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A UNIFIED VARIATIONAL FRAMEWORK ON MACROSCOPIC
COMPUTATIONS FOR TWO-PHASE FLOW WITH MOVING
CONTACT LINES*

XIANMIN XU

Abstract. Two-phase flow with moving contact lines is an unsolved problem in fluid dynamics.
It is challenging to solve the problem numerically due to its intrinsic multiscale nature that the
microscopic slipness must be taken into account in a macroscopic model. It is even more difficult
when the solid substrate has microscopically inhomogeneity or roughness. In this paper, we propose
a novel unified numerical framework for two-phase flows with moving contact lines. The framework
cover some typical sharp-interface models for moving contact lines and can deal with the contact angle
hysteresis(CAH) naturally. We prove that all the models, including the nonlinear Cox model and
a CAH model, are thermodynamically consistent in the sense that an energy dissipation relation is
satisfied. We further derive a new variational formula which leads to a stable and consistent numerical
method independent of the choice of the slip length and the contact line frictions. This enables us to
solve efficiently the macroscopic models for moving contact lines without resolving very small scale
in the vicinity of the contact line. We prove the well-posedness of the fully decoupled scheme which
is based on a stabilized extended finite element discretization and a level-set representation for the
free interface. Numerical examples are given to show the efficiency of the numerical framework.

1. Introduction. A contact line in two-phase flow is the intersection of the
two-fluid interface with the solid boundary. Two-phase flow with moving contact
lines(MCLs) is very common in nature and our daily life, such as in wetting, printing,
coating, etc. Modeling and numerical simulations for the moving contact line problem
are very challenging due to its intrinsic multiscale property [1, 2]. It is known that
the microscopic slipness near the moving contact line must be taken into account in a
macroscopic continuum model. Otherwise, the standard no slip boundary condition
may lead to infinite energy dissipations [3]. The is referred to as contact line paradox
in literature. In addition, microscopic inhomogeneity of the solid surface may induce
the phenomena of contact angle hysteresis [4, 5, 6]. This makes solving the two-phase
problem with MCLs very difficult in real applications.

To avoid the contact line paradox, there exist many models in literature (c.f.
[7, 8,9, 10]). One simple way is to use the Navier slip boundary condition instead of
the no-slip boundary condition and to assume that the microscopic contact angle is
equal to the equilibrium Young’s angle [7] . By molecular dynamics simulations, Qian
et al found that the microscopic dynamic contact angle can be different from the static
one and they proposed a phase-field model with a generalized Navier slip boundary
condition [11, 12]. A sharp interface model is proposed by Ren & E [13, 14], which
is also consistent with molecular dynamics simulations. Other widely used boundary
conditions for MCLs include the model based on the molecular kinetic theory [15], the
surface generation model [16, 17], and the phase-field models with effective slipness
[18, 19].

All the above-mentioned models are microscopic models in the sense that they
describes behavior of the contact angle in a microscopic scale. The models include
some microscopic parameters, such as the slip length, the molecular adhesive parame-
ter, etc. To solve such models numerically, usually one needs to choose triangulations
with mesh size smaller than the microscopic parameters to get reasonable approxi-
mations. In general, it is very expensive to quantitatively simulate a problem with
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a macroscopic size. Therefore, most previous numerical studies for the microscopic
models are for problems with very small size or to present qualitative simulations in
the sense that some parameters are chosen artificially [20, 21, 22, 23, 24, 25, 26, 27].

To solve the MCL problem with macroscopic size, Sui & Spelt developed numerical
methods for a macroscopic model on homogeneous surfaces [28, 29]. They adopt the
boundary conditions proposed by Cox [30, 31]. The Cox model gives a nonlinear
relation between the apparent contact angle in macroscopic scale and the velocity
of contact line motion. In [28, 29], the authors use a finite difference method to
discretize the partial differential equations and choose mesh dependent parameters in
Cox’s model. Numerical examples show that the method gives results consistent with
physical experiments. Mesh depedent models have also been studied in a volume of
fluid method [32]. Numerical simulations for three dimensional problems are presented
in [33].

For two-phase flow problems with contact angle hysteresis, there is relatively few
numerical work in literature(c.f [21, 34, 33, 35, 36]). Most previous work assumes
that the advancing and receding contact angle are known a priori. In simulations, the
contact line velocity is set to be zero if the contact angle is in the interval [0,,0,].
Very recently, Yue developed efficient methods for two-phase flow problems with CAH
[35, 36]. They proposed a phase field model and a level-set model, both of which
guarantee the CAH condition automatically.

