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Abstract

We propose a thermodynamically consistent phase-field model for fluid trans-
port across semi-permeable interfaces, focusing on the effects of osmotic
pressure. Unlike traditional sharp-interface approaches, our model treats
the membrane as a diffuse interface using a phase-field formulation, allow-
ing for natural treatment of large deformations and topological changes.
The governing equations extend the classical Navier–Stokes–Cahn–Hilliard
(NSCH) system by incorporating an Allen–Cahn-type transmembrane flux
driven by the chemical potential imbalance, resulting in a strongly coupled
Navier–Stokes–Cahn–Hilliard –Allen–Cahn (NSCHAC) system. To simulate
the complex interplay between solute concentration, osmotic pressure, and
fluid motion, we develop energy-stable and high-order numerical schemes.
Spatial discretization is performed using the local discontinuous Galerkin
(LDG) method, which offers flexibility and high-order accuracy. For time
integration, we first construct a first-order decoupled scheme with a rigorous
energy stability proof, and then enhance temporal accuracy using a semi-
implicit spectral deferred correction (SDC) strategy. Numerical experiments
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validate the theoretical properties of the scheme and illustrate how osmotic
pressure and membrane permeability influence droplet equilibrium morphol-
ogy. This framework provides a versatile tool for modeling osmotic-driven
transport in biological and industrial systems.

Keywords: Semi-Permeable Interface, Osmotic Driven Flow, Local
Discontinuous Galerkin, Energy Stable Scheme, Phase Field Method

1. Introduction

Semi-permeable membranes play a vital role in both biological and in-
dustrial systems by regulating the selective transport of substances across
compartments [1, 2]. In living cells, the plasma membrane is typically per-
meable to water but impermeable to solutes, enabling essential physiologi-
cal processes such as hydration, nutrient uptake, and waste removal [3, 4].
Water transport across such membranes is driven by two competing forces:
osmotic pressure, which results from solute concentration differences across
the membrane, and hydrostatic pressure, which arises from fluid mechanical
stress. Water tends to flow from regions of low to high osmotic pressure
or from high to low hydrostatic pressure regions. The interplay between
these forces determines the direction and magnitude of transmembrane flow.
When imbalanced, this can lead to pathological effects such as cell swelling
or shrinkage, impairing cellular function [5].

Modeling fluid transport through semi-permeable membranes under the
influence of both osmotic and hydrostatic pressure presents significant chal-
lenges. Traditional sharp-interface methods, such as the immersed boundary
method [6, 7, 8, 9], explicitly track the membrane as a moving interface
between fluid domains. While these approaches can capture basic mem-
brane dynamics, they typically require complex interface conditions to handle
transmembrane flow and are limited when dealing with large deformations
or topological changes.

To overcome the limitations of sharp-interface models, phase-field meth-
ods offer a robust alternative by representing membranes as diffuse inter-
faces via continuous order parameters, naturally accommodating topological
changes and large deformations. Phase-field approaches have been success-
fully used in vesicle dynamics, droplet interactions, and fluid–structure cou-
pling problems [10, 11, 12, 13]. However, the modeling of osmotic-pressure-
driven transmembrane water flow remains relatively unexplored. Recent
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work has extended the framework to incorporate osmotic pressure and semi-
permeable transport explicitly. For example, Rätz [14] derived a thermo-
dynamically consistent phase-field approximation that converges to a sharp-
interface limit where only the concentrations of substances are considered.
Tang et al. [4] introduced a phase-field model for vesicle growth driven by
osmotic pressure, incorporating an osmotic energy formulation.

The Navier-Stokes–Cahn-Hilliard (NSCH) system offers a natural setting
for modeling fluid–membrane interactions, particularly in two-phase flow sys-
tems. However, extending it to handle semi-permeable membranes—where
water can independently traverse the interface due to osmotic pressure—poses
new challenges. Specifically, it is nontrivial to capture the strong coupling
between solute concentration, osmotic pressure, and transmembrane flow
within a diffuse-interface framework. Several prior efforts have addressed
related challenges: Camley et al. [15] modeled intracellular confinement of
active substances, Lowengrub et al. [16] introduced phase-field models with
inextensibility constraints, and Garcke et al. [17] proposed models for sur-
factants soluble in both phases but constrained at interfaces. However, these
models do not account for osmotic-driven transport across semi-permeable
boundaries.

The primary objective of this work is to develop a thermodynamically
consistent phase-field model that accounts for water transport across semi-
permeable membranes driven by osmotic pressure differences. Our formula-
tion extends the NSCH system to incorporate fluid–structure coupling and
membrane permeability while preserving energy stability, thereby providing
a more realistic framework for simulating transmembrane fluid transport in
biological and industrial settings.

The energy variational approach [18, 19, 13] leads to a highly nonlin-
ear, coupled Navier–Stokes–Cahn– Hilliard–Allen–Cahn (NSCHAC) system,
where the Allen–Cahn term captures the volume change induced by the trans-
membrane water flow. Simulating this system poses significant challenges due
to its strong nonlinear couplings. Although many numerical schemes have
been developed for Allen–Cahn or Cahn–Hilliard–Navier– Stokes systems
[20, 21, 22, 23, 24, 25, 26, 27], our model exhibits a more intricate feedback
structure: convection drives solute transport, the resulting solute gradient
generates osmotic pressure, and osmotic flux in turn leads to volume changes
that affect solute concentration. Consequently, the interplay between fluid
motion, interfacial dynamics, and solute distribution is significantly stronger
and more nonlinear than in traditional models.
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The second goal of this work is to develop energy-stable and decoupled
numerical schemes for the proposed system. For spatial discretization, we
adopt the local discontinuous Galerkin (LDG) method [28, 29], which pro-
vides high-order accuracy, nonlinear stability, and adaptability to arbitrary
mesh refinement (h- and p-adaptivity). For time integration, we first con-
struct a first-order decoupled scheme and rigorously prove its energy stability
under the LDG framework. Although efficient, this scheme is limited to first-
order temporal accuracy. To address this, we incorporate the semi-implicit
spectral deferred correction (SDC) method [30, 31], enabling high-order accu-
racy in both space and time for the thermodynamically consistent phase-field
model of fluid transport through semi-permeable membranes.

This paper is organized as follows. In Section 2, we propose the phase-
field model for semi-permeable membranes. Section 3 presents the numer-
ical schemes: Subsection 3.1 introduces the first-order decoupled temporal
scheme, Subsection 3.2 describes the LDG method for spatial discretization
and proves its energy stability, and Subsection 3.3 applies the semi-implicit
SDC method to enhance temporal accuracy. Section 4 provides numerical re-
sults validating the theoretical analysis and exploring the effects of interface
permeability and osmotic pressure. Finally, concluding remarks are given in
Section 5.

2. Model derivation

For simplicity, we consider the semi-permeable interfaces with constant
surface tension. We start with the following conservation laws [13]

ρ
(
∂u
∂t

+ (u · ∇)u
)
= ∇ · ση +∇ · σϕ, in Ω,

∇ · u = 0, in Ω,
∂
∂t
(ζ±C±) +∇ · (ζ±C±u) = −∇ · (ζ±J±), in Ω,

∂ϕ
∂t

+∇ · (ϕu) = −∇ · Jϕ + Sϕ|∇ϕ|, in Ω,

(1)

where ρ is the density, C± is the concentration inside/outside of the droplet,
u is the velocity and ϕ is the label function and ζ+(ϕ) is a smooth index
function given by [17]

ζ+(ϕ) =


1 ϕ ≥ 1,

1
2
(1 + 1

2
ϕ(3− ϕ2)) |ϕ| < 1,
0 ϕ ≤ −1,

ζ−(ϕ) = 1− ζ+(ϕ).
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Here the first equation is the conservation law of momentum with two un-
known stresses ση and σϕ, the second is the fluid incompressibility, the third
is the conservation of substance with unknown flux J± and the last one is
the Cahn-Hilliard type to track the movement of the interface with unknown
flux Jϕ and source term Sϕ due to transmembrane water flow.

The total energy consists of kinetic, entropy and phase-mixing energy

E =Ekin + Eentropy + Emix (2)

=

∫
Ω

ρ
|u|2

2
dx+

∫
Ω

RT

(
ζ+C+(ln

C+

c∞
− 1) +ζ−C−(ln

C−

c∞
− 1)

)
dx

+

∫
Ω

λ

(
l2|∇ϕ|2

2
+ F (ϕ)

)
dx,

where R is the universal ideal gas constant, T is temperature, c∞ is the
characteristic concentration, ρ is density, λ is surface energy density, l is
surface thickness and F (ϕ) = 1

4
(ϕ2 − 1)2 is the double-well potential.

Remark 1. More complicated cases with variable surface tensions, such as
the bending modulus of vesicles, can be handled by adding more terms in the
energetic function [32, 13].

Corresponding to the total energy, we could define the chemical potentials

µ̃ϕ = λ(−l2∆ϕ+ F ′(ϕ))−RT

(
∂ζ+
∂ϕ

C+ +
∂ζ−
∂ϕ

C−

)
, µ±

c = RT ln
C±

c∞
.

The dissipative functional consists of fluid friction, and irreversible mixing
of the substance and two phases in the bulk

∆ =

∫
Ω

(
2η|Dη|2 +

∑
±

ζ±
D±C±

RT
|∇µ±

c |2 +M|∇µ̃ϕ|2 +K|∇ϕ||µ̃ϕ|2
)
dx,

(3)

where η is the viscosity of the fluid, Dη =
1
2
(∇u+ (∇u)T ) is the strain rate,

M is the phenomenological mobility, D± is the intrinsic diffusion coefficient
of substance in Ω±, K is the interface permeability.

