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Abstract

A threshold dynamics method was developed by Merriman, Bence and Os-
her(MBO) to simulate the motion by mean curvature flow. The method has
the advantage of being unconditionally stable and fast with the complexity
only O(N logN), where N is the total number of grid points. The method
has also been extended to problems with volume preservation. However, the
generalization of the MBO type method to wetting problem with interface
intersecting the boundary is not obvious because of lack of integral represen-
tation with heat kernel for general domain with boundary. We develop an
efficient volume preserving threshold dynamics method for wetting on rough
surfaces. The method is simple, stable with the complexity O(N logN) per
time step and it is not sensitive to the inhomogeneity or roughness of the
solid boundary.
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1. Introduction

Wetting describes how a liquid drop stays and spreads on a solid surface.
The most important quantity in wetting is the contact angle between the liq-
uid surface and the solid surface[9]. When the solid surface is homogeneous,
the contact angle for a static liquid drop is given by the famous Young’s
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equation,

cos θY =
γSV − γSL

γLV
, (1)

where γSL, γSV and γLV are the solid-liquid, solid-vapor and liquid-vapor
surface energy tensions, respectively. θY is the so-called Young’s angle[34].
Mathematically, the Young’s equation (1) can be derived by minimizing the
total energy in the solid-liquid-vapor system. If we ignore the gravity, the
total energy in the system is written as

E = γLV |ΣLV |+ γSL|ΣSL|+ γSV |ΣSV |, (2)

where ΣLV , ΣSL and ΣSV are respectively the liquid-vapor, solid-liquid and
solid-vapor interfaces, and | · | denotes the area of interfaces. When the
solid surface Γ is a homogeneous planar surface, under the condition that
the volume of the droplet is fixed, the unique minimizer of the energy is a
domain with a spherical surface in Ω, and the contact angle between the
surface and the solid surface Γ is the Young’s angle θY [30].

The study of wetting and contact angle hysteresis on rough surfaces is of
critical importance for many applications and has attracted much interest in
physics and applied mathematics communities [24, 16, 2, 33, 12]. Numerical
simulation of the wetting on rough surface is a challenging task. One not only
needs to track the interface motion accurately, but also needs to deal with
complicated boundary shapes and boundary conditions. There are many
different types of numerical methods for interface and contact line problems,
including front tracking method [31, 20], front capturing method using level-
set function[35], the phase-field methods[11, 4], and some others[10].

An efficient threshold dynamics method was developed by Merriman,
Bence and Osher(MBO) [21, 22] to simulate the motion by mean curva-
ture flow, which is based on the observation that the level-set of the solution
of a heat equation moves in normal direction with velocity equal to the
mean curvature of level-set surface. The method alternately diffuses and
sharpens characteristic functions for regions and is easy to implement and
highly efficient. The method has also been extended to problems with vol-
ume preservation [27, 19] and to some high order geometric flow problems[14].
Recently, Esedoglu and Otto have extended the threshold dynamics method
to the multi-phase problems with arbitrary surface tensions[13]. There have
been many studies on the MBO threshold dynamics method, including more
efficient implementations [26, 25] and the error analysis[3, 15, 6, 18].
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The generalization of the MBO type method to wetting problem with
interface intersecting with the boundary is not obvious because of lack of
integral representation with heat kernel for general domain with boundary. In
the original MBO scheme, when the interface doesn’t intersect with the solid
boundary, one can solve the heat equation efficiently on a rectangular domain
with uniform grid using convolution of heat kernel with the initial condition
[26, 25]. The convolution can be evaluated using fast Fourier transform(FFT)
at M log(M) cost per time step where M is the total number of grid points.
One way to generalize the MBO type method to wetting on solid surface
is to solve the heat equation with a wetting boundary condition before the
volume preserving thresholding. However, In this case, and in particular for
the rough boundaries, the usual fast algorithms can not be applied easily.

In this paper, we aim to develop an efficient volume-preserving threshold
dynamics method for wetting problems on rough surfaces. Our method is
based on the approach of Esedoglu-Otto in [13]. The key idea is to extend
the original domain with rough boundary to a regular cube and treat the
solid part as another phase. In the thresholding step, the solid phase domain
remains unchanged. We show that the algorithm has the total interface
energy decaying property and our numerical results show that the equilibrium
interface satisfies the Young’s equation at the contact point. The advantage
of the method is that it can be implemented efficiently on uniform mesh with
fast algorithm (e.g. FFT) since the computational domain is rectangular and
we can simulate wetting on rough boundary of any shape. We also introduce
a fast algorithm for volume-preservation based on a quicksort algorithm and
a time refinement scheme to improve the accuracy of the solution at contact
line.

