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Abstract

In this paper, we present a novel moving mesh finite element method for solving the porous medium equation,
using the Onsager variational principle as an approximation framework. We first demonstrate that a mixed formula-
tion of the continuous problem can be derived by applying the Onsager principle. Subsequently, we develop several
numerical schemes by approximating the problem within a nonlinear finite element space with free knots (movable
nodes), following the same variational approach. We rigorously prove that the energy dissipation structure is preserved
in both semi-discrete and fully implicit discrete schemes. Additionally, we propose a fully decoupled explicit scheme,
which requires only the sequential solution of a few linear equations per time step. Other variants of the method can
also be derived analogously to preserve mass conservation or to enhance stability. The numerical schemes achieve
optimal convergence rates when the initial mesh is carefully chosen to ensure good approximation of the initial data.
Through extensive numerical experiments, we evaluated and compared the efficiency and stability of the proposed
schemes with existing approaches. For cases involving uniform initial meshes, all schemes exhibit good stability,
with the fully decoupled scheme demonstrating superior computational efficiency. In contrast, when addressing sin-
gular problems on nonuniform meshes, the stabilized explicit scheme strikes a good balance between stability and
computational efficiency. In addition, the method inherently captures the waiting time phenomenon without requiring
user intervention, further illustrating its robustness.
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1. Introduction1

The porous medium equation (PME) serves as a prominent mathematical model frequently utilized to comprehen-2

sively describe various physical and biological phenomena, including gas flow, nonlinear heat transport, groundwater3

movement, etc. The PME is a nonlinear partial differential equation taking the form:4

∂tρ = ∆ρ
m, m > 1. (1)

Extensive research has revealed numerous intriguing properties of this equation. One particularly fascinating charac-5

teristic is its association with a finite speed of propagation. This stands in stark contrast to the linear heat equation6

(m = 1), where heat propagation speed is infinite. Notably, if the initial value of ρ possesses compact support, the7

boundary of this support moves at a finite velocity even when the equation is defined across the entire space, leading to8
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a typical free boundary problem. Furthermore, under specific initial conditions, the solution of the PME may demon-9

strate a waiting time phenomenon [? ], wherein the free boundary remains stationary until a critical time threshold is10

surpassed. These properties have been extensively investigated in mathematics (e.g in [? ? ? ? ? ? ]).11

From a numerical perspective, solving the PME presents several challenges. Firstly, the free boundary of the12

solution is not easy to captured by standard numerical methods. The moving velocity of the boundary depends on the13

derivative of the solution.To ensure precise velocity calculations, it is imperative to compute the gradient velocity with14

precision. Secondly, singularities in the solution of the PME arise at the free boundary. For larger m, the regularity is15

worse. Thirdly, it is also a challenge to accurately compute the waiting time.16

These challenges have sparked significant interest in the PME, leading to the development of numerous numerical17

methods in literature. In early investigations, researchers commonly transformed the PME into an alternative equation18

based on pressure, which exhibits better regularity. The free boundary was typically addressed using either a front19

tracing method or by extending the equation to a larger fixed domain to avoid boundary issues. The pressure equation20

was often solved using a finite element method [? ] or a finite difference method [? ? ? ? ], yielding a convergence21

rate typically of first order with respect to the mesh size. Later on, the original PME was solved by using a high order22

local discontinuous Galerkin method to improve the accuracy. A suitable non-negativity preserving limiter was used23

to prevent oscillations near the free interface [? ]. More recently, new numerical schemes have emerged for the PME,24

focusing on preserving the positivity of density and the energy dissipation relation [? ? ].25

Given the singularity and moving boundary present in the solution of the PME, a natural approach is to employ26

moving mesh methods [? ? ? ? ? ] to address these complexities. Baines et al. introduced a moving mesh finite27

element method, where the mesh dynamically adjusts based on a local scale-invariant conservation principle [? ? ? ].28

Numerical experiments demonstrate a second-order convergence rate for this method when the mesh is appropriately29

selected initially. Duque et al. utilized a moving mesh partial differential equation (MMPDE) method to tackle the30

PME with a variable component m [? ? ]. Ngo & Huang [? ? ] also applied the MMPDE approach to solve31

both the PME and the transformed pressure equation. Their detailed study on the impact of the metric tensor in a32

novel implementation of the velocity equation revealed that Hessian-based adaptive meshes yield optimal second-33

order convergence. Theoretical analysis for the moving mesh methods is usually difficult due to a lack of a variational34

formulation.35

The previously mentioned methods are based on an Eulerian framework, where the computational domain is36

in the physical domain. Recently, there has been a surge in the development of Lagrangian-type methods, where37

the problem is formulated within a reference domain. Liu and his collaborators have introduced several schemes38

based on the energy variational method [? ? ? ]. Their research highlighted that specific selections of the energy39

and dissipation functionals can significantly enhance the efficiency of the numerical method. Furthermore, optimal40

error estimates have been established under certain regularity assumptions [? ]. Additionally, Carrillo et al. have41

devised a Lagrangian-type scheme [? ] and a particle method [? ] utilizing the theory of Wasserstein gradient flow.42

One challenge with Lagrangian-type methods is to solve some highly nonlinear problems at each time step. Proper43

iterative solver has to be chosen to solve the problem efficiently.44

In this paper, our objective is to devise a numerical method for the PME that combines the strengths of both the45

conventional moving mesh method (e.g. in an Eulerian framework) and Lagrangian-type methods (e.g. based on46

a variational formulation). To achieve this goal, we will leverage the Onsager principle as an approximation tool.47

The Onsager variational principle is a fundamental law for characterizing irreversible processes in nonequilibrium48

thermodynamics [? ? ]. This principle has been instrumental in deriving mathematical models for various soft matter49

physics problems [? ]. Recent studies have demonstrated the effectiveness of the Onsager principle as a powerful50

approximation tool for deriving reduced models (c.f. [? ? ? ? ? ], among others). Moreover, the Onsager principle51

has been utilized in designing numerical schemes [? ? ]. It has also been shown that the moving finite element method52

can be naturally derived from this principle [? ].53

Motivated by the previous studies, we derive a novel numerical method for the PME in this paper. We first54

demonstrate the natural derivation of the PME from the Onsager principle. We treat the continuum equation ∂tρ +55

∇ · (ρv) = 0 as a constraint and incorporate a Lagrange multiplier into the Reyleignian functional to obtain a mixed56

version of the PME. Subsequently, we approximate the unknown function ρ and the multiplier by finite element57

functions on a triangulation with movable nodes. These nodes are assumed to move at the same velocity as dictated58

by the continuum equation. By reapplying the Onsager principle, we formulate a semi-discrete numerical scheme in59

mixed form, demonstrating that the scheme upholds the same energy dissipation relation as the continuous problem.60
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When employing an explicit time derivative discretization, a decoupled numerical scheme emerges, where a few61

linear equations are sequentially solved at each time step. We also develop an implicit scheme which leads to the62

establishment of the energy dissipation relation for the fully discrete method. We also explore the impact of the63

mass conservation property by varying the boundary condition for the Lagrange multiplier. Numerical examples64

show that our methods exhibit optimal convergence rates and accurately capture the waiting time phenomenon in both65

one-dimensional and two-dimensional scenarios.66

The rest of the paper is organized as follows. In Section 2, we present the derivation of the PME by using the67

Onsager variational principle. We then apply the Onsager principle in the finite element space to derive two numerical68

schemes in Section 3. In Section 4, we discuss briefly an alternative semi-discrete scheme with improved mass69

conservation property. Numerical examples are given in Section 5 to illustrate the efficiency of our methods. A few70

concluding remarks are given in the last section.71

2. Derivation of the PME by the Onsager principle72

In this section, we will derive a model for gas flow in a homogeneous porous medium by the Onsager variational73

principle[? ? ]. For simplicity, we consider the dimensionless model throughout the paper. We denote by ρ(x, t) the74

mass density of a gas in a porous medium. Suppose the free energy is given by [? ]75