The energy dissipative law [18, 33, 19] states that without external force
acting on the system, the changing rate of total energy equals to the dissi-
pation

dE

dt
=
dEkin

dt
+
dEentropy

dt
+
dEmix

dt
= −∆.

5



Using the definition of the total energy functional (2) and the conserva-
tion laws in (1), we can obtain the following energy dissipation relation (see
Appendix for a detailed derivation):

dE

dt
=−

∫
Ω

∇u : (ση + σϕ) dx−
∫
Ω

p∇ · u dx−
∫
Ω

λl2(∇ϕ⊗∇ϕ) : ∇u dx

+

∫
Ω

(
ζ+J+ · ∇µ+

c + ζ−J− · ∇µ−
c

)
dx+

∫
Ω

Jϕ · ∇µ̃ϕ dx+

∫
Ω

µ̃ϕSϕ|∇ϕ| dx.

By comparing the terms above with the dissipation functional given in
equation (3), we can identify the explicit expressions for the unknown quan-
tities such as the fluxes and stress tensors.

Jϕ = −M∇µ̃ϕ, J± = −D±C±

RT
∇µ±

c = −D±∇C±,

ση = 2ηDη − pI, σϕ = −λl2(∇ϕ⊗∇ϕ), Sϕ = −Kµ̃ϕ.

Substituting the above into (1) yields the phase-field model for the semiper-
meable interface

Dϕ

Dt
= ∇ · (M∇µ̃ϕ)−Kµ̃ϕ|∇ϕ|,

D

Dt
(ζ±C±) = ∇ · (ζ±D±∇C±),

ρ
Du

Dt
= ∇ · (η(∇u+ (∇u)T ))−∇p− λl2∇ · (∇ϕ⊗∇ϕ),

∇ · u = 0,

µ̃ϕ = λ(−l2∆ϕ+ F ′(ϕ))−RT

(
∂ζ+
∂ϕ

C+ +
∂ζ−
∂ϕ

C−

)
,

with boundary conditions

∇ϕ · n|∂Ω = 0, ∇C± · n|∂Ω = 0, ∇µ̃ϕ · n|∂Ω = 0, u|∂Ω = 0. (4)

Let L∗, U∗, C∗ = c∞, and D∗ denote the characteristic length, velocity,
concentration, and diffusion coefficient, respectively. Define the characteristic
time and chemical potential as t∗ = L∗

U∗ and µ∗ = λl
L∗ . Using these scalings,

the dimensionless form of the system is given by:

Dϕ

Dt
= ∇ · (M∇µ̃ϕ)−

K

Ca
µ̃ϕ|∇ϕ|,
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D

Dt
(ζ±C±) =

1

Pe
∇ · (ζ±D±∇C±),

Re
Du

Dt
= ∇ · (η(∇u+ (∇u)T ))−∇p− ϵ

Ca
∇ · (∇ϕ⊗∇ϕ),

∇ · u = 0,

µ̃ϕ = −ϵ∆ϕ+
1

ϵ
F ′(ϕ)− β

ϵ

(
∂ζ+
∂ϕ

C+ +
∂ζ−
∂ϕ

C−

)
,

where

Re =
ρU∗L∗

η∗
, P e =

U∗L∗

D∗ , Ca =
η∗U∗

λl
, β =

RTC∗

λ
,K =

Kη∗

L∗ , ϵ =
l

L∗ .

Using the fact that

−ϵ∇ · (∇ϕ⊗∇ϕ) = −ϵ∇ϕ∆ϕ− ϵ

2
∇|∇ϕ|2

= µ̃ϕ∇ϕ+
β

ϵ
(C+∇ζ+ + C−∇ζ−)−∇(

1

ϵ
F (ϕ) +

ϵ

2
|∇ϕ|2),

the above system could be written as

∂ϕ

∂t
+ u · ∇ϕ = ∇ · (M∇µ̃ϕ)−

K

Ca
µ̃ϕ|∇ϕ|, (5a)

∂(ζ±C±)

∂t
+∇ · (uζ±C±) =

1

Pe
∇ · (ζ±D±∇C±), (5b)

Re(
∂u

∂t
+ (u · ∇)u) = ∇ · (η(∇u+ (∇u)T ))−∇p+ 1

Ca
µ̃ϕ∇ϕ+

β

Caϵ
(C+∇ζ+ + C−∇ζ−),

(5c)

∇ · u = 0, (5d)

µ̃ϕ = −ϵ∆ϕ+
1

ϵ
F ′(ϕ)− β

ϵ

(
∂ζ+
∂ϕ

C+ +
∂ζ−
∂ϕ

C−

)
, (5e)

with boundary conditions (4).

Remark 2. If we use the identities

n = − ∇ϕ
|∇ϕ|

, and |∇ϕ| = ∇ϕ
|∇ϕ|

· ∇ϕ = −n · ∇ϕ,

then the equation (5a) can be rewritten as

∂ϕ

∂t
+ u · ∇ϕ− K

Ca
µ̃ϕ n · ∇ϕ =

∂ϕ

∂t
+ v · ∇ϕ = ∇ · (M∇µ̃ϕ),
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where the interface velocity is defined by v = u − K
Ca
µ̃ϕn. As a result, the

transmembrane water velocity relative to the interface is given by Un = u−
v = K

Ca
µ̃ϕn.

Theorem 1. The above system (5) with boundary conditions (4) satisfies
the following energy dissipation law

d

dt

(
Re

2

∫
Ω

|u|2dx+
1

Ca

∫
Ω

(
ϵ

2
|∇ϕ|2 + 1

ϵ
F (ϕ))dx+

∑
±

β

Caϵ

∫
Ω

ζ±C±(lnC± − 1)dx

)

=−
∫
Ω

η|∇u|2dx− 1

Ca

∫
Ω

M|∇µ̃ϕ|2dx− 1

Ca

∫
Ω

K

Ca
|µ̃ϕ|2|∇ϕ|dx

−
∑
±

β

Caϵ

1

Pe

∫
Ω

ζ±D±C±|∇µ±
c |2dx,

where µ±
c = lnC±.

Proof. Multiplying equation (5a) by
µ̃ϕ

Ca
and integration by parts yields

1

Ca

∫
Ω

∂ϕ

∂t
µ̃ϕdx+

1

Ca

∫
Ω

u · ∇ϕµ̃ϕdx = − 1

Ca

∫
Ω

M|∇µ̃ϕ|2dx− 1

Ca

∫
Ω

K

Ca
|µ̃ϕ|2|∇ϕ|dx.

(6)

Multiplying equation (5e) by 1
Ca

∂ϕ
∂t

and integration by parts, we have

1

Ca

∫
Ω

µ̃ϕ
∂ϕ

∂t
dx =

1

Ca

d

dt

∫
Ω

(
ϵ

2
|∇ϕ|2 + 1

ϵ
F (ϕ))dx− β

ϵCa

∫
Ω

∂ϕ

∂t

(
∂ζ+
∂ϕ

C+ +
∂ζ−
∂ϕ

C−

)
dx.

(7)

Then, the above two equations give

1

Ca

d

dt

∫
Ω

(
ϵ

2
|∇ϕ|2 + 1

ϵ
F (ϕ))dx− β

ϵCa

∫
Ω

∂ϕ

∂t

(
∂ζ+
∂ϕ

C+ +
∂ζ−
∂ϕ

C−

)
dx+

1

Ca

∫
Ω

u · ∇ϕµ̃ϕdx

=− 1

Ca

∫
Ω

M|∇µ̃ϕ|2dx− 1

Ca

∫
Ω

K

Ca
|µ̃ϕ|2|∇ϕ|dx. (8)

For equation (5b), using the definition µ±
c = lnC±, it yields

β

Caϵ

∫
Ω

∂(ζ±C±)

∂t
µ±
c dx+

β

Caϵ

∫
Ω

u · ∇(ζ±C±)µ
±
c dx
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=
β

Caϵ

∫
Ω

∂(ζ±C±)

∂t
µ±
c dx− β

Caϵ

∫
Ω

u · (C±∇µ±
c )ζ±dx

=
β

Caϵ

∫
Ω

∂(ζ±C±)

∂t
µ±
c dx− β

Caϵ

∫
Ω

u · ∇C±ζ±dx

=
β

Caϵ

∫
Ω

∂(ζ±C±)

∂t
µ±
c dx+

β

Caϵ

∫
Ω

u · ∇ζ±C±dx

=− β

Caϵ

1

Pe

∫
Ω

ζ±D±C±|∇µ±
c |2dx. (9)

Multiplying equation (5c) with u and by the incompressibility constraint
∇ · u = 0, we have

d

dt

Re

2

∫
Ω

|u|2dx = −
∫
Ω

η|∇u|2dx+
1

Ca

∫
Ω

µ̃ϕ∇ϕ · udx+
β

Caϵ

∫
Ω

(C+∇ζ+ + C−∇ζ−) · udx.