The outline of the paper is as follows. In Section 2, we first describe a
MBO type threshold method for wetting problem. This is based on standard
threshold method but less efficient due to the roughness or inhomogeneity of
the solid boundary and the special boundary conditions there. In Section 3,
we introduce a new threshold method which is simple, efficient and easy to
implement. Several different modifications of the method are also discussed.
In Section 4, we introduce a fast algorithm for volume conservation and time
adaptivity technique to improve the accuracy of the contact line motion. In
Section 5 and Section 6, we present some numerical examples of wetting on
rough surfaces to demonstrate the efficiency of the new method.
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Figure 1: Wetting on a rough surface

2. A MBO type threshold method

We consider a wetting problem in a domain Ω ∈ Rn, n = 2, 3 (see Fig. 2).
The solid surface Γ is part of the domain boundary ∂Ω. Denote the liquid
domain as D1 ⊂ Ω. For simplicity, we assume that ∂D1 ∩ ∂Ω ⊂ Γ. The
volume of the liquid drop is fixed that |D1| = V0. We denote ΣLV = ∂D1∩Ω,
ΣSL = ∂D1 ∩Γ and ΣSV = Γ ⊂ ∂D1 as the liquid-vapor, the solid-liquid and
the solid-vapor interfaces respectively. Then, the equilibrium configuration
of the system is obtained by minimizing the total interface energy of the
system, i.e.

min
|D1|=V0

E(D1) = γLV |∂D1 ∩ Ω|+
∫
∂D1∩Γ

γSL(x)ds+

∫
Γ\∂D1

γSV (x)ds (3)

where the solid boundary Γ is rough and/or chemically inhomogeneous (i.e.
γSL(x) and γSV (x) may depend on x).

To solve the problem (3) numerically, it is convenient to use a diffuse
interface model to approximate the sharp interface energy. Suppose ϕ is a
phase-field function, such that D1 = {ϕ < 0} represents the liquid domain,
{ϕ > 0} represents the liquid domain and ΣLV = {ϕ = 0} is the liquid-vapor
interface. The total energy (2) can be approximated by

Ephε (ϕ) =

∫
Ω

ε|∇ϕ|2 +
f(ϕ)

ε
dx +

∫
Γ

γ(x, ϕ)ds, (4)
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where ε is a small parameter representing interface thickness, f(ϕ) = (1−ϕ2)2

4

is a double-well function and

γ(ϕ) =
γ̃SV (x) + γ̃SL(x)

2
+
γ̃SV (x)− γ̃SL(x)

4
(3ϕ− ϕ3).

It can be proved that when ε goes to zero, after a scaling, the energy in (4)
converges to that in (2)[32]. Therefore, the problem (3) can be approximated
by minimizing the total energy Ephε under the volume constraint

∫
Ω

(ϕ −
1)/2dx = V0.

The H−1 gradient flow of the energy functional (4) will lead to a Cahn-
Hilliard equation with contact angle boundary condition[8]. Alternatively,
the L2 gradient flow will lead to a modified Allen-Cahn equation:

ϕt = ε∆ϕ− f ′(ϕ)
ε

+ δ in Ω;

∂ϕ
∂n

+ γ′(x, ϕ) = 0, on Γ;

ϕ(x) = −1, on ∂Ω \ Γ,∫
Ω
ϕ−1

2
dx = V0.

(5)

Here δ is a Lagrangian multiplier for the volume constraint.
Motivated by the MBO approach in [21], a threshold dynamics scheme

can be derived easily based on a splitting method for (5). Assume we have a
solution ϕk at the k-th time step, we can first solve the heat equation

ϕ̄t = ε∆ϕ̄ in Ω.

∂ϕ̄
∂n

+ γ′(x, ϕ̄) = 0, on Γ,

ϕ̄(x, 0) = ϕ̄k,

(6)

until some time δt1 and then solve{
ϕt = −f ′(ϕ)

ε

ϕ(x, 0) = ϕ̄(x, δt1)
(7)

until some time δt2 and set ϕk+1 = ϕ(x, δt2). It is easy to see that when δt2/ε
is large enough, solving the second equation (7) is reduced to a threshold step
that

ϕ(x, δt2) ≈
{
−1 if ϕ(x, 0) < 0;
1 if ϕ(x, 0) > 0.

(8)

5



This implies that, in the next step we can use a piecewise constant function
ϕk+1 as the initial condition to solve (6). In this case, the solution of (5) will
be obtained by repeatedly solving (6) and the threshold step (8). This leads
to the following MBO scheme for wetting problem:

A MBO threshold dynamics scheme for the wetting problem

Step 0. Given an initial domain D0
1 ⊂ Ω such that |D0

1| = V0. Set a
tolerance parameter ε > 0.

Step 1. For any k, we first solve the heat equation
ϕt = ε∆ϕ in Ω.

∂φ
∂n

+ γ′(x, ϕ) = 0, on Γ,

ϕ(x, 0) = χDk
1
,

(9)

until some time δt.

Step 2. Determine a new Dk+1
1 by threshold method

Dn+1
1 = {x : ϕ(x, δt) <

1

2
+ δ}.

Here δ is chosen to make sure the volume |Dk+1
1 | = V0.

Step 3. If |Dk
1 −Dk+1

1 | < ε, step; otherwise, set k = k+ 1 and go back
to Step 1.

In the original MBO scheme, when the interface doesn’t intersect with
the solid boundary, one can solve the heat equation efficiently on a uniform
grid using convolution of heat kernel with the initial condition [26, 25]. The
convolution can be evaluated using fast Fourier transform(FFT) at M log(M)
cost per time step where M is the total number of grid points. However,
when interface intersect with the solid boundary, one needs to solve the heat
equation with the wetting boundary condition as in (9). In this case, and
in particular for the rough boundaries, the usual fast algorithms can not be
applied to solve (9). In the next section, we will introduce a new threshold
dynamic method.
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3. A new threshold dynamics method for wetting problem

In this section, we introduce a new threshold method which is motivated
by a recent work by Esedoglu and Otto[13]. The main idea is to extend the
fluid domain Ω to a larger domain, which contains the solid phase. In the
extended domain, the interface energies between different phases in (3) can
be approximated by a convolution of characteristic functions and a Guassian
kernel(see details below). We then derive a simple scheme to minimize the
new energy functional with the constraint that the solid phase does not
change and the volume of the liquid phase is preserved. The scheme leads to
a new threshold method for wetting problem.

