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ABSTRACT

The motion of a droplet on an inclined surface involves complex interfacial dynamics in which contact line motion and shape evolution play
a critical role. Classical continuum-based and reduced-order models can describe droplet behavior at small inclination angles but fail to cap-
ture essential morphological features—such as the sharp rear corner—observed experimentally at larger tilts. To address this limitation, we
propose a data-driven reduced-order framework that integrates the Onsager variational principle with functional principal component analy-
sis (FPCA). By extracting dominant basis functions directly from experimental droplet profiles, the method reduces computational cost while
retaining physical interpretability. Numerical experiments show that the model accurately reproduces droplet morphologies across a broad
range of inclination angles, correcting the unrealistic conical shapes predicted by previous formulations while maintaining the same degrees
of freedom as the classical reduced model. More broadly, the approach provides a systematic strategy for embedding experimental data into
variational modeling, offering new opportunities for predictive and efficient analysis of complex interfacial flows.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0302835

I. INTRODUCTION

The motion of liquid droplets on solid surfaces is a ubiquitous
phenomenon encountered in both natural processes and engineering
applications. Examples include raindrops sliding down glass windows,
oil spreading on painted surfaces, and dew gliding on plant leaves.
Extensive research has been conducted both theoretically and experi-
mentally on this phenomenon in hydrodynamics.1–7

Theoretical analysis of sliding droplets presents significant chal-
lenges, primarily due to the complexities of contact line dynamics,
including contact angle variations, singularities, and hysteresis.8–10

Classical continuum-based models, such as the lubrication approxima-
tion11,12 and Navier–Stokes solvers with appropriate boundary condi-
tions,13 are commonly used to describe droplet motion at macroscopic
scales. However, capturing microscopic processes near the contact line

often requires hybrid or multiscale techniques, which are computa-
tionally expensive and difficult to generalize.

When a millimeter-sized droplet slides down an inclined surface
under partial wetting conditions, its shape undergoes distinct transi-
tions with increasing tilt angle—from oval to cornered, cusp-like, and
eventually rivulet-like forms.4,14–16 In this regime, treating the droplet
as a point mass becomes inadequate; instead, the influence of evolving
droplet morphology must be explicitly accounted for. From a compu-
tational perspective, simulating this process remains highly demand-
ing,17–19 since droplet shape evolution strongly affects both trajectory
and velocity distribution.

To overcome these challenges, Xu et al.20 proposed a pioneering
reduced-order model based on the Onsager variational principle.21–25

Their framework achieved good agreement with experimental results14
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at small inclination angles. However, at larger tilts, the model failed to
reproduce key morphological features, notably the experimentally
observed sharp rear corner. Simply enriching the polynomial basis in
such reduced formulations does not adequately resolve this limitation.
While higher-order polynomial functions offer greater geometric flexi-
bility, they also considerably increase computational complexity and
tend to produce nonlinear systems with reduced numerical stability.
This limitation highlights the need for a more systematic strategy to
capture complex droplet shapes.

Beyond purely physics-based formulations, recent advances in
data-driven modeling offer promising alternatives. Reduced-order
approaches and neural-network-based frameworks have been intro-
duced to complement classical models,26–28 demonstrating that physi-
cal constraints can be effectively combined with data-driven insights to
improve predictive accuracy and generalization. Motivated by these
developments, the present study integrates experimental droplet pro-
files with the Onsager variational principle and employs functional
principal component analysis (FPCA) for dimensionality reduction.
By identifying dominant basis functions directly from data, the pro-
posed framework reduces computational cost while retaining physical
interpretability, thereby improving predictive accuracy at large inclina-
tion angles and yielding droplet morphologies in closer agreement
with experimental observations.

It should be noted that the present study focuses on Newtonian
fluid (silicone oil) droplets sliding on smooth inclined surfaces.
Nevertheless, the proposed FPCA-enhanced variational framework is
conceptually extensible to more complex interfacial systems. For
instance, recent studies have reported distinct morphological and
dynamical behaviors of non-Newtonian droplets, including shear-
thinning and viscoelastic fluids, when sliding on hydrophobic or lubri-
cated substrates.29–31 Similarly, droplet deformation and motion under
electric-field actuation have been widely investigated for both
Newtonian and polymeric systems.32–34 By appropriately incorporat-
ing experimental profile data or field-dependent parameters into the
FPCA method, the present framework could be extended to describe
such non-Newtonian or field-driven phenomena.

