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Abstract

A new variational method is proposed to calculate the evolution of liquid film and liquid droplet

moving on a solid substrate. A simple time evolution equation is obtained for the contact angle of

a liquid film that starts to move on a horizontal substrate. The equation indicates the dynamical

transition at the receding side, and the ridge formation at the advancing side. The same method

is applied for the evolution of a droplet that starts to move on an inclined solid surface, and again

the characteristic shape change of the droplet is obtained by solving a simple ordinary differential

system. We will show that this method has a potential application to a wide class of problems of

droplets moving on a substrate.
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I. INTRODUCTION

Motion of a liquid droplet on a solid substrate is a phenomenon we see in our everyday

life. It is also important in many industrial processes such as coating, painting and printing.

Extensive hydrodynamic study of the phenomena has been conducted both theoretically and

experimentally[1–5].

Dussan and coworkers[6–8] analysed the droplet shape in a static or quasi-static state

and the onset of the droplet movement under gravity or external shear flows. Amar et al[9]

studied the dynamics of a droplet spreading on a substrate. Extensive works have been done

by Limat and his collaborators[10–12] for the droplet sliding down on an inclined substrate.

Such studies have clarified characteristic features of sliding droplets, how the sliding velocity

depends on inclination angle and droplet volume, how the droplet shape changes with the

sliding velocity, and how rivulets appear at the tail of the droplet etc.

Theoretical analysis for the sliding droplet is not easy since one has to deal with the

contact line problem. The problem is already quite difficult for the simple two dimensional

case[13]. Indeed it has been shown[14] that the conventional boundary conditions (non-slip

condition at the solid-liquid interface and the stress condition at the free surface) give a non-

physical solution, and certain modifications are needed for the basic equations. Extension of

such analysis to the three dimensional case has been done only in limited cases (e.g. [10–12]).

The droplet motion on a sustrate is also a challenging problem from a view point of com-

putational hydrodynamics[15]. Solving the two-phase incompressible Navier-Stokes equation

with moving contact angle conditions require high level of numerical techniques and huge

computational resources[16]. For a three-dimensional problem, a parallel computation is

usually needed to compute the problem accurately. An alternative simplified model has

been proposed by Schwartz et al [17]. Though the computational cost of this method is less

than solving the original Navier-Stokes equation, solving their equation is still not so easy

since it is a fourth order nonlinear partial differential equation.

All above methods are based on some partial differential equations(PDEs), where efforts

have been focused on how to solve, analytically or numerically, the PDE for given boundary

conditions. In this paper, we shall propose an alternative approach. It is not rigorous, but

much simpler than the previous methods, and can be applied to a wide class of problems.

The method is based on a variational principle called Onsager principle [18, 19], which, in
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the present context, is derived from the minimum energy dissipation principle in Stokesian

hydrodynamics.

The essence of the method is explained in the next section. Briefly, it is based on the

fact that the time evolution of droplet shape is determined by a variational principle, i.e.,

by minimizing certain function (or functional) of droplet shape change. If we conduct

the minimization in the entire parameter space (or functional space), we get the same set

of equations used in the conventional theories. Here we conduct the minimization in a

restricted functional space, and obtain an approximate evolution equations for the droplet

shape.

We believe that such usage of variational principle is new. The novelty rests on the fact

that it is a variational principle determining dynamics. In the Stokesian hydrodynamics,

it is well known that the fluid velocity is obtained by minimizing the energy dissipation in

the system. This principle, known as minimum energy dissipation principle, is a principle

which determines the velocity field for given boundary conditions. The variational principle

used here is a principle which determines the evolution of the shape of boundaries, and is

an extended form of the minimum energy dissipation principle.

Such extended form of the variational principle may not be entirely new. The general-

ization from the minimum energy dissipation principle to the present variational principle

is quite simple, and may have been stated in other context. The variational principle in the

present form it has been proposed and used to calculate the shape change of a droplet in

an extensional flow[20]. However usage of this principle to problems which involve contact

line motion is new, as far as we know. The variational principle is particularly useful here

since solving the Stokes equation encounters the difficulty of singularity of solutions [14].

With the present method, one can avoid this difficulty and use it to many other problems

in wetting, coating, drying etc.

In this paper, we shall first study a 2D problem of liquid film sliding on a substrate.