3.1. The representation of the interface energies in an extended domain

In the following, we let D1, D2 ⊂ Ω be the liquid and the vapor phases,
respectively. Let ΣLV = ∂D1 ∩ ∂D2 be the liquid-vapor interface. In [1, 23],
it is shown that when δt� 1, the area of ΣLV can be approximated by

|ΣLV | ≈
1√
δt

∫
χD1Gδt ∗ χD2dx. (10)

where χDi
is the characteristic function of Di and

Gδt(x) =
1

(4πδt)n/2
exp(−|x|

2

4δt
)

is the Guassian kernel.
In the total energy (3), the second and third terms are surface energies

defined on the solid surface Γ. They are the solid-liquid interfacial energy
term on ΣSL = ∂D1∩Γ and the solid-vapor interfacial energy term on ΣSV =
∂D2∩Γ. To approximate the two terms using Guassian kernel, we extend the
domain Ω beyond Γ(see Figure 3.1). The extended domain is Ω̃ = Ω ∪ D3

where D3 is the solid region. Then, the solid surface is Γ = ∂Ω ∩ ∂D3,
the solid-liquid interface is ΣSL = ∂D1 ∩ ∂D3 and the solid-vapor interface
is ΣSV = ∂D2 ∩ ∂D3. Similar to (10), the total energy E in (3) can be
approximated by

Eδt(χD1 , χD2) =

γLV√
δt

∫
Ω̃

χD1Gδt ∗ χD2dx +
γSL√
δt

∫
Ω̃

χD1Gδt ∗ χD3dx +
γSV√
δt

∫
Ω̃

χD2Gδt ∗ χD3dx.

(11)
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Figure 2: Expand the domain beyond to Ω̃ = Ω ∪D3

For simplicity, we assume γSL and γSV are constants throughout this section.
The analysis and the algorithms can be easily generalized to cases when
they are not homogeneous. In the next section, we will apply the method
to a chemically patterned surface where γSL and γSV are piecewise constant
functions.

Denote u1 = χD1 and u2 = χD2 . We define an admissible set

B = {(u1, u2) ∈ BV (Ω) | ui(x) = 0, 1, and u1(x) + u2(x) = 1, a.e. x ∈ Ω,∫
Ω

u1dx = V0} (12)

The wetting problem (3) can be approximated by

min
(u1,u2)∈B

Eδt(u1, u2). (13)

This is a nonconvex minimization problem since B is not a convex set. The
Γ-convergence of the problem (13) to (3) can be proved in a similar way as
in [13].

3.2. Derivation of the threshold dynamics method

We will derive the threshold method for the problem (13). We first show
that the nonconvex problem (13) can be relaxed to an equivalent convex
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problem. Then we derive a threshold method for the convex problem. The
relaxed problem is given by

min
(u1,u2)∈K

Eδt(u1, u2). (14)

where K is the convex hull of the admissible set B:

K = {(u1, u2) ∈ BV (Ω)|0 ≤ ui ≤ 1, u1(x)+u2(x) = 1, a.e. x ∈ Ω,

∫
Ω

u1dx = V0}.

(15)
The following lemma shows that the relaxed problem (14) is equivalent to
the original problem (13). For convenience later, we prove the result for a
slightly more general problem with an extra linear functional term L(u1, u2).

Lemma 3.1. For any given α, β ≥ 0 and any linear functional L(u1, u2), we
have

min
(u1,u2)∈K

(αEδt(u1, u2) + βL(u1, u2)) = min
(u1,u2)∈B

(αEδt(u1, u2) + βL(u1, u2)).

Proof. Let (ũ1, ũ2) ∈ K be a minimizer of the functional

αEδt(u1, u2) + βL(u1, u2).

Since B ⊂ K, we have

αEδt(ũ1, ũ2) + βL(ũ1, ũ2) = min
(u1,u2)∈K

αEδt(u1, u2) + βL(u1, u2)

≤ min
(u1,u2)∈B

αEδt(u1, u2) + βL(u1, u2).

Therefore, we need only to prove that (ũ1, ũ2) ∈ B.
The claim is trivial when α = 0, since the minimizer of a linear functional

in a convex set must belong to the boundary of the set. When α > 0, we
prove by contradictions. If (ũ1, ũ2) 6∈ B, there is a set A ∈ Ω and a constant
0 < C0 <

1
2
, such that |A| > 0 and

0 < C0 < ũ1(x), ũ2(x) < 1− C0, for all x ∈ A.