The remainder of this paper is organized as follows. Section II
applies the Onsager variational principle to derive a modified model
by combining the original model with the FPCA method for a droplet
sliding on an inclined surface. Section III reports numerical results and
their comparison with experimental data. Finally, Sec. IV summarizes
the main findings and outlook.

II. THE MODEL DERIVED BY THE ONSAGER PRINCIPLE

This paper aims to study the behavior of a droplet sliding on an
inclined surface at an angle a. A Cartesian coordinate system is estab-
lished, where the z-axis is orthogonal to the base plane, the x-axis
points in the direction of droplet descent, and the y-axis lies in the
plane of the inclined surface. The shape of the droplet at time t is rep-
resented by the function z ¼ hðx; y; tÞ, the side view profile of the
droplet descent is represented by the function z ¼ Hðx; tÞ, and the
contact line profile is represented by the function y ¼ Yðx; tÞ. A sche-
matic diagram of a droplet sliding down the inclined surface is shown
in Fig. 1.

The shape of sliding liquid droplets has been the subject of
research in both experimental and theoretical domains.4,15,35 These
studies indicate that the shape of the droplets can be approximated by
the function hðx; y; tÞ,

hðx; y; tÞ ¼ Hðx; tÞ 1� y
Yðx; tÞ

� �2
" #

; (1)

where Hðx; tÞ and Yðx; tÞ are the functions to be determined. From
Eq. (1), it can be observed that at a given x coordinate, the thickness h
of the liquid droplet decreases parabolically with respect to y. The thick-
ness of the droplet becomes zero at y ¼ Yðx; tÞ and at y ¼ 0, the thick-
ness of the droplet is h ¼ Hðx; tÞ. Therefore, this equation satisfies that
the contact line of the droplet is given by the function y ¼ Y x; tð Þ, and
the side view of the droplet is specified by the function z ¼ Hðx; tÞ.

Assuming that the x coordinates of the rear and front parts of the
contact line are denoted as a1 and a2, respectively, as shown in Fig. 2,
the volume of the liquid dropletX can be calculated as follows:

X ¼
ða2
a1

dx
ðY
�Y

dyhðx; y; tÞ : (2)

Xu et al.20 made further assumptions by considering the follow-
ing form forHðx; tÞ and Yðx; tÞ:

Hðx; tÞ ¼ x � a1ðtÞð Þ a2ðtÞ � xð Þ a3ðtÞ þ a4ðtÞxð Þ; (3)

Yðx; tÞ ¼ x � a1ðtÞð Þ12 a2ðtÞ � xð Þ12 a5ðtÞ þ a6ðtÞxð Þ: (4)

Specifically, the parameters a1 and a2 denote the x-coordinates of the
rear and front contact points, while a3–a6 represent deviations from
the equilibrium profile. The fractional power-law dependence near
x ¼ a1 and x ¼ a2 ensures rounded contours of the contact line of the
droplet at both ends while allowing a cusp to emerge when �a5=a6
approaches a1, consistent with experimental observations. They gave
the free energy AðaÞ and the energy dissipation function Uð _aÞ
¼ 1

2

P
i;j fij _ai _aj, and used Onsager principle @U

@ _ai
þ @A

@ai
¼ 0 to obtain the

time evolution equations for ai as follows:X6
j¼1

fij _aj þ
@A
@ai

¼ 0; (5)

FIG. 1. Illustration of a droplet sliding down an inclined surface: (a) sketch of a drop-
let sliding on an inclined surface, (b) side view showing the side profile Hðx; tÞ, and
(c) top view showing the contact line profile Yðx; tÞ.

FIG. 2. Side view of a droplet sliding down.
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where the coefficients fij are functions of a ¼ ða1; a2;…; a6Þ. From
Eq. (2), we know that X is a constant, which implies that only five out
of the six parameters aiðtÞ are independent.

We aspire to improve the consistency between the model and
experimental observations through the refinement of the assumptions
about H and Y. A natural thought is to consider adding more polyno-
mial basis functions to H and Y to enhance the flexibility and better fit
the side profile and the contact line profile of the droplet, especially the
sharp corner at the rear under large inclination angles. We initially
explored this path by systematically increasing the number of basis
functions.