E(ρ) =
∫
Ω(t)

f (ρ(x, t))dx, (2)

where Ω(t) ⊂ Rd is the domain where the gas flow occupies at time t, and f (ρ) = 1
m−1ρ

m(m > 1) is the free energy76

density. From thermodynamic theory, the gas pressure is p = δE/δρ = f ′(ρ). Let the vector field v(x, t) : Ω× [0,T ] 7→77

Rn be the average velocity of the gas. Denote by J = ρv the mass flux in the system. Then we have the mass78

conservation equation,79

∂tρ + ∇ · J = 0. (3)

In this setting, the mass flux through the boundary ∂Ω is zero, i.e., J · n|∂Ω = 0, where n is the outward unit normal on80

the boundary.81

To derive the PME by the Onsager principle, we first calculate the changing rate of the free energy. By Reynold’s82

transport theorem, we obtain83

Ė =
d
dt

∫
Ω(t)

f (ρ)dx =
∫
Ω(t)

f ′(ρ)∂tρdx +
∫
∂Ω(t)

f (ρ)v · nds =
∫
Ω(t)

f ′(ρ)∂tρdx, (4)

where the last equality uses the zero mass flux condition on the boundary. Then we define the dissipation function as84

Φ(ρ; v) =
∫
Ω(t)

1
2
ρ|v|2dx. (5)

The Rayleighian functional is given by85

R = Φ + Ė. (6)

There are two ways to derive the PME by the Onsager variational principle. In the first approach, we derive the86

PME by minimizing the Rayleighian functional with respect to the mass flux J. Direct calculate give87

R =

∫
Ω(t)

|J|2

2ρ
dx +

∫
Ω(t)

f ′(ρ)∂tρdx =
∫
Ω(t)

|J|2

2ρ
dx −

∫
Ω(t)

f ′(ρ)∇ · Jdx

=

∫
Ω(t)

|J|2

2ρ
dx +

∫
Ω(t)
∇ f ′(ρ)Jdx,

(7)

where the second equation utilizes the continuity equation (3) and the last equation utilizes the integration by parts.
We minimize R with respect to the flux J, i.e.

min
J
R(J).
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The corresponding Euler-Langrange equation is88

J = −ρ∇ f ′(ρ) = −∇ρm. (8)

Substituting the equation into (3), we have the PME89

∂tρ = ∆ρ
m. (9)

Although the above derivation is straightforward, we will present a different approach below, which is more helpful90

to propose a numerical method. We will derive the PME by minimizing the Rayleighian functional with respect to ∂tρ91

and v under the constraint of the mass conservation equation. That is to consider the problem92

min
∂tρ,v
R(ρ; ∂tρ, v) = Φ(ρ; v) + Ė(ρ; ∂tρ) =

1
2

∫
Ω(t)

ρ|v|2dx +
∫
Ω(t)

f ′(ρ)∂tρdx,

s.t. ∂tρ + ∇ · (ρv) = 0.
(10)

By introducing a Lagrange multiplier λ(x), we obtain a Lagrangian functional93

R̃ =
1
2

∫
Ω(t)

ρ|v|2dx +
∫
Ω(t)

f ′(ρ)∂tρdx −
∫
Ω(t)

λ(x)(∂tρ + ∇ · (ρv))dx. (11)

The corresponding Euler-Lagrange equation is94 
f ′(ρ) − λ(x) = 0,
v + ∇λ = 0,
∂tρ + ∇ · (ρv) = 0.

(12)

In the above equation, the Lagrange multiplier λ(x) has a physical interpretation that λ = f ′(ρ) = m
m−1ρ

m−1 is the95

pressure. Since m > 1, we have λ = 0 on ∂Ω. The property is important for us to derive a decoupled scheme in the96

next section. Note that v = −∇λ is the Darcy’s law. By the above equation, we can easily derive the PME (9). The97

equation (12) can be seen as a mixed form of the equation (9).98

It is easy to see that the solution ρ of the equation (12) satisfies the following energy decay property99

dE
dt
≤ 0. (13)

Actually, by using the property ρ ≥ 0, we have100

dE
dt
=

∫
Ω(t)

f ′(ρ)∂tρdx =
∫
Ω(t)
∇ f ′(ρ) · ρvdx =

∫
Ω(t)
∇λ · ρvdx

= −

∫
Ω(t)

ρ|v|2dx = −2Φ(ρ; v) ≤ 0.
(14)

In the previous derivation, we see that v = −∇λ may not be equal to zero on ∂Ω. This implies that the PME is a101

free boundary problem. We rewrite the equation in a closed form that102 
∂tρ = ∆ρ

m, in Ω(t),
ρ = 0, on ∂Ω(t),
vn = −

m
m−1∇ρ

m−1 · n, on ∂Ω(t),
ρ(x, 0) = ρ0(x), at t = 0.

(15)

where vn = v · n is the outer normal velocity of the free boundary. The well-posedness of the equation can be found in103

[? ]. In addition to the mass conservation and energy decay properties, the PME has some other interesting properties,104

like the waiting time phenomenon and the finite diffusion velocity, etc. In next section, we will derive a numerical105

method to the PME by using the Onsager principle as an approximation tool.106
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3. A moving mesh finite element method107

For simplicity in presentation, we derive a moving mesh finite element method by using the Onsager variational108

principle in one dimension in this section. The derivation can be generalized to higher dimensional cases straightfor-109

wardly (c.f. the two dimensional cases in the appendix). Let the interval I(t) = [a(t), b(t)] be the domain where the110

PME is defined. The equation (15) is reduced to111 
∂tρ(x, t) = ∂xxρ

m(x, t), x ∈ I(t), t > 0,
ρ(a(t), t) = 0, ρ(b(t), t) = 0, t > 0,
ȧ = − m

m−1∂xρ
m−1(a), ḃ = − m

m−1∂xρ
m−1(b), t > 0,

ρ(x, 0) = ρ0(x), x ∈ I(0).

(16)

We will not directly discretize the problem (16). Instead we derive a discrete problem by the Onsager variational112

principle.113

3.1. Semi-discretization114

We first partition the interval I(t) by N + 1 knots,115

X(t) := {a(t) = x0(t) < x1(t) < · · · < xN(t) = b(t)}. (17)

Notice that the knots may change positions with respect to time. Denote the partition as Th := {Ii}
N
i=1, where Ii =116

(xi−1(t), xi(t)]. Then we can define the finite element space V t
h117

V t
h := {uh ∈ C(I(t)) : uh is linear in Ii(t),∀i = 1, ...,N}. (18)

Denote by V t
h,0 = {uh ∈ V t

h : uh(a) = uh(b) = 0}. For any function ρh(x, t) ∈ V t
h,0, it can be written as118

ρh(x, t) =
N−1∑
i=1

ρi(t)ϕi(x, t), (19)

where ϕi(x, t) is the finite element basis function associated with xi, i.e.119

ϕi(x, t) = ϕl
i + ϕ

r
i =

x − xi−1(t)
xi(t) − xi−1(t)

χIi (x) +
xi+1(t) − x

xi+1(t) − xi(t)
χIi+1 (x), (20)

where χIi is the characteristic function corresponding to Ii. Due to the Dirichlet boundary condition ρ0(t) = ρN(t) = 0,120

there are 2N time dependent parameters in the formula of ρh(t, x), i.e.,121

{ρ1(t), ρ2(t), · · · , ρN−1(t), x0(t), x1(t), · · · , xN(t)}. (21)

We aim to approximate the solution ρ of the problem (16) by a discrete function ρh(t, x). For that propose, we will122

derive a dynamic equation for ρi(t) and xi(t) by using the Onsager principle.123

Firstly, we discretize the energy functional and as follows. Notice that the time derivative and space derivative of
ρh(t, x) are respectively given by

∂tρh =

N−1∑
i=1

ρ̇i(t)ϕi(x, t) +
N∑

i=0

ẋi(t)ψi(x, t),

∂xρh =

N−1∑
i=1

ρi(t)∂xϕi(x, t),

where
ψi(x, t) =

∂ρh

∂xi
= −Dhρi−1ϕ

l
i − Dhρiϕ

r
i ,
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with Dhρi =
ρi+1(t)−ρi(t)
xi+1(t)−xi(t)

.124

Denote by ρ = (ρ1(t), ..., ρN−1(t))T , x = (x0(t), ..., xN(t))T . The discrete energy functional Eh with respect to ρh is125

given by126

Eh(ρ, x) =
N∑

i=1

∫
Ii

f (ρh)dx. (22)

Then the changing rate of the discrete energy is calculated as127

Ėh(ρ, x; ρ̇, ẋ) =
N−1∑
i=1

∂Eh

∂ρi
ρ̇i +

N∑
i=0

∂Eh

∂xi
ẋi, (23)

where

∂Eh

∂ρi
=

∫
I

f ′(ρh)ϕidx, i = 1, ...,N − 1;

∂Eh

∂xi
=

∫
I

f ′(ρh)ψidx, i = 0, ...,N.