(10)

Adding the above three equations yields

d

dt

Re

2

∫
Ω

|u|2dx+
d

dt

1

Ca

∫
Ω

(
ϵ

2
|∇ϕ|2 + 1

ϵ
F (ϕ))dx

− β

ϵCa

∫
Ω

∂ϕ

∂t

(
∂ζ+
∂ϕ

C+ +
∂ζ−
∂ϕ

C−

)
dx+

β

Caϵ

∫
Ω

(
∂(ζ+C+)

∂t
µ+
c +

∂(ζ−C−)

∂t
µ−
c

)
dx

=
d

dt

Re

2

∫
Ω

|u|2dx+
d

dt

1

Ca

∫
Ω

(
ϵ

2
|∇ϕ|2 + 1

ϵ
F (ϕ))dx

+
β

Caϵ

∫
Ω

(
∂(ζ+C+)

∂t
µ+
c − ∂ζ+

∂t
C+ +

∂(ζ−C−)

∂t
µ−
c − ∂ζ−

∂t
C−

)
dx

=
d

dt

Re

2

∫
Ω

|u|2dx+ d

dt

1

Ca

∫
Ω

(
ϵ

2
|∇ϕ|2 + 1

ϵ
F (ϕ))dx

+
d

dt

β

Caϵ

∫
Ω

(ζ+C+(lnC+ − 1) + ζ−C−(lnC− − 1))dx

=−
∫
Ω

η|∇u|2dx− 1

Ca

∫
Ω

M|∇µ̃ϕ|2dx− 1

Ca

∫
Ω

K

Ca
|µ̃ϕ|2|∇ϕ|dx (11)

−
∑
±

β

Caϵ

1

Pe

∫
Ω

ζ±D±C±|∇µ±
c |2dx.
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3. Numerical scheme

The purpose of this section is to develop high-order, decoupled, and
energy-stable numerical schemes to solve the model (5).

3.1. Semi-discrete scheme in time

A first-order and decoupled energy stable numerical scheme is as follows:
assuming that (ϕn,un, Cn

±) are already known, we then compute (ϕn+1,un+1, Cn+1
± )

from the following temporal discrete system.
Step 1:



ϕn+1 − ϕn

∆t
= M∆µ̃n+1

ϕ −∇ · (ϕnun
∗ )−

K

Ca
µ̃n+1
ϕ |∇ϕn|,

µ̃n+1
ϕ = −ϵ∆ϕn+1 +

S

ϵ
(ϕn+1 − ϕn) +

1

ϵ
f(ϕn)− β

ϵ

ζn+1
+ − ζn+
ϕn+1 − ϕn

Cn+1
+ − β

ϵ

ζn+1
− − ζn−
ϕn+1 − ϕn

Cn+1
− ,

ζn+1
± Cn+1

± − ζn±C
n
±

∆t
=

1

Pe
∇ · (ζn±Dn

±C
n+1
± ∇µn+1

c± )−∇ · (un
∗ζ

n
±C

n
±),

µn+1
c± = lnCn+1

± ,
(12)

with

un
∗ = un − ∆t

CaRe
ϕn∇µ̃n+1

ϕ − β∆t

CaϵRe
(ζn+C

n
+∇µn+1

c+
+ ζn−C

n
−∇µn+1

c− ). (13)

Step 2:

Re

(
ũn+1 − un

∆t
+ (un · ∇)ũn+1

)
=η∆ũn+1 −∇pn − 1

Ca
ϕn∇µ̃n+1

ϕ (14)

− β

Caϵ
(ζn+C

n
+∇µn+1

c+
+ ζn−C

n
−∇µn+1

c− ).

Step 3: Re
un+1 − ũn+1

∆t
+∇(pn+1 − pn) = 0,

∇ · un+1 = 0.
(15)

Taking divergence of the first equation in (15) yields

−∆(pn+1 − pn) = −Re
∆t

∇ · ũn+1, (16)
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due to the condition ∇ · un+1 = 0.
Actually, the time discretization technique for the double-well potential

F (ϕ) is the stabilized semi-implicit method. We assume that F (ϕ) satisfies
the following condition: there exists a constant L such that

max
ϕ

|F ′′(ϕ)| ≤ L. (17)

It is known that F (ϕ) does not satisfy (17). However, its has been a common
practice [34] to consider the Cahn-Hilliard equation with a truncated double
well potential F̃ (ϕ). It is then obvious that there exists a constant L such
that (17) is satisfied with F (ϕ) replaced by F̃ (ϕ).

Theorem 2. Assuming that the condition (17) is satisfied and S ≥ L/2.
Then the scheme (12)-(15) is energy stable and satisfies the following discrete
energy law

En+1 − En

≤−∆tη||∇ũn+1||2 − ∆tM
Ca

||∇µ̃n+1
ϕ ||2 − ∆t

Ca

K

Ca

∫
Ω

|µ̃n+1
ϕ |2|∇ϕn|dx

−
∑
±

∆tβ

CaϵPe

∫
Ω

ζn±D
n
±C

n+1
± |∇µn+1

c± |2dx.

where || · || denotes the discrete L2 norm in domain Ω and

En =
Re

2
||un||2+ 1

Ca

(
ϵ

2
||∇ϕn||2 + ∆t2

2Re
||∇pn||2 + 1

ϵ
(F (ϕn), 1)

)
+

β

Caϵ

(∑
±

ζn±C
n
±(lnC

n
± − 1), 1

)
.

Proof. From (13), we have

Re
ũn+1 − un

∆t
+

1

Ca
ϕn∇µ̃n+1

ϕ +
β

Caϵ
(ζn+C

n
+∇µn+1

c+
+ζn−C

n
−∇µn+1

c− ) = Re
ũn+1 − un

∗
∆t

.

Taking the inner product of (14) with ∆tũn+1, using the above relation, we
derive

Re

2
||ũn+1||2−Re

2
||un

∗ ||2+
Re

2
||ũn+1−un

∗ ||2+η∆t||∇ũn+1||2+∆t(∇pn, ũn+1) = 0.

(18)
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To deal with the last term in the above, we first take the inner product of
(15) with ∆t∇pn to obtain

∆t2

2Re
(||∇pn+1||2 − ||∇pn||2 − ||∇pn+1 −∇pn||2) = ∆t(ũn+1,∇pn). (19)

We also derive from (15) that

∆t2

2Re
||∇pn+1 −∇pn||2 = Re

2
||ũn+1 − un+1||2. (20)

We then take the inner product of (15) with un+1 to get

Re

2
||un+1||2 + Re

2
||un+1 − ũn+1||2 = Re

2
||ũn+1||2. (21)

Combining equations (18)-(21), we find

Re

2
||un+1||2−Re

2
||un

∗ ||2+
Re

2
||ũn+1−un

∗ ||2+η∆t||∇ũn+1||2+∆t2

2Re
(||∇pn+1||2−||∇pn||2) = 0.

(22)
Next, we use the relation (13) to deal with ||un

∗ ||2 in (22). Taking the inner
product of (13) with Reun

∗ , we obtain

Re

2
||un

∗ ||2 −
Re

2
||un||2 + Re

2
||un

∗ − un||2 (23)

=− ∆t

Ca
(ϕn∇µ̃n+1

ϕ ,un
∗ )−

β∆t

Caϵ
(ζn+C

n
+∇µn+1

c+
+ ζn−C

n
−∇µn+1

c− ,un
∗ ).

Adding (22) and (23), we have

Re

2
||un+1||2 − Re

2
||un||2 + Re

2
||ũn+1 − un

∗ ||2 +
Re

2
||un

∗ − un||2 + η∆t||∇ũn+1||2

+
∆t2

2Re
(||∇pn+1||2 − ||∇pn||2) (24)

=− ∆t

Ca
(ϕn∇µ̃n+1

ϕ ,un
∗ )−

β∆t

Caϵ
(ζn+C

n
+∇µn+1

c+
+ ζn−C

n
−∇µn+1

c− ,un
∗ ).

It now remains to deal with the last two terms in the above.
Taking the inner product of the first equation of (12) with ∆t

Ca
µ̃n+1
ϕ , we

get

1

Ca
(ϕn+1 − ϕn, µ̃n+1

ϕ ) (25)

12



= −M∆t

Ca
||∇µ̃n+1

ϕ ||2 − ∆t

Ca
(∇ · (un

∗ϕ
n), µ̃n+1

ϕ )− ∆t

Ca

K

Ca

∫
Ω

|µ̃n+1
ϕ |2|∇ϕn|dx,

and taking the inner product of the second equation of (12) with − 1
Ca

(ϕn+1−
ϕn), we obtain

− 1

Ca
(µ̃n+1

ϕ , ϕn+1 − ϕn)

=− ϵ

2Ca
(||∇ϕn+1||2 − ||∇ϕn||2 + ||∇ϕn+1 −∇ϕn||2)

+
β

Caϵ
((ζn+1

+ − ζn+)C
n+1
+ , 1) +

β

Caϵ
((ζn+1

− − ζn−)C
n+1
− , 1) (26)

− 1

Caϵ
(S(ϕn+1 − ϕn) + f(ϕn), ϕn+1 − ϕn).

For the last term in (26), we use the Taylor expansion

F (ϕn+1)− F (ϕn) = f(ϕn)(ϕn+1 − ϕn) +
f ′(ξn)

2
(ϕn+1 − ϕn)2.

Taking the inner product of the third equation of (12) with β∆t
Caϵ

µn+1
c± , we have

β

Caϵ
(ζn+1

± Cn+1
± − ζn±C

n
±, µ

n+1
c± )

=− β∆t

PeCaϵ

∫
Ω

ζn±D
n
±C

n+1
± |∇µn+1

c± |2dx− β∆t

Caϵ
(∇ · (un

∗ζ
n
±C

n
±), µ

n+1
c± ). (27)

Combining (24), (25), (26) and (27), we have

Re

2
||un+1||2 − Re

2
||un||2 + Re

2
||ũn+1 − un

∗ ||2 +
Re

2
||un

∗ − un||2

+ η∆t||∇ũn+1||2 + ∆t2

2Re
(||∇pn+1||2 − ||∇pn||2)

+
M∆t

Ca
||∇µ̃n+1

ϕ ||2 + ∆t

Ca

K

Ca

∫
Ω

|µ̃n+1
ϕ |2|∇ϕn|dx

+
ϵ

2Ca
(||∇ϕn+1||2 − ||∇ϕn||2 + ||∇ϕn+1 −∇ϕn||2) (28)

+
β∆t

PeCaϵ

∫
Ω

ζn±D
n
±C

n+1
± |∇µn+1

c± |2dx+
1

Caϵ
(F (ϕn+1)− F (ϕn), 1)

+
1

Caϵ
((S − f ′(ξn)

2
)(ϕn+1 − ϕn), ϕn+1 − ϕn)

13



+
β

Caϵ

∑
±

(ζn+1
± Cn+1

± − ζn±C
n
±, µ

n+1
c± ) +

β

Caϵ

∑
±

((ζn+1
± − ζn±)C

n+1
± , 1) = 0.