We divide A into two sets A = A1 ∪ A2 such that A1 ∩ A2 = ∅ and |A1| =
|A2| = |A|/2. Denote ut1 = ũ1 + tχA1 − tχA2 and ut2 = ũ2 − tχA1 + tχA2 .
When 0 < t < C0, we have 0 < ut1, u

t
2 < 1 and

ut1 + ut2 = ũ1 + ũ2 = 1, and

∫
Ω

ut1dx =

∫
Ω

ũ1dx = V0.
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This implies that (ut1, u
t
2) ∈ K. Furthermore, direct computation gives,

d2

dt2
(αEδt(ut1, ut2) + βL(ut1, u

t
2)) =

1√
δt

∫
Ω̃

d

dt
ut1Gδt ∗

d

dt
ut2dx

=
1√
δt

∫
Ω̃

(χA1 − χA2)Gδt ∗ (χA2 − χA1)dx

= − 1√
δt

∫
Ω̃

(χA1 − χA2)Gδt ∗ (χA1 − χA2)dx

< 0.

The functional is concave on the point (ũ1, ũ2). Thus, (ũ1, ũ2) can not be a
minimizer of the functional. This contradicts the assumption.

The above lemma implies that we can solve the relaxed problem (14)
instead of the original one (13). In the following, we show that the problem
can be solved iteratively by a threshold method.

Suppose we solve the problem (14) by an iterative method. In the k step,
we have an approximated solution (uk1, u

k
2). The energy functional Eδt(u1, u2)

can be linearized near the point (uk1, u
k
2):

Eδt(u1, u2) ≈ Eδt(uk1, uk2) + L̂(u1 − uk1, u2 − uk2, uk1, uk2) + h.o.t.

with

L̂(u1, u2, u
k
1, u

k
2) =

1√
δt

(∫
Ω̃

u1Gδt ∗ (γLV u
k
2 + γSLχD3)dx +

∫
Ω̃

u2Gδt ∗ (γLV u
k
1 + γSV χD3)dx

)
.

(16)

Then we minimize the linearized functional:

min
(u1,u2)∈K

L̂(u1, u2, u
k
1, u

k
2) (17)

and set the solution to be (uk+1
1 , uk+1

2 ). By Lemma 3.1, the solution of (17)
is in B. In other words, uk+1

1 and uk+1
2 are characteristic functions of some

proper sets Dk+1
1 and Dk+1

2 such that |Dk+1
1 | = V0.

The following lemma shows that the minimizing problem (17) is solved
by a simple thresholding approach.
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Lemma 3.2. Denote

φ1 =
1√
δt
Gδt ∗ (γLV u

k
2 + γSLχD3), φ2 =

1√
δt
Gδt ∗ (γLV u

k
1 + γSV χD3). (18)

Let
Dk+1

1 = {x ∈ Ω| φ1 < φ2 + δ} (19)

for some δ such that |Dk+1
1 | = V0. Define Dk+1

2 = Ω\Dk+1
1 . Then (uk+1

1 , uk+1
2 ) =

(χDk+1
1
, χDk+1

2
) is a solution of (17).

Proof. By Lemma 3.1, we need only to prove

L̂(uk+1
1 , uk+1

2 , uk1, u
k
2) ≤ L̂(u1, u2, u

k
1, u

k
2), (20)

for all (u1, u2) ∈ B.
For each (u1, u2) ∈ B, we know u1 = χD̂1

and u2 = χD̂2
for some open

set D̂1, D̂2 in Ω, such that D̂1 ∩ D̂2 = ∅, D̂1 ∪ D̂2 = Ω and |D̂1| = V0. Let
A1 = D̂1 \ Dk+1

1 = Dk+1
2 \ D̂2 and A2 = D̂2 \ Dk+1

2 = Dk+1
1 \ D̂1. We must

have |A1| = |A2| due to the volume conversation property. Since A1 ⊂ Dk+1
2 ,

we have
φ1(x) ≥ φ2(x) + δ, ∀x ∈ A1.

Similarly, since A2 ∈ Dk+1
1 , we have

φ1(x) < φ2(x) + δ, ∀x ∈ A2.

Therefore, we have

L̂(uk+1
1 , uk+1

2 , uk1, u
k
2)− L̂(u1, u2, u

k
1, u

k
2)

=

∫
Ω̃

(uk+1
1 − u1)φ1 + (uk+1

2 − u2)φ2dx

=−
∫
A1

φ1dx +

∫
A2

φ1dx−
∫
A2

φ2dx +

∫
A1

φ2dx

=

∫
A1

(φ2 − φ1)dx +

∫
A2

(φ1 − φ2)dx

≤− δ
∫
A1

dx + δ

∫
A2

dx = 0.

This finishes the proof.
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We are led to the following threshold dynamics algorithm:

Algorithm I:

Step 0. Given initial D0
1, D

0
2 ⊂ Ω, such that D0

1∩D0
2 = ∅, D0

1∪D0
2 = Ω

and |D0
1| = V0. Set a tolerance parameter ε > 0.

Step 1. For given set (Dk
1 , D

k
2), we define two functions

φ1 =
1√
δt
Gδt∗(γLV χDk

2
+γSLχD3), φ2 =

1√
δt
Gδt∗(γLV χDk

1
+γSV χD3).

(21)

Step 2. Find a δ so that the set

D̃δ
1 = {x ∈ Ω|φ1 < φ2 + δ.} (22)

satisfies |D̃δ
1| = V0. Denote Dk+1

1 = D̃δ
1 and Dk+1

2 = Ω \Dk+1
1 .

Step 3. If |Dk
1 −Dk+1

1 | ≤ ε, stop. Otherwise, go back to Step 1.

