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Abstract. In this paper, we study the contact angle hysteresis on a slowly moving rough
boundary using a phase-field model with a relaxed boundary condition. In particular, we want
to model the recent experimental observation in [D. Guan et al., Phys. Rev. Lett., 116 (2016),
066102]. The speed of the moving boundary is slow enough so that the fluid flow effect is negligible.
From asymptotic analysis, we derive an ordinary differential system for the dynamics of the apparent
contact angle and the contact point. The system enables us to understand the contact angle hysteresis
in the experiment, including the asymmetric dependence of the advancing and receding contact angles
on the boundary velocity.
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1. Introduction. Contact angle hysteresis is an interesting phenomenon in wet-
ting problems [10, 11, 4]. When a liquid is moving on a solid surface, the advancing
angle is usually different from the receding angle, as shown in Figure 1.1. This is
called contact angle hysteresis (CAH). CAH is an unsolved problem in fluid dynamics
[14, 27, 25, 31]. In general, CAH is believed to be mainly induced by the roughness or
chemical inhomogeneity of the solid surface. Hysteresis is observed even on extremely
smooth surfaces with nanodefects [17]. However, the quantitative understanding of
the phenomena is still lacking. Recent experiments show that the advancing and re-
ceding contact angles may change with the wall velocity. This change of the contact
angles may be asymmetric. It is observed that the receding contact angle is more
sensitive to the change of the velocity than the advancing contact angle [18]. As far
as we know, there is no clear theoretical analysis for such a phenomenon.

The CAH problem has been studied extensively [4]. There are plenty of experi-
ments on various properties of CAH and also on its many applications in biology and
technology [24, 30, 25, 41, 18]. Theoretical analysis of the problem is quite difficult.
Most studies concentrate on the quasi-static process of CAH [16, 35]. For example,
Joanny and de Gennes considered a smooth surface with very dilute defects so that
the analysis for pinning the contact line by one defect can be applied [19].

From the mathematical point of view, theoretical study of CAH is also very chal-
lenging due to its multiscale feature [3]. The microscopic roughness or inhomogeneity
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2552 XIANMIN XU, YINYU ZHAO, AND XIAOPING WANG

Fig. 1.1. Contact angle hysteresis: the advancing angle is larger than the receding angle.

of the solid surface may have a significant effect on the macroscopic properties of the
contact angle. Because of the complexity of the problem, mathematical analysis of
CAH mainly focuses on a simplified problem without flow effect. Then the problem
will be modeled by minimizing the total surface energy in a liquid-vapor-solid system.
The existence of many local minimizers of the energy minimization problem has been
analyzed in [21, 5], and this can be used to understand CAH. In [1, 12, 32], some
effective models are derived assuming an energy barrier when minimizing the energy.
In [39], we did analysis for a quasi-static process of CAH for a two dimensional prob-
lem with chemically inhomogeneous surfaces. The analysis can be generalized to the
three dimensional case by using a modified Wenzel and Cassie equation [40, 36]. In
[34], we study a phase-field model with a relaxed boundary condition on chemically
patterned surfaces.

In this paper, we aim to use the phase-field model to explain the asymmetric
dependence of the advancing and receding contact angles on the wall velocity. We
first generalize the analysis in [34] to a more general situation where the solid surface
could be both geometrically rough and chemically inhomogeneous. We consider a
Cahn--Hilliard equation with a relaxed boundary condition. Different from that in
[34], we assume the solid boundary is moving with some given velocity. We derive
the sharp-interface limit of the phase-field equation by asymptotic analysis. The
dynamics for the contact point and the apparent contact angle (described by an
ordinary differential system) are derived from the sharp-interface limit. The system
can be reduced to the one in [34] when the geometrical roughness does not appear.
By solving the ordinary differential system numerically, we observe the clear CAH
behavior for various rough surfaces. Interestingly, the system can give quite similar
phenomena of asymmetric dependence of CAH on wall velocity to that in experiments
[18]. This indicates that our analysis captures some essential features of CAH. The
analysis can also be generalized to the three dimensional case for problems with simple
geometry.

The structure of the paper is as follows. In section 2, we introduce the phase-field
model for the wetting problem. In section 3, asymptotic analysis is given to derive
the sharp-interface limit of the phase-field equation. An ordinary differential system
for the apparent contact angle and the contact points is derived in section 4. The
generalization of the analysis to a three dimensional problem is given in section 5.
Some numerical examples are illustrated in section 6. Conclusions and discussions
are given in the last section.
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Fig. 2.1. A free interface in a channel with a periodically rough and inhomogeneous surface.

2. A phase field model for wetting problems. We consider a two-phase flow
in a channel with geometrically rough boundary, as shown in Figure 2.1. The upper
and lower boundaries are given by y = \pm (h0 + \delta H(x\delta )). Here H(\cdot ) is a periodic and
differentiable function. Here \delta \ll h0 is a small positive number. We assume that the
boundary might also be chemically inhomogeneous in the sense that Young's angle
\theta Y , the static contact angle of a liquid on a flat surface, is not a constant on the
boundary. For simplicity, we assume \theta Y (x) is also a periodic function with period \delta .
Suppose the average horizontal velocity of the fluid is U . For convenience, we choose
a frame moving with velocity U , and consider the problem in a domain \Omega (t), whose
boundaries moves with a velocity  - U horizontally. The domain \Omega (t) is given by

(2.1) \Omega (t) = \{ (x, y)| 0 < x < L, - h(x, t) < y < h(x, t)\} ,

with h(x, t) = h0 + \delta H((x+Ut)/\delta ). We assume L/\varepsilon is an integer so that the volume
of \Omega (t) does not change with time. As in [7], we assume

(2.2) max
x

\{ 
\sqrt{} 
1 + (\partial xh)2| cos \theta Y | \} < 1.

The condition implies that the roughness of the solid surface cannot be too strong.
This is to avoid the existence of a Cassie--Baxter state where air is trapped under the
liquid on the rough surface [6].

