz aN (1 − |z|m) ln[N (1 − |z|m)]

= −kBT N0 ln a + {terms independent of a}, (34)

where z = |x|/a. Hence the free energy change rate is
calculated as

Ȧ = −kBT N0
ȧ

a
. (35)

On the other hand, the flux j(x) is calculated by integrating
Eq. (27) with respect to x,

j(x) = −
∫ x

0
dx′ ṅ(x′) = N0

m + 1

2m

ȧ

a

[
x

a
−
(

x

a

)m+1
]
. (36)

The dissipation function is then calculated as

� = 1

2

∫ a

−a
dx ζ

j2

n
= 1

2
ζN0

m + 1

3(m + 3)
ȧ2. (37)

The Rayleighian is the summation of Eqs. (35) and (37),

R = 1

2
ζN0

m + 1

3(m + 3)
ȧ2 − kBT N0

ȧ

a
. (38)

Minimizing this with respect to ȧ, we have

aȧ = 3(m + 3)

m + 1

kBT

ζ
= 3(m + 3)

m + 1
D. (39)

The solution of this equation for the initial condition
a(0) = 0 is

a =
[

6(m + 3)

m + 1
Dt

]1/2

. (40)
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FIG. 1. Comparison between the exact solution (32) and approx-
imated solution (39) for m = 1, 2, 3. The parameters are N0 = 100
and D = 1. The particle concentrations are shown for t = 10.

It is seen that the spreading of the particle concentration
follows the scaling a ∼ √

t for all m.
Figure 1 shows the comparison of the approximate solution

n(x, t ) calculated by Eqs. (33) and (39) and the exact solution
(32). From this figure, we can see that the curve of m = 1
seems to be the best solution (the solution closest to the exact
solution). However, if we do not know the exact solution, then
we cannot tell which solution is the best. This question can be
answered if we use the Onsager-Machlup integral.

C. Onsager-Machlup integral

We now analyze the problem using the modified
Rayleighian. In the present problem, the modified Rayleighian
is obtained by Eqs. (18) and (23) as

R̃ = 1

2

∫ a

−a
dx

ζ

n
( j − j∗)2, (41)

where j is the flux determined by the assumed time depen-
dence of n(x; t ), i.e., the flux given by Eq. (36),

j(x) = −
∫ x

0
dx′ ṅ(x′) = N0

m + 1

2m

ȧ

a

[
x

a
−
(

x

a

)m+1
]
,

for x > 0, (42)

and j∗ is the exact flux at state n(x, t ), which is given by

j∗(x) = −D
∂n

∂x
= DN0

a2

m + 1

2

(
x

a

)m−1

for x > 0. (43)

The modified Rayleighian is then calculated as

R̃ = ζN0

[
m + 1

6(m + 3)
ȧ2 − D

ȧ

a
+ D2

2
m(m + 1)

×
(∫ 1

0
dz

z2m−2

1 − zm

)
1

a2

]
. (44)

The evolution is obtained by ∂R̃/∂ ȧ = 0, which leads to the
same equation as Eq. (39).

Substituting Eq. (39) into the modified Rayleighian (44)

R̃ = ζDN0

[
−1

4
+ m(m + 1)2

12(m + 3)

(∫ 1

0
dz

z2m−2

1 − zm

)]
t−1. (45)

The integration of the last term diverges as z → 1. We per-
formed the integration by setting the upper bound to 1 − ε.
For m = 1, 2, 3, the results are

m = 1, R̃ = ζDN0(−0.250 − 0.083 ln ε)t−1

m = 2, R̃ = ζDN0(−0.446 − 0.150 ln ε)t−1

m = 3, R̃ = ζDN0(−0.864 − 0.222 ln ε)t−1.

If we compare the front factor of the divergent terms, then
the trial function m = 1 gives the smallest value. Also for
a typical small value of ε = 10−3, the terms in the brackets
are evaluated to be 0.3233, 0.5902, 0.6695 for m = 1, 2, 3,
respectively. In both cases, the trial function of m = 1 gives
the smallest value, and we can conclude that the function
of m = 1 is the best. This is consistent with the comparison
shown in Fig. 1.

IV. FINGER FLOW IN A SQUARE TUBE

As the second example, we consider the liquid wetting
in a square tube (see Fig. 2). The liquid is contained in the
left reservoir and connected to a tube having a square cross
section. The end of the tube is closed, so the meniscus of the
bulk liquid cannot move, but the liquid can advance along the
corner of the tube forming a “finger” to reduce the surface
energy. The tube is assumed to be placed horizontally, so
gravity does not play a role in this problem.