Though this is a problem that has been studied extensively, we study it again to demonstrate

the simplicity of our method. We then apply the method to 3D problem of liquid droplet

sliding down on an inclined substrate. We derive a set of non-linear equations for the

parameters characterizing the droplet profile, and demonstrate that the present method can

predict the evolution of the droplet shape quantitatively.
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II. THE VARIATIONAL PRINCIPLE

The variational principle we shall use in this paper can be stated as follows[18, 19].

Consider a Stokesian hydrodynamic system which includes many boundaries (boundary

between fluid and solid or fluid and fluid). If the boundaries are moving driven by certain

potential forces (gravity, surface tension, etc), the evolution of the system is determined

by the following principle: Let a(t) = {a1(t), a2(t), ...aN(t)} be the set of the parameters

which specify the position of the boundaries. The time evolution of the system, i.e., the

time derivative ȧ(t) = {ȧ1(t), ȧ2(t), ...ȧN(t)} is determined by the minimum condition for

the following function of ȧ

R(ȧ, a) = Φ(ȧ, a) +
∑
i

∂A

∂ai
ȧi (1)

where A(a) is the potential energy of the system, and Φ(ȧ, a) is the energy dissipation

function which is defined as the half of the minimum of the energy dissipated per unit

time in the fluid when the boundary is changing at rate ȧ. Since the fluid obeys Stokesian

dynamics, Φ(ȧ, a) is always written as a quadratic function of ȧ.

Φ(ȧ, a) =
1

2

∑
i,j

ζij(a)ȧiȧj (2)

The minimum condition of eq.(1)

∂Φ

∂ȧi
+
∂A

∂ai
= 0 or

∑
j

ζij(a)ȧj = −∂A
∂ai

(3)

represents the force balance of two kinds of forces, the hydrodynamic frictional force ∂Φ/∂ȧi,

and the potential force −∂A/∂ai in the generalized coordinate.

The above variational principle can be proven directly from the basic equations of Stoke-

sian hydrodynamics [19]. It can also be regarded as a special form of Onsager principle

which describes the time evolution of non-equilibrium system characterized by certain set

of slow variables[19].

If we use the variational principle to obtain the evolution of the droplet shape in the

entire parameter space, we obtain the same set of equations that have been used in previous

theories[19]. ( Notice that the parameter set ai(t) can represent a continuous function such

as a(x, t), and the function R(ȧ, a) may be a functional such as R[ȧ(x, t), a(x, t)].) Here we

use the variational principle in a restricted parameter space. This gives us a new way of
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solving the problems. Application of the Onsager principle to other problems in the same

spirit can be found in ref [21–23].

III. LIQUID FILM SLINDING ON A SUBSTRATE

A. Problem

g

rx (0) ax (0)
ax (t)rx (t)

U

)t(x bbx (0)

(b) (a) 

g

xg

FIG. 1. A liquid film on a horizontal substrate. (a) at equilibrium, and (b) moving under the

horizontal acceleration gx.

To illustrate the essence of the present method, we consider the problem shown in Fig.1.

Consider a thin liquid film placed on a horizontal substrate. If the liquid is in equilibrium

under gravity( See Fig.1 (a)), the thickness of the liquid is given by he = θe/κe, where θe is

the equilibrium contact angle, and κe is the inverse of the capillary length (κe = (ρg/γ)1/2 )

, where γ and ρ are surface tension and density of the liquid, and g is the gravity constant.

Now suppose that a horizontal acceleration gx is applied to the liquid in x direction ( see

Fig.1 (b)). Then the bulk of the liquid starts to move with the velocity

U =
ρgxh

2
e

3η
(4)

where η is the viscosity of the fluid. Here we are assuming that the film is large enough so

that the dissipation near the contact points does not affact the velocity in the bulk. Our

objective here is to study the evolution of the film shape when it starts to move.

If the span of the film is large, the motion of the advancing side of the film and that of

the receding side are independent of each other. Therefore we first discuss the shape change

at the receding side.
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B. Evolution equation for liquid profile

First, we derive the evolution equation used in the conventional theory from the varia-

tional principle. To simplify the calculation, we consider the case that the contact angle

is small, and use the lubrication approximation. Let h(x, t) be the thickness of the liquid

film at point x and time t, and v(x, t) be the depth-averaged velocity. In the lubrication

approximation, the energy dissipation function Φ is written as

Φ[v(x, t);h(x, t)] =
1

2

∫ xb(t)

xr(t)

dx
3η

h(x, t)
v(x, t)2 (5)

where xr(t) is the position of the contact line, and xb(t) is the position of a fluid point which

can be taken at any point far from the contact line. Since the bulk fluid is moving at speeed

U , xb(t) = xb(0) + Ut.