For the last two terms in the above, we use the following relation

(ζn+1
± Cn+1

± − ζn±C
n
±) lnC

n+1
± − (ζn+1

± − ζn±)C
n+1
±

=[(ζn+1
± − ζn±)C

n+1
± + ζn±(C

n+1
± − Cn

±)] lnC
n+1
± − (ζn+1

± − ζn±)C
n+1
±

=(ζn+1
± − ζn±)C

n+1
± (lnCn+1

± − 1) + ζn±(C
n+1
± − Cn

±) lnC
n+1
±

=(ζn+1
± − ζn±)C

n+1
± (lnCn+1

± − 1) + ζn±(C
n+1
± − Cn

±)(lnC
n+1
± − 1) + ζn±(C

n+1
± − Cn

±).

Using the Taylor expansion, it is easy to get

lnCn+1
± − lnCn

± =
1

Cn
±
(Cn+1

± − Cn
±)−

1

2ξ2
(Cn+1

± − Cn
±)

2.

Combining the above two equalities, we find

(ζn+1
± Cn+1

± − ζn±C
n
±) lnC

n+1
± − (ζn+1

± − ζn±)C
n+1
± (29)

=ζn+1
± Cn+1

± (lnCn+1
± − 1)− ζn±C

n
±(lnC

n
± − 1) +

ζn±C
n
±

2ξ2
(Cn+1

± − Cn
±)

2.

Therefore, combining (28) and (29), we have the energy stability result.

3.2. The fully-discrete LDG scheme and its energy stability

In this subsection, the LDG scheme to solve the scheme (12)-(15) is pro-
posed.

Let Th = {K} be a shape-regular subdivision of Ω. Eh denotes the union
of the boundary faces of elements K ∈ Th, and E0 = Eh \ ∂Ω. Let Pk(K) be
the space of polynomials of degree at most k ≥ 0 on K ∈ Th. The DG finite
element spaces are denoted by

Vh =
{
φ : φ|K ∈ Pk(K), ∀K ∈ Th

}
,

Wh =
{
Φ = (ϕ1, · · · , ϕd)

T : ϕl|K ∈ Pk(K), l = 1 · · · d, ∀K ∈ Th

}
,

Πh =
{
Θ = (θ1, · · · ,θd)

T : θl|K ∈ (Pk(K))d, l = 1 · · · d, ∀K ∈ Th

}
.

To develop the LDG scheme, we first rewrite (12)-(15) as a first-order
system

ϕn+1 − ϕn

∆t
= M∇ ·wn+1 −∇ · qn+1 − K

Ca
µ̃n+1
ϕ |vn|, (30a)

14



wn+1 = ∇µ̃n+1
ϕ , (30b)

qn+1 = ϕnun
∗ , (30c)

µ̃n+1
ϕ = −ϵ∇ · vn+1 +

S

ϵ
(ϕn+1 − ϕn) +

1

ϵ
f(ϕn)− β

ϵ

∑
±

ζn+1
± − ζn±
ϕn+1 − ϕn

Cn+1
± ,

(30d)

vn+1 = ∇ϕn+1, (30e)

ζn+1
± Cn+1

± − ζn±C
n
±

∆t
=

1

Pe
∇ ·wn+1

± −∇ · qn+1
± , (30f)

wn+1
± = ζn±D

n
±C

n+1
± sn+1

± , (30g)

sn+1
± = ∇µn+1

c± , (30h)

µn+1
c± = lnCn+1

± , (30i)

qn+1
± = un

∗ζ
n
±C

n
±, (30j)

Re
ũn+1 − un

∆t
= η∇ ·Qn+1 −Re(un · ∇)ũn+1 − rn − 1

Ca
ϕnwn+1 (30k)

− β

Caϵ

∑
±

ζn±C
n
±s

n+1
± ,

Qn+1 = ∇ũn+1, (30l)

rn+1 = ∇pn+1, (30m)

Re
un+1 − ũn+1

∆t
= −(rn+1 − rn), (30n)

∇ · un+1 = 0. (30o)

Then the LDG scheme to solve (30) is: find ϕn+1, µ̃n+1
ϕ , Cn+1

± , µn+1
c± , pn+1 ∈

Vh, w
n+1, qn+1, vn+1, wn+1

± , sn+1
± , qn+1

± , ũn+1, un+1, rn+1 ∈ Wh, Q
n+1 ∈ Πh,

such that, for all test functions φ1, φ2, φ3, ψ±, χ± ∈ Vh, θ1, θ2, θ3, θ4, θ5,
θ6, ϱ±, ϖ±, ϑ± ∈ Wh, and Θ ∈ Πh, we have∫

K

ϕn+1 − ϕn

∆t
φ1dK = −

∫
K

(Mwn+1 − qn+1) · ∇φ1dK

+

∫
∂K

(Mŵn+1 − q̂n+1) · nφ1ds−
∫
K

K

Ca
µ̃n+1
ϕ |vn|φ1dK, (31a)∫

K

wn+1 · θ1dK = −
∫
K

µ̃n+1
ϕ ∇ · θ1dK +

∫
∂K

̂̃µn+1

ϕ θ1 · nds, (31b)∫
K

qn+1 · θ2dK =

∫
K

ϕnun
∗ · θ2dK, (31c)
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∫
K

µ̃n+1
ϕ φ2dK = ϵ

∫
K

vn+1 · ∇φ2dK − ϵ

∫
∂K

v̂n+1 · nφ2ds+
1

ϵ

∫
K

f(ϕn)φ2dK

+

∫
K

(
S

ϵ
(ϕn+1 − ϕn)− β

ϵ

∑
±

ζn+1
± − ζn±
ϕn+1 − ϕn

Cn+1
±

)
φ2dK, (31d)∫

K

vn+1 · θ3dK = −
∫
K

ϕn+1∇ · θ3dK +

∫
∂K

ϕ̂n+1θ3 · nds, (31e)∫
K

ζn+1
± Cn+1

± − ζn±C
n
±

∆t
ψ±dK = −

∫
K

(
1

Pe
wn+1

± − qn+1
± ) · ∇ψ±dK

+

∫
∂K

(
1

Pe
ŵn+1

± − q̂n+1
± ) · nψ±ds, (31f)∫

K

wn+1
± · ϱ±dK =

∫
K

ζn±D
n
±C

n+1
± sn+1

± · ϱ±dK, (31g)∫
K

sn+1
± ·ϖ±dK = −

∫
K

µn+1
c± ∇ ·ϖ±dK +

∫
∂K

µ̂n+1
c± ϖ± · nds, (31h)∫

K

µn+1
c± χ±dK =

∫
K

lnCn+1
± χ±dK, (31i)∫

K

qn+1
± · ϑ±dK =

∫
K

un
∗ζ

n
±C

n
± · ϑ±dK, (31j)

Re

∫
K

ũn+1 − un

∆t
· θ4dK = −η

∫
K

Qn+1 · ∇θ4dK + η

∫
∂K

(Q̂n+1 · n) · θ4ds

−
∫
K

(Re(un · ∇)ũn+1 + rn +
1

Ca
ϕnwn+1 +

β

Caϵ

∑
±

ζn±C
n
±s

n+1
± ) · θ4dK,

(31k)∫
K

Qn+1 ·ΘdK = −
∫
K

ũn+1∇ ·ΘdK +

∫
∂K

̂̃un+1
Θ · nds, (31l)∫

K

rn+1 · θ5dK = −
∫
K

pn+1∇ · θ5dK +

∫
∂K

p̂n+1θ5 · nds, (31m)

Re

∫
K

un+1 − ũn+1

∆t
· θ6dK = −

∫
K

(rn+1 − rn) · θ6dK, (31n)

0 = −
∫
K

un+1 · ∇φ3dK +

∫
∂K

ûn+1
p · nφ3ds, (31o)

with

un
∗ = un − ∆t

CaRe
ϕnwn+1 − β∆t

CaϵRe

∑
±

ζn±C
n
±s

n+1
± . (32)
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Here, the “hat” terms are the so-called numerical fluxes. To properly define
the numerical fluxes, we need to introduce the following notations.

Let e be an interior face shared by the “left” and “right” elements KL

and KR and define the normal vectors nL and nR on e pointing exterior
to KL and KR, respectively. For our purpose, “left” and “right” can be
uniquely defined for each face according to any fixed rule. For example, we
choose n0 as a constant vector. The left element KL to the face requires that
nL · n0 < 0, and the right one KR requires nR · n0 ≥ 0. If ψ is a function
on KL and KR, but possibly discontinuous across e , let ψL denote (ψ|KL

)|e
and ψR denote (ψ|KR

)|e, the left and right trace, respectively.
In the following proof of the energy stability, we can see the alternating

numerical fluxes can guarantee the energy stability, such as

ŵn+1 = wn+1
L , q̂n+1 = qn+1

L , ̂̃µn+1

ϕ = µ̃n+1
ϕ,R , v̂n+1 = vn+1

L ,

ϕ̂n+1 = ϕn+1
R , q̂n+1

± = qn+1
±,L , ŵn+1

± = wn+1
±,L , µ̂n+1

c± = µn+1
c±,R, (33)

Q̂n+1 = Qn+1
R , ̂̃un+1

= ũn+1
L , p̂n+1 = pn+1

R , ûn+1
p = un+1

L .