On a rough or chemically patterned surface, the interface will oscillate due to
the stick-slip behaviors of the contact points [33]. The problem is quite complicated
due to the existence of the moving contact line and the microscopic roughness of
the boundary. In general, the moving contact line problem can be modeled by a
coupled Navier--Stokes--Cahn--Hilliard system with a generalized Navier slip boundary
condition [26]. When the fluid velocity is small, one can ignore the fluid effect and use
a Cahn--Hilliard equation with a relaxed boundary condition to model the evolution
of the contact angle [8]. The phase-field equation is a simplified model to describe
the wetting phenomena qualitatively, and it may be a good approximation when the
fluid is very viscous so that the velocity is small.

To study the evolution of the contact angle, we consider the following Cahn--
Hilliard equation:

(2.3)

\biggl\{ 
\varepsilon \phi t = \Delta \mu ,

\mu =  - \varepsilon \Delta \phi + F \prime (\phi )
\varepsilon ,

with an initial condition \phi (x, 0) = \phi 0(x). Here \phi is the phase-field function, \mu is the

chemical potential, and F (\phi ) = (1 - \phi 2)2

4 is the free energy density. The parameter
\varepsilon \ll \delta measures the interface thickness.
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The boundary conditions on the upper boundary \Gamma 1 := \{ (x, y)| y = h(x, t), 0 <
x < L\} and the lower \Gamma 2 := \{ (x, y)| y =  - h(x, t), 0 < x < L\} are given by

(2.4) \partial n\mu = 0, \varepsilon (\phi t + uw,\tau \partial \tau \phi ) =  - \alpha (\varepsilon \partial n\phi + \gamma \prime (x, t, \phi )).

Here the normal derivative \partial n = n \cdot \nabla and n is the unit exterior normal to the
boundary of \Omega , \tau is the unit tangential direction of the boundary pointing right,
uw,\tau = ( - U, 0)\cdot \tau is the tangential velocity of the wall, and \alpha is a relaxation parameter.
The surface energy \gamma (x, t, \phi ) = \gamma SV  - \gamma SL

2  - \gamma SV  - \gamma SL

4 (3\phi  - \phi 3). By Young's equation
\gamma SV  - \gamma SL = \sigma cos \theta Y with Young's angle \theta Y (x+ Ut), it can be simplified as

\gamma (x, t, \phi ) =
\gamma SV  - \gamma SL

2
 - \sigma cos \theta Y (x+ Ut)

4
(3\phi  - \phi 3).

Here \sigma = 2
\surd 
2

3 is the (dimensionless) liquid-vapor surface tension [22]. In addition, we

use the notation \gamma \prime (x, t, \phi ) = \partial \gamma 
\partial \phi .

The second equation of (2.4) gives a dynamic boundary condition for the Cahn--
Hilliard equation. If we ignore the term with uw,\tau , the equation implies that the
contact angle relaxes to the equilibrium Young's angle gradually [26]. The relaxation
rate is proportional to an unbalanced Young's force \varepsilon \partial n\phi + \gamma \prime (x, t, \phi ) with \alpha being a
phenomenological parameter. When \alpha goes to infinity, the boundary condition will
converge to a standard boundary condition for the Cahn--Hilliard equation; that is,
the contact angle is equal to Young's angle. In this paper, we choose \alpha as a fixed
constant. Due to the motion of the solid wall, there is a convective term uw,\tau \partial \tau \phi in
the boundary condition. Since there exist many local equilibrium states in the system,
even a small velocity can change the apparent contact angle dramatically.

The conditions on the boundaries \Gamma 3 = \{ (0, y)|  - h(0, t) < y < h(0, t)\} and
\Gamma 4 = \{ (L, y)|  - h(L, t) < y < h(L, t)\} are given by

\partial n\mu = 0, \phi = 1 on \Gamma 3,(2.5)

\partial n\mu = 0, \phi =  - 1 on \Gamma 4.(2.6)

Here we assume \phi = 1 in the liquid domain and \phi =  - 1 in the vapor domain.

3. Sharp-interface limit of the phase-field model. We study the sharp-
interface limit of the system (2.3)--(2.6) by the asymptotic matching method. In this
section, we will use the notation x = (x, y) to represent the coordinate of a point in
\Omega .

3.1. The bulk equation. This asymmetric analysis for the bulk equation fol-
lows the standard approach for a phase-field equation [23].

Outer expansions. We first consider the asymptotic expansion of (2.3) far from
the two-phase interface \Gamma \varepsilon (t). Suppose the leading order approximation of \Gamma \varepsilon (t) is
\Gamma 0(t). In the following, we write \Omega instead of \Omega (t) for simplicity. The domain \Omega is
divided by \Gamma 0 into two parts \Omega + (the left part of \Omega ) and \Omega  - (the right part of \Omega ).
Suppose

\phi \pm = \phi \pm 0 + \varepsilon \phi \pm 1 + \cdot \cdot \cdot in \Omega \pm ,

\mu \pm = \varepsilon  - 1\mu \pm 
 - 1 + \mu \pm 

0 + \varepsilon \mu \pm 
1 + \cdot \cdot \cdot in \Omega \pm .

Here we let \phi +0 be positive and \phi  - 0 negative. Substitute the above expansions into
(2.3). The leading order is given by

(3.1) O(\varepsilon  - 1) : \Delta \mu \pm 
 - 1 = 0, \mu \pm 

 - 1 = F \prime (\phi \pm 0 ) = (\phi \pm 0 )
3  - \phi \pm 0 ,
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and the next order is

(3.2) O(1) : \Delta \mu \pm 
0 = 0, \mu \pm 

0 = (3(\phi \pm 0 )
2  - 1)\phi \pm 1 .

Substituting the expansions into the boundary conditions (2.4)--(2.6), we obtain

\partial n\mu 
\pm 
 - 1 = 0, \partial n\mu 

\pm 
0 = 0 on \partial \Omega \pm ,(3.3)

\phi +0 = 1 on \Gamma 3,(3.4)

\phi  - 0 =  - 1 on \Gamma 4,(3.5)

\gamma \prime (\phi \pm 0 ) = 0 on \partial \Omega \pm \cap (\Gamma 1 \cup \Gamma 2).(3.6)

Inner expansions. To analyze the sharp-interface limit of the Cahn--Hilliard equa-
tion, we need to consider the inner expansions near the interface \Gamma 0. For that purpose,
we denote d(x) the signed distance function to \Gamma 0 and let d(x) < 0 in \Omega  - and d(x) > 0
in \Omega +. Then the unit normal of \Gamma 0 and the signed curvature \kappa of the interface are
given by

n = \nabla d, \kappa = \Delta d.