Remark 3.1. The method is simple and easy to implement.
(1). We can always extend Ω to a cubic domain Ω̃, since the only con-

straint of the extension is D1 ∈ Ω̃ and |D1| = V0. For the cube domain, the
convolution in (21) can be computed by fast algorithms (e.g. the FFT).

(2). To keep the volume of the liquid phase unchanged, we need to find a
proper δ in Step 2. This can be done by using a bisection method or a decent
method, as shown in [27] for mean curvature flow. In the next section, we
will give a simpler technique to determine δ, which is more efficient than
existing methods.

(3). The above derivation of the thresholding method for wetting problem
can be easily generalized to a multiphase system with wetting boundary con-
ditions, e.g. the three-phase system[28], in the same line as that in Esedoglu
and Otto[13]. For each phase, we need to compute a function similar to that
in (21).

3.3. A simplified algorithm for the two phase problem

In case of two phase problem, the Algorithm I can be simplified as follows.
Noticing that u1 + u2 = 1 in Ω, we actually have only one unknown u1 in
(11). Define

K1 = {u ∈ BV (Ω)|0 ≤ u ≤ 1, a.e. x ∈ Ω,

∫
Ω

udx = V0}.

12



It is easy to see that (14) can be rewritten as

min
u1∈K1

Ẽδt(u1) =− γLV
∫

Ω̃

u1Gδt ∗ u1dx + γLV

∫
Ω̃

u1Gδ ∗ χΩdx

+

∫
Ω̃

(γSL − γSV )u1Gδt ∗ χD3dx +

∫
Ω̃

γSV χΩGδt ∗ χD3dx.

(23)

Suppose we solve the problem by an iterative method. For any given uk1, we
could linearize the functional as

Ẽδt(u1) = Ẽδt(uk1) + L̃(u− uk1, uk1) + h.o.t.

with

L̃(u, uk1) =− 2γLV

∫
Ω̃

u1Gδt ∗ uk1dx + γLV

∫
Ω̃

u1Gδ ∗ χΩdx

+

∫
Ω̃

(γSL − γSV )u1Gδt ∗ χD3dx

=γLV

∫
Ω̃

u1Gδt ∗ (uk2 − uk1)dx +

∫
Ω̃

(γSL − γSV )u1Gδt ∗ χD3dx

=γLV

∫
Ω̃

u1Gδt ∗ (uk2 − uk1 − cos θY χD3)dx. (24)

Here we use the Young’s equation γLV cos θY = γSV − γSL.
As in the previous subsection, for the linearized functional (24), we can

prove the following result. The proof is similar to that for Lemma (3.2).

Lemma 3.3. Suppose uk1 = χDk
1

for some set Dk
1 ⊂ Ω and Dk

2 = Ω \ Dk
1 .

Denote
φ =

γLV√
δt
Gδt ∗ (χDk

2
− χDk

1
− cos(θY )χD3),

Let D̃δ
1 = {x ∈ Ω | φ < δ}, with some δ such that |Dk+1

1 | = V0. Then
uk+1

1 = χDk+1
1

is a minimizer of L̃(u, uk1) in K1.

This will lead to the following algorithm.

Algorithm II:

Step 0. Given initial D0
1 ⊂ Ω, such that |D0

1| = V0. Set a tolerance
parameter ε > 0.
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Step 1. For given set Dk
1 , set Dk

2 = Ω \Dk
1 . We define a function

φ =
γLV√
δt
Gδt ∗ (χDk

2
− χDk

1
− cos(θY )χD3), (25)

Step 2. Find a δ ∈ (−1, 1), so that the set

D̃δ
1 = {x ∈ Ω | φ < δ.} (26)

satisfying |D̃δ0
1 | = V0. Denote Dk+1

1 = D̃δ0
1 .

Step 3. If |Dk
1 −Dk+1

1 | ≤ ε, stop. Otherwise, go back to Step 1.

The following proposition shows that Algorithm I and Algorithm II are
equivalent to each other.

Proposition 3.1. For any domain (Dk
1 , D

k
2) ∈ B, after one iteration, Algo-

rithm 2 and Algorithm 3 generate the same (Dk+1
1 , Dk+1

2 ).

Proof. We need only consider the threshold equation (22) and (26). Direct
computations give

φ1 − φ2 =
1√
δt
Gδt ∗ (γLV χDk

2
+ γSLχD3)−

1√
δt
Gδt ∗ (γLV χDk

1
+ γSV χD3)

=
1√
δt
Gδt ∗

(
γLV (χDk

2
− χDk

1
) + (γSL − γSV )χD3

)
=
γLV√
δt
Gδt ∗ (χDk

2
− χDk

1
− cos θY χD3) = φ.

In the last equation, we use the Young’s equation. Therefore, the threshold
step by (22) is equivalent to that by (26). This completes the proof.

3.4. Stability analysis

In this subsection, we will show that the two algorithms above are stable,
in the sense that the total energy of Eδt always decrease in the algorithm for
any δt > 0. We have the following Theorem.