Recently, some new macroscopic models are developed for MCLs on both ho-
mogeneous and chemically patterned surfaces [37, 38]. The derivation of the models
are based on a model reduction method by the Onsager principle and a multiscale
analysis for the reduced dynamic system for problems with periodic inhomogeneity
on solid surface. The boundary conditions give quantitative relations between the
apparent contact angle, the contact line velocity and the local chemical property of
the substrate near the contact line. It is found that the boundary condition on ho-
mogeneous substrates is a first order approximation to the standard Cox boundary
condition when the capillary number is small. The boundary condition on inhomoge-
neous substrates explains very well the experimental results on dynamic contact angle
hysteresis in [39, 40].

In this paper, we present studies on numerical methods for two-phase flow with
MCLs. We first develop a unified mathematical framework which can handle many
sharp interface models, such as the Ren-E model, the Cox model, the Onsager model
and the CAH model. We show that all the models are thermodynamically consistent
in the sense that an energy dissipation relation is satisfied. As far as we know, this is
new for the Cox model and the CAH model, where the boundary conditions need a
transformation. Motivated by the work [41, 42], we further derive a new variational
formula, which can handle the unbounded parameters in the MCL models efficiently.
This enables us to develop a finite element method which is stable independent of
the choice of slip length and the contact line friction coefficient.We prove an inf-sup
inequality and the well-posedness for the fully discrete problem. Numerical experi-
ments are given to show the efficiency of the method and to compare various models.
It turns out that the method has nice convergence property even on triangulations
with mesh size larger than the slip length. The two-phase problem with contact angle
hysteresis can also be solved efficiently.

The rest of the paper is organized as follows. In section 2, we introduce several
sharp interface models, including the Ren-E model, the Cox model, the Onsager model
and a model for CAH. We reformulate them into a unified form. We proved that all
the models are thermodynamically consistent. In section 3, we derived a variational
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formula for the MCL problem. In the variational problem, we impose the boundary
condition weakly by a Nitsche technique and use a rescaling technique to ensure the
coefficient in the variational formula bounded away from infinity. In section 4, we
introduce the finite element discretization to the variational problem by using the
XFEM for the discrete pressure and the level-set method capturing the free interface.
In section 5, we show the well-posedness of the fully decoupled problem by proving a
discrete inf-sup condition. Numerical examples are shown in section 6 to verify the
efficiency of the method and to compare different models. Some conclusion remarks
are given in section 7.

2. A mathematical framework. In this section, we introduce some continuum
models for moving contact lines, including one for contact angle hysteresis which is
proposed recently in [37]. We will reformulate them into a unified form. We show
that all the models are thermodynamically consistent in the sense that they satisfies
an energy dissipation relation. However, the friction coefficient can be unbounded in
some situations, especially for the model with contact angle hysteresis.

2.1. The fluid equation. Suppose a domain Q = Q,UQy C R? is occupied by
two immiscible fluids. Away from the moving contact line, the viscous fluids can be
described by a system of impressible Navier-Stokes equations,

3 s .
(2.1) { pi (3 +u - Vu) =dive; + pig, in Q;(t),

V-u=0, in Q;(t),
where wu is the velocity of the fluids, p;(i = 1,2) is the density, g is the gravitational
acceleration, and o; is the stress. For viscous fluids, we have

o; = —pl+ p;D(u),

where p; is the viscous coefficient, D(u) := Vu+(Vu)T, and p is the pressure. Denote
by T'(t) = 91 U0 the interface between the two fluid regions. On the interface we
have the standard interface conditions,

(2.2) [onr] = —vknrp, [u]=0, Vr=wumnr, on I'(¢t).

The first equality in (2.2) means balance of the stress across the interface, where
[onr] := (01— o2)nr, nr is the unit normal of T'(¢) pointing into s, 7 is the surface
tension and & is the mean curvature of the interface. Notice that [u] := u; — uy is
the jump of the fluid velocity and Vr is the velocity of the interface. The other two
equations in (2.2) imply that the fluid velocity is continuous across the interface and
the interface evolves with the normal velocity of the fluid.