It is easy to see that n is the unit normal pointing into \Omega + and \kappa (x) is positive when
\Omega  - is convex near x. We introduce a stretched variable near the interface \Gamma 0,

\xi =
d(x)

\varepsilon 
.

Assume that \phi and \mu can be written in variables (x, \xi , t) with expansions:

\phi = \~\phi 0(x, \xi , t) + \varepsilon \~\phi 1(x, \xi , t) + \cdot \cdot \cdot ,(3.7)

\mu = \varepsilon  - 1\~\mu  - 1(x, \xi , t) + \~\mu 0(x, \xi , t) + \cdot \cdot \cdot .(3.8)

In the new coordinates, the derivatives can be rewritten as

\nabla = \nabla \bfx + \varepsilon  - 1n\partial \xi ,

\Delta = \varepsilon  - 2\partial \xi \xi + \varepsilon  - 1\kappa \partial \xi +\Delta \bfx + 2n \cdot \nabla \bfx \partial \xi .

We substitute the expansions (3.7)--(3.8) into (2.3) and use the above expressions for
derivatives. To leading order, we have

(3.9) \partial \xi \xi \~\mu  - 1 = 0, \~\mu  - 1 =  - \partial \xi \xi \~\phi 0 + F \prime (\~\phi 0),

and the next order is

(3.10) \partial \xi \xi \~\mu 0 = 0, \~\mu 0 =  - \partial \xi \xi \~\phi 1 + \kappa \partial \xi \~\phi 0 + 2(n \cdot \nabla \bfx )\partial \xi \~\phi 0 + F \prime \prime (\~\phi 0)\~\phi 1.

We also have the next order expansion for \~\mu 1:

\partial \xi \xi \~\mu 1 = 0.

By the first equation of (3.9), we have

\~\mu  - 1 = c0\xi + c1.

Using the matching condition for lim\xi \rightarrow \pm \infty \~\mu  - 1 = \mu \pm 
 - 1 and the boundedness of \mu \pm 

 - 1,
we obtain c0 = 0 and

(3.11) \mu \pm 
 - 1 = c1 on \Gamma 0.
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That means \mu \pm 
 - 1 is continuous across \Gamma 0. Similarly, by the first equation of (3.10)

and the matching condition of \~\mu 0, we know that \~\mu 0 is independent of \xi and \mu \pm 
0 is

continuous across \Gamma 0. In addition, by the matching condition

lim
\xi \rightarrow \pm \infty 

\partial \xi \~\mu 0 = lim
d(\bfx )\rightarrow \pm 0

n \cdot \nabla \bfx \mu  - 1(x),

we have n \cdot \nabla \mu  - 1 = 0 on \Gamma 0. Combining with (3.1), where \Delta \mu \pm 
 - 1 = 0, we thus have

that \mu \pm 
 - 1 are both constant functions such that

\mu \pm 
 - 1 = c1 in \Omega \pm .

This implies that \mu  - 1 is constant in the whole domain \Omega . Similar arguments lead to
the fact that \mu 0 is a constant in \Omega .

Noticing that \mu \pm 
 - 1 = (\phi \pm 0 )

3 - \phi \pm 0 and observing the boundary condition (3.4)--(3.5)
on \Gamma 3 and \Gamma 4, we have

\mu \pm 
 - 1 = c1 = 0 in \Omega \pm 

and
\phi \pm 0 (x) = \pm 1, x \in \Omega \pm (t).

By the formula for \~\mu  - 1 in (3.9), we have

(3.12)  - \partial \xi \xi \~\phi 0 + F \prime (\~\phi 0) = 0.

Using the matching condition for \~\phi 0 that lim\xi \rightarrow \pm \infty \~\phi 0 = \phi \pm 0 = \pm 1, we know that the

above equation has a unique solution \~\phi 0 = \Phi (\xi ) := tanh( \xi \surd 
2
). Here we use the fact

that F \prime (\~\phi 0) = \~\phi 30  - \~\phi 0.
By the formula for \~\mu 0 and the fact that \~\mu 0 = \mu 0 is a constant, we have

\mu 0 =  - \partial \xi \xi \~\phi 1 + \kappa \partial \xi \~\phi 0 + F \prime \prime (\~\phi 0)\~\phi 1.

Multiply the above equation by \partial \xi \~\phi 0: noticing also that \~\phi 0 satisfies (3.12), we obtain

(3.13) 2\mu 0 = \kappa 

\int +\infty 

 - \infty 
(\partial \xi \~\phi 0)

2d\xi = \kappa \sigma ,

with \sigma =
\int +\infty 
 - \infty (\partial \xi \~\phi 0)

2d\xi = 2
\surd 
2

3 . This implies that \kappa is a constant (since \mu 0 is
constant). In other words, the interface \Gamma 0 has constant curvature at any time. We
would like to remark that the leading order equation (3.13) is different from that of
the standard Cahn--Hilliard equation [23, 8]. This is because we choose a time scaling
which leads to a very fast evolution of the Cahn--Hilliard equation to its equilibrium
state. In this time scale, we only observe the evolution of an interface with constant
curvature.

We will use this fact to do asymptotic analysis near the contact point in the
following subsection.

3.2. Asymptotic analysis near the contact point. From the analysis above,
we see that the curvature of \Gamma 0 is a constant changing with time. By symmetry of
the channel with respect to the central line y = 0, we can assume that the limiting
interface \Gamma 0 is a circle centered at (a(t), 0) with radius R(t) (as shown in Figure 2.1):

\Gamma 0(t) := \{ (a(t), 0) +R(t)(cos\vargamma , sin\vargamma ); | \vargamma | \leq \beta (t)\} .
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Suppose the zero level set of \phi \varepsilon is given by

\Gamma \varepsilon (t) := \{ (a(t), 0) +R\varepsilon (\vargamma , t)(cos\vargamma , sin\vargamma ); | \vargamma | \leq \beta \varepsilon (t)\} .