The wetting dynamics of such situation was first studied
by Dong and Chatzis [21] using a variational method [22].
(See also Ref. [23] for the application.) Here we use the
same model as theirs, and solve the problem using Onsager
principle. The governing equation of this problem turns out to
be the same as the nonlinear diffusion equation, and we shall
show that the equation can be solved in good approximation
by using the Onsager-Machlup integral.

A. Dynamical equation

We take x coordinate along the tube axis. We define a
dimensionless quantity called saturation s(x; t ), which is the
fraction of the liquid area in the cross section at position x and
time t . We focus on the motion of the finger part and ignore
the motion of the bulk part. We set the bottom of the finger
at x = 0 and assume, as in the previous works [21,24], that
s(x, t ) takes a constant value s∗ at x = 0.

The time evolution equation for s(x, t ) can be derived from
the Onsager principle. Since the gravity is ignorable, the free
energy of the system is given by the surface energy of the
liquid. The surface area of the liquid in the region between x
and x + dx is proportional to a

√
sdx. Hence the free energy

FIG. 2. Finger flow in a closed square tube.
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of the system can be written as

A = −α1aγ

∫ h

0

√
s dx, (46)

where α1 is a certain numerical constant (α1 = 8
√

1 − π/4,
see Ref. [24]).

The saturation s(x; t ) must satisfy the conservation
equation

∂s

∂t
= −∂ j

∂x
. (47)

The dissipation function is a quadratic function of j(x). By
using the lubrication approximation, one can show that the
dissipation function is written as

� = 1

2
α2η

∫ h

0

j2

s2
dx, (48)

where η is the liquid viscosity and α2 is another numerical
constant. The hydrodynamic calculation [24,25] indicates that
α2 � 90.

The Rayleighian is given by Eq. (46) and Eq. (48), and the
same procedure as in the previous section gives the following
expression for the fluid flux

j∗ = −Ds1/2 ∂s

∂x
, (49)

where D is defined by

D = α1

2α2

aγ

η
, (50)

which has the same dimension as the diffusion constant.
The time evolution equation is given by

∂s

∂t
= D

∂

∂x

(
s1/2 ∂s

∂x

)
. (51)

This is the same equation as that derived by Dong et al. [21].
The boundary conditions and the initial conditions for

s(x, t ) are

t > 0: s(x = 0) = s∗, s(x → ∞) = 0, (52)

t = 0: s(x = 0) = s∗, s(x > 0) = 0. (53)

Dong et al. solved Eq. (51) under these conditions and showed
that the liquid front h(t ) (see Fig. 2) increases with time as

h(t ) =
√

aγ

η
Ht1/2, H � 0.1281. (54)

In the following we shall obtain h(t ) using Onsager-Machlup
integral.

B. Onsager-Machlup integral

We assume the profile can be written in the form

s(x; t ) = s∗
[

1 − x

h(t )

]n

, (55)

This function is chosen to satisfy the boundary condition
s(0, t ) = s∗ and the condition s[h(t ); t] = 0. The function
includes two parameters, h(t ) and n, which we shall determine
using the Onsager principle.

The flux at position x is given by integrating Eq. (47) and
using the condition that j becomes 0 at x = h(t )

j(x) =
∫ h

x
ṡ(x′)dx′ = ḣ

∫ 1

z

∂s

∂z′ (−z′)dz′ = ḣF (z), (56)

where z = x/h(t ), and the function F (z) is given by

F (z) =
∫ 1

z

ds

dz
(−z)dz = s∗

n + 1
(1 − z)n(1 + nz). (57)

On the other hand, the flux j∗ is given by Eq. (49)

j∗ = −Ds1/2 ∂s

∂x
= −Ds1/2 ∂s

∂z

1

h
. (58)

The modified Rayleighian is given by

R̃ = 1

2
α2η

∫ h

0

( j − j∗)2

s2
dx. (59)

Using Eqs. (56) and (58), we can get

R̃ = α2η

2

∫ 1

0

1

s2

[
F (z)ḣ + Ds1/2 ∂s

∂z

1

h

]2

dz

= α2η

2

{[∫ 1

0

F 2(z)

s2(z)
dz

]
hḣ2 + 2D

[∫ 1

0

F (z)

s3/2(z)

∂s

∂z
dz

]
ḣ

+ D2

[∫ 1

0

1

s(z)

(
∂s

∂z

)2

dz

]
1

h

}

= α2η

2

[
n2 + 3n + 3

3(n + 1)2
hḣ2 − 2D

√
s∗ 2(3n + 2)

(n + 1)(n + 2)
ḣ

+ D2s∗ n2

n − 1

1

h

]
. (60)

The minimum of this equation is given by

2hḣ = aγ

η
H2

n , h(t ) =
√

aγ

η
Hnt1/2 (61)

with

Hn =
[

α1
√

s∗

α2

3(3n + 2)(n + 1)

(n + 2)(n2 + 3n + 3)

]1/2

. (62)

The tip of the finger advances with the Lucas-Washburn
scaling h ∼ t1/2. Different profile predicts a different front
factor Hn for the tip position.