In order to obtain the discrete dissipation functional, we need to discretize the velocity v(x, t). We use a piecewise128

linear function vh(x, t) =
∑N

i=0 vi(t)ϕi(x, t) in V t
h to approximate the velocity v(x, t). Denote by v = (v0(t), ..., vN(t))T .129

Then we calculate the discrete dissipation function Φh as130

Φh(ρ, x; v) =
N∑

i=1

∫
Ii

1
2
ρh(x, t)vh(x, t)2dx. (24)

Suppose that the mesh knots move with velocity vh in a Lagrange manner, i.e.131

ẋi(t) = vh(xi, t), i = 0, ...,N. (25)

Then the time derivative of Eh can be rewritten as132

Ėh(ρ, x; ρ̇, v) =
N−1∑
i=1

∂Eh

∂ρi
ρ̇i +

N∑
i=0

∂Eh

∂xi
vi. (26)

The discrete Rayleighian functional is defined as

Rh(ρ, x; ρ̇, v) = Φh(ρ; x, v) + Ėh(ρ, x; ρ̇, v).

By the Onsager variational principle, (ρ̇, v) is obtained by133

min
ρ̇,v
Rh(ρ, x; ρ̇, v)

s.t.
∫

I
(∂tρh + ∂x(ρhvh))whdx = 0, ∀wh ∈ V t

h,0.
(27)

To deal with the constraint in the above problem, we introduce a discrete Lagrange multiplier λh =
∑N−1

i=1 λiϕi(x, t).
By integration by part, we have ∫

I
(∂tρh + ∂x(ρhvh))λhdx =

∫
I
(∂tρhλh − ρhvh∂xλh)dx.

Then the discrete Lagrangian functional is given by134

R̃h = Φh + Ėh −

∫
I
(∂tρhλh − ρhvh∂xλh)dx. (28)
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Notice that the problem can be seen as a discrete version of the equation (10). Here we consider a weak form of the135

continuum equation in the constraint. Notice that the test function is chosen to be in a finite element space V t
h,0 instead136

of V t
h. This will lead to a discrete multiplier λh ∈ V t

h,0 in the Euler-Lagrange equation. This is consistent with the137

continuous problem where the multiplier(pressure) λ = 0 on ∂Ω.138

The Euler-Lagrange equation corresponding to the problem (28) is given by139 
∂Eh
∂ρi
−
∫

I ϕiλhdx = 0, i = 1, ...,N − 1;∫
I ρhvhϕidx + ∂Eh

∂xi
−
∫

I ψiλhdx +
∫

I ρh∂xλhϕidx = 0, i = 0, ...,N;∫
I ∂tρhϕidx −

∫
I ρhvh∂xϕidx = 0, i = 1, ...,N − 1.

(29)

Notice that ẋ = v, the equations (29) can be written in an algebraic form140 
M(x(t))λ(t) = ∂Eh

∂ρ (x(t), ρ(t)),

D(x(t), ρ(t))ẋ(t) = − ∂Eh
∂x (x(t), ρ(t)) +

(
BT (x(t)) − ET (x(t), ρ(t))

)
λ(t),

M(x(t))ρ̇(t) +
(
B(x(t)) − E(x(t), ρ(t))

)
ẋ(t) = 0,

(30)

where M ∈ RN−1,N−1, D ∈ RN+1,N+1, B ∈ RN−1,N+1, E ∈ RN−1,N+1, such that

Mi j(x(t)) =
∫

I(t)
ϕiϕ jdx; Di j(x(t), ρ(t)) =

∫
I(t)
ρhϕiϕ jdx;

Bi j(x(t)) =
∫

I(t)
ϕiψ jdx; Ei j(x(t), ρ(t)) =

∫
I(t)
ρh∂xϕiϕ jdx.

In the following of the subsection, we give some important properties for the differential-algebraic system (30).141

We first address the existence of solutions ρ(t) and x(t) with non-negative initial data ρ0 and an initial partition x0.142

We need some assumptions:143

(A1). The intervals Ii(t), i = 1, ...,N are well-defined, i.e., xi−1(t) < xi(t).144

(A2). The discrete density function ρ(t) is non-negative for all t.145

Proposition 1. Under the assumptions (A1) and (A2), there exist an unique solution for differential-algebraic system146

(29).147

Proof. By the assumption (A1), the mass matrix M(x(t)) is positive definite for any t. Then λ(t) can be solved in the
algebraic equation, i.e. λ = M−1 ∂Eh

∂ρ . By the assumption (A2), the matrix D(x, ρ) is also positive definite. Then the
differential-algebraic system reduces to a system of ordinary differential equations (ODEs)ẋ(t) = −g1(x(t), ρ(t)),

ρ̇(t) = g2(x(t), ρ(t))g1(x(t), ρ(t)),

where

g1(x(t), ρ(t)) = D−1(x(t), ρ(t))
[∂Eh

∂x
(x(t), ρ(t)) −

(
BT (x(t)) − ET (x(t), ρ(t))

)
λ(t)
]
,

g2(x(t), ρ(t)) = M−1(x(t))
(
B(x(t)) − E(x(t), ρ(t)

)
.

It is easy to verify that the vector-valued functions g1(x, ρ) and g2(x, ρ) have continuous partial derivatives with respect148

to ρ and x on a bounded closed convex domain by direct calculations. Therefore they are Lipschitz continuous with149

respect to (x(t), ρ(t)). By the Picard-Lindelof theorem, we know that the ODE system has a unique solution for given150

proper initial values.151

The following theorem states the discrete energy dissipation relations.152
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Theorem 1. Under the assumptions (A1) and (A2), and let ρ(t), x(t) be the solution of the equations (25) and (29).153

Let ρh(t, x) ∈ V t
h,0 be the corresponding discrete density function and vh ∈ V t

h be the discrete velocity function. Then154

we have155

∂Eh(ρh)
∂t

= −2Φh(ρh, vh) ≤ 0. (31)

Proof. The proof is given by straightforward calculations

∂Eh(ρh)
∂t

=

N−1∑
i=1

∂Eh

∂ρi
ρ̇i +

N∑
i=0

∂Eh

∂xi
ẋi

=

N−1∑
i=1

∫
I
ϕiλhdxρ̇i +

N∑
i=0

(
−

∫
I
ρh∂xλhϕidx −

∫
I
ρhvhϕidx +

∫
I
ψiλhdx

)
vi

=

N−1∑
i=1

( ∫
I
∂tρhϕidx −

∫
I
ρhvh∂xϕidx

)
λi −

N∑
i=0

∫
I
ρhvhϕidxvi

= −

∫
I
ρhv2

hdx = −2Φh(ρh, vh).

By the assumption (A2), the function ρh(x, t) ≥ 0 for all x ∈ I(t). Then we can easily see that∫
I
ρhv2

hdx ≥ 0.

This leads to the proof of the theorem.156

Finally, we show a property of the semi-discrete problem which is related to the mass conservation.157

Proposition 2. Under the assumptions (A1) and (A2), and let ρ(t), x(t) be the solution of the equations (25) and (29).158

We have the following relations,159

d
dt

∫
I(t)
ρh(x, t)ϕi(x, t)dx = 0, i = 1, ...,N − 1. (32)

Proof. Using integration by parts, we can obtain

d
dt

∫
I(t)
ρh(x, t)ϕi(x, t)dx

=

∫
Ii(t)∪Ii+1(t)

(∂tρh + ∂x(ρhvh))ϕi + ρh(∂tϕi + vh∂xϕi)dx.