We can assume the expansion

R\varepsilon (\vargamma , t) = R(t) + \varepsilon R1(\vargamma , t) + \varepsilon 2R2(\vargamma , t) + \cdot \cdot \cdot .

Near the contact point on \Gamma 1, we consider the stretched variables

\xi =
R(t) - r

\varepsilon 
, \eta =

d\Gamma (x)

\varepsilon 
,

with x = (x, y) and r =
\sqrt{} 
(x - a(t))2 + y2. Here d\Gamma is the signed distance function to

the upper boundary \Gamma 1 of \Omega \varepsilon , and d\Gamma (x, y) < 0 for y < h(x, t). In addition, we have
\vargamma = arctan y

x - a(t) .

We do analysis only near the contact point on \Gamma 1. The contact point on \Gamma 2 can
be analyzed similarly or by symmetry of the problem with respect to the plane z = 0.
Denote \phi (x, t) = \^\phi (\xi , \eta , t), \mu (x, t) = \^\mu (\xi , \eta , t), and let n\Gamma be the outer normal of \Gamma 1

and n\vargamma be the normal of \Gamma 0 pointing into \Omega +. Here we do not use n\Gamma 1
or n\vargamma 1

to make
the notations simpler. It is easy to see that

n\Gamma = \nabla d\Gamma and n\vargamma =  - (cos\vargamma , sin\vargamma )T .

By these notations, we easily have

\nabla \phi = \varepsilon  - 1\partial \eta \^\phi n\Gamma + \varepsilon  - 1\partial \xi \^\phi n\vargamma ,

\Delta \phi = \varepsilon  - 2\partial \eta \eta \^\phi + 2\varepsilon  - 2n\Gamma \cdot n\vargamma \partial \eta \xi \^\phi + \varepsilon  - 2\partial \xi \xi \^\phi ,

\phi t = \varepsilon  - 1( \.R+ \.a cos\vargamma )\partial \xi \^\phi + \partial t \^\phi .

Here \.R = dR(t)
dt and \.a is similarly defined. Similar equations hold for \^\mu . Assume \^\phi 

has the following expansion:

\^\phi = \^\phi 0(\xi , \eta , t) + \varepsilon \^\phi 1(\xi , \eta , t) + \cdot \cdot \cdot ,
\^\mu = \varepsilon  - 1\^\mu  - 1(\xi , \eta , t) + \^\mu 0(\xi , \eta , t) + \cdot \cdot \cdot .

Substitute the expansions to (2.3) and the boundary condition (2.4). The leading
order of the expansion gives
(3.14)\left\{     

\^\mu  - 1
\eta \eta + 2n\Gamma \cdot n\vargamma \^\mu 

 - 1
\eta \xi + \^\mu  - 1

\xi \xi = 0 when \eta > 0,
\^\phi 0\eta \eta + 2n\Gamma \cdot n\vargamma 

\^\phi 0\eta \xi +
\^\phi 0\xi \xi  - F \prime (\^\phi 0) = \^\mu  - 1 when \eta > 0,

( \.R+ \.a cos\beta + uw,\tau \tau \cdot n\beta + \alpha n\Gamma \cdot n\beta )\^\phi 
0
\xi =  - \alpha (\^\phi 0\eta + \gamma \prime (xct, t, \^\phi 

0)) when \eta = 0.

Here xct is the x-coordinate of the contact point. We also have the matching condition
that

(3.15) lim
\eta \rightarrow +\infty 

\^\mu  - 1(\xi , \eta , t) = \~\mu  - 1(\xi , t), lim
\eta \rightarrow +\infty 

\^\phi 0(\xi , \eta , t) = \~\phi 0(\xi , t).

It is easy to see that \^\mu  - 1(\xi , \eta , t) = 0 and \^\phi 0(\xi , \eta , t) = \Phi (\xi ) are the solutions of the
first two equations of (3.14) and the matching condition (3.15). Notice that

\gamma \prime (\^\phi 0) =
3\sigma 

4
((\^\phi 0)2  - 1) cos \theta Y =  - cos \theta Y \partial \xi \Phi =  - cos \theta Y \^\phi 0\xi .
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Here we use \theta Y to represent \theta Y (xct +Ut) for simplicity of notation. Then the second
equation of (3.14) gives

\.R+ \.a cos\beta =  - \alpha (n\Gamma \cdot n\beta  - cos(\theta Y )) - uw,\tau \tau \cdot n\beta .

The equation gives a relation of R(t), a(t), and \beta (t). We specify some notations in
the above equation: \tau = 1\surd 

1+(\partial xh)2
(1, \partial xh)

T and n\Gamma = 1\surd 
1+(\partial xh)2

( - \partial xh, 1)T . Using

the notation of the dynamic contact angle \theta d which satisfies cos \theta d = n\Gamma \cdot n\beta and
\theta d \in (0, \pi ), the equation can be simplified as

(3.16) \.R+ \.a cos\beta = \alpha [cos \theta Y (xct + Ut) - cos \theta d] + uw,\tau sin \theta d.

By the bulk and boundary analysis, we see that the interface has constant mean
curvature and the dynamic contact angle satisfies the boundary condition (3.16).
Combining them together, the dynamics of the interface are completely determined.

4. Dynamics of the contact angle. By the above analysis, the leading order
of the Cahn--Hilliard equation gives a circular interface which satisfies the condition
(3.16) at the contact point. In the following, we will use the property to derive an
equation for the contact point xct and the apparent contact angle \theta a:

(4.1)

\left\{       
\.xct =

\alpha (cos \theta Y  - cos \theta d)\surd 
1+(\partial xh(xct,t))2 sin \theta d

 - U
\Bigl( 
1 - \partial xh(xct,t)

1+(\partial xh(xct,t))2
ctan\theta d

\Bigr) 
,

\.\theta a =  - \~g(\theta a)
h(xct,t)

\Bigl[ \Bigl( 
\~f(\theta a)\partial xh(xct, t) + 1

\Bigr) 
( \.xct + U) - U h(0,t)

h(xct,t)

\Bigr] 
.