The fluid velocity v(x, t) is uniquely determined by the time derivative of the liquid profile

ḣ(x, t) = ∂h/∂t due to the volume conservation condition for the fluid

ḣ = −∂h(x, t)v(x, t)

∂x
(6)

or in a integral form

h(x, t)v(x, t) = − d

dt

∫ x

xr(t)

dx′h(x′, t) (7)

The potential energy of the system can be written as a functional of h(x, t):

A[h(x, t)] =

∫ xb

xr

dx

[
1

2
γθ2e +

1

2
γh′2 +

1

2
ρgh2 − ρgxxh

]
(8)

It is easy to show that the minimization of R = Φ + Ȧ with respect to v gives the following

time evolution equation for h(x, t)

∂h

∂t
= − γ

3η

∂

∂x
h3
[
∂3h

∂x3
+ κ2e

(
∂h

∂x
− gx

g

)]
(9)

Equation (9) is exact within the lubrication approximation, and is essentially the same as

that used in the analysis of moving contact line.

C. Approximate calculation

Equation (9) has been obtained by seeking the minimum of R in the entire functional

space for h(x, t). Here we seek the minimum of R in a restricted functional space. We
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assume that h(x, t) is given by

h(x, t) = he
[
1− e−κ(t)(x−xr(t))

]
(10)

This functional form is chosen by the following consideration. The function h(x, t) must

vanish at the contact point (x = xr(t)) and must approach to he in the bulk ( x → ∞).

Also, the function h(x, t) in the equilibrium state is given given by (10) with κ = κe = heθe

[3]. Therefore (10) is correct at t = 0. When the liquid starts to move at constant velocity

U for t > 0, the receding contact angle decreases in time. Eq.(10) represents such shape

change. ( It is known that, in the steady state, the function h(x, t) will have a singular form

of h(x) ∝ x(−logx)1/3[10, 24] in an intermediate rage of x. Here we ignore such complexity

and use (10) as a candidate of the approximate profile.)

To determine κ(t), we will use the variational principle. If the functional form for h(x, t) is

assumed as in eq.(10), the fluid velocity v(x, t) is expressed in terms of ẋr and κ̇. Subxtituting

eq.(10) into eq.(7), we have

v(x, t) = ẋr −
κ̇

κ2
+
κ̇(x− xr)he

hκ
e−κ(x−xr) (11)

Since v(x, t) must approach to U for large value of x, we have a relation which constrains

ẋr and κ̇:

U = ẋr −
κ̇

κ2
(12)

Therefore we have only one parameter to be determined, κ(t), or the contact angle θ(t) =

heκ(t).

Using (11) in (5), we have the energy dissipation function Φ expressed as a quadratic

function of θ̇ = heκ̇ and U :

Φ =
1

2
(ζθθθ̇

2 + 2ζθU θ̇U + ζUUU
2) (13)

Explicit forms of the coefficients ζθθ, ζθU are obtained by eqs. (11) and (5). For example,

ζθθ is given by

ζθθ = 3η

∫ xb

xr

dx
(x− xr)2

κ2h3
xe−2κ(x−xr) (14)

The integral shows logarithmic divergence at x = xr, which is characteristic in the contact

line dynamics. If we retain only the diverging term, we have

ζθθ =
3ηh2e
θ5

log(1/κε) =
3`ηh2e
θ5

(15)
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where ε is the cut off length (of the molecular scale), and ` is a a large dimensionless

parameter given by ` = log(1/κε), which typically takes the value between 15 to 20 [3]. `

depends on κ weakly, but we regard it constant in the following calculation. Similarly, ζθU

is calculated as

ζθU = 3η

∫ xb

xr

dx
1

κh2
(x− xr)e−κ(x−xr) =

3`ηhe
θ3

(16)

By use of (10), this can be written as a function of θ, xb and xr. Then the generalized

potential force conjugate to θ is calculated by ∂A/∂θ. Straight forward calculation gives the

following result:

∂A

∂θ
=

γ

κe

[
θe
4

(
1− θ2e

θ2

)
+
gx
g

θ3e
θ3

]
=

γ

κe

[
θe
4

(
1− θ2e

θ2

)
+ 3

U

U∗
θe
θ3

]
(17)

where U∗ is the velocity defined by U∗ = γ/η, and we have used eq.(4) to eliminate gx.