For example, we considered higher-order polynomial forms
such as

HM x; tð Þ ¼ x � a1ðtÞð Þ a2ðtÞ � xð ÞPM xð Þ;
YN x; tð Þ ¼ x � a1ðtÞð Þ1

2 a2ðtÞ � xð Þ12QN xð Þ;
(6)

where PMðxÞ and QNðxÞ are polynomials of degreesM and N, respec-
tively. Substituting these enhanced forms into the variational proce-
dure yields a system of equations analogous to Eq. (5) but with more
parameters.

However, our numerical experiments revealed a key limitation:
merely increasing the number of basis functions in this ad hocmanner
does not guarantee a better agreement with experimental droplet pro-
files. While the fitting flexibility increases, the model, without guidance
from real data, often fails to converge to the physically correct mor-
phology observed in experiments.

To address this, we pivot to a data-driven strategy that directly
leverages experimental observations to inform the model. We utilize
experimental images from Ref. 14, normalize the droplet length, and
collect coordinate data points for the side and top views. We then
employ the least squares method to fit the droplet contours to high-
dimensional basis functions, obtaining an empirical representation of
the side and contact line profiles,

H5ðx; tÞ ¼ xð1� xÞða3 þ a4x þ a5x
2 þ a6x

3 þ a7x
4 þ a8x

5Þ; (7)

Y5 x; tð Þ¼ x
1
2ð1�xÞ12 a9þa10xþa11x

2þa12x
3þa13x

4þa14x
5

� �
:

(8)
Here, x is the coordinate normalized to the interval [0, 1].

While these data-fitting step accurately captures the droplet pro-
file, it significantly increases the number of parameters (a3–a14), lead-
ing to high computational complexity. To reduce the dimensionality
while retaining the essential physical features encoded in the data, we
employ FPCA.

FPCA is a technique that can be used to identify the main varia-
tion patterns from a set of function curves. It finds a set of orthogonal
basis functions that are optimal in the sense that they capture the max-
imum variance in the data. This makes it ideally suited for our pur-
pose: to distill the most important side profile and contact line profile
characteristics from the high-dimensional fitted curves H5 and Y5 into
a minimal set of basis functions, thereby dramatically reducing the
number of degrees of freedom without sacrificing the accuracy of the
profile representation. The specific steps of the FPCA algorithm
applied to our problem are detailed in Algorithm 1.

ALGORITHM 1. Apply the FPCA algorithm for dimensional reduction of the basis functions.

Step 1. Given l sets of curve data points and a set of bases,

S ¼ ðs1; s2;…; slÞ; U ¼ ð/1ðxÞ;/2ðxÞ;…;/mðxÞÞT ;
sðiÞ ¼ ðxðiÞ1 ; yðiÞ1 Þ; ðxðiÞ2 ; yðiÞ2 Þ;…; ðxðiÞn ; yðiÞn Þ

� �
; i ¼ 1…l:

(9)

Step 2. Employ the least squares fitting method, and solve the following equation to obtain the coefficient matrix C:

C ¼ ½C1;C2;…;Cl�; min
Ci

kY i �WiCik2: (10)

where

Y i ¼

yðiÞ1
yðiÞ2
..
.

yðiÞn

2
6666664

3
7777775
; Wi ¼

/1ðxðiÞ1 Þ /2ðxðiÞ1 Þ … /mðxðiÞ1 Þ
/1ðxðiÞ2 Þ /2ðxðiÞ2 Þ … /mðxðiÞ2 Þ

..

. ..
. . .

. ..
.

/1ðxðiÞn Þ /2ðxðiÞn Þ … /mðxðiÞn Þ

2
6666664

3
7777775
; Ci ¼

cðiÞ1
cðiÞ2
..
.

cðiÞm

2
6666664

3
7777775

Step 3. Calculate the mass matrix M ¼ Ð 1
0 UU

Tdx and perform the Cholesky decomposition M ¼ LLT on it. Then, transform A : ¼ LTC.
Step 4. Perform the singular value decomposition (SVD) on the centralized A.

A ¼ UKVT ; (11)

where K ¼ diagðk1; k2;…; kqÞ, k1 � k2 � � � � � kq > 0, U ¼ ðu1; u2;…; uqÞ, q ¼ rankðAÞ.
Step 5. Choose an appropriate value for k such that

Pk
i¼1 k

2
i =

Pq
i¼1 k

2
i is greater than 0.8. Truncate U to obtain �U :¼ ðu1; u2;…; ukÞ.