Here \~g(\theta a) =
cos3 \theta a

cos \theta a+(\theta a - \pi 
2 ) sin \theta a

and \~f(\theta a) =
(\theta a - \pi 

2 )+sin \theta a cos \theta a
cos2 \theta a

. They are two func-

tions of the apparent angle and satisfy 1 \leq \~g(\theta a) \leq 3 and  - \pi 
2 \leq \~f(\theta a) \leq \pi 

2 . The
apparent contact angle is the angle between the interface and the homogenized solid
boundary, as shown in Figure 2.1. In general, the apparent contact angle \theta a is dif-
ferent from the dynamic contact angle \theta d on a rough surface. The relation between
them is given in (4.16). Hence the system (4.1) is complete to describe the dynamics
of xct and \theta a.

Before derivations of the system, we briefly discuss the physical meanings of the
terms in (4.1). We start from the case when the solid surface is smooth and homoge-
neous. In this case, (4.1) is reduced to

(4.2) \.xct =
\alpha (cos \theta Y  - cos \theta d)

sin \theta d
 - U, \.\theta d =  - \~g(\theta d)

h0

\Bigl( \alpha (cos \theta Y  - cos \theta d)

sin \theta d
 - U

\Bigr) 
.

The term (cos \theta Y  - cos \theta d)/ sin \theta d corresponds to the unbalanced Young's force [26, 38],
which drives the dynamic contact angle to relax to it equilibrium value \theta Y . \alpha is
a relaxation rate parameter. The velocity term makes the dynamic contact angle
differ from Young's angle when the wall moves. Since the contact angle and the
contact point are related to each other under the volume conservation condition of
the liquid, the motion of the contact point is also driven by these forces. The term
\~g characterizes the difference of the relaxation processes of the contact angle and the
contact point. The structure of the system (4.1) is the same as (4.2). The main
difference is that the local geometry of the rough surface introduces some corrections
in certain terms. All the corrections are related to \partial xh or h(xct) - h(0) (noticing that

U - U h(0)
h(xct)

= U h(xct) - h(0)
h(xct)

in the second equation of (4.1)). That is because the local

slope of the solid surface affects the equilibrium profile of the fluid interface and also
makes the volume conservation constraints more complicated.
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4.1. Derivation of (4.1). We first notice that the Cahn--Hilliard equation sat-
isfies the following mass conservation property:

(4.3)
d

dt

\int 
\Omega 

\phi dx = 0.

This can be obtained by integration of the first equation of (2.3) and the use of the
homogeneous Neumann boundary condition of \mu . The leading order of (4.3) leads to

d

dt

\int 
\Omega 

\phi 0dx = 0, or equivalently (| \Omega +|  - | \Omega  - | ) = const.

Noticing that | \Omega +| + | \Omega  - | = | \Omega | = const, we have that the volumes of both \Omega + and
\Omega  - are preserving. Denote A as the volume of \Omega +. It is easy to compute that

(4.4) A = R2(\beta  - sin\beta cos\beta ) + 2

\int xct

0

h(x, t)dx,

where xct is the x-coordinate of the contact point. We also have the following geo-
metric relation:

(4.5) R sin\beta = h(xct, t), xct = a+R(t) cos\beta .

We will use (3.16), (4.4), and (4.5) to derive the ODEs for \beta and xct.
By (4.4), using dA

dt = 0, we have

(4.6) R \.R(\beta  - sin\beta cos\beta ) +R2 \.\beta sin2 \beta + h(xct, t) \.xct +

\int xct

0

\partial th(x, t)dx = 0.

The time derivative of (4.5) gives

\.R sin\beta + (R cos\beta ) \.\beta = \partial xh(xct, t) \.xct + \partial th(xct, t),(4.7)

\.a+ \.R cos\beta  - (R sin\beta ) \.\beta = \.xct.(4.8)

Multiply (4.7) by sin\beta and (4.8) by cos \theta , and add them together; then we obtain

(4.9) \.R+ \.a cos\beta = \.xct[cos\beta + \partial xh(xct, t) sin\beta ] + \partial th(xct, t) sin\beta .

Substituting (4.9) into (3.16) and simple computations lead to

(4.10) \.xct =
\alpha (cos \theta Y (xct + Ut) - cos \theta d) + uw,\tau sin \theta d  - \partial th(xct, t) sin\beta 

cos\beta + \partial xh(xct, t) sin\beta 
.

This is an ODE of the contact point xct, which depends on the unknown \beta . In the
following, we will derive the equation of \beta . Using the first equation of (4.5), equation
(4.6) is reduced to

\.Rh(xct, t)
\beta  - sin\beta cos\beta 

sin\beta 
+ h2(xct, t) \.\beta + h(xct, t) \.xct +

\int xct

0

\partial th(x, t)dx = 0.

Combining with (4.7) and using the first equation of (4.5), we can eliminate \.R and
obtain by direct calculations that

\.\beta =  - g(\beta )
\biggl[ 
sin2\beta + (\beta  - sin\beta cos\beta )\partial xh(xct, t)

h(xct, t)
\.xct

+
(\beta  - sin\beta cos\beta )\partial th(xct, t)

h(xct, t)
+

sin2\beta 

h2(xct, t)

\int xct

0

\partial th(x, t)dx

\biggr] 
,(4.11)
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where g(\beta ) = sin \beta 
sin \beta  - \beta cos \beta . Equations (4.10) and (4.11) compose a complete system to

describe the dynamics of the contact point and \beta , noticing the following formula on
the dynamic contact angle:

cos \theta d = n\Gamma \cdot n\beta =
\partial xh(xct, t) cos\beta  - sin\beta \sqrt{} 

1 + (\partial xh(xct, t))2
,(4.12)

sin \theta d =  - \tau \cdot n\beta =
\partial xh(xct, t) sin\beta + cos\beta \sqrt{} 

1 + (\partial xh(xct, t))2
.(4.13)

Assume the parameter \delta is small in the formula of h(x, t) and the rough boundary
y = h(x, t) approximates to an effective flat boundary y = h0. Then the apparent
contact angle will be \theta a = \beta + \pi 