The variational principle indicates that θ̇ is determined by ∂Φ/∂θ̇ + ∂A/∂θ = 0. Using

eqs. (13), (15) (16)and (17), we have the following time evolution equation for the receding

contact angle θ.
dθ

dt
= −(`+ 1)κeθ

2

`θe

[
U − U∗

12(`+ 1)
θ(θ2e − θ2)

]
(18)

Equation (18) indicates that if the system is at equilibrium at t = 0, θ decreases with time

and approaches to a constant value θr determined by the solution of the following equation

U =
U∗

12(`+ 1)
θr(θ

2
e − θ2r) (19)

Since the right hand side of eq.(19) has a maximum as a function of θr, such steady

state is realized only when U is less than this maximum value Uc, which is given by

Uc = U∗θ3e/18
√

3(` + 1). If U is larger than Uc, the contact angle keeps decreasing and

there is no steady state at the receding side. Such dynamical transition is known in the

contact line dynamics , and eq. (19) agrees with that given in ref. [3] apart from a numeri-

cal factor: in ref. [3], the coefficient 12(`+ 1) is replaced by 6`. (Notice that the difference

may come from the difference in the problem setup: in the present problem, the bulk fluid

is driven by the imposed acceleration gx (which is related to U), while in ref. [3], there is no

external driving force: the contact line is moving due to the difference between θr and θe.)

Examples of the time evolution is shown in Fig. 2. If U < Uc, the film profile approaches

to a steady state (Fig. 2 (a)), while if U > Uc, the contact angle keeps decreasing in time,

and there is no steady state. In the numerical experiment, we chose ` = 10.
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FIG. 2. The time evolution of the film profile at the receding side, (a) U = 0.76Uc. (b) U = 1.14Uc,

where Uc is the critical velocity at the dynamical transition, and te is defined by te = he/U .

The dynamical transition of receding contact line from steady receding state (where

the contact line stays at a certain position) to film forming state (where the contact line

keeps moving with the substrate) has been extensively studied[25–27], but the nature of the

transition is still not settled. De Gennes et al[3] showed that the transition is discontinuous,

i.e., the steady state contact angle jumps from finite value to zero at a certain critical

capillary number. Eggers et al[25] argued that the transition is continuous: it occurs at a

critical capillary number at which θr goes to zero. Experimentally, it is difficult to resolve the

issue since the actual transition behavior is much more complex. Snoeijer et al [28] showed

that transition involves the shape change of the contact line and film profile, and therefore

the one-dimensional analysis used in the theoretical studies is not enough to resolve the

problem. Maleki et al [29] studied the profile of the receding side carefully and concluded

that the receding angle may be discontinuous at the transition. Our result is consistent with

that of De Gennes et al, but the approximate nature of the present analysis is not enough

to draw any conclusion on this issue.

Similar analysis can be done for the advancing side. We assume that the film profile is
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given by

h(x, t) = he
[
1 + [a(t)(xa(t)− x)− 1]e−κe(xa(t)−x)

]
(20)

where a(t) and xa(t) are the parameters to be determined. Notice that here we used a

different functional form: we assumed that the decay constant in the exponential function

is equal to that at equilibrium, κe, and that the change of the film shape is represented by

the parameter a(t). The contact angle is given by θ(t) = [a(t) + κe]he. Similar calculation

as that in the receding side gives the following evolution equation θ(t)

dθ

dt
=

κe
`θe

(
U(`θ2e − θ2)−

U∗

6
θ3eθ(θ − θe)

)
. (21)

Here ` = log(1/(κeε)).

Fig.3 (a) shows an example of the evolution of the film profile in the advancing side. At

the advancing side, steady state is always attained, and a ridge is seen. Fig.3 (b) shows the

steady state contact angle as a function of the contact line velocity U . Since the hysteresis

effect of the contact line is not considered in the present analysis, the receding contact angle

θr and the advancing contact angle θa are connected smoothly at U = 0, i.e, θr|U=0 = θa|U=0

and |dθr/dU |U=0 = |dθa/dU |U=0.

D. Calculation with an alternative ansatz

In the previous calculation, we used different forms of function h(x, t) for the advancing

and receding sides. It is natural to ask how this assumption affects the results. To answer to

this question, we have repeated the calculation by the same functional form for the profile

for the two sides.