Notice that

∂tϕi =

i+1∑
j=i−1

∂x jϕi ẋ j =

i+1∑
j=i−1

(−ϕ j∂xϕi)ẋ j = −(
i+1∑

j=i−1

ϕ j ẋ j)∂xϕi = −vh∂xϕi.

This leads to ∂tϕi + vh∂xϕi = 0. Thus by (29) we have

d
dt

∫
I(t)
ρh(x, t)ϕi(x, t)dx = 0, i = 1, ...,N − 1.

160

Remark 1. We can rewrite the equations (32) in a vector form

d
dt

(
M(t)ρ(t)

)
= 0,
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Integrating the equation from 0 to T , we have M(T )ρ(T ) = M(0)ρ(0). Notice that this does not imply the exact mass161

conservation property. We will give more discussions on this issue in the next section. In addition, given a discrete162

initial value ρ(0), it is easy to show M(0)ρ(0) ≥ 0. However, since the mass matrix M(T ) is not a M-matrix in163

general, we can not prove the positivity of ρ(T ). That is why we need the assumption (A2). To ensure the positivity164

of the mass density, we can use the lumped mass method [? ]. The matrix M(t) in the equation (30) is replaced by a165

diagonal matrix M̄(t). A diagonal element of M̄(t) is the sum of the nonzero elements of M(t) on the corresponding166

row. One can easily verify that M̄(t) is a M-matrix and the positivity of ρ is guaranteed. In Section 5, we will show167

some numerical tests using the lumped mass method.168

3.2. Full discretization169

In order to get a fully discrete numerical scheme, we introduce a proper temporal discretization to the semi-discrete170

equations (25) and (29). Let the time step be τ, then we set the solution at t = tn as ρn
i = ρi(tn), xn

i = xi(tn), and the171

solution at tn+1 as ρn+1
i , xn+1

i . We define the finite difference operator ∂̄ρn = (ρn+1 − ρn)/τ, then let vn+1
i := ∂̄xn

i =172

(xn+1
i − xn

i )/τ. We first consider an explicit Euler scheme as follows173

∫
In
ϕn

i λ
n+1
h dx =

∂En
h

∂ρn
i
, i = 1, ...,N − 1; (33)∫

In
ρn

hvn+1
h ϕn

i dx = −
∂En

h

∂xn
i
+

∫
In
ψn

i λ
n+1
h dx −

∫
In
ρn

h∂xλ
n+1
h ϕn

i dx, i = 0, ...,N; (34)∫
In

( N−1∑
j=1

∂̄ρn
jϕ

n
j

)
ϕn

i = −

∫
In

( N∑
j=0

vn+1
j ψn

j

)
ϕn

i dx +
∫

In
ρn

hvn+1
h ∂xϕ

n
i dx, i = 1, ...,N − 1. (35)

The above scheme is decoupled and easy to implement. We need only to solve a few linear equation successively in
each time step. This is efficient in general case. A drawback of the scheme is that we show choose a small time step
τ to guarantee numerical stability. To further improve the stability of the explicit scheme, we add some stabilization
terms by incorporating the Hessian matrix of the energy. This results in a coupled stabilized explicit scheme as
follows,∫

In
ϕn

i λ
n+1
h dx − τ

∂2En
h

∂ρn
i ∂xn

i
∂̄xn

j − τ
∂2En

h

∂ρn
i ∂ρ

n
i
∂̄ρn

i =
∂En

h

∂ρn
i
, i = 1, ...,N − 1; (36)∫

In
ρn

hvn+1
h ϕn

i dx + τ
∂2En

h

∂xn
i ∂ρ

n
i
∂̄ρn

j + τ
∂2En

h

∂xn
i ∂xn

i
∂̄xn

i −

∫
In
ψn

i λ
n+1
h dx +

∫
In
ρn

h∂xλ
n+1
h ϕn

i dx = −
∂En

h

∂xn
i
, i = 0, ...,N; (37)∫

In

( N−1∑
j=1

∂̄ρn
jϕ

n
j

)
ϕn

i +

∫
In

( N∑
j=0

vn+1
j ψn

j

)
ϕn

i dx −
∫

In
ρn

hvn+1
h ∂xϕ

n
i dx = 0, i = 1, ...,N − 1. (38)

174

Another approach is to adopt an implicit numerical scheme for the temporal discretization as follows,∫
In
ϕn

i λ
n+1
h dx =

∂En+1
h

∂ρn+1
i

, i = 1, ...,N − 1; (39)∫
In
ρn

hvn+1
h ϕn

i dx = −
∂En

h

∂xn
i
+

∫
In
ψn

i λ
n+1
h dx −

∫
In
ρn

h∂xλ
n+1
h ϕn

i dx, i = 0, ...,N; (40)∫
In

( N−1∑
j=1

∂̄ρn
jϕ

n
j

)
ϕn

i = −

∫
In

( N∑
j=0

vn+1
j ψn

j

)
ϕn

i dx +
∫

In
ρn

hvn+1
h ∂xϕ

n
i dx, i = 1, ...,N − 1. (41)

In the following theorem, we prove the energy stability of the implicit scheme.175

Theorem 2. Let ρn
i , x

n
i and ρn+1

i , xn+1
i be the solutions of the equations (39)-(41) at t = tn and t = tn+1, respectively.176

We have the following result:177

Eh(ρn+1, xn+1) ≤ Eh(ρn, xn). (42)
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Proof. Denote by rn
i (s) = xn

i−1 + s(xn
i − xn

i−1), ρh ◦ rn
i = ρ

n
i−1 + s(ρn

i − ρ
n
i−1). And let w1 = ρ

n+1
h ◦ rn+1

i and w2 = ρ
n
h ◦ rn

i .
Since function f is convex, we know that the energy E(ρ) is a convex functional. Then we have the following property

E(w1) − E(w2) ≤ ⟨
δE(w1)
δw1

,w1 − w2⟩.

By direct calculation, we have

Eh(ρn+1
h ) − Eh(ρn

h) =
N∑

i=1

( ∫
In+1
i

f (ρn+1
h )dx −

∫
In
i

f (ρn
h)dx
)

=

N∑
i=1

( ∫ 1

0
f (ρn+1

h ◦ rn+1
i )|In+1

i |ds −
∫ 1

0
f (ρn

h ◦ rn
i )|In

i |ds
)

=

N∑
i=1

( ∫ 1

0
( f (ρn+1

h ◦ rn+1
i ) − f (ρn

h ◦ rn
i ))|In+1

i |ds

+

∫ 1

0
f (ρn

h ◦ rn
i )(|In+1

i | − |I
n
i |)
)
ds.

By using the convexity of E, we have∫ 1

0
f (ρn+1

h ◦ rn+1
i ) − f (ρn

h ◦ rn
i )ds ≤

∫ 1

0
f ′(ρn+1

h ◦ rn+1
i )(ρn+1

h ◦ rn+1
i − ρn

h ◦ rn
i )ds.

Then178

Eh(ρn+1
h ) − Eh(ρn

h) ≤
N∑

i=1

( ∫ 1

0
f ′(ρn+1

h ◦ rn+1
i )|In+1

i |(ρ
n+1
h ◦ rn+1

i − ρn
h ◦ rn

i )ds

+

∫ 1

0
f (ρn

h ◦ rn
i )(∂̄xn

i − ∂̄xn
i−1)τds

)
.

(43)

Notice the expression179

Eh(ρn
h) =
∫

In
f (ρn

h)dx =
N∑

i=1

∫ 1

0
f (ρn

h ◦ rn
i )|In

i |ds. (44)

From the first equality of the above equation, we know that

∂En
h

∂xn
i
=

∫
In

f ′(ρn
h)ψn

i dx.

From the second equality of (44) and noticing that ρh ◦ rn
i = ρn

i−1 + s(ρn
i − ρ

n
i−1), which does not depend on xn

i , we
obtain

∂En
h

∂xn
i
=

∫ 1

0
f (ρn

h ◦ rn
i )|In

i
ds −

∫ 1

0
f (ρn

h ◦ rn
i+1)|In

i+1
ds.