Figure 3 shows the comparison of the approximate solution
s(x, t ) calculated by Eq. (61) and the numerical solutions to
Eq. (51). We see that the saturation profile of n = 2 is the
closest to the numerical solution [Fig. 3(a)]. We can also
compare the front factor Hn in the tip position of the finger.
They are given by Eq. (62) and shown in Fig. 3(b). Numerical
solution to the partial differential equation (51) with boundary
condition (52) and initial condition (53) gives H � 0.1281
[21]. Again, the graph indicates that the best estimate for h(t )
is obtained for n = 2.

We can confirm this observation by calculating the mini-
mum value of the modified Rayleighian (60)

R̃ = α
3/2
1 (s∗)3/4

α
1/2
2

(aγ )3/2

η1/2
Cnt−1/2 (63)
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FIG. 3. Comparison between the numerical solution to Eq. (51)
and approximated solutions Eq. (61) for n = 2, 3, 4 and n = 1.68.
(a) The saturation profiles are shown for t = 100/(aη/γ ). (b) The
front factor Hn in the expression of the tip position.

with

Cn = −
√

3

8

(3n + 2)3/2

(n + 1)1/2(n + 2)3/2(n2 + 3n + 3)1/2

+ 1

32
√

3

n2(n + 2)1/2(n2 + 3n + 3)1/2

(n − 1)(3n + 2)1/2(n + 1)1/2
. (64)

Figure 4 shows the value of Cn, which is proportional to
the Onsager-Machlup integral, as a function of n. It is seen
that Cn takes minimum at integer number n = 2, in agreement

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

 1  2  3  4  5  6  7  8  9

FIG. 4. Comparison of different trail functions based on the
Onsager-Machlup integral. Here the value of Cn from Eq. (64) is
plotted as a function of n.

FIG. 5. Sketch of the coating system under consideration: a
substrate is moving out at velocity U from a liquid reservoir through
a gap h0 and is coated by the liquid. The liquid pressure in the
reservoir is kept at Pin.

with the results shown in Fig. 3. If we relax and allow n to
be a real number, then we can see that Cn has a minimum
around n � 1.68. The saturation profile for n = 1.68 is also
shown in Fig. 3(a) in black, which resembles the numerical
solution even better than n = 2. This also demonstrates that
the best approximation can be obtained by evaluating the
Onsager-Machlup integral.

V. FILM COATING

As the last example, we consider the problem of liquid
coating on a solid substrate (see Fig. 5). A substrate is moving
out from a reservoir of viscous liquid with velocity U through
a gap h0, and is coated with the liquid. The liquid in the
reservoir is kept at a pressure Pin higher than the atmospheric
pressure. (Here we consider the situation that Pin is negative,
so the liquid is sucked in to the reservoir). We also assume
that the gap h0 is much smaller than the capillary length and
ignore the effect of gravity.

We focus on the steady state of the system, and ask what is
the thickness h f of the liquid film formed on the substrate in
the steady state. This question is slightly different from the
previous ones. In the previous examples, we discussed the
time evolution of nonequilibrium systems, but here we discuss
the steady state of nonequilibrium systems. The purpose of
this example is to show that we can calculate the steady state
directly, without solving the time evolution equation, using
Onsager-Machlup integral.

A. Time evolution equation for the film profile

First we consider the time evolution of the film profile.
We take x coordinate parallel to the substrate, the origin of
which is located at the exit of the reservoir. Let h(x, t ) be the
thickness of the liquid film at point x and time t . The free
energy of the system is given by the sum of the surface energy
and the potential energy due the reservoir pressure Pin,

A = γ

∫ ∞

0

⎡
⎣
√

1 +
(

∂h

∂x

)2

− 1

⎤
⎦dx − Pin

∫ ∞

0
hdx

= γ

2

∫ ∞

0

(
∂h

∂x

)2

dx − Pin

∫ ∞

0
hdx, (65)

where γ is the surface tension, and we have assumed
(∂h/∂x)2 	 1.
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Let v(x, t ) be the depth averaged velocity of the fluid. The
conservation condition of the fluid is written as