Step 6. Left multiply �U by UTL�T to obtain the first k principal components.

B :¼ ðb1; b2;…; bkÞ ¼ UTL�T �U : (12)
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In this study, five sets of droplet profile data (l ¼ 5) were
extracted, respectively, for the side profiles (H) and contact line profiles
(Y) from the experimental images reported by Le Grand et al.,14 cover-
ing capillary numbers Ca ¼ 2:85� 10�3, 4:95� 10�3, 5:14� 10�3,
7:07� 10�3, and 7:19� 10�3. The dataset size for each profile type is
constrained to five cases owing to the limited number of profiles that
can be clearly digitizable in the original experiments. For the side and
contact line profiles, we respectively choose the basis as

UH ¼ xð1� xÞ; x2ð1� xÞ;…; x6ð1� xÞ
� �T

; (13)

UY ¼ x
1
2ð1� xÞ12; x3

2ð1� xÞ12;…; x
11
2 ð1� xÞ12

� �T

: (14)

To demonstrate the detailed implementation, the FPCA procedure is
hereafter described using the side profile (H) as a representative exam-
ple. The experimental contour is first represented as a discrete dataset

sðiÞH ¼ ðxðiÞj ; yðiÞj Þ
n on

j¼1
, and the coefficient vector Ci corresponding to

the polynomial basis UH is obtained through least squares fitting. All
coefficient vectors are then assembled into a matrix CH

¼ ½C1; C2; …; Cl�.
To preserve orthogonality in the functional space, a mass matrix

is introduced as

MH ¼
ð1
0
UHðxÞUT

HðxÞ dx; (15)

which defines the weighted inner product in the L2ð½0; 1�Þ space
spanned by the basis functions UH . The Cholesky factorization MH

¼ LHLTH is then applied to transform the weighted inner product into
the standard Euclidean inner product through AH ¼ LTHCH . Finally,
the transformed coefficient matrix AH is centered by subtracting its
mean row, and the SVD AH ¼ UHKHVT

H is performed to extract the
orthogonal principal components of droplet profiles.

The ith contribution rate are defined as

rHi ¼ ðkHi Þ2
.Xq

i¼1

ðkHi Þ2; (16)

where kHi (i ¼ 1;…; q) are the non-zero singular values of AH and
q ¼ rankðAHÞ. The cumulative contribution ratio for the first k com-
ponents is then given by RH

k ¼ Pk
i¼1 r

H
i , which is used to determine

the effective dimensionality k required to capture the dominant defor-
mation profiles. In FPCA, as well as in traditional PCA, it is standard
practice to retain sufficient components to achieve a target level of
cumulative explained variance. Typical thresholds reported in the liter-
ature range from 70% to 90%, depending on data characteristics and
the desired balance between model accuracy and complexity.36,37

Following this well-established convention, the present study adopts a
cutoff of RH

k > 0:8, thereby retaining the first k components that col-
lectively account for more than 80% of the total variance. Finally, the
corresponding functional principal components are reconstructed as

BH ¼ UT
HL

�T
H

�UH ; (17)

where �UH ¼ ½u1; …; uk� contains the leading left singular vectors
corresponding to the FPCA basis of the side profile.

As summarized in Table I, the first principal component accounts
for more than 98% of the total variance for both the side and contact
line profiles, indicating that a single FPCA basis (k ¼ 1) is sufficient to
capture the dominant profile variability while maintaining the same

degrees of freedom as the classical reduced-order model. Therefore, we
select these first principal components as our new, data-informed basis
functions,

bH1 ¼ xð1� xÞð215x5 � 519x4 þ 472x3 � 195x2 þ 44:9x � 12:2Þ;
(18)

bY1 ¼ x
1
2ð1�xÞ12 35:5x5�95:6x4þ92:8x3�34x2�2:21xþ4:88ð Þ:

(19)

The coefficients in Eqs. (18) and (19) originate from the first principal
component obtained through FPCA of the experimental data after
normalization to the interval [0, 1]. These coefficients are specific to
the dataset and capture the structure of the droplet profiles, rather
than representing universal constants.