We assume that for the receding side the profile is given

h(x, t) = he
[
1 + [a(t)(x− xr(t))− 1]e−κ(t)(x−xr(t))

]
(22)

and that for the advancing side it is give by

h(x, t) = he
[
1 + [a(t)(xa(t)− x)− 1]e−κ(t)(xa(t)−x)

]
. (23)

In each side, we have three parameters, a,κ and xr(or xa), to be determined. By volume

conservation, only two of them are independent. We can choose a(t) and κ(t) as variables
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FIG. 3. (a) The time evolution of the film profile at the advancing side. The bulk velocity is

U = 0.0051U∗ and te = he/U . (b) Advancing angle and receding angles are plotted against the

capillary number Ca = U/U∗.

to be determined. By a similar calculation, we derive an ordinary differential equations for

a and κ, which are solved numerically.

Fig. 4 shows the changes of a(t) and κ(t) in the (a, κ) plane for various initial states where

the initial contact angles are taken to be equal to the equilibrium contact angle.

At the receding side (Fig. 4 (a)), it is seen that a(t) decays very quickly to 0, and (22)

becomes equivalent to (10). Therefore, at the receding side, the results completely agree

with those in the previous calculation. This is seen in the evolution of the profile shown in

Fig. 5(a).

On the other hand, at the advancing side, deviations are seen from the previous calcu-

lation. In the previous calculation, κ(t) was assumed to be equal to the equilibrium value
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κe, but as it is seen in Fig. 4(b), κ(t) decreases in time and approaches to a steady state

value(about 0.54κe). Accordingly, the liquid profile becomes different from that in the pre-

vious calculation (see 5(b)). However, it should be noted that characteristic features of the

film shape remain unchanged. Therefore we may conclude that the difference in the film

shape between the receding side and the advancing side obtained in the previous calculation

is not due to the difference in the ansatz, but due to the difference in physics and that this

difference in the physics is correctly captured by the present variational calculation.
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FIG. 4. (a) phase plane for the receding case; (b) phase plane for the advancing case
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FIG. 5. (a)Comparison for shape evolution for the receding case at t/te = 0, 6.2129, 15.1346,

24.0563, 32.9780 (from left to right). Blue: using ansatz (10); Red: using ansatz (22).

(b)Comparison for shape evolution for the advancing case. Blue: using ansatz (20); Red: us-

ing ansatz (23).
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IV. LIQUID DROPLET SLIDING DOWN ON AN INCLINED SUBSTRATE

Next we consider a liquid droplet which was at rest on a horizontal substrate and starts

to move when the base substrate is tilted by an angle α against the horizontal plane. We

take an orthogonal coordinate; z axis is normal to the substrate, x axis in the downward

direction, and y axis is in the horizontal plane. Let z = h(x, y, t) be the function which

defines the shape of the droplet at time t.

The shape of a sliding droplets has been studied both experimentally and theoretically[5,

10, 30]. Such studies indicate that the function h(x, y, t) can be approximately represented

by

h(x, y, t) = H(x, t)

[
1−

(
y

Y (x, t)

)2
]
. (24)

where H(x, t) and Y (x, t) are the functions to be determined. According to eq.(24), at a

given x coordinate, the droplet thickness decreases parabolically with y and becomes zero

at y = Y (x, t). Therefore the contact line of the droplet is given by the function y = Y (x, t).

The side view of the droplet is specified by the function z = H(x, t).

To proceed further, we assume that H(x, t) and Y (x, t) have the following form:

H(x, t) = (x− a1(t))(a2(t)− x)(a3(t) + a4(t)x), (25)

Y (x, t) = (x− a1(t))
1
2 (a2(t)− x)

1
2 (a5(t) + a6(t)x). (26)

where ai(t) (i = 1, 2, ...6) are the parameters which will be be determined by the varia-

tional principle. These parameters have the following meaning : a1 and a2 represent the

x-coordinates of the tail and the front of the contact line. The other parameters a3, a4, a5

and a6 represent the deformation of the droplet from the equilibrium shape. The fractional

power law dependence of Y (x, t) at x = a1 and at x = a2 indicates that the top view of the

droplet is round at the front and at the tail, but the tail can have a cusp if −a5/a6 becomes

equal to a1.