ḣ = − ∂

∂x
(hv). (66)

h(x, t ) should satisfy the boundary condition

h(0, t ) = h0. (67)

The free energy change rate Ȧ is calculated from Eqs. (65)
and (66)

Ȧ = γ

∫ ∞

0

∂h

∂x

∂ ḣ

∂x
dx − Pin

∫ ∞

0
ḣdx

=
[
γ

∂2h

∂x2
hv + Pinhv

]
x=0

− γ

∫ ∞

0

∂3h

∂x3
hvdx, (68)

where we have used that ḣ is equal to 0 at x = 0. On the
other hand, the energy dissipation function is calculated by
the lubrication approximation [26] as

� =
∫ ∞

0

3η

2h
(v − U )2dx, (69)

where η is the viscosity of the fluid. The velocity which
minimizes the Rayleighian � + Ȧ is given by

v∗ = U + γ

3η
h2 ∂3h

∂x3
, (70)

The minimization of the Rayleighian also gives the following
boundary condition:

∂2h

∂x2

∣∣∣∣
x=0

= −Pin

γ
. (71)

Substituting the velocity (70) into the conservation
law (66), we have the evolution equation for the film thickness

ḣ = − ∂

∂x

[
h3

3

(
∂3h

∂x3

)
+ Ca h

]
, (72)

where Ca = U/U ∗ is the capillary number and U ∗ = γ /η is
the capillary velocity.

B. Variational calculus for steady state
using Onsager-Machlup integral

We now use the variational principle to seek an approxi-
mate solution for the steady state of Eq. (72). The variational
principle says that among all possible kinetic paths allowed
for h(x; t ), nature chooses the path which minimizes the
Onsager-Machlup integral (19).

In the present problem, the the modified Rayleighian is
given by

R̃ =
∫ ∞

0

3η

2h
(v − v∗)2dx, (73)

where we have again used the formula of Eq. (18). In Eq. (73),
v is the velocity determined by the conservation equation (66),
and v∗ is the velocity given by Eq. (70).

In the steady state, v and v∗ become independent of time.
Therefore the minimization principle of the Onsager-Machlup
integral is equivalent to the minimization of the modified
Rayleighian R̃.

To seek the minimum of Eq. (73), we take the same strategy
as in the previous examples; we consider certain form for h(x)
which includes certain parameters, and seek the minimum in
the parameter space. A simple choice for the liquid profile
h(x) is

h(x) =
{

1
2 ax2 + bx + h0, 0 < x < x f

h f , x > x f

. (74)

This function is chosen to satisfy the condition h(0) = h0 and
h(∞) = h f . Equation (74) includes four parameters, a, b, x f ,
and h f . The number of parameters is reduced to 1 since h(x)
has to satisfy the boundary condition (71), and the continuity
condition for h(x) and h′(x) at x = x f . However, Eq. (74)
has a problem that the second-order differential h′′(x) is
discontinuous at x = x f , and therefore v∗ has a singularity
of delta function type δ(x − x f ) which makes the modified
Rayleighian R̃[h(x)] diverge. Therefore, we considered the
following form

h(x, t ) =
{

1
2 ax2 + bx + h0, 0 < x < x1

(h1 − h f )e−κ (x−x1 ) + h f , x > x1

. (75)

This function includes six parameters, a, b, x1, h1, h f , and, κ ,
but the number of independent parameters can be reduced to 2
if we use the boundary condition (71), and the three continuity
conditions for h, h′, and h′′ at x = x1. We have chosen h1

and h f as independent parameters. The other parameters are
expressed by h1 and h f as follows:

a = −Pin

γ

b = −√a(2h0 − h1 − h f )

κ =
√

a

h1 − h f

x1 =
√

2h0 − h1 − h f

a
−
√

h1 − h f

a
.

At steady state, the flux hv is constant and is given by h f U .
Hence the velocity v(x) is given by

v(x) = h f U

h(x)
. (76)

On the other hand, the velocity v∗(x, t ) is given by Eq. (70).
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FIG. 6. The contour maps of R̃ for h̃0 = 10, 100, 1000, respectively. The x axis represents h̃ f and the y axis represents h̃1 − h̃ f .