Thus we have the formula of ∂En
h

∂xn
i
:

∂En
h

∂xn
i
=

∫
In

f ′(ρn
h)ψn

i dx =
∫ 1

0
f (ρn

h ◦ rn
i )|In

i
ds −

∫ 1

0
f (ρn

h ◦ rn
i+1)|In

i+1
ds.

Similary, we have the formula of ∂En+1
h

∂ρn+1
i

:

∂En+1
h

∂ρn+1
i

=

∫
In+1

f ′(ρn+1
h )ϕn+1

i dx

=

∫ 1

0
f ′(ρn+1

h ◦ rn+1
i )|In+1

i |sds +
∫ 1

0
f ′(ρn+1

h ◦ rn+1
i+1 )|In+1

i+1 |(1 − s)ds.
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Then we derive the expressions for
∑N−1

i=1
∂En+1

h

∂ρn+1
i
∂̄ρn

i and
∑N

i=0
∂En

h
∂xn

i
∂̄xn

i as

N−1∑
i=1

∂En+1
h

∂ρn+1
i

∂̄ρn
i =

N∑
i=1

∫ 1

0
f ′(ρn+1

h ◦ rn+1
i )|In+1

i |((1 − s)∂̄ρn
i−1 + s∂̄ρn

i )ds

=
1
τ

N∑
i=1

∫ 1

0
f ′(ρn+1

h ◦ rn+1
i )|In+1

i |(ρ
n+1
h ◦ rn+1

i − ρn
h ◦ rn

i )ds,

and
N∑

i=0

∂En
h

∂xn
i
∂̄xn

i =

N∑
i=1

∫ 1

0
f (ρn

h ◦ rn
i )(∂̄xn

i − ∂̄xn
i−1)ds,

respectively. By using these relations, the equation (43) is reduced to

Eh(ρn+1
h ) − Eh(ρn

h) ≤ τ
N−1∑
i=1

∂En+1
h

∂ρn+1
i

∂̄ρn
i + τ

N∑
i=0

∂En
h

∂xn
i
∂̄xn

i .

By using the equations (39)-(41), we can further calculate

τ

N−1∑
i=1

∂En+1
h

∂ρn+1
i

∂̄ρn
i + τ

N∑
i=0

∂En
h

∂xn
i
∂̄xn

i

= τ

N−1∑
i=1

( ∫
In
ϕn

i λ
n+1
h dx

)
∂̄ρn

i

+ τ

N∑
i=0

( ∫
In
ψn

i λ
n+1
h dx −

∫
In
ρn

h∂xλ
n+1
h ϕn

i dx −
∫

In
ρn

hvn+1
h ϕn

i dx
)
∂̄xn

i

= τ

N−1∑
i=1

( ∫
In

( N−1∑
j=1

∂̄ρn
jϕ

n
j

)
ϕn

i +

∫
In

( N∑
j=0

vn+1
j ψn

j

)
ϕn

i dx −
∫

In
ρn

hvn+1
h ∂xϕ

n
i dx
)
λn

i

− τ

N∑
i=0

( ∫
In
ρn

hvn+1
h ϕn

i dx
)
∂̄xn

i = −τ

∫
In
ρn

h(vn+1
h )2dx ≤ 0.

Thus we obtain the following result:
Eh(ρn+1

h ) − Eh(ρn
h) ≤ 0.

180

3.3. Implementations of the numerical schemes181

The fully discrete explicit scheme (33)-(35) can be written as

Mnλn+1 =
∂En

h

∂ρn , (45)

Dnvn+1 = −
∂En

h

∂xn + (Bn − En)Tλn+1, (46)

Mn∂̄ρn = −(Bn − En)vn+1, (47)

where Mn ∈ RN−1,N−1, Dn ∈ RN+1,N+1, Bn ∈ RN−1,N+1, En ∈ RN−1,N+1, such that

Mn
i j =

∫
In
ϕn

i ϕ
n
jdx; Dn

i j =

∫
In
ρn

hϕ
n
i ϕ

n
jdx;

Bn
i j =

∫
In
ϕn

i ψ
n
jdx; En

i j =

∫
In
ρn

h∂xϕ
n
i ϕ

n
jdx.
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Since Mn is the mass matrix and Dn is a modified mass matrix, both of them are positive definite if the value ρn
182

and xn satisfy Assumptions (A1) and (A2). In implementations, we can first solve (45) to compute λn+1. Then we183

successively solve (46) to obtain vn+1 and (47) to get ρn+1. Finally, we update xn+1 by xn+1 = xn + τvn+1. The linear184

system (45)-(47) are decoupled and are easy to solve.185

The implicit scheme (39)-(41) can be written as

Mnλn+1
−
∂En+1

h

∂ρn+1 = 0, (48)

Dnvn+1 − (Bn − En)Tλn+1 = −
∂En

h

∂xn , (49)

Mn∂̄ρn + (Bn − En)vn+1 = 0. (50)

Since the coupled system (48)-(50) is nonlinear, we can choose Newton method or fixed-point iteration to solve them.186

Remark 2. The derivation and the theoretical results in this section can be generalized to higher dimensional cases187

straightforwardly. More details on the methods in the two dimensional case are given in the appendix. Numerical188

examples in two dimension are given in the Section 5.189

4. Modified numerical schemes190

Notice that the conservation of the total mass of the semi-discrete scheme (30) in the previous section is not191

guaranteed, as discussed in Remark 1. This is due to the fact that we assume the homogeneous boundary condition of192

the Lagrange multiplier(or the pressure) on the free boundary, i.e. λ0 = λN = 0. This condition is consistent with the193

continuous problem(see the equation (12)). However, we need consider an alternative boundary condition to preserve194

the mass conservation for the semi-discrete scheme.195

We still use a piecewisely linear approximation for ρ and allow the grid nodes move in a Lagrange manner.196

Namely, we let ρh =
∑N−1

i=1 ρiϕi and vi = ẋi for i = 0, · · · ,N. In comparison with the previous derivation, we do not197

propose the boundary condition for the Lagrange multiplier and let λ̂h =
∑N

i=0 λiϕi. Then the augmented Rayleighian198

functional is defined as199

R̂h = Φh + Ėh −

∫
I
(∂tρh + ∂x(ρhvh))̂λhdx. (51)

This corresponding variational problem is200

min
ρ̇,v
Rh(ρ, x; ρ̇, v)

s.t.
∫

I
(∂tρh + ∂x(ρhvh))whdx = 0, ∀wh ∈ V t

h.
(52)

The only difference from the problem (27) is that the test function wh belongs to V t
h instead of its subspace V t

h,0. By201

similar derivations in the previous section, we can derive the following Euler-Lagrange equation202 
∂Eh
∂ρi
−
∫

I ϕiλhdx = 0, i = 1, ...,N − 1;∫
I ρhvhϕidx + ∂Eh

∂xi
−
∫

I ψiλhdx +
∫

I ρh∂xλhϕidx = 0, i = 0, ...,N;∫
I ∂tρhϕidx −

∫
I ρhvh∂xϕidx = 0, i = 0, ...,N.

(53)

In an algebraic form, the equation is rewritten as203 
M̂(x(t))̂λ(t) = ∂Eh

∂ρ (x(t), ρ(t)),

D(x(t), ρ(t))ẋ(t) = − ∂Eh
∂x (x(t), ρ(t)) +

(
B̂(x(t)) − Ê(x(t), ρ(t))

)T
λ̂(t),

M̂
T

(x(t))ρ̇(t) +
(
B̂(x(t)) − Ê(x(t), ρ(t))

)
ẋ(t) = 0,

(54)
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where D is the same as in (30), M̂ ∈ RN−1,N+1, B̂ ∈ RN+1,N+1, Ê ∈ RN+1,N+1 such that

M̂i j(x(t)) =
∫

I(t)
ϕiϕ jdx; B̂i j(x(t)) =

∫
I(t)
ϕiψ jdx;

Êi j(x(t), ρ(t)) =
∫

I(t)
ρh∂xϕiϕ jdx.