Theorem 3.1. Denote (uk1, u
k
2) = (χDk

1
, χDk

2
), k = 0, 1, 2, ..., obtained in

Algorithm I (or Algorithm II), we have

Eδt(uk+1
1 , uk+1

2 ) ≤ Eδt(uk1, uk2), (27)

for all δt > 0.
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Proof. By Proposition 3.1, we need only to prove the Theorem for Algorithm
I. By the definition of the linearization L̂ and Lemma (3.2), we know

Eδt(uk1, uk2) +
γLV√
δt

∫
Ω̃

uk1Gδt ∗ uk2dx = L̂(uk1, u
k
2, u

k
1, u

k
2)

≥ L(uk+1
1 , uk+1

2 , uk1, u
k
2) = Eδt(uk+1

1 , uk+1
2 )

+
γLV√
δt

(∫
Ω̃

uk+1
1 Gδt ∗ uk2dx +

∫
Ω̃

uk+1
2 Gδt ∗ uk1dx−

∫
Ω̃

uk+1
1 Gδt ∗ uk+1

2 dx

)
.

This leads to

Eδt(uk1, uk2) ≥ Eδt(uk+1
1 , uk+1

2 ) + I, (28)

with

I =
γLV√
δt

(∫
Ω̃

uk+1
1 Gδt ∗ uk2dx +

∫
Ω̃

uk+1
2 Gδt ∗ uk1dx

−
∫

Ω̃

uk+1
1 Gδt ∗ uk+1

2 dx−
∫

Ω̃

uk1Gδt ∗ uk2dx
)

= −γLV√
δt

∫
Ω̃

(uk+1
1 − uk1)Gδt ∗ (uk+1

2 − uk2)dx.

Using the fact that uk1 + uk2 = uk+1
1 + uk+1

2 ,we have

I =
γLV√
δt

∫
Ω̃

(uk+1
1 − uk1)Gδt ∗ (uk+1

1 − uk1)dx ≥ 0.

This inequality together with (28) implies (27).

The stability result does not mean that we can choose any large parameter
δt in the algorithm, since the choice of δt also affect the accuracy of the
approximation of Eδt to the energy E in (3).

4. Numerical implementation and accuracy check

In this section, we will introduce several techniques used to implemented
the algorithm efficiently.
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Figure 3: From left to right: 1. The initial condition defined by the charecteristic function
of some domains. 2. The X-Z plane of the convolution between heat kernel and initial
condition calculated by extending the domain by reflection (i.e. extend [−π

2 ,
π
2 ]× [−π

2 ,
π
2 ]

to [−π
2 ,

3π
2 ] × [−π

2 ,
3π
2 ]). 3. The X-Z plane of the convolution between heat kernel and

initial condition calculated without extending the domain. 4. The error between the
second figure and third figure.

4.1. Calculation of convolution

In Algorithm I, we need to calculate the two convolutions Gδt∗(γLV χDk
2
+

γSLχD3) and Gδt ∗ (γLV χDk
1

+ γSV χD3) on an extended domain Ω̃ which we
can always choose to be a rectangular domain. In this case, it is very efficient
to used FFT to calculate the convolutions when the functions are periodic.
To calculate convolutions for non-periodic functions, we can further extend
the domain by reflection so that the functions are periodic on the extended
domain. In our simulation, the characteristic function (e.g.γLV χDk

2
+γSLχD3)

are not periodic. However, since the heat kernel Gδt decays exponentially fast
and is negligibly small when |x| > 10

√
t. When we calculate the convolu-

tion, each target points will only be affected by a few neighboring points.
Hence, if we apply FFT without extending the computational domain, we
will only have some error near the boundary of computation domain (See
Fig.3). When the dynamic interface is far away from the boundary of com-
putational domain It is easy to see that after thresholding step, there is no
difference between the solutions calculated with or without the extension of
domain. Therefore, in our calculation, we always directly apply FFT without
extending the computational domain.

4.2. A fast algorithm for volume conservation

In Step 2 of Algorithm I, we need to enforce the volume conservation.
This is achived by shifting the thresholding level by a δ as in (22). The usual
way to find δ by some iteration methods (e.g. bisection method, Newton
method, fixed point iteration, see [27]). However, these iterative methods
are quite sensitive to the initial guess. In this part, we will introduce a direct
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and more efficient scheme to find a proper δ. If we consider uniform mesh
(in two dimensions) and denote the mesh size as dx, the volume of a domain
can be approximated by V0 ≈ M × dx2 (with first order accuracy). For our
purpose, what we need to do in Step 2 is to find a threshold δ(M) such that
there are M grid values of φ1 − φ2 which are less than δ. Since we have
the values of φ1 − φ2 at each grid point, we can use the quicksort algorithm
(available in Matlab )[17] to sort the values in ascending order in a list S.
We then choose the threshold value δ to be the average of the M th value and
M + 1th value in the ordered list S, i.e. δ = S(M)+S(M+1)

2
, where S(M) is the

M -th variable in the list. The scheme is summaried as the following:

A fast scheme for volume conservation

Step 0. Set V0 as the volume should be preserved and M as the integer
part of V0/dx

2

Step 1. Use quicksort algorithm to sort φ1 − φ2, which is defined in
step 2 in Algorithm 2, in ascending order in a list S.

Step 2. Set δ = S(M)+S(M+1)
2

In summary, the computational complexity to find δ is O(Nlog(N)) when
we choose the quicksort algorithm. It is straightforward to see that this
scheme will get the same δ as the iterative scheme proposed by Ruuth[27]
(with first order accuracy). However, our scheme requires much less compu-
tational cost.