Under the boundary condition (4), the boundary numerical fluxes are

ŵn+1 · n = 0, q̂n+1 = 0, v̂n+1 · n = 0, ŵn+1
± · n = 0, q̂n+1

± = 0, ûn+1
p = 0,

(34)
and the rest boundary fluxes come from the interior of the domain.

For the convenience of presentation, we introduce some LDG operators.
Denote

H+
K(r,v) =

∫
K

r∇ · vdK−
∫
∂K

rRv · nds, H−
K(v, r) =

∫
K

v · ∇rdK−
∫
∂K

vL · nrds.

Summing up over K, we define

H+(r,v) =
∑
K

H+
K(r,v), H−(v, r) =

∑
K

H−
K(v, r).

With the special choice of the flux (33) and the boundary conditions (4), we
have the property

H+(r,v) = −H−(v, r). (35)

Next, we will prove its energy stability.
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Theorem 3. Assuming that the condition (17) is satisfied and S ≥ L/2.
Then the solution to the fully-discrete LDG scheme (31) with the numerical
fluxes (33) and the boundary conditions (34) satisfies the following discrete
energy dissipation

En+1
h − En

h

≤−∆t

∫
Ω

(
η|Qn+1|2 + M

Ca
|wn+1|2 + 1

Ca

K

Ca
|vn||µ̃n+1

ϕ |2 +
∑
±

β

CaϵPe
ζn±D

n
±C

n+1
± |sn+1

± |2
)
dx,

where

En
h =

Re

2

∫
Ω

|un|2dx+
1

Ca

∫
Ω

(
ϵ

2
|vn|2 + 1

ϵ
F (ϕn)

)
dx

+
∆t2

2Re

∫
Ω

|rn|2dx+
β

Caϵ

∑
±

∫
Ω

ζn±C
n
±(lnC

n
± − 1)dx.

Proof. Taking the inner product of (32) with un
∗ , we obtain

Re

∆t

∫
K

un
∗ ·(un

∗ −un)dK = −
∫
K

(
1

Ca
ϕnwn+1 +

β

Caϵ

∑
±

ζn±C
n
±s

n+1
±

)
·un

∗dK.

(36)
From (32), we have

Re
ũn+1 − un

∆t
+

1

Ca
ϕnwn+1 +

β

Caϵ

∑
±

ζn±C
n
±s

n+1
± = Re

ũn+1 − un
∗

∆t
. (37)

For (31k) of the LDG scheme, taking the test function θ4 = ũn+1 and using
the relation (37), we derive

Re

∫
K

ũn+1 − un
∗

∆t
· ũn+1dK =− η

∫
K

Qn+1 · ∇ũn+1dK + η

∫
∂K

(Q̂n+1 · n) · ũn+1ds

−
∫
K

(Re(un · ∇)ũn+1 + rn) · ũn+1dK. (38)

For the convenience of presentation, for any w we denote Dw = wn+1 − wn.
For (31e) and (31m), subtracting the equation at time level tn from the
equation at time level tn+1, and choosing test functions θ3 = ϵ

Ca∆t
vn+1,

θ5 = un+1, we get

ϵ

Ca∆t

∫
K

Dv · vn+1dK = − ϵ

Ca∆t
H+

K(Dϕ,v
n+1), (39)
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∫
K

Dr · un+1dK = −H+
K(Dp,u

n+1). (40)

For (31a), (31b), (31c), (31d), (31f), (31g), (31h), (31i), (31j), (31l), (31n)
and (31o) in the fully-discrete scheme, taking the test functions as

φ1 =
1

Ca
µ̃n+1
ϕ , θ1 =

1

Ca
(Mwn+1 − qn+1), θ2 =

1

Ca
wn+1, φ2 = − 1

Ca∆t
Dϕ,

ψ± =
β

Caϵ
µn+1
c± , ϱ± = − β

CaϵPe
sn+1
± , ϖ± =

β

Caϵ
(
1

Pe
wn+1

± − qn+1
± ), θ6 = un+1,

χ± = − β

Caϵ∆t
(ζn+1

± Cn+1
± − ζn±C

n
±), ϑ± =

β

Caϵ
sn+1
± , Θ = ηQn+1, φ3 = Dp.

We have

1

Ca∆t

∫
K

Dϕµ̃n+1
ϕ dK = − 1

Ca
H−

K(Mwn+1 − qn+1, µ̃n+1
ϕ )

− 1

Ca

K

Ca

∫
K

|vn||µ̃n+1
ϕ |2dK,

1

Ca

∫
K

wn+1 · (Mwn+1 − qn+1)dK = − 1

Ca
H+

K(µ̃
n+1
ϕ ,Mwn+1 − qn+1),

1

Ca

∫
K

qn+1 ·wn+1dK =
1

Ca

∫
K

ϕnun
∗ ·wn+1dK,

− 1

Ca∆t

∫
K

µ̃n+1
ϕ DϕdK = − ϵ

Ca∆t
H−

K(v
n+1,Dϕ) + β

Ca∆tϵ

∑
±

∫
K

Dζ±Cn+1
± dK

− 1

Ca∆t

∫
K

(
S

ϵ
(Dϕ)2 + 1

ϵ
f(ϕn)Dϕ

)
dK,

β

Caϵ∆t

∫
K

(ζn+1
± Cn+1

± − ζn±C
n
±)µ

n+1
c± dK = − β

Caϵ
H−

K(
1

Pe
wn+1

± − qn+1
± , µn+1

c± ),

− β

CaϵPe

∫
K

wn+1
± · sn+1

± dK = − β

CaϵPe

∫
K

ζn±D
n
±C

n+1
± sn+1

± · sn+1
± dK,

β

Caϵ

∫
K

sn+1
± · ( 1

Pe
wn+1

± − qn+1
± )dK = − β

Caϵ
H+

K(µ
n+1
c± ,

1

Pe
wn+1

± − qn+1
± ),

− β

Caϵ∆t

∫
K

µn+1
c± (ζn+1

± Cn+1
± − ζn±C

n
±)dK = − β

Caϵ∆t

∫
K

lnCn+1
± (ζn+1

± Cn+1
±

− ζn±C
n
±)dK,

β

Caϵ

∫
K

qn+1
± · sn+1

± dK =
β

Caϵ

∫
K

un
∗ζ

n
±C

n
± · sn+1

± dK,
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η

∫
K

Qn+1 ·Qn+1dK = −η
∫
K

ũn+1∇ ·Qn+1dK + η

∫
∂K

̂̃un+1
Qn+1 · nds,

Re

∫
K

un+1 − ũn+1

∆t
· un+1dK = −

∫
K

(rn+1 − rn) · un+1dK,

0 = −H−
K(u

n+1,Dp).

Now combining the equations (36), (38)-(40) and above equations, summing
over all elements K and by the property (35), we have

ϵ

Ca∆t

∫
Ω

vn+1 · (vn+1 − vn)dx+
Re

∆t

∫
Ω

un+1 · (un+1 − ũn+1)dx (41)

+
Re

∆t

∫
Ω

un
∗ · (un

∗ − un)dx+
Re

∆t

∫
Ω

ũn+1 · (ũn+1 − un
∗ )dx+

1

Ca

∫
Ω

Mwn+1 ·wn+1dx

+
K

Ca

∫
Ω

|vn||µ̃n+1
ϕ |2dx+

β

CaϵPe

∑
±

∫
Ω

ζn±D
n
±C

n+1
± sn+1

± · sn+1
± dx

+ η

∫
Ω

Qn+1 ·Qn+1dx+

∫
Ω

rn · ũn+1dx+
1

Ca∆t

∫
Ω

(
S

ϵ
Dϕ+

f(ϕn)

ϵ

)
Dϕdx

+
β

Caϵ∆t

∑
±

∫
Ω

(
lnCn+1

± (ζn+1
± Cn+1

± − ζn±C
n
±)−Dζ±Cn+1

±
)
dx = 0.

For the last two terms in (41), we have

1

Ca

∫
Ω

(
S

ϵ
Dϕ+

f(ϕn)

ϵ

)
Dϕdx (42)

+
β

Caϵ

∑
±

∫
Ω

(
lnCn+1

± (ζn+1
± Cn+1

± − ζn±C
n
±)−Dζ±Cn+1

±
)
dx

=
1

Caϵ

∫
Ω

(
F (ϕn+1)− F (ϕn)

)
dx+

1

Caϵ

∫
Ω

(
S − f ′(ξn)

2

)
(Dϕ)2dx

+
β

Caϵ

∑
±

∫
Ω

(
ζn+1
± Cn+1

± (lnCn+1
± − 1)− ζn±C

n
±(lnC

n
± − 1)

)
dx

+
β

Caϵ

∑
±

∫
Ω

ζn±C
n
±

2ξ2
(DC±)

2dx.

To deal with the term
∫
Ω
rn · ũn+1, we take θ6 = rn and rn+1 in (31n), sum

over all elements,

Re

∆t

∫
Ω

ũn+1 · rndx =
1

2

∫
Ω

(
|rn+1|2 − |rn|2 − |rn+1 − rn|2

)
dx, (43)
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Re

∆t

∫
Ω

ũn+1 · rn+1dx =
1

2

∫
Ω

(
|rn+1|2 − |rn|2 + |rn+1 − rn|2

)
dx. (44)

where the term
∫
Ω
un+1 ·rndx is zero because of the divergence-free condition.