For the semi-discrete problem (53), we have the following proposition,204

Proposition 3. Under the assumptions (A1) and (A2), let ρ(t), x(t) be the solution of the equations (25) and (53), then205

the total mass is conserved in the sense that,206

d
dt

∫
I(t)
ρh(x, t)dx = 0. (55)

Proof. Similar to the analysis in the proof in Proposition 2, we have

d
dt

∫
I(t)
ρh(x, t)ϕi(x, t)dx = 0, i = 0, ...,N.

Noticing that
∑N

i=0 ϕi = 1, the equation (55) is obtained by adding all the above equations together.207

We can also develop an explicit linear scheme and an implicit nonlinear scheme by time discretization. However,
the explicit scheme is not decoupled in this case. The two schemes in algebraic forms are respectively given by,

M̂
n
λ̂

n+1
=
∂En

h

∂ρn , (56)

Dnvn+1 − (B̂
n
− Ê

n
)Tλn+1 = −

∂En
h

∂xn , (57)

(M̂
n
)T ∂̄ρn + (B̂

n
− Ê

n
)vn+1 = 0; (58)

and

M̂
n
λ̂

n+1
−
∂En+1

h

∂ρn+1 = 0, (59)

Dnvn+1 − (B̂
n
− Ê

n
)T λ̂

n+1
= −

∂En
h

∂xn , (60)

(M̂
n
)T ∂̄ρn + (B̂

n
− Ê

n
)vn+1 = 0. (61)

Although the semi-discrete scheme (53) satisfies the mass conservation property, the fully discrete schemes do not208

satisfy the property since they are linearized schemes. Our numerical experiments show that the numerical scheme209

(56)-(58)(or (59)-(61)) gives almost the same results as those in the previous section. Therefore, we will use the210

simpler schemes (45)-(47) and (48)-(50) in the numerical examples next section.211

5. Numerical examples212

In this section we present some numerical results to show the effectivity of our numerical methods. We consider213

both one dimensional and two dimensional problems.214

We choose the Barenblatt-Pattle solution [? ? ] to test the accuracy of our method. The Barenblatt-Pattle solution215

is a special solution for the PME in Rd. Let x be the coordinate of a point in Rd. This solution has an explicit form216

B(x, t) = t−α(C − k|x|2t−2β)
1

m−1
+ , (62)
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where (s)+ = max{s, 0},

α =
d

d(m − 1) + 2
, β =

α

d
, k =

α(m − 1)
2md

,

and d is the number of dimension, C > 0 is a constant determined by the total mass. This solution has a compact217

support in space for any fixed time t. The free boundary is the surface given by the equation218

t = c|x|d(m−1)+2, (63)

where c = ( k
C )

d(m−1)+2
2 . The boundary position changes when t increases.219

The L2 error between the discrete solution ρh and the exact solution ρ at time T is computed by220

errL2 :=
( ∫
Ω

(ρ(x,T ) − ρh(x,T ))2dx
)1/2

. (64)

5.1. One-dimensional problems221

Numerical experiments show that both the explicit and implicit schemes work well when the time step is small.222

In the one-dimensional case, absent further specification, we employ the implicit scheme (39)-(41) to solve the PME.223

We are mainly interested in the adaptive motion of the mesh and how it affects the numerical errors.224

5.1.1. Convergence tests225

We first consider the Barenblatt-Pattle solution, with constants C = 1 and d = 1. We take the Barenblatt-Pattle226

solution at t = 1, denoted as B(x, 1), as the initial data. We compare the numerical solution with the exact solution227

B(x,T ) at time T = 2, for both m = 2 and m = 5 cases. To investigate the accuracy of the method in the one-228

dimensional case, we use a uniform mesh and a least square best fit mesh [? ] for the initial data, respectively. In both229

cases, the number of intervals in the mesh is increased by a factor of two, and the time step is reduced by a factor of230

four to test the convergence rate.231

Figure 1 shows the convergence behavior of our method in various situations. We set the initial time step τ = 0.01.232

In the numerical tests, the time step is relatively small. The reason is that our method leads to non-uniform meshes233

in general, which is very fine near the boundary and coarse in the central region. This increases the stiffness of the234

semi-discrete problem. From Figure 1(a), we observe that when m = 2, the second-order convergence rate can be235

obtained on a uniform initial mesh. However, when m = 5, the uniform initial mesh leads to a slower convergence236

rate. This is due to the fact that larger m corresponds to a more singular solution of the PME. To cure the discrepancy237

of the convergence rate, we can choose a better initial mesh by finding a best approximation to the initial function in a238

piecewisely linear finite element space with free knots.We do this by a least square method [? ]. The numerical results239

for the non-uniform initial meshes are shown in Figure 1(b). We see that the optimal convergence rate is obtained240

for both m = 2 and m = 5 cases. In Figure 1, we also illustrate the numerical results by using the method with the241

lumped mass matrix M̄ as discussed in Remark 1. The lumped mass method exhibits similar convergence behavior to242

the original method (39)-(41).243

Figure 2 exhibits the numerical and exact (Barenblatt-Pattle) solutions at T = 2 for m = 5 using different meshes.244

We see that the numerical solutions fit well with the exact solution even for a very coarse mesh. This implies that the245

boundary points moves correctly when time evolves.246

As stated in Section 3, the numerical scheme (29) does not preserve the total mass exactly. Nevertheless, numerical247

experiments show that the errors for the mass are usually small. Some typical results are listed in Table 1. Here we248

set C = 31/3

4 for m = 2, and C = 0.07808 for m = 5 to ensure the total mass
∫

I B(x, 1)dx = 1. we see that the errors249

for the total mass are very small and decay with an optimal convergence rate.250

5.1.2. Comparisons of different methods251

Then we conduct numerical comparisons for different schemes including the Lagrangian method presented in252

[? ]. Specifically, we compare the L2 errors, convergence rates, and computation times for the one-dimensional253

porous media equation at T = 2 in the cases m = 2 and m = 5, under both uniform and non-uniform initial mesh254

discretizations. In this numerical comparison, both the Lagrangian scheme in [? ] and the scheme (39)-(41) are255

implicit schemes, for which we employ the Newton iteration method to obtain solutions. The stopping criterion for the256
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uniform_mesh_error_MassLump-eps-converted-to.pdf

(a) uniform initial mesh

L2best_mesh_error_MassLump-eps-converted-to.pdf

(b) non-uniform initial mesh

Figure 1: Convergence of the numerical solutions for the PME (m = 2, 5) at T = 2.

Table 1: Convergence of the numerical mass errors at T = 2 for m = 2 and 5
N τ Error for m = 2 Order Error for m = 5 Order
12 1/100 5.5471 × 10−4 1.0078 × 10−4

24 1/400 1.3884 × 10−4 1.9983 2.6645 × 10−5 1.9193
48 1/1600 3.4719 × 10−5 1.9996 6.9277 × 10−6 1.9434
96 1/6400 8.6804 × 10−6 1.9999 1.7764 × 10−6 1.9634

Newton iteration is set as the norm of gradient less than 10−6, with a maximum of 100 iterations allowed. The explicit257

scheme (33)-(35) permits the decoupling of equations, enabling the sequential solution of several linear systems. The258

numerical experiments were performed on a MacBook Pro with a 2 GHz quad-core Intel Core i5 processor.259

As illustrated in Table 2, for the case m = 2, all three methods achieve a second-order convergence rate under260

uniform initial grid discretizations. However, in terms of computational efficiency, the explicit method is fastest261

among all the three schemes since there is no need to solve a nonlinear algerbaic equation. Meanwhile, our implicit262

method costs more computation time than that of the Lagrange scheme in [? ], since our method has more unknowns263

and we need to solve a much larger system. Table 3 demonstrates that, for m = 5, none of the three numerical schemes264

attain second-order convergence rate when the initial mesh is uniform. The computational costs of the three schemes265

are similar to the case when m = 2.266

Table 4 and Table 5 present numerical results for m = 5 with optimal non-uniform initial mesh. In this case, the267

mesh size near the boundary is very small, leading to the fact that the semi-discrete dynamic systems are very stiff.268