4.3. An adaptive scheme in time

For any given space meshes, the only parameter in Algorithm I is “the
time step” δt. Based on the argument in Merriman, Bence and Osher[21],
there are two requirements for the choice of δt: the first one is that δt should
be small enough so that the approximation for the energy is accurate enough
and the second is that δt should be also large enough so that the boundary
curve moves at least one grid cell on the spatial grid (otherwise the interface
would not move after the thresholding step), that is, δt� δx

κ
where κ is the

average value of the curvature and δx is the space mesh size. Since we have
volume conservation, the interface eventually becomes circular with constant
curvature. Therefore, for given space mesh size δx, there is a δt threshold
below which the interface will not move. Therefore time step refinement
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beyond this threshold will not improve the accuracy of the interface position.
However, when the interface intersects with the solid boundary, the motion
of the contact point follows a different dynamics and is controlled by the
Young stress f = γLV (cos θ− cos θY ). This may lead to a different time scale
(and a different time step constraint). Numerical results show that time step
refinement improve the accuracy near the contact point. Hence, we propose
an adaptive time step scheme to minimize the interfacial energy. The idea is
that we first use a proper (large enough) time step δt so that the evolution of
the interface reaches equilibrium state. We then improve the contact point
accuracy by repeatedly halving the time step δt until the difference between
the solutions of the successful step is less than a tolerance ε1.

Modified Algorithm I

Step 0. Given initial D0
1, D

0
2 ⊂ Ω, such that D0

1∩D0
2 = ∅, D0

1∪D0
2 = Ω

and |D0
1| = V0. Set D∗1 = D0

1. Set a tolerance parameter ε > 0.

Step 1. For given set (Dk
1 , D

k
2), we define two functions

φ1 =
1√
δt
Gδt ∗ (γLV χDk

2
+ γSLχD3), φ2 =

1√
δt
Gδt ∗ (γLV χDk

1
+ γSV χD3).

(29)

Step 2. Find a constant δ by the fast scheme to keep volume conser-
vation in the last subsection, so that the set

D̃δ
1 = {x ∈ Ω|φ1 < φ2 + δ.} (30)

satisfying |D̃δ
1| ≈ V0. Denote Dk+1

1 = D̃δ
1, Dk+1

2 = Ω \Dk+1
1 .

Step 3. IF |Dk
1 −Dk+1

1 | ≤ ε,
if |D∗1 −Dk+1

1 | ≥ ε,set δt = δt
2

, D∗1 = Dk+1
1 , and go back to step 1.

else, set D∗1 = Dk+1
1 and stop.

endif
ELSE, go back to step 1.
ENDIF

4.4. Accuracy check of the algorithms

To check the accuracy, we will apply the Modified Algorithm I describled
in Section 4.3 to a two-dimensional drop spreading on a solid surface. The
equilibrium state is a circular arc with the Young’s angle when the minimum
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Table 1: Accuracy Check

Grid Points L1 Error Convergence L1 Error Convergence
rate with time refinement rate

128× 128 0.1473 - 0.0515 –
256× 256 0.0482 2.06 0.0271 0.90
512× 512 0.0200 1.41 0.0109 1.49

1024 × 1024 0.0116 0.72 0.0054 1.02

of the total interfacial energy is reached. In our experiment, the initial liquid
phase is given by a half circle centered at (0,−π

4
) with the radius π

4
. So the

volume of the drop is π3

32
. We set three surface tensions as γLV = 1, γLS =

1, γSV = 1 +
√

3/2 which gives a Young’s angle π
3
. In this case, the exact

equilibrium state can be computed explicitly.
In Fig.4, Fig.5 and Fig.6, we show the errors of computed solution (char-

acteristic function) by both Algorithm I and the Modified Algorithm I, com-
pared with the exact solution (the characteristic function of the exact equi-
librium state) which shows location error of the interface. It is obvious that
the errors near contact points are much larger than that at other places on
the interfaces. However, after time step refinement, the Modified Algorithm
1 gives much improved results.

Then we check the accuracy of the modified version of Algorithm I via cal-
culating the convergence rate of the L1 error with respect to the refinement
of the mesh. Table.1 shows L1 errors of both schemes. Again the Modi-
fied Algorithm I gives much better results. The results also show that the
convergence rate of our algorithm is of first order. Fig.7 gives very good com-
parison between the numerical solution and exact solution when it reaches
equilibrium.

5. Droplet spreading on chemically pattern solid surface

We first study the hysteresis behavior of a drop spreading on a chemically
patterned surface. We consider the quasi-static spreading of a droplet. To
simulate the hysteresis process. we need to add or decrease the volume of
the drop gradually. In each step, we need to compute the equilibrium state
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Figure 4: Left: 256 × 256 grid points, δt = 2dx without adaptivity in time, Right:256 ×
256 grid points, δt = 2dx initially with adpativity in time, ε = 1.0e−10

Figure 5: Left: 512 × 512 grid points, δt = 2dx without adaptivity in time, Right:512 ×
512 grid points, δt = 2dx initially with adpativity in time, ε = 1.0e−10

Figure 6: Left: 1024 × 1024 grid points, δt = 2dx without adaptivity in time, Right:1024
× 1024 grid points, δt = 2dx initially with adpativity in time, ε = 1.0e−10
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Figure 7: Red line represent the exact solution while the blue line represent the numerical
solution(computed with 1024 × 1024 grid points). The static numerical solution is at the
sense of the energy approaching the minimum and nothing changed when thresholding.

of the drop after liquid is added or extracted, which is very computationally
demanding. We show that our threshold dynamics method can simulate the
process efficiently.