2 (see Figure 2.1). Then (4.10) and (4.11) could be
reduced to a system on \theta a and xct. Using the formula for uw,\tau , direct calculations
give

(4.14)

\left\{         
\.xct =

\alpha (cos \theta Y (xct+Ut) - cos \theta d)
sin \theta a - \partial xh(xct,t) cos \theta a

 - 
\bigl[ 

1
1+(\partial xh(xct,t))2

 - \partial xh(xct,t) cos \theta a
sin \theta a - \partial xh(xct,t) cos \theta a

\bigr] 
U,

\.\theta a =  - \~g(\theta a)
h(xct,t)

\bigl[ \bigl( 
\~f(\theta a)\partial xh(xct, t) + 1

\bigr) 
\.xct

+
\bigl( 
\~f(\theta a)\partial xh(xct, t) +

1
h(xct,t)

\int xct

0
H \prime (x+Ut

\delta )dx
\bigr) 
U
\bigr] 
,

where we use the notations

\~g(\theta a) =
cos3 \theta a

cos \theta a + (\theta a  - \pi 
2 ) sin \theta a

, \~f(\theta a) =
\theta a  - \pi 

2 + sin \theta a cos \theta a

cos2 \theta a
.

Equation (4.14) can be further simplified. Using the fact that\int xct

0

H \prime 
\biggl( 
x+ Ut

\delta 

\biggr) 
dx = \delta 

\biggl( 
H

\biggl( 
xct + Ut

\delta 

\biggr) 
 - H

\biggl( 
Ut

\delta 

\biggr) \biggr) 
= h(xct, t) - h(0, t),

the second equation of (4.14) is reduced to

(4.15) \.\theta a =  - \~g(\theta a)

h(xct, t)

\biggl[ \Bigl( 
\~f(\theta a)\partial xh(xct, t) + 1

\Bigr) 
( \.xct + U) - U

h(0, t)

h(xct, t)

\biggr] 
.

By (4.12)--(4.13), we have

(4.16) sin \theta d =
sin \theta a  - \partial xh(xct, t) cos \theta a\sqrt{} 

1 + (\partial xh(xct, t))2
, cos \theta d =

\partial xh(xct, t) sin \theta a + cos \theta a\sqrt{} 
1 + (\partial xh(xct, t))2

;

then the first equation of (4.14) can be simplified as

(4.17) \.xct =
\alpha (cos \theta Y  - cos \theta d)\sqrt{} 

1 + (\partial xh(xct, t))2 sin \theta d
 - U

\biggl( 
1 - \partial xh(xct, t)

1 + (\partial xh(xct, t))2
ctan\theta d

\biggr) 
.

Combining them together, we obtain (4.1).

4.2. Discussions on the ODE system (4.1). First, it is easy to see that
(4.1) is well-posed. Actually, since the right-hand-side terms of the equation are
smooth functions, one can compute their derivatives with respect to \theta a and xct. The
derivatives are bounded when the dynamic contact angle satisfies c0 < \theta d < \pi  - c0 for
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some positive constant c0. This holds under the condition (2.2) and for sufficiently
small U .

Second, when the boundary is flat so that h \equiv h0, then \theta a = \theta d and (4.1) is
reduced to

(4.18)

\Biggl\{ 
\.xct =

\alpha (cos \theta Y (xct+Ut) - cos \theta a)
sin \theta a

 - U,
\.\theta a =  - cos3 \theta a

cos \theta a+(\theta a - \pi 
2 ) sin \theta a

\.xct

h0
.

If we denote \^xct = xct + Ut, the actual contact point on the boundary, the equation
is reduced to \Biggl\{ 

\.\^xct =
\alpha (cos \theta Y (\^xct) - cos \theta a)

sin \theta a
,

\.\theta a =  - cos3 \theta a
cos \theta a+(\theta a - \pi 

2 ) sin \theta a

\.\^xct+U
h0

.

This is the same as the equation derived in [34]. There we did some analysis for the
reduced model. We show that on a chemically patterned surface the ODE system
behaves differently when the velocity U converges to zero from two sides. More
precisely, we assume the solid surface is composed by two materials with different
Young's angles \theta Y 1 and \theta Y 2(\theta Y 1 > \theta Y 2). Suppose the period \delta is small. Then when
U \rightarrow 0+, the apparent contact angle will oscillate around \theta Y 1, which corresponds
to an advancing angle. When U \rightarrow 0 - , the contact angle will oscillate around \theta Y 2,
which corresponds to a receding angle. This is consistent with previous studies on
quasi-static CAH [19, 39].

Third, we further assume the solid surface is homogeneous so that \theta Y (x) \equiv \theta Y 0

for a constant \theta Y 0. The ODE system (4.18) will have a steady state, which satisfies
the equation

(4.19)
\alpha (cos \theta Y 0  - cos \theta a)

sin \theta a
 - U = 0.

This implies that the apparent contact angle \theta a is uniquely determined by \theta Y 0 and
U . When U goes to zero, the angle will converge to \theta Y 0. To leading order, we have

U \propto (\theta a  - \theta Y 0).

It gives a simplified relation between the apparent contact angle and the wall velocity
U . The relation is different from the Cox--Voinov-type relations in the literature [9, 29]
since we do not consider the viscous dissipations in our system.

5. Extension to the three dimensional case. The analysis in the above sec-
tions can be extended to a three dimensional case if the problem has simple geometry.
As an example, we consider the two-phase flow in a three dimensional channel. We
assume that the channel is axisymmetric with respect to the x-axis. In a cylindrical
coordinate system (r, \psi , x), the solid boundary is given by

r = h(x).

We assume h is a smooth function and periodic in x with period \delta . We consider the
Cahn--Hilliard equation (2.3) in the channel with a relaxed boundary condition on the
solid boundary. Suppose the solution of the equation is also axisymmetric.