Using the above two equations and (31n) yield

Re2

∆t2

∫
Ω

|un+1 − ũn+1|2dx =

∫
Ω

|rn+1 − rn|2dx. (45)

Combining (43) and (45), we find∫
Ω

rn ·ũn+1dx =
∆t

2Re

∫
Ω

(|rn+1|2−|rn|2)dx− Re

2∆t

∫
Ω

|un+1−ũn+1|2dx. (46)

Combining (41), (42), and (46), we obtain

ϵ

2Ca∆t

∫
Ω

(
|vn+1|2 − |vn|2

)
dx+

Re

2∆t

∫
Ω

(
|un+1|2 − |un|2

)
dx

+
∆t

2Re

∫
Ω

(
|rn+1|2 − |rn|2

)
dx+

1

Caϵ∆t

∫
Ω

(
F (ϕn+1)− F (ϕn)

)
dx

+
β

Caϵ∆t

∑
±

∫
Ω

(
ζn+1
± Cn+1

± (lnCn+1
± − 1)− ζn±C

n
±(lnC

n
± − 1)

)
dx

≤−
(

1

Ca

∫
Ω

M|Qn+1|2dx+
1

Ca

K

Ca

∫
Ω

|µ̃n+1
ϕ |2|vn|dx+ η

∫
Ω

|Qn+1|2dx

+
β

CaϵPe

∑
±

∫
Ω

ζn±D
n
±C

n+1
± |sn+1

± |2dx

)
,

where we use the identity a(a−b) = 1
2
a2−1

2
b2+1

2
(a−b)2 for a = un+1,un

∗ , ũ
n+1,vn+1,

and b = ũn+1,un,un
∗ ,v

n, respectively.
Therefore, we have the energy stability result.

3.3. The semi-implicit SDC method

The scheme proposed above is energy stable. However, it is limited to
first-order temporal accuracy, while the LDG method is high-order accurate
in space. To achieve high-order accuracy in time and space, we iteratively
incorporate the semi-implicit spectral deferred correction (SDC) method [30,
31, 35], based on the energy-stabilized first-order scheme.
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We now perform the SDC procedure over each time interval [tn, tn+1].
To do this, we divide the interval [tn, tn+1] into P subintervals by selecting
interpolation points {tn,m}Pm=0 such that

tn = tn,0 < tn,1 < · · · < tn,m < · · · < tn,P = tn+1.

Let ∆tn,m = tn,m+1 − tn,m and denote by ϕn,m
L the Lth-order approximation

of ϕ(tn,m). To ensure high-order accuracy and avoid the instability associ-
ated with equispaced nodes, the time nodes {tn,m}Pm=0 can be chosen as the
Chebyshev–Gauss– Lobatto points on [tn, tn+1].

Starting from the known solution (ϕn,un, Cn
±) at time tn, we outline below

the algorithm used to compute the updated solution (ϕn+1,un+1, Cn+1
± ).

Compute the initial approximation:
Let ϕn,0

1 = ϕn, un,0
1 = un and Cn,0

±,1 = Cn
±.

Use the first-order scheme (12)-(15) to compute a first-order accurate
approximate solution ϕ1, u1 and C±,1 at the nodes {tn,m}Pm=1, i.e.

For m = 0, . . . , P − 1
Step 1:

ϕn,m+1
1 = ϕn,m

1 +∆tn,m(M∆µ̃n,m+1
ϕ,1 −∇ · (ϕn,m

1 un,m
∗,1 )− K

Ca
µ̃n,m+1
ϕ,1 |∇ϕn,m

1 |),

µ̃n,m+1
ϕ,1 = −ϵ∆ϕn,m+1

1 +
S

ϵ
(ϕn,m+1

1 − ϕn,m
1 ) +

1

ϵ
f(ϕn,m

1 )− β

ϵ

∑
±

ζn,m+1
±,1 − ζn,m±,1

ϕn,m+1
1 − ϕn,m

1

Cn,m+1
±,1 ,

ζn,m+1
±,1 Cn,m+1

±,1 = ζn,m±,1 C
n,m
±,1 +∆tn,m(

1

Pe
∇ · (ζn,m±,1 D

n,m
±,1 C

n,m+1
±,1 ∇µn,m+1

c±,1
)−∇ · (un,m

∗,1 ζ
n,m
±,1 C

n,m
±,1 )),

µn,m+1
c±,1

= lnCn,m+1
±,1 ,

with

un,m
∗,1 = un,m

1 − ∆tn,m

CaRe
ϕn,m
1 ∇µ̃n,m+1

ϕ,1 − β∆tn,m

CaϵRe

∑
±

ζn,m±,1 C
n,m
±,1 ∇µn,m+1

c±,1
;

Step 2:

ũn,m+1
1 = un,m

1 −∆tn,m(un,m
1 · ∇)ũn,m+1

1 +
∆tn,m

Re

(
η∆ũn,m+1

1 (47)

−∇pn,m1 − 1

Ca
ϕn,m
1 ∇µ̃n,m+1

ϕ,1 − β

Caϵ

∑
±

ζn,m±,1 C
n,m
±,1 ∇µn,m+1

c±,1

)
;
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Step 3:

−∆(pn,m+1
1 − pn,m1 ) = − Re

∆tn,m
∇ · ũn,m+1

1 ,

un,m+1
1 = ũn,m+1

1 − ∆tn,m

Re
∇(pn,m+1

1 − pn,m1 ).

Compute successive corrections:
For l = 1, ..., L,
Let ϕn,0

l+1 = ϕn, un,0
l+1 = un and Cn,0

±,l+1 = Cn
±.

For m = 0, . . . , P − 1
Step 1:

ϕn,m+1
l+1 = ϕn,m

l+1 +∆tn,m(M∆µ̃n,m+1
ϕ,l+1 −∇ · (ϕn,m

l+1u
n,m
∗,l+1)−

K

Ca
µ̃n,m+1
ϕ,l+1 |∇ϕn,m

l+1 |

−M∆µ̃n,m+1
ϕ,l +∇ · (ϕn,m

l un,m
∗,l ) +

K

Ca
µ̃n,m+1
ϕ,l |∇ϕn,m

l |) + Im+1
m (Fϕ),

µ̃n,m+1
ϕ,l+1 = −ϵ∆ϕn,m+1

l+1 +
S

ϵ
(ϕn,m+1

l+1 − ϕn,m
l+1 ) +

1

ϵ
f(ϕn,m

l+1 )−
β

ϵ

∑
±

ζn,m+1
±,l+1 − ζn,m±,l+1

ϕn,m+1
l+1 − ϕn,m

l+1

Cn,m+1
±,l+1 ,

ζn,m+1
±,l+1 C

n,m+1
±,l+1 = ζn,m±,l+1C

n,m
±,l+1 +∆tn,m(

1

Pe
∇ · (ζn,m±,l+1D

n,m
±,l+1C

n,m+1
±,l+1 ∇µn,m+1

c±,l+1
)

−∇ · (un,m
∗,l+1ζ

n,m
±,l+1C

n,m
±,l+1)−

1

Pe
∇ · (ζn,m±,l D

n,m
±,l C

n,m+1
±,l ∇µn,m+1

c±,l
)

+∇ · (un,m
∗,l ζ

n,m
±,l C

n,m
±,l )) + Im+1

m (Fc±),

µn,m+1
c±,l+1

= lnCn,m+1
±,l+1 ,

with

un,m
∗,l+1 = un,m

l+1 − ∆tn,m

CaRe
ϕn,m
l+1∇µ̃

n,m+1
ϕ,l+1 − β∆tn,m

CaϵRe

∑
±

ζn,m±,l+1C
n,m
±,l+1∇µ

n,m+1
c±,l+1

,

Fϕ = M∆µ̃ϕ,l −∇ · (ϕlul)−
K

Ca
µ̃ϕ,l|∇ϕl|,

Fc± =
1

Pe
∇ · (ζ±,lD±,lC±,l∇µc±,l

)−∇ · (ulζ±,lC±,l);

Step 2:

ũn,m+1
l+1 =un,m

l+1 −∆tn,m((un,m
l+1 · ∇)ũn,m+1

l+1 − (un,m
l · ∇)ũn,m+1

l )

+
∆tn,m

Re

(
η∆ũn,m+1

l+1 −∇pn,ml+1 − 1

Ca
ϕn,m
l+1∇µ̃

n,m+1
ϕ,l+1
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− β

Caϵ

∑
±

ζn,m±,l+1C
n,m
±,l+1∇µ

n,m+1
c±,l+1

− η∆ũn,m+1
l +∇pn,ml

+
1

Ca
ϕn,m
l ∇µ̃n,m+1

ϕ,l +
β

Caϵ

∑
±

ζn,m±,l C
n,m
±,l ∇µ

n,m+1
c±,l

)
+ Im+1

m (Fu),

where

Fu = −(ul · ∇)ũl +
1

Re
(η∆ũl −∇pl −

1

Ca
ϕl∇µ̃ϕ,l −

β

Caϵ

∑
±

ζ±,lC±,l∇µc±,l
);

Step 3:

− (∆pn,m+1
l+1 −∆pn,ml+1 ) = − Re

∆tn,m
(∇ · ũn,m+1

l+1 −∇ · ũn,m+1
l ) + Im+1

m (F ),

un,m+1
l+1 = ũn,m+1

l+1 +
∆tn,m

Re
∇(pn,m+1

l+1 − pn,ml+1 )−
∆tn,m

Re
∇(pn,m+1

l − pn,ml ),

where F = − Re
(∆tn,m)2

∇ · ũl. Here, I
m+1
m (Fϕ) is the integral of the P -th de-

gree interpolating polynomial on the P + 1 points (tn,m, Fϕ)
P
m=0 over the

subinterval [tn,m, tn,m+1], which is the numerical quadrature approximation

of
∫ tn,m+1

tn,m Fϕdt.