We assume that the surface is periodically patterned in the interval (−π/2, π/2)
and the interval is divided into 2k + 1 periods with equal partition of two
materials away from the center. The center part is occupied by the material
B (See Fig.8). Assume θA, θB are the Young’s angle for material A and B
respectively. r is the initial radius of a half circle on the surface and ∆V
is the volume we add to the drop each time. In [32], the authors explicitly
calculate the change of contact angle and position of contact points with
respect to the volume for some simple two phase systems on the chemically
patterned surface.

To implement the Modified Algorithem I, we need to divide our solid
region into two parts (D3, D4) which represent material A and material B
with different surface tensions, respectively (as shown in Figure 8) and modify
the original γSLχD3 , γSV χD3 into γS1LχD3 + γS2LχD4 , γS1V χD3 + γS2V χD4 .
As the volume of the drop increases quasi-statically, we use the Modified
Algorithem I to calculate the equilibrium state for each fixed volume.

We take θA = π
5
, θB = 7π

10
. For the advancing drop, we plot the contact

angle and position of contact point as functions of increasing volume in Fig.9
for k = 2 and in Fig.10 for k = 4. The contact point goes through the
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Figure 8: Diagrammatic sketch of the divide of the chemically patterned solid surface, this
is a special case for k = 4. The yellow region is occupied by the material B while the blue
region is occupied by A.
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Figure 9: The stick-slip motion of a droplet with k=2 when the volume is increasing.
θA = π

5 , θB = 7π
10 .
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Figure 10: The stick-slip motion of a droplet with k=4 when the volume is increasing.
θA = π

5 , θB = 7π
10 .
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Figure 11: The stick-slip motion of a droplet with k=2 when the volume is decreasing.
θA = π

5 , θB = 7π
10 .
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Figure 12: The stick-slip motion of a droplet with k=4 when the volume is decreasing.
θA = π

5 , θB = 7π
10 .
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Figure 13: Left: The quasi-static state in the process of increasing the volume on chem-
ically patterned surface when the volume is 0.5883. Right: The quasi-static state in the
process of decreasing the volume on chemically patterned surface when the volume is
0.5883. The Young’s angle on the light blue part is B while the Young’s angle on the dark
blue part is A, k=4.

stick-slip motion, and the contact angle oscillates near the advancing angle
θB for larger k.

For the receeding drop, we plot the contact angle and position of contact
point as functions of increasing volume in Fig.11 for k = 2 and in Fig.12 for
k = 4. Again, the contact point goes through the stick-slip motion, but and
the contact angle oscillates near the receding angle θA for larger k.

In Fig. 13, we show two quasi-static drops. One is in the process of in-
creasing the volume (advancing) and the other is in the process of decreasing
volume (receding). We see that the two states have very different contact
angles although they correspond to the same volume. This clearly shows the
contact angle hysteresis as the shape of a droplet on a chemically patterned
surface depends on its history.

6. Droplet spreading on a rough solid surface

In this part, we will simulate the contact angle hysteresis on a geometri-
cally rough surface.

In our experiments, the computational domain is [−π
2
, π

2
]× [−π

2
, π

2
], then

we take the solid surface as a sawtooth profile by an explicit function

y = −π
4

+ tan(α)
π

4k + 2
|s((2k + 1)x− π)|
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Figure 14: Left:Diagrammatic sketch of the rough solid surface, we take the solid surface
as a sawtooth profile. Right: Diagrammatic sketch of effective contact angle θ on the
rough solid surface.
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Figure 15: The stick-slip motion of a droplet on rough surface when the volume is increas-
ing. θ = π

2 , k = 4, α = π
6 .
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Figure 16: The stick-slip motion of a droplet on rough surface when the volume is decreas-
ing. θ = π

2 , k = 4, α = π
6 .
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where s(x) is a sawtooth periodic function with period 2π define as

s(x) =

{
2
π
(x+ π)− 1 −π ≤ x ≤ 0;
− 2
π
x+ 1 0 ≤ x ≤ π.

For the rough surface, it is more meaningful to see the behavior of effec-
tive contact angle when increasing or decreasing the volume of the drop [7].
Where effective contact angle is defined by the angle between the contact
line and the horizontal surface (See Fig. 14). Fig. 15 and Fig. 16 show
the bahavior of the contact angle and the x-coordinate of contact point for
the case k = 4, α = π

6
. The Young’s angle of the solid surface is θY = π

2
.

We can see obvious stick-slip motion when we increase or decrease volume of
the droplet. Furthermore, the advancing angle is almost 2π

3
and the receding

contact angle is about π
3
.

In Figure 17, again, we show two quasi-static drops. One is in the process
of increasing the volume (advancing) and the other is in the process of de-
creasing volume (receding). Similar to the chemically patterned surface case,
we also see that the two states have very different apparent contact angles
which corresponds to the contact angle hysteresis on rough surface.

Above simulations imply that our algorithm is not sensitive to the in-
homogeneity or roughness of the solid boundary. The algorithm is quite
stable, simple and efficient. This shows the great advantage of our algorithm
when compared with solving a phase field model with relaxation boundary
condition.
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