Table 4 shows that the Lagrange method in [? ] does not converge even when the times step is ten times smaller269

than that of the uniform mesh case, while our methods work and exhibit good convergence behavior under the same270

conditions. Table 5 shows that the stabilized numerical scheme (36)-(38) and the implicit scheme (39)-(41) work271

when the time step is chosen as the same as that of the uniform mesh case(ten time larger than that in Table 4). The272

doucoupled explicit scheme (33)-(35) fails only when the number of grid points reaches 96. These results indicate273
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Figure 2: The exact solutions (red solid line) and the numerical solutions (blue circles) of the PME(m = 5).

that introducing more variables in our methods is helpful to deal with more singular problems in comparison with the274

method in [? ]. The stabilized explicit method (36)-(38) seems to be the best choice among all these methods when275

the parameter m is large. It is more stable than the decoupled explicit scheme (33)-(35) and costs less time than the276

implicit scheme (39)-(41).277

Table 2: The comparison of methods for m = 2 at T = 2 under the uniform initial mesh

The Lagrange method in [? ] Explicit scheme (33)-(35) Implicit scheme (39)-(41)

N τ L2 error Order Time (s) L2 error Order Time (s) L2 error Order Time (s)

12 1/100 0.0119 0.020204 0.0127 0.013264 0.0127 0.029935
24 1/400 0.0030 1.9879 0.043949 0.0032 1.9887 0.041757 0.0032 1.9887 0.187873
48 1/1600 7.4432e-4 2.0110 0.182364 7.9599e-4 2.0072 0.095804 7.9460e-4 2.0098 1.606934
96 1/6400 1.8595e-4 2.0010 1.450588 1.9900e-4 2.0000 0.602054 1.9828e-4 2.0027 13.055278
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Table 3: The comparison of methods for m = 5 at T = 2 under the uniform initial mesh

The Lagrange method in [? ] Explicit scheme (33)-(35) Implicit scheme (39)-(41)

N τ L2 error Order Time (s) L2 error Order Time (s) L2 error Order Time (s)

12 1/100 0.2721 0.025934 0.2356 0.019109 0.2269 0.074134
24 1/400 0.1616 0.7517 0.061532 0.1288 0.8712 0.063488 0.1238 0.8740 0.348429
48 1/1600 0.0960 0.7513 0.291109 0.0701 0.8776 0.231545 0.0677 0.8708 2.420672
96 1/6400 0.0571 0.7495 2.106921 0.0381 0.8796 1.709349 0.0372 0.8639 24.551611

Table 4: The comparison of methods for m = 5 at T = 2 under the non-uniform initial mesh

The Lagrange method in [? ] Explicit scheme (33)-(35) Implicit scheme (39)-(41)

N τ L2 error Order Time (s) L2 error Order Time (s) L2 error Order Time (s)

12 1/1000 – – – 0.0500 0.089584 0.0513 0.339997
24 1/4000 – – – 0.0144 1.7959 0.333953 0.0151 1.7644 2.093960
48 1/16000 – – – 0.0044 1.7105 1.830398 0.0046 1.7148 21.903188
96 1/64000 – – – 0.0014 1.6521 13.466308 0.0015 1.6167 150.726021

Table 5: The comparison of methods for m = 5 at T = 2 under the non-uniform initial mesh

Explicit scheme (33)-(35) Stablized explicit scheme (36)-(38) Implicit scheme (39)-(41)

N τ L2 error Order Time (s) L2 error Order Time (s) L2 error Order Time (s)

12 1/100 0.0495 0.050430 0.0514 0.031399 0.0518 0.079790
24 1/400 0.0143 1.7914 0.055470 0.0152 1.7577 0.155128 0.0153 1.7577 0.229261
48 1/1600 0.0058 1.3019 0.239831 0.0046 1.7244 1.181074 0.0046 1.7244 2.767125
96 1/6400 – – – 0.0015 1.6167 10.685654 0.0015 1.6167 34.953982

5.1.3. Waiting time phenomenon278

It is known that the solution of the PME may exhibit a waiting time phenomenon. Namely the support of the279

solution may not change until the time t is larger than some critical value t∗. To test if our method can capture this280

phenomenon, we consider an initial value as in [? ],281

ρ0(x) =


(

m−1
m ((1 − θ) sin2(x) + θ sin4(x))

) 1
m−1
, x ∈ [−π, 0],

0, otherwise,
(65)

with θ ∈ [0, 1]. For such an initial value, the critical waiting time is given by an explicit formula t∗ = 1
2(m+1)(1−θ) when282

θ ∈ [0, 1
4 ].283

In our tests, we set θ = 0 and m = 4. This gives a waiting time t∗ = 0.1. Here we set N = 48 and τ = 2.5 × 10−3.284

The numerical solutions at various time are shown in Figure 3. We see that the shape of the solution changes while the285

support of the solution does not change until t ≥ 0.1. To show the motion of the boundary points more clearly, we plot286

the coordinates of the left and right boundaries with respect to time in Figure 4. Here we choose various values for287

the parameters θ and m. For m = 4, we set θ = 0 and 1/5. The waiting time is 0.1 and 0.125, respectively . For m = 5,288

we set θ = 1/6 and the according waiting time is 0.1. From Figure 4, we can observe that our numerical method can289

automatically capture the waiting time phenomenon for all these cases.290

5.2. Two-dimensional problems291

We apply our numerical method to the PME in two dimensions. The explicit formulae of the numerical schemes292

are given in the appendix. In the numerical tests, we use the explicit numerical scheme for simplicity. In 2D, the293

convergence rate p is calculated by294

p =
log(err1/err2)
log(
√

N2/N1)
, (66)

where err1 and err2 are the L2 errors for the numerical solutions calculated on meshes with N1 and N2 vertexes,295

respectively.296
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Figure 3: Numerical solutions of the PME (m = 4) with the initial value (65) with θ = 0. Here N = 48, τ = 2.5 × 10−3.

5.2.1. Convergence test297

We consider the two dimensional Barenblatt-Pattle solution B(x, y, t) with C = 0.1 and d = 2, where (x, y) is the298

coordinate of a point in R2. We set B(x, y, 1) as the initial data and test the convergence rate at T = 2. The numerical299

results are shown in Figure 5. The numerical results are similar to that in one dimensional case. We see that the300

optimal convergence rate is obtained when m = 2 with a quasi-uniform initial mesh. For larger m, the uniform initial301

mesh will lead to a sub-optimal convergence rate. This is shown in Figure 5 for the m = 5 case. We also see that that302

the convergence rate is better on a non-uniform initial mesh than that on a uniform one. We remark that it is not an303

easy task to find an optimal initial mesh in 2D as discussed in [? ].304

We can also compute the waiting time phenomenon in the two dimensional case. For that purpose, we choose305
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Figure 4: Boundaries motion of the PME for different m and θ.

m = 2 and the following initial function,306

ρ0(x, y) =

 1
2 sin2(

√
x2 + y2 − π), if

√
x2 + y2 ≤ π,

0, otherwise.
(67)

According to the previous theoretical results [? ], there exists a positive waiting time for such an initial value. In307

the numerical test, the initial triangulation for Ω := {(x, y) :
√

x2 + y2 < π} is quasi-uniform with 1983 cells. We set308

τ = 10−3.309

Figure 6 shows the numerical solutions of the PME for the initial data (67) at various time. We see that the310

numerical method can also capture the waiting time phenomenon very well in the two dimensional case and the311

waiting time is about 0.125.312

5.2.2. General examples313

Finally, we show some examples with more general initial values. We first consider an initial value with a314

compact support of “horseshoe” shape, as in [? ? ? ]. In the test, we set m = 2 and the initial function is given by315

ρ0(x, y) =



50(0.252 − (
√

x2 + y2 − 0.75)2)2,

if
√

x2 + y2 ∈ (0.5, 1) and (x < 0 or y < 0);
50(0.252 − x2 − (y − 0.75)2)2,

if x2 + (y − 0.75)2 ≤ 0.252 and x ≥ 0;
50(0.252 − (x − 0.75)2 − y2)2,

if (x − 0.75)2 + y2 ≤ 0.252 and y ≤ 0;
0, otherwise.