The volume of the droplet Ω is given by

Ω =

∫ a2

a1

dx

∫ Y

−Y
dyh(x, y, t) (27)

Since Ω is constant, only five in ai(t) are independent.
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The potential energy of the system is now given by

A(a) =
∫ a2
a1
dx
∫ Y
−Y dy

[
1
2
γθ2e + 1

2
γ[(∂xh)2 + (∂yh)2]

+ 1
2
ρgh2 sinα− ρgxh cosα

]
(28)

This can be expressed as a function of a = (a1, a2, ...a6) with the use of eqs.(24)-(26).

To determine the time evolution of ai, we need to know the energy dissipation function

expressed as a function ȧi. In the lubrication approximation, the energy dissipation in the

droplet can be generally written as a functional of velocity fields vx(x, y), vy(x, y) as in eq.(5)

Φ[vx, vy] =
1

2

∫ a2

a1

dx

∫ Y

−Y
dy

3η

h
(v2x + v2y) (29)

In calculations, a cut-off of the integral is needed and that will generate a log term, as in the

previous example. In addition, we do not include the dissipation term due to the contact line

friction[31, 32], which is small since the size of the droplet considered below is in millimetre

scale. If the droplet profile is changing with the rate ḣ, the velocity field has to satisfy the

volume conservation equation

ḣ = −∂x(vxh)− ∂y(vyh) (30)

Unlike the previous case, this equation does not determine vx and vy uniquely. The varia-

tional principle states that the proper energy dissipation function Φ(ȧ) are the minimum of

Φ[vx, vy] for the velocity field (vx, vy) that satisfies the constraint (30).

For eq.(24), eq. (30) is rewritten as(
1− y2

Y 2

)(
Ḣ + ∂x(vxH) +H∂yvy

)
+

2Hy

Y 3
(yẎ + yvx∂xY − Y vy) = 0 (31)

This constraint is satisfied if vx and vy satisfy

Ḣ + ∂x(vxH) +H∂yvy = 0, (32)

yẎ + yvx∂xY − Y vy = 0. (33)

A simple velocity field which satisfy the above equations is

vx(x, y, t) = V (x, t), vy(x, y, t) = W (x, t)y (34)
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where V (x, t) and W (x, t) are given by

V (x, t) = − 1

HY

∫ x

a1

(ḢY +HẎ )dx, (35)

W =
1

Y

(
Ẏ + V ∂xY

)
. (36)

Since Ḣ and Ẏ are expressed as a linear combination of ȧi, eqs.(34),(35) and (36) give the

energy dissipation function Φ(ȧ) which is a quadratic function of ȧ.

Φ(ȧ) =
1

2

∑
i,j

ζij ȧiȧj (37)

where the coefficients ζij are functions of a = (a1, a2, ..a6).

Given the free energy A(a) and the energy dissipation function Φ(ȧ), the time evolution

equation for ai is obtained as

6∑
j=1

ζij ȧj +
∂A

∂ai
= 0 (38)

All quantities in eq.(38) are expressed as function of ai, and can be evaluated numerically.

Equation (38) is then solved numerically.

An example of the results of such calculations is shown in Fig.6-9. Here we consider the

system discussed in ref. [33]. A droplet of silicone oil sliding down a glass plate coated with

fluoro-polymers. The parameters used in the calculation are η = 104cP, ρ = 964kgm−3,

γ = 20.9mNm−1 and θe = 53o(the advancing angle in [33]). The volume of the droplet is

6.3mm3.

Fig. 6 shows time evolutions of droplets when they starts to slide down on an inclined

substrate. Here the droplet is assumed to be at equilibrium on a horizontal substrate at

time 0, and then start to slide down when the substrate is inclined at an angle α for t > 0.

When the inclination angle α is small, the droplet takes a steady state in oval shape with

larger curvature at the receding side than at the advancing side (Fig.6 (b),(d)). When the

inclination angle α exceeds a certain critical value, a cusp appears gradually at the receding

side and the droplet keeps elongated as time goes on (Fig.6 (f))). This corresponds to the

experimental observation that the tail of the droplet becomes unstable, and the cusp breaks

up, leaving small droplets behind. The inclination angle at which the cusp appears in our

simulation is about 30o, while it is about 34o experimentally[5, 33].
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FIG. 6. Shape change of a droplet sliding down on an inclined surface. Left column: side view,

right column: top view. (a),(b): α = 15o, (c),(d): α = 25o, (e),(f): α = 45o The shape becomes

steady in (a) and (c), but not in (e).