We reconstruct droplet profiles by expressing the fitted curves in
the FPCA-derived basis and projecting them back to the original space
(see Fig. 3). The excellent agreement between the FPCA reconstruc-
tions and experimental profiles is quantified by the L2 errors of 0.0025
(side profile) and 0.0031 (contact line profile). These results confirm
that the reduced basis retains sufficient accuracy to represent droplet
profiles while substantially lowering the dimensional complexity.

We now construct our final, optimized model by expressing H
and Y using these data-driven basis functions. Restoring the original
scaling with a1ðtÞ and a2ðtÞ, we define

Hnew ¼ ðx � a1Þða2 � xÞ½a3 þ a4ð215�x5 � 519�x4 þ 472�x3

� 195�x2 þ 44:9�x � 12:2Þ�; (20)

Ynew ¼ ðx � a1Þ
1
2ða2 � xÞ12½a5 þ a6ð35:5�x5 � 95:6�x4 þ 92:8�x3

� 34�x2 � 2:21�x þ 4:88Þ�; (21)

where �x ¼ ðx � a1Þ=ða2 � a1Þ is the normalized coordinate.
Substituting Hnew and Ynew into the Onsager principle yields the

time evolution equation for the parameters ai,

X6
j¼1

fij _aj þ
@A
@ai

¼ 0: (22)

Notably, the volume constraint in Eq. (2) ensures that only five of the
six parameters are independent. The new model, presented in Eq. (22),
preserves the same number of degrees of freedom as the original model
by Xu et al.20 in Eq. (5), but its dynamics are now guided by basis func-
tions derived from experimental data, enabling a more physical and
accurate representation of the droplet shape evolution.

III. NUMERICAL EXPERIMENTS

The physical experiment of a silicone oil droplet sliding down a
glass plate coated with fluoropolymer was investigated by Le Grand
et al.14 Xu et al.20 utilized the same parameters as the experimental

TABLE I. The ith principal component contribution rates rHi and rYi , i ¼ 1;…; 5 of
side profiles (H) and contact line profiles (Y).

i 1 2 3 4 5

rHi 0.9833 1.5� 10�2 1.8� 10�3 2.2� 10�4 8.0� 10�29

rYi 0.9956 3.7� 10�3 6.3� 10�4 4.3� 10�5 2.3� 10�31
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study conducted by Le Grand et al.14 in their numerical computa-
tions. These parameters include the viscosity g¼ 104 cP, density
q¼ 964kg/m3, surface tension c¼ 20.9mN/m, droplet volume
X¼ 6.3mm3, and the equilibrium contact angle he ¼ 53� equals to
the advancing contact angle reported in Ref. 14. It can be easily esti-
mated that the Reynolds number Re � 1, indicating that the inertial
effects can be neglected.

Figure 4 illustrates the scaling relation between the capillary num-
ber Ca ¼ gU=c and the Bond number Boa ¼ V2=3ðqg=cÞ sin a, where
U is the sliding velocity, and a the inclination angle. Data correspond-
ing to a ¼ 5�, 15�, 25�, 35�, and 45� collapse onto a nearly linear
trend, in agreement with experimental observations.14 This result veri-
fies that the reduced-order model preserves the correct force balance
governing droplet motion and thereby maintains physical consistency
across a wide range of inclination angles.

Figure 5 illustrates that at a ¼ 45�, the proposed model yields a
droplet contour with a rounded apex and rear curvature that more
closely resemble experimental observations, in contrast to the conical
shape predicted by the original formulation. This improvement
becomes even more evident when compared directly with experimen-
tal profiles14 in Fig. 6. Quantitatively, the average L2 error relative to
the experimental profile decreases from 0.1290 for the classical
Onsager-based model to 0.0206 for the FPCA-enhanced model, indi-
cating improved agreement with the experiments. The enhanced

accuracy arises from incorporating FPCA-based basis functions, which
capture complex profile variations while preserving the same degrees
of freedom as the original Onsager model.20 By reducing dimensional
complexity without sacrificing fidelity, the refined model achieves both

FIG. 3. Comparison between experimental
droplet profiles and numerical reconstruc-
tions at different inclination angles (top to
bottom, increasing a). Blue dots represent
experimental data points, green lines
denote least squares fits, and black dashed
lines show reconstructions obtained by pro-
jecting FPCA-reduced basis functions back
to the original space. Left: side profile (cor-
responding to H) and right: contact line pro-
file (corresponding to Y).