The asymptotic analysis in section 3.1 can be extended to this case in a straightfor-
ward way. To leading order, the two-phase interface has a constant mean curvature
at every time t. Due to its axis symmetry, the interface is spherical. It intersects
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with the solid boundary with a circular contact line r = h(xct), with xct being the
x-coordinate of the contact line. Suppose the interface has a radius R centered at
(0, 0, a). Careful analysis near the contact line leads to a boundary condition

(5.1) \.R+ \.a cos\beta = \alpha (cos \theta Y  - cos \theta d) + uw,\tau sin \theta d

which has the same form as (3.16). Here \beta has a definition similar to that in the two
dimensional case.

Similar to that in section 4, we can also derive an ODE system for the apparent
contact angle and the contact line. The system will be slightly different from that in
two dimensions. Denote V as the volume of \Omega +, the domain on the left side of the
interface. We can compute the volume

V =
\pi 

3
R3(2 - cos\beta )(1 - cos\beta )2 + \pi 

\int xct

0

h2(x)dx.

By dV
dt = 0, we have

(5.2) R2 \.R(2+cos\beta )(1 - cos\beta )2+R3 \.\beta sin3 \beta +h2(xct, t) \.xct+

\int xct

0

\partial th
2(xct, t)dx = 0.

Replace (4.6) by (5.2), and do calculations similar to those in section 4.1. We can
obtain an equation for \beta ,

\.\beta =  - 
\biggl[ 
\.xct(1 + cos\beta )(3 - cos3 \beta )

h(xct, t)
+
\partial th(xct, t)

h(xct, t)
(2 + cos\beta ) sin2 \beta 

+
(1 + cos\beta )2

h3

\int xct

0

\partial th
2(x, t)dx

\biggr] 
.(5.3)

The equation is different from (4.11). In addition, we could derive an equation for
xct, which is the same as (4.10).

In the above analysis, we assume that the three dimensional problem is axisym-
metric. Therefore, the results are similar to those in the two dimensional case. In
general, the analysis for a three dimensional problem will be more complicated. If the
roughness of the solid surface is periodic, we may first do homogenization for the sys-
tem to derive a reduced problem defined in a domain with a homogenized boundary
[40, 36, 19]. Then similar analysis can be done for the reduced problem.

6. Numerical examples. In this section, we will give some numerical examples
to show that the ODE system (4.14) can be used to understand the interesting CAH
phenomena. In these examples, we set \alpha = 1.

Example 1. In the first example, we consider a smoothly oscillating boundary, as
shown in Figure 6.1. The boundary is given by h(x, t) = h0 + \delta H((x + Ut)/\delta ), and
we set h0 = 0.8, H = sin x

4 , and U = \pm 0.01. We did experiments for several choices
of \delta . We choose \theta Y = \pi 

3 . We solve the ODE system (4.14) numerically. Some typical
numerical results are given in Figure 6.2.

In every subplot, we draw two curves on the trajectories of the solution of the
ODE system in phase plane. Here we show the apparent contact angle with respect to
the actual position \^xct of the contact point on the rough boundary. The lower curve
corresponds to a negative velocity U , and the upper one corresponds to a positive U .
When U < 0, the boundary moves to the right and we observe a receding contact
angle. Similarly, when U > 0, we observe an advancing contact angle.
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Fig. 6.1. The channel with smooth oscillating boundaries.

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2
45

50

55

60

65

70

75

ˆ

q
a

(d
e

g
re

e
)

 

 

Receding

Advancing

xct

(a) \delta = 0.04

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2
45

50

55

60

65

70

75

x̂ ct

θ a
(d

e
g
re

e
)

 

 

Receding

Advancing

(b) \delta = 0.02

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2
45

50

55

60

65

70

75

x̂ ct

θ a
 (

d
e
g
re

e
)

 

 

Receding

Advancing

(c) \delta = 0.01

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2
45

50

55

60

65

70

75

x̂ ct

θ a
(d

e
g
re

e
)

 

 

Receding

Advancing

(d) \delta = 0.005

Fig. 6.2. The apparent contact angle \theta a and the x-coordinate of the contact point \^xct in a
channel with a different oscillating rough boundary.

For the case where \delta = 0.04, the period of the oscillation of the boundary is
relatively large. We could see that the two trajectories overlap and the intervals of
the advancing angle and receding angle are almost the same. One can hardly observe
the CAH. On the other hand, when \delta becomes smaller, which means that the boundary
is more oscillating, the CAH becomes more obvious.

When \delta = 0.005, we can see that the maximal advancing angle is about 74\circ 

and the minimal receding contact angle is about 46\circ even when the initial values of
the contact angle are far from the two values, as shown by the left end of the red
(solid) curve and the right end of the blue (dashed) curve. This is consistent with
previous analysis and computations. By the modified Wenzel's equation [36], the
maximal/minimal apparent contact angle of a liquid (in equilibrium) on an oscillating
boundary is equal to \theta Y \pm \theta g, with \theta g being the largest angle of inclination of the
boundary. In this example, the largest slope of the rough boundary is 1/4 and so
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Fig. 6.3. The channel with serrated boundaries.
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Fig. 6.4. CAH on a rough boundary with a serrated shape.

that \theta g = arctan(1/4) \approx 14.04\circ . This means that with small velocity U = 0.01,
the advancing angle and the receding angle approach, respectively, the maximal and
minimal apparent contact angles in equilibrium.

Example 2. In the second example, we consider a tube with nonsmooth oscillating
rough boundaries. For simplicity, we choose a serrated shape of the boundary, as
shown Figure 6.3. We can define h(x, t) = h0 + \delta H((x + Ut)/\delta ), with H(x) being a
periodic function with period 2:

H(x) =

\biggl\{ 
kx, 0 < x < 1,
 - kx, 1 < x < 2.