Using Eqs. (76) and (70), we calculated the modified Rayleighian for the profile (75) and obtained the following result:

R̃(h1, h f ) = 3ηU 2

2

{
2h2

1 + h2
f√

a(h1 + h f )5/2

(
arctan

√
2h0

h1 + h f
− 1 − arctan

√
h1 − h f

h1 + h f

)

+ h f

2
√

a(h1 + h f )2

[(
4 − h2

f

h2
1

)√
h1 − h f +

(
h1h f + h2

f

h2
0

− 4h1 + h f

h0

)√
2h0 − h1 − h f

]

+ (h1 − h f )5/2

2
√

ah2
1h f

− a(h1 − h f )

3Ca
+ a5/2

9Ca2√h1 − h f

(
1

5
h3

1 + 3

20
h f h2

1 + 1

10
h2

f h1 + 1

20
h3

f

)}
. (77)

Using dimensionless parameters h̃0 = ah0/Ca2/3, h̃1 = ah1/Ca2/3, h̃ f = ah f /Ca2/3, the above equation can be written as

R̃(h̃1, h̃ f ) = 3ηU 2

2
Ca−1/3

⎧⎨
⎩

2h̃2
1 + h̃2

f

(h̃1 + h̃ f )5/2

(
arctan

√
2h̃0

h̃1 + h̃ f
− 1 − arctan

√
h̃1 − h̃ f

h̃1 + h̃ f

)

× h̃ f

2(h̃1 + h̃ f )2

[(
4 − h̃2

f

h̃2
1

)√
h̃1 − h̃ f +

(
h̃1h̃ f + h̃2

f

h̃2
0

− 4h̃1 + h̃ f

h̃0

)√
2h̃0 − h̃1 − h̃ f

]
+ (h̃1 − h̃ f )5/2

2h̃2
1h̃ f

− h̃1 − h̃ f

3

+ 1

9
√

h̃1 − h̃ f

(
1

5
h̃3

1 + 3

20
h̃ f h̃2

1 + 1

10
h̃2

f h̃1 + 1

20
h̃3

f

)⎫⎬
⎭. (78)

Minimization of Eq. (78) with respect to h̃1 and h̃ f gives
the steady-state film thickness h f . Equation (78) indicates
that h̃ f depends on h̃0, but does not depend on Ca. Figure 6
shows the contour maps of R̃ for various values of h̃0,
h̃0 = 10, 100, 1000. The x axis represents h̃ f and the y axis
represents h̃1 − h̃ f .

Figure 6 shows that the minimum position is almost inde-
pendent of of h̃0, indicating that the film thickness is given by
h̃ f (≈1.07) and is almost independent of h̃0, which gives us the
celebrated scaling law

ah f ≈ 1.07(Ca)2/3. (79)

This can be compared with result of the asymptotic solution
for the steady state for Eq. (72) [27,28], which gives the
same scaling law as Eq. (79), but the numerical coefficient
is different, equal to 1.34. Figure 7 shows the comparison
between the asymptotic analysis and the variational calculus.
Our calculation indicates that the effect of gap distance h0

is small.

VI. CONCLUSION

In this paper, we have shown another usage of Onsager-
Machlup variational principle. It is based on the minimum
principle that nature chooses the kinetic path which makes
the Onsager-Machlup integral O[x(t )] minimum. We have
demonstrated that this principle can be used to get approx-
imate solutions for the evolution equations for linear and
nonlinear diffusion equations. These approximate solutions
in general involve one or a few time-dependent parameters,
such as a(t ) in the diffusion problem (33) and h(t ) in the
finger flow problem (55). These parameters are optimized step
by step in time, determined by the kinetic equations derived
from Onsager principle. On the other hand, there are also
one or a few parameters that remain constant in time, such
as the power m in Eq. (33) and n in Eq. (55). These time-
independent parameters represent the functional form of the
approximate solutions. They cannot be optimized locally in
time, yet they can still be optimized globally over a period of
time through the minimization of Onsager-Machlup integral.
We have shown that the Onsager-Machlup integral can be
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FIG. 7. Film thickness ahf as a function of Ca. The symbols
represents the minimum of R̃ by numerical calculation. The black
solid line represents Bretherton’s 2/3 power law [27].

used to obtain the steady state without solving the evolution
equation in our coating example.

The present method may be regarded as a special kind
of least-squares minimization method, but there is a signif-
icant difference. In the existing least-squares minimization
methods, the choice of the evaluation function (the function

which tells the goodness of the solution) is arbitrary. If the
evolutions equations is given by a set of equations, then
one can put any weight for each equation to get the eval-
uation function, and the final result depends on the choice
of the weight. What we are proposing in this paper is that
the Onsager-Machlup integral is the most natural choice for
the evaluation function since it represents the fundamental
quantity which governs the physics in the problem.

Many extensions are possible based on the Onsager-
Machlup integral. The method may be used to find new
numerical scheme to solve the kinetic equations. It can also
be used to obtain oscillatory solutions in space and time for
nonlinear partial differential equations. More examples will
be shown in future which demonstrate the powerfullness of
Onsager’s variational principle.
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