FIG. 4. Relationship between the capillary number Ca ¼ gU=c and the Bond num-
ber Boa ¼ V2=3ðqg=cÞ sin a for sliding droplets at different inclination angles (5�,
15�, 25�, 35�, and 45�).
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computational efficiency and improved predictive power for droplet
morphology.

Compared with the polynomial enrichment approach, the supe-
rior performance of the FPCA-enhanced model stems from its data-
driven construction. While higher-order polynomial bases increase the
geometric flexibility of the representation, they also considerably
increase computational complexity and tend to produce nonlinear sys-
tems with reduced numerical stability. In contrast, the FPCA basis
functions are directly extracted from experimental contour profiles,
inherently encoding nonlinear geometric features. Through these data-
driven embeddings, the FPCA-enhanced model captures the dominant
deformation modes that govern droplet evolution, enabling accurate
reconstruction of both the side and contact line profiles. This explains
why the FPCA-enhanced model achieves both lower L2 errors and
qualitatively more realistic profiles compared with polynomial enrich-
ment under the same number of degrees of freedom.

To further assess the generalizability of the proposed model
beyond the reference case, a parameter sensitivity analysis was con-
ducted. As shown in Fig. 7, the evolution of droplet profiles was simu-
lated for different viscosities (g ¼ 204 cP and g ¼ 1040 cP) at the
inclination angle of 45�. The droplets exhibit deformation and sliding
behaviors qualitatively similar to the reference case with g ¼ 104 cP
(as shown in Fig. 6). However, the time required to reach steady state
increases significantly with viscosity. When g ¼ 204 cP, the droplet
takes longer to reach a steady state, and for g ¼ 1040 cP, the sliding
process becomes substantially slower owing to enhanced viscous

dissipation. These observations are consistent with the experimental
findings of Le Grand et al.14

IV. SUMMARY

This work proposed a data-driven reduced-order model for the
shape evolution of droplets sliding on inclined surfaces. By combining
experimental contour profiles with the Onsager variational principle,
the model incorporated physical constraints while leveraging data to
refine basis functions. Functional principal component analysis
(FPCA) was employed to extract dominant modes, thereby reducing
computational complexity without sacrificing accuracy.

Numerical results demonstrated that the proposed framework sig-
nificantly improves upon the classical reduced model,20 particularly at
larger inclination angles. Unlike earlier formulations that predicted unre-
alistic conical shapes, the new model successfully reproduces the curved
apex and sharper rear corner observed in experiments. Moreover, the
capillary—bond number relationship obtained numerically was consis-
tent with physical principles, further validating the approach.

The methodological contribution of this work lies in showing
how experimental data can be systematically integrated into variational

FIG. 5. Contact line profile comparison of droplets predicted by the classical
Onsager-based model Eq. (5) (left: corresponding to Y) and the proposed FPCA-
enhanced model Eq. (22) (right: corresponding to Ynew) at inclination angles of 15

�,
25�, and 45� (top to bottom).

FIG. 6. Comparison of numerical results and experimental results14 [Fig. 4(e), repro-
duced with permission] for droplet contact line profile at Ca ¼ 7:19� 10�3 by the
classical Onsager-based model Eq. (5) (left: corresponding to Y, average L2 error
0.1290) and the proposed FPCA-enhanced model Eq. (22) (right: corresponding to
Ynew, average L2 error 0.0206). Reproduced with permission from Le Grand et al.
J. Fluid Mech. 541, 293–315 (2005). Copyright 2005 Cambridge University Press.

FIG. 7. Comparison of droplet evolution at an inclination angle of 45� for different
viscosities: g ¼ 204 cP and g ¼ 1040 cP. Both cases exhibit similar deformation
and sliding behavior as the reference case (g ¼ 104 cP), while higher viscosity
results in slower motion and longer time before reaching the steady state.
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modeling through FPCA-based reduction. This not only enhances pre-
dictive accuracy but also ensures physical interpretability. Although the
model demonstrates strong predictive performance, its accuracy relies
on the availability and representativeness of experimental contour data
used for FPCA training. The current implementation is limited to the
steady sliding of Newtonian droplets (silicone oil) under moderate
inclination angles. Future directions include extending the framework
to three-dimensional droplets with anisotropic contact angles, incorpo-
rating heterogeneous surface geometries, exploring transport phenom-
ena in microfluidic environments, and exploring synergies with
physics-informed neural networks for broader generalization.
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