Suppose a part of the boundary of  is solid surface which is denoted as I'g. On
the solid surface we use the Navier slip boundary condition for both fluids,

(2.3) u-ng=0, BiPsu=-Pgo;ng, on g,

where ng is the unit out normal of I's, Pg = I—nsng is the projection operator which
maps a vector to the tangential surface of I's, ; is an phenomenological coefficient
and [, ; = £ denotes the slip length, which is of nanoscale in general. One can easily
show that
Psons = u;PsD(u)ng =: S(u,ng),
which represents the shear stress on the solid surface.
3
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On the rest part of the boundary 952, other boundary conditions should be chosen
accordingly. For example, inflow and outflow conditions may be used in the parts
where the fluids moves in or out of the domain. For simplicity, we suppose that u = 0
on 00\ T's in this paper.

When the two-phase interface T'(t) does not intersect with the solid boundary I'g,
the above equations compose a complete system. Otherwise, when there is a contact
line L(t) = T'(t) NI'g, one needs extra conditions for MCLs to complete the model.

2.2. Boundary conditions for MCLs. In the following, we introduce several
boundary conditions associated with the motion of contact lines. All of them can be
coupled with the sharp interface two-phase flow equations described above.

The Ren-FE model. A typical model for moving contact lines is proposed by Ren
& E [14], which reads

(2.4) Emur, = y(cosby — cosb,).

Here 6y is the Young’s angle, 6, is the microscopic dynamic contact angle, and £, > 0
is the contact line friction coefficient. wuy denotes the contact line velocity, which is
in the normal direction of the contact line L(t) in the tangential surface of I's. In
general, &, might be quite small since it accounts to the friction of the contact line
[43]. In principle, we could solve the equations (2.1)-(2.4) to simulate a moving contact
line problem. However, it is usually very challenging to do this for a problem with
macroscopic size. The reason is that one needs to use very fine meshes which is smaller
than the slip length I; (of nanoscale) [26].

The Cox model. To avoid using too fine meshes near the contact line, we can
consider some macroscopic models as in [28]. The first macroscopic model is the well-
known boundary condition by Cox, which is derived by delicate asymptotic analysis
[30]. The condition reads

(2.5) NlllnduL :7(g(6‘a7)‘) - g(9Y7)‘))7

where 6, is the apparent contact angle on a mesoscale [, {( = li is the ratio between [
and the slip length [; and A = % is the ratio between the viscosity of the two fluids.
Here the nonlinear function

0
Q(G,A)z/ F(a, ) sin ada,
0

with
Ma? —sin? a)(m — a + cosasina) + (7 — a)? — sin? a)(a — cos asin )

.7:04,)\ = ) . 9 ) . 9 .
(2,2) 2sin” a(A?(a? — sin® ) + 2A(sin” o + a(7m — @) + ((7 — a)? — sin” a))

For later applications, we will rewrite Cox’s model into a different form as follows,
(2'6) Ecox (ea)uL = ’Y(COS 0y — cos a(l)a

o In ¢|(cos 6y —cos 6,
where £eoz () = ”l(lg(aal’)\)fg’zeyﬁ)) ) and

. 1| In¢|(cosby —cosb,)  pi1|ln(|
cox 0 = lim = .
SeorlBr) = 10 G0, 0) — GOy ) Fby V)
It is easy to check that £.,,(0,) is a continuous function in the above definition. Later
we will show that £.,.(0,) is always positive so that the Cox boundary condition will
lead to a thermodynamically consistent system.

4

This manuscript is for review purposes only.



176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

192

193

194

195

196

197

198

199

A model derived from the Onsager principle. The second macroscopic model is
that derived recently by using the Onsager principle as an approximation tool [37].
The boundary condition reads

(2.7) Eons(0a)ur, = y(cos Oy — cosb,),

where &ons(0,) = (fm + ;L_.l(!gl:ﬂ) One can see that the equation is a first order
approximation to the Cox model (2.6) when the capillary number Ca := pur /7 is
small and &, in the coefficient &, is negligible.

To use the macroscopic models in a numerical method, the resolution near the
contact line is characterized by the local mesh size h. Therefore, we set h as the
characteristic mesoscopic length where the apparent contact angle is defined. In this
case, we choose ( = zﬂ in our numerical method in this paper. Similar techniques
have been used in [32, 28].

A coarse-grained model for contact angle hysteresis. When the solid surface is
inhomogeneous, the apparent advancing angle is different from the receding one. This
is referred to as contact angle hysteresis. A coarse-grained model for CAH is developed
recently in [37]. For simplicity, we assume that 0y (x, z) is a smooth function which
depends on a fast variable z in the normal direction of the contact line. For any
given x, we suppose that 6y (x,z) is a periodic function of z with period €, and
01 = min, Oy (z, z), 02 = max, Oy (z,z) with 0; € (0