(68)

Figure 7 illustrates how the solution evolves with time. We see our method can solve the problem very well until the316

boundary of the support intersecting each other. However, the present numerical method cannot directly deal with the317

topology change.318

To deal with the topology change, a possible way is to consider a regularized problem where the PME is extended319

to a larger region and the initial value is set to be a small positive constant in the outer region. In the following, we320

show such an example with a solution with two peaks merging into one for the PME with m = 3, motivated by the321

work in [? ? ]. Let Ω = [−1.5, 1.5]2 and the initial data is given by322

ρ0(x, y) = e−20∗((x−0.3)2+(y−0.3)2) + e−20∗((x+0.3)2+(y+0.3)2) + 0.001, (69)
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Figure 5: Convergence of the numerical solutions of the PME (m = 2, 5) at T = 2.
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Figure 6: Numerical solutions of the PME(m = 2) with the initial value (67).

which has two peak regions connected by a very thin layer with thickness 0.001. The numerical results are shown in323

Figure 8. It is clearly seen that the two separate peaks merges together gradually.324

6. Conclusion325

In this paper, we utilize the Onsager principle to develop a new moving mesh method for the porous medium equa-326

tion. We demonstrate that both the continuous PME and a semi-discrete scheme can be derived using this principle,327

ensuring that the scheme maintains the same energy dissipation structure as the continuous problem. Additionally,328

we introduce a fully discrete explicit decoupled scheme and an implicit scheme. Numerical examples illustrate the329

effectiveness of both schemes, showing that optimal convergence rates for the L2 error can be achieved when the initial330
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meshes are appropriately selected. The method naturally captures the waiting time phenomena and can be extended to331

higher-dimensional problems and higher-order approximations. It is important to note that while the derivation of the332

method is intuitive, the error estimate for the moving mesh method remains an open question. Optimal convergence333

estimates will require suitable assumptions regarding the initial meshes and the regularity properties of the system.334
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Appendix A. Numerical scheme in two dimensions341

In this appendix, we will give the discrete numerical scheme in the two dimensional case. Let Ω(t) ⊂ R2 be the342

domain where the PME is defined. Denote by Th a partition of Ω with NK disjoint triangles K such that the union of343

the triangles compose a polygonal domain Ωh. We suppose that the boundary vertices of Ωh locate on ∂Ω initially.344

Let V t
h be the finite element space with respect to the mesh Th,345

V t
h := {uh ∈ C(Ω̄h)|uh is linear in Ki, i = 1, ...,NK}. (A.1)

Let Nin be the number of vertices insideΩh, and let N be the total number of the vertexes in Ω̄h. Denote by P j = (x j, y j),
j = 1, · · · ,N, a vertex of Th which may change position with time t. Denote by

V t
h,0 = {uh ∈ V t

h : uh(P j) = 0,∀P j on ∂Ωh}.

Then the approximation ρh(x, y, t) =
∑Nin

i=1 ρk(t)ϕi(x, y, t), where ϕk(x, y, t), i = 1, ...,Nin are the global piecewisely
linear finite element basis functions. Similar to the one-dimensional case, the time derivative and space derivative of
ρh(x, y, t) are given by

∂tρh =

Nin∑
i=1

ρ̇i(t)ϕi(x, y, t) +
N∑

i=1

(ẋi(t)ψx,i(x, y, t) + ẏi(t)ψy,i(x, y, t)),

∂xρh =

Nin∑
i=1

ρi(t)∂xϕi(x, y, t),

∂yρh =

Nin∑
i=1

ρi(t)∂yϕi(x, y, t),

where
ψx,i =

∂ρh

∂xi
, ψy,i =

∂ρh

∂yi
.

Denote by ρ = (ρ1(t), ..., ρNin (t))T , x = (x1(t), ..., xN(t))T and y = (y1(t), ..., yN(t))T , then the discrete energy functional346

E and its time derivative are respectively given by347

Eh(ρ, x, y) =
∫
Ωh

f (ρh)dxdy (A.2)
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and348

Ėh(ρ, x, y; ρ̇, ẋ, ẏ) =
Nin∑
i=1

∂Eh

∂ρi
ρ̇i +

N∑
i=1

(∂Eh

∂xi
ẋi +

∂Eh

∂yi
ẏi

)
, (A.3)

where

∂Eh

∂ρi
=

∫
Ωh

f ′(ρh)ϕidxdy, i = 1, ...,Nin;

∂Eh

∂xi
=

∫
Ωh

f ′(ρh)ψx,idxdy, i = 1, ...,N;

∂Eh

∂yi
=

∫
Ωh

f ′(ρh)ψy,idxdy, i = 1, ...,N.

Let vh(x, y, t) = (vh
x(x, y, t), vh

y(x, y, t)) be an approximation of velocity v, s.t. vh
x(x, y, t) =

∑N
i=1 vx,i(t)ϕi(x, y, t) and

vh
y(x, y, t) =

∑N
i=1 vy,i(t)ϕi(x, y, t)). Let λh(x, y, t) =

∑Nin
i=1 λi(t)ϕi(x, y, t) be an approximation of λ(x, y, t). Then we can

obtain a discrete version of the dissipation function,

Φh =
1
2

∫
Ωh

ρh|vh|
2dxdy =

1
2

∫
Ωh

ρh(v2
x,h + v2

y,h)dxdy.

For the continuum equation, we have∑
K∈Th

∫
K

[∂tρh + ∇ · (ρhvh)]whdxdy =
∑
K∈Th

∫
K

(∂tρhwh − ρhvh · ∇wh)dxdy

=

∫
Ωh

(∂tρhwh − ρh(vx,h∂xwh + vy,h∂ywh))dxdy = 0, ∀wh ∈ V t
h,0.

Then we have the discrete Rayleighian functional with a Lagrange multiplier λh,349

R̃h = Φh + Ėh −

∫
Ωh

∂tρhλh − ρh(vx,h∂xλh + vy,h∂yλh)dxdy. (A.4)

We directly compute the corresponding Euler-Lagrange equations,

∂R̃h

∂ρ̇i
=
∂Eh

∂ρi
−

∫
Ωh

ϕiλhdxdy = 0, i = 1, ...,Nin; (A.5)

∂R̃h

∂vx,i
=

∫
Ωh

ρhvx,hϕidxdy +
∂Eh

∂xi
−

∫
Ωh

ψx,iλhdxdy +
∫
Ωh

ρhϕi∂xλhdxdy = 0,

i = 1, ...,N; (A.6)

∂R̃h

∂vy,i
=

∫
Ωh

ρhvy,hϕidxdy +
∂Eh

∂yi
−

∫
Ωh

ψy,iλhdxdy +
∫
Ωh

ρhϕi∂yλhdxdy = 0,

i = 1, ...,N; (A.7)

∂R̃h

∂λi
=

∫
Ωh

∂tρhϕi + ρh(vx,h∂xϕi + vy,h∂yϕi)dxdy = 0,

i = 1, ...,Nin. (A.8)
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The equation can be written in an algebraic form as

Mλ =
∂Eh

∂ρ
,

Dvx = −
∂Eh

∂x
+ (Bx − Ex)Tλ,

Dvy = −
∂Eh

∂y
+ (By − Ey)Tλ,

Mρ̇ = −(Bx − Ex)vx − (By − Ey)vy,

where

Mi j =

∫
Ωh

ϕiϕ jdxdy; Di j =

∫
Ωh

ρhϕiϕ jdxdy;

Bx,i j =

∫
Ωh

ϕiψx, jdxdy; By,i j =

∫
Ωh

ϕiψy, jdxdy;

Ex,i j =

∫
Ωh

ρh∂xϕiϕ
n
jdxdy; Ey,i j =

∫
Ωh

ρh∂yϕiϕ
n
jdxdy.

Similarly to the one dimensional case, we can further discretize the time derivative in the above system by an explicit350

Euler scheme or an implicit linearized scheme. We neglect the details for simplicity in presentation.351
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Figure 7: Numerical solutions of the PME(m = 2) with initial value (68). The initial mesh is quasi-uniform and has 910 nodes, 1684 cells. The
time step is τ = 10−3.
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Figure 8: The numerical solutions for the PME (m = 3) with initial value (69). The initial mesh is uniform with 961 nodes, 1800 cells. The time
step is τ = 10−3.
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