Here we let k = tan(\pi /12). We choose the static Young's angle to be \theta Y = \pi /2 and
U = \pm 0.01. Notice that the function h(x, t) is not differentiable at some points. But
we still can solve the ODE system (4.14) numerically by setting H \prime (x) to be its left
or right limit of H \prime at these points. The numerical results are similar to those in the
previous example. We show only a few results in Figure 6.4 for the choices \delta = 0.04
and \delta = 0.008. We can see the obvious CAH phenomena. When \delta = 0.04, we can see
clear stick-slip behavior from the trajectories. At some positions, the contact point
is pinned while the contact angle changes. The slip occurs with dramatic changes
of both the contact position and the contact angle. Furthermore, numerical results
indicate that the stick-slip behavior occurs only on the discontinuous points of the
boundary. For example, the contact point on the lower boundary is pinned only at
the highest vertexes of the surface and slips at the lowest points. From the case
\delta = 0.008, we see that the advancing angle is about 7\pi /12 = 105\circ and the receding
angle is 5\pi /12 = 75\circ , which can be described again by the modified Wenzel's equation,
noticing that \theta Y = \pi /2 and \theta g = \pi /12 in this case.
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Fig. 6.5. Wall-velocity dependence of the CAH in Example 3 (with relatively small velocity).

Example 3. In the third example, we consider the effect of the velocity. Suppose
the rough boundary is similar to that in Example 1. Here we choose \delta = 0.002 and
\theta Y = 2\pi /3. We solve the problem (4.14) with varying velocity U . The numerical
results are shown in Figure 6.5. We see that with increasing velocity, the advancing
angle becomes larger and the receding angle becomes smaller. The changes of the
contact angle are almost symmetric, although the decreasing of the contact angle
seems slightly faster. The decrease of the receding angle is about 10\circ (on average)
when the velocity U changes from  - 0.2 to  - 0.4, which is slightly larger than the
increase (about 7\circ ) of the advancing angle when the velocity changes from 0.2 to 0.4.

Example 4. In the last example, we consider the wall-velocity dependence of the
CAH on a chemically patterned surface. In this calculation, we consider a flat bound-
ary h = 0.5 and assume \theta Y (x) is a periodic function with period 0.2. In each period,
\theta Y (x) is equal to 3\pi /4 in a half of the period and 9\pi /10 in the other half. We consider
several choices of the velocity. The velocity is relatively larger than that in previous
examples. The numerical results are shown the left subfigure of Figure 6.6. In this
case, we can see the asymmetry of the wall-velocity dependence of the contact angles,
which means that the changes of the advancing and receding contact angles are differ-
ent with increasing velocity. This phenomenon occurs since the velocity is relatively
large and the asymmetric choice of Young's angles is around \pi 

2 . If the Young's angles
of the chemically patterned surface are symmetric with respect to \pi 

2 , the velocity de-
pendence of the advancing and receding angles is also symmetric. In addition, if the
velocity is small enough, the asymmetry of the velocity dependence is not obvious, as
in the previous example.

Interestingly, the similar asymmetry of the wall-velocity dependence of the CAH
has been observed in the experiments [18]; see the right subfigure in Figure 6.6. We
can see that the numerical results looks similar to those in the physical experiments.
This indicates that the ODE system captures some essential feature of CAH. We
believe that the asymmetric dependence of the CAH on velocity is mainly caused by
the asymmetric distribution of the chemical or geometrical inhomogeneity on the solid
surface. On a homogeneous surface, there is no asymmetric velocity dependence of
the contact angles. Finally, we would like to remark that the numerical results do not
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(a) Numerical results (b) Experimental results [18]

Fig. 6.6. Nonsymmetric of wall-velocity dependence of CAH in Example 4 (with relatively large
velocity).

match the experiments quantitatively. There are many reasons for that. One obvious
one is that the geometric setups are not the same. In our case, we simply consider a
channel with a rough boundary. In the physical experiments, they considered a fibre
pulling out and pushing into a liquid bath [18].

7. Conclusions. We study CAH by using a phase-field equation with a relaxed
boundary condition on a moving rough surface. By asymptotic analysis, we derive a
nonlinear ordinary differential system for the apparent contact angle and the contact
point. The system can be used to understand some typical phenomena for CAH,
including the asymmetry of the dependence of the advancing and receding contact
angles on the velocity, which has been observed in experiments recently, i.e., the
phenomena as shown in Example 3 in section 6. Some observations are obtained
from our numerical examples. First, the advancing and receding contact angles can
be characterized by the modified Wenzel or Cassie equations [36] when the velocity
of the two-phase interface is small, as in quasi-static wetting problem. Second, the
asymmetry of the velocity dependence of CAH is induced by the asymmetry of the
chemical or geometric properties of the solid surface. It is more obvious for relatively
larger velocities.

As far as we know, the analysis for the wall-velocity dependence of CAH is new.
The phenomenon cannot be described by the previous quasi-static analysis for CAH as
in [19, 39]. The main reason is that for quasi-static analysis, the relaxation dynamics
of the contact angle to its equilibrium state are missing. The dynamics are described
by the relaxed boundary condition in the phase-field model studied in the paper. In
addition, the wall velocity cannot be included in the quasi-static models. The essential
feature of the wall-velocity dependence can be captured very nicely in our model,
although we do not consider the viscous effect of the fluid. Other contributions of
the paper include the analysis for the sharp-interface limit for the phase-field model
with a relaxed boundary condition on geometrically or chemically rough surfaces.
The relaxed boundary condition is nontrivial in mathematics and has induced some
interest recently [8, 20]. Finally, we derive a nonlinear ordinary differential system for
the contact angle and the contact point, which is more complicated than that on the
flat surface.

We remark that we do not consider the fluid effects in our study. The dissipation
in the fluid might be important to quantify CAH, especially when the fluid velocity is
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large. Although numerical simulations are possible as in [33, 28], theoretical analysis
for that problem will be much more difficult. A recently developed strategy using the
Onsager principle as an approximation tool might be useful for the analysis [37, 13].

Another important issue is to consider CAH on a more general and practical
rough surface. The contact line can be pinned by the randomly distributed defects.
The stochastic oscillation of the contact line may also be important for its motion on
the rough surface. These will be considered in further work.

Mathematically, it is very interesting to prove rigorously the asymptotic analysis
results. Due to the existence of the relaxed boundary condition, this is a nontrivial
problem. Standard methods by a spectral estimate for the Cahn--Hilliard operator
with standard boundary conditions [2] or by an analysis of the viscous solutions [15]
cannot be used directly. This will be left for future study.

Acknowledgment. We thank the anonymous referees for their valuable com-
ments and suggestions, which helped us to improve the manuscript greatly.
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