Fig. 7 shows the relation between the sliding velocity U and the inclination angle α. The

sliding velocity U is represented by the capillary number Ca = ηU/γ, and the inclination

angle is represented by the bond number Boα = Bo sinα = V 2/3(ρg/γ) sinα. A linear

relation is seen between the capillary number and the Bond number. It is seen that the

slope of the calculated curve agrees with experimental curve. The agreement is encouraging

since no adjustable parameters are used in the calculation. On the other hand, the starting

points of the two curves do not agree with each other : the calculated curve starts from the
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origin, while the experimental curve is off and below this curve. This is due to the contact

angle hysteresis. Experimentally a droplet does not move until the inclination angle exceeds

a certain critical angle, while the theory predicts that the droplet starts to move when the

substrate is inclined slightly. The discrepancy can be resolved if the effect of hysteresis is

included, but such attempt has not been done here.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.005

0.01

0.015

Bo
α

C
a

 

 

Numerial simulation

Experiment

FIG. 7. Capillary-Bond number relations.

Fig. 8 shows the advancing angle and the receding angle plotted against the capillary

number. With increasing capillary number, the advancing angle increases and the reced-

ing angle decreases. The receding angles in numerical simulation are close to that from

experiments, while there is a discrepancy in the advancing angle. This discrepancy can be

reduced if the contact angle hysteresis is included, but, again, such refinement has not been

attempted. Fig. 9 shows the length(L), the width(W ) and the height(H) of the droplet plot-

ted against the capillary number. We see that the height H and the width W agree quite

well with the experiments. The agreement is not good for the length L. This is because L

is sensitive to the contact angle which shows deviation from experiments as shown in Fig.

8.

Fig. 10 shows a direct comparison for the droplet shape between theory and experiment

in Ref. [33]. Here we used the experimental receding angle 42o(rather than the advancing

angle 53o) for θe, and adjusted the cut-off parameters in the numerical calculation. It is seen
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FIG. 8. The advancing angle and receding angle versus the capillary number.
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FIG. 9. The length(L), width(W) and height(H) versus the capillary number.

that the numerical results fit the experiments quite well. As the capillary number increases,

the shape changes from oval, corner, cusp to rivulet. Once again, we note that, the cusp

shape is not a steady state in our numerical simulation, therefore it is compared with the

rivulet state in experiments.

Many analyses have been done for the sliding droplet [10–12, 30]. Special attention has

been paid on the shape of the rear corner, and its transition to revulets. Our results are

qualitatively in agreement with such studies. Clearly, the agreement is not perfect: the
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(a) (b) (c) (d)

FIG. 10. Compared with experiments for shape of a droplet at different regimes. (a) oval (Ca =

2.85 × 10−3), (b)corner (Ca = 4.95 × 10−3), (c) corner (Ca = 5.14 × 10−3), (d) cusp(rivulet)

(Ca = 7.19× 10−3).

experimentally observed shape of the rear corner is sharper than that that of the present

calculation. On the other hand, it should be stressed that the agreement shown in Fig. 10

has been obtained without using any physical adjustable parameters. All physical quantities

used in the calculation are those in the experimental paper except for the cut off parameter

`, which we used a typical value reported in literatures[2]. This demonstrates the present

simple method has a predictive power useful for practical applications. Better agreement

would be obtained if more variational parameters are introduced.

V. DISCUSSION AND CONCLUSION

In this paper, we have shown a variational method to calculate the evolution of liquid

droplet sliding on a substrate. We assumed a functional form of the droplet shape, and de-

termined the time evolution of the parameters involved in the functions using the variational

principle. This method gives a correct solution if the entire parameter space is searched, but

in a limited parameter space (with one or several parameters as in the present examples) it

gives approximate solutions. We have demonstrated that, though approximate, the method

reproduces characterisitc features of the dynamics of sliding liquid.

The advantage of this method is that it is easy to include various effects. As it has been

discussed in ref [19, 34], the variational principle is quite general, and many kinetic equa-

tions which have been used to describe the evolution of non-equilibrium system, such as the

convective-diffusion equation, Smoluchowskii equation for Brownian motion, Ericksen-Leslie
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equation for liquid crystals, gel dynamics equations, are derived from this principle. There-

fore the present variational method can be used to solve such wide class of problems. The

method has already been applied to a problem of contact line motion with solvent evapora-

tion [22], meniscus rise in elastic capillaries[23]. More examples are now being pursued and

will be published in future.
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