Finally, we have ϕn+1 = ϕn,P
L+1, u

n+1 = un,P
L+1 and Cn+1

± = Cn,P
±,L+1.

Remark 3. (Local truncation error.) The local truncation error obtained
with the above semi-implicit SDC scheme [31] is O(τmin[L+1,P+1]), where τ =
max
n,m

∆tn,m.

4. Simulation results

In this section, we present numerical results to validate our proposed
schemes and investigate the model’s behavior. Specifically, the first exam-
ple tests the order of convergence to verify the accuracy of our numerical
method. The second example demonstrates the energy stability of the pro-
posed scheme. Finally, the last two examples explore the influence of interface
permeability and shear flow on the equilibrium profiles of droplets, providing
insights into the effects of these factors on transmembrane dynamics.
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Example 1. (Accuracy tests.) Consider the model (5) in the domain Ω =
[0, 2π]× [0, 2π]. For the tests, we choose a suitable term such that the exact
solution is taken as

ϕ(x, y, t) = 0.3 + 0.2e−2t sin(x) sin(y),

u(x, y, t) = (−0.25e−2t sin2(x) sin(2y), 0.25e−2t sin(2x) sin2(y)),

C+(x, y, t) = 0.2 + 0.1e−2t cos(x) cos(y), C−(x, y, t) = 0.2 + 0.1e−2t sin(x) sin(y).

Choose the parameters M = K = ϵ = β = Pe = Ca = Re = η = 1.

To test the temporal accuracy of the scheme (31), we let N = 64 and
P2 approximation to ensure that the spatial discretization error is small
enough, and then the temporal discretization error is dominant. The time
step refinement path is taken to be ∆t = ∆t0/2

m, ∆t0 = 0.02 and m =
0, 1, 2, 3. The L2 and L∞ errors and orders of convergence are presented in
Table 1, which shows first-order accurate in time.

Table 1: Temporal accuracy test. L2 and L∞ errors and orders of convergence at T = 0.1.
The time step refinement path is taken to be ∆t = ∆t0/2

m, ∆t0 = 0.02 and m = 0, 1, 2, 3.

m L2 error L2 order L∞ error L∞ order

ϕ

0 9.64E-03 – 3.10E-03 –
1 5.02E-03 0.94 1.61E-03 0.95
2 2.56E-03 0.97 8.27E-04 0.96
3 1.29E-03 0.99 4.18E-04 0.98

u

0 8.31E-03 – 3.17E-03 –
1 4.09E-03 1.02 1.61E-03 0.98
2 2.07E-03 0.98 8.18E-04 0.98
3 1.04E-03 0.99 4.18E-04 0.97

C+

0 4.55E-04 – 1.44E-04 –
1 2.29E-04 0.99 7.34E-05 0.97
2 1.15E-04 0.99 3.79E-05 0.95
3 5.82E-04 0.98 1.93E-05 0.97

The L2 and L∞ errors, along with the observed convergence orders, are
summarized in Table 2 for both second-order SDC with P1 elements and
third-order SDC with P2 elements. As expected, the second-order SDC
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scheme exhibits consistent second-order convergence in both norms for all
variables when using P1 elements. Similarly, the third-order SDC scheme
coupled with P2 elements achieves third-order accuracy in both spatial and
temporal directions. These results confirm the effectiveness of the proposed
LDG–SDC framework in achieving high-order accuracy while maintaining
numerical stability, even under relatively large time step sizes.

Table 2: Spatial and temporal accuracy for second-order SDC with P1 and third-order
SDC with P2 elements. L2 and L∞ errors and convergence orders at T = 0.2 with
∆t = 0.1∆x.

Variable N
P1 P2

L2 Err Order L∞ Err Order L2 Err Order L∞ Err Order

ϕ

8 3.26E-02 – 2.42E-02 – 3.96E-03 – 3.72E-03 –
16 8.74E-03 1.90 6.80E-03 1.83 4.94E-04 3.01 4.63E-04 3.01
32 2.28E-03 1.94 1.78E-03 1.93 6.19E-05 3.00 5.66E-05 3.03
64 5.88E-04 1.96 4.57E-04 1.96 7.90E-06 2.97 7.18E-06 2.98

u

8 9.60E-02 – 7.67E-02 – 2.10E-02 – 1.95E-02 –
16 2.35E-02 2.02 2.08E-02 1.88 2.65E-03 2.98 2.75E-03 2.83
32 5.98E-03 1.98 5.45E-03 1.94 3.33E-04 3.00 3.39E-04 3.02
64 1.50E-03 1.99 1.38E-03 1.98 4.23E-05 2.98 4.20E-05 3.01

C+

8 1.58E-02 – 1.16E-02 – 2.01E-03 – 1.97E-03 –
16 3.95E-03 2.00 3.00E-03 1.96 2.49E-04 3.01 2.32E-04 3.08
32 9.77E-04 2.02 7.30E-04 2.04 3.17E-05 2.97 2.90E-05 3.00
64 2.43E-04 2.01 1.78E-04 2.03 4.03E-06 2.98 3.66E-06 2.99

Example 2. (Energy stability test.) In this example, we perform stability
tests to verify the energy stability of the proposed scheme, using the same
initial conditions and parameters as in Example 1.

Figure 1(a) presents the energy evolution of the scheme (31) for various
time steps, ranging from ∆t = 0.1/2 to ∆t = 0.1/25, using a P1 approx-
imation with a fixed mesh size ∆x = ∆y = 2π/64. The energy curves
consistently exhibit monotonic decay across all time step sizes, in agreement
with the theoretical guarantee of unconditional energy stability.

For larger time steps (∆t = 0.1/2, 0.1/22, 0.1/23), noticeable deviations
from the reference energy curve (computed with ∆t = 0.1/25) are observed,
reflecting the reduced accuracy of the first-order temporal scheme. This
highlights the necessity of smaller time steps to achieve high-fidelity solutions.
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Figure 1: Energy evolution of the first order scheme and the second order SDC scheme.

By contrast, our semi-implicit SDC scheme significantly improves tempo-
ral accuracy. As illustrated in Figure 1(b), the energy curve of the second-
order SDC scheme with ∆t = 0.1/2 closely matches the reference energy
curve computed with ∆t = 0.1/24, demonstrating the effectiveness of the
SDC method in achieving both stability and high-order accuracy.

Example 3. (Effects of permeability K.) In this example, we consider how
the permeability affects the equilibrium shapes of droplets. Consider the model
(5) in the domain Ω = [0, 6.4]× [0, 6.4]. The initial profiles of concentration
and interface are given as follows (see Figure 2)

ϕ(x, y, 0) = tanh

(
1.0−

√
(x− 3.2)2 + (y − 3.2)2√

2ϵ

)
, u(x, y, 0) = 0,

C+(x, y, 0) = c0 + exp

(
−(x− 3.2)2 + (y − 3.2)2

0.15

)
, C−(x, y, 0) = 0.02,

with parameters

M = 0.03, ϵ = 0.03, Re = 1, P e = 1, η = 1, Ca = 1, β = 2ϵ,

where the substance is concentrated inside the droplet center (see Figure 2
(b)). Two different initial concentration cases are considered: c0 = 0.15
and c0 = 0.1, each with three different permeabilities: K = 0, 0.1, and 0.3.
Additionally, a reference case with no solute—where transmembrane flow is
driven purely by hydrostatic pressure—is included for comparison to highlight
the effects of osmotic pressure.
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Figure 2: Initial condition for Example 3 with c0 = 0.15.
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Figure 3: Time evolution of the free energy functional with different permeability: K =
0, 0.1 and 0.3 with c0 = 0.15.

We employ the second-order SDC method with a piecewise P1 polynomial
basis. The computational domain consists of a uniform mesh with 128× 128
elements, and the time step is set to ∆t = 0.01.

For the case c0 = 0.15, the evolutions of energy and mass are presented
in Figures 3-4. As expected, the energy decreases over time, confirming the
stability of the scheme, while the total mass remains conserved throughout
the simulation.

Figure 5 displays the evolution of droplet interfaces under different mem-
brane permeabilities. The corresponding concentration profiles at equilib-
rium are shown in Figure 6. When the permeability K = 0, water cannot
cross the membrane, so the droplet retains its initial volume. In contrast,
when K ̸= 0, the initial hydrostatic pressure inside the droplet exceeds the
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Figure 4: Time evolution of the mass (
∫
Ω
ζ+C+dx) with different permeability: K = 0, 0.1

and 0.3 with c0 = 0.15.

osmotic pressure outside, driving water outward and causing the droplet to
shrink. Since the solute remains confined within the droplet, the volume
loss increases the internal solute concentration, thereby raising the osmotic
pressure. This elevated osmotic pressure gradually draws water back into
the droplet until equilibrium is reached, where the hydrostatic and osmotic
pressures are balanced.

According to the energy dissipation law stated in Theorem 1, for a closed
system, the equilibrium state is characterized by the conditions

u = 0, µ̃ϕ = 0, µ±
c = 0,

which implies that the droplet shape at equilibrium is independent of the
membrane permeability K, and is determined solely by surface tension and
the solute concentration difference across the interface. At equilibrium, the
concentrations C± inside and outside the droplet become spatially uniform,
with their values determined by the total initial solute mass and the geometry
of the final droplet. These behaviors are clearly observed in Figures 5–6.
The role of permeability primarily affects the rate at which equilibrium is
reached. Higher permeability leads to faster transmembrane water exchange,
accelerating droplet shrinkage and energy dissipation. Consequently, systems
with larger K values reach equilibrium more rapidly, as demonstrated in
Figures 3 and 5.

To further investigate the role of osmotic pressure, we consider two cases:
one with an initial concentration c0 = 0.1, and another where the solute is
entirely neglected. In the latter case, the system reduces to the degener-
ate NSCHAC system, where the Allen–Cahn term − K

Ca
µ̃ϕ|∇ϕ| governs the

transmembrane flow driven purely by hydrostatic pressure.
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Figure 5: Snapshots of interface ϕ = 0 at different time slots with different permeability:
K = 0, 0.1 and 0.3 with c0 = 0.15.
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Figure 6: Snapshots of ζ+C+ at equilibrium with different permeability: K = 0, 0.1 and
0.3 with c0 = 0.15.

As shown in Figure 7, when osmotic effects are neglected, the droplet
eventually vanishes—a behavior consistent with previous studies. In contrast,
when osmotic pressure is taken into account, the droplet evolves toward an
equilibrium configuration, where the final interface profile is determined by
the initial solute concentration c0, as illustrated in Figure 8. A higher initial
concentration inside the droplet leads to a stronger osmotic pressure, which
counteracts the shrinkage earlier in the evolution and results in a larger
equilibrium droplet size.

Example 4. (Shear flow.) In this example, we study the dynamics of two
droplets suspended in a shear flow within a square domain Ω = [0, 6.4] ×
[0, 6.4]. The initial conditions for the phase-field variable ϕ, the solute con-
centrations C± and velocity u are given by

ϕ(x, y, 0) = tanh

(
1.0−

√
(x− 2.35)2 + (y − 4.05)2

√
2ϵ

)
+ tanh

(
1.0−

√
(x− 4.05)2 + (y − 2.35)2

√
2ϵ

)
+ 1.0,

C+(x, y, 0) = 0.1 + exp

(
−
(x− 2.35)2 + (y − 4.05)2

0.15

)
+ exp

(
−
(x− 4.05)2 + (y − 2.35)2

0.15

)
,
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Figure 7: The profiles of the interface when the osmotic pressure is neglected at time slots
t = 1.5, 6, 12 with permeability K = 0.3.
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Figure 8: The interface profiles of the droplet at equilibrium for different initial concentra-
tions c0 = 0.1 and c0 = 0.15 with permeability K = 0.3. The black dotted line represents
the initial interface. The green dashed line shows the equilibrium interface profile for
c0 = 0.15 at t = 15, while the red solid line depicts the equilibrium interface profile for
c0 = 0.1 at approximately t = 20.
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C−(x, y, 0) = 0.02, u = 0.

We consider two cases: impermeable membranes (K = 0) and semi-
permeable membranes (K = 0.3), while keeping all other parameters identical
to those in Example 3. The boundary conditions are specified as

∇ϕ · n|y=0 = ∇ϕ · n|y=6.4 = 0, ϕ(0, y, t) = ϕ(6.4, y, t),

∇µ̃ϕ · n|y=0 = ∇µ̃ϕ · n|y=6.4 = 0, µ̃ϕ(0, y, t) = µ̃ϕ(6.4, y, t),

∇C± · n|y=0 = ∇C± · n|y=6.4 = 0, C±(0, y, t) = C±(6.4, y, t),

u|y=0 = (−1, 0)T , u|y=6.4 = (1, 0)T ,

with periodic boundary conditions applied on the left and right boundaries.

Figures 9–12 show the evolution of the droplet interfaces and solute distri-
butions at various time instances for the two different permeability settings.
When K = 0, the droplets are impermeable, and their enclosed volume re-
mains constant. Under the shear flow, the two initially separated droplets
move closer, eventually coalesce into a single elongated droplet, and rotate
with the background flow.

In contrast, when K = 0.3, the membranes become semi-permeable to
water. The imbalance between osmotic and hydrostatic pressures leads to
transmembrane water flux, causing the droplets to gradually shrink. As
the droplet volume decreases, the spatial extent of each droplet reduces,
preventing the two droplets from coming into contact and merging. This
behavior highlights how permeability not only affects the rate of deformation
but also alters the qualitative topological outcome—suppressing coalescence
under shear flow due to volume reduction induced by osmotic regulation.

5. Conclusions

In this work, we developed a thermodynamically consistent phase-field
model for simulating water transport across semi-permeable membranes driven
by osmotic pressure and hydrostatic pressure differences. Our formulation
extends the classical Navier–Stokes–Cahn–Hilliard (NSCH) system by incor-
porating a transmembrane water flux governed by solute gradients and mem-
brane permeability. This extension leads to a highly nonlinear Navier–Stokes
–Cahn–Hilliard–Allen–Cahn (NSCHAC) system, where volume changes in-
duced by osmotic flow dynamically feed back into the solute distribution,
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Figure 9: Snapshots of ϕ at different time t = 1.5, t = 6, t = 15 and t = 25 with K = 0.
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Figure 10: Snapshots of ζ+C+ at different time t = 1.5, t = 6, t = 15 and t = 25 with
K = 0.
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Figure 11: Snapshots of ϕ at different time t = 1.5, t = 6, t = 15 and t = 25 with K = 0.3.
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Figure 12: Snapshots of ζ+C+ at different time t = 1.5, t = 6, t = 15 and t = 25 with
K = 0.3.
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resulting in a tightly coupled and highly nonlinear interaction between fluid
motion, interfacial dynamics, and solute transport.

To address the computational challenges posed by this strongly cou-
pled system, we proposed a suite of energy-stable and high-order numerical
schemes. Spatial discretization is performed using the local discontinuous
Galerkin (LDG) method, which provides high-order accuracy, nonlinear sta-
bility, and flexibility for adaptive mesh refinement. For time integration,
we first constructed a first-order decoupled temporal scheme and rigorously
proved its unconditional energy stability. To further improve temporal ac-
curacy, we incorporated a semi-implicit spectral deferred correction (SDC)
method, achieving high-order convergence in both time and space while pre-
serving the model’s thermodynamic consistency.

Our framework provides a flexible and robust tool for simulating osmotic-
driven fluid transport through deformable interfaces, offering significant ad-
vantages for modeling complex biological and industrial systems. Numeri-
cal experiments validate the theoretical properties of the proposed schemes
and demonstrate the effects of membrane permeability, solute concentration,
and shear flow on droplet deformation and equilibrium morphology. Future
work will focus on extending the model to account for additional biophysi-
cal processes, such as ionic transport, electrochemical coupling, and active
membrane mechanics.
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Appendix A. Model Derivation Details

We calculate the time derivative of the total energy given in (2). For the
first term, by using the first two equations of equation (1), we have

I1 =
d

dt
(
1

2

∫
Ω

ρ|u|2dx)

=
1

2

∫
Ω

∂ρ

∂t
|u|2dx+

∫
Ω

ρu · ∂u
∂t
dx

=
1

2

∫
Ω

∂ρ

∂t
|u|2dx+

∫
Ω

ρu · Du

Dt
dx+

∫
Ω

∇ · (ρu) |u|
2

2
dx

=

∫
Ω

u · (∇ · ση +∇ · σϕ)dx−
∫
Ω

p∇ · udx

=−
∫
Ω

∇u : (ση + σϕ)dx−
∫
Ω

p∇ · udx. (A.1)

where pressure is induced as a Lagrange multiplier for incompressibility.
For the second term, the equation of the concentrations and label func-

tions yields

I2 + I3

=
d

dt

{∫
Ω

RT

(
ζ+C+(ln

C+

c∞
− 1) + ζ−C−(ln

C−

c∞
− 1)

)
dx+

∫
Ω

λ

(
l2|∇ϕ|2

2
+ F (ϕ)

)
dx

}
=

∫
Ω

RT

(
ζ+ ln

C+

c∞

∂C+

∂t
+ ζ− ln

C+

c∞

∂C−

∂t

)
dx

+

∫
Ω

(
RT

(
∂ζ+
∂ϕ

C+(ln
C+

c∞
− 1) +

∂ζ−
∂ϕ

C−(ln
C−

c∞
− 1)

)
+ µϕ

)
∂ϕ

∂t
dx

=

∫
Ω

RT

(
ln
C+

c∞

∂(ζ+C+)

∂t
+ ln

C+

c∞

(∂ζ−C−)

∂t

)
dx

+

∫
Ω

(
RT

(
∂ζ+
∂ϕ

C+(ln
C+

c∞
− 1) +

∂ζ−
∂ϕ

C−(ln
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c∞
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)
(A.2)

+µϕ − C+ ln
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− C− ln
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RT
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dx+
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+

∫
Ω

RT

(
− ln
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−λl2(∇ϕ⊗∇ϕ) : ∇udx+

∫
Ω

(ζ+J+ · ∇µ+
c + ζ−J− · ∇µ−

c )dx

+

∫
Ω

Jϕ · ∇µ̃ϕdx+

∫
Ω

µ̃ϕSϕ|∇ϕ|dx

In summary, we have

dE

dt

=−
∫
Ω

∇u : (ση + σϕ)dx−
∫
Ω

p∇ · udx−
∫
Ω

λl2(∇ϕ⊗∇ϕ) : ∇udx

+

∫
Ω

(ζ+J+ · ∇µ+
c + ζ−J− · ∇µ−

c )dx+

∫
Ω

Jϕ · ∇µ̃ϕdx+

∫
Ω

µ̃ϕSϕ|∇ϕ|dx

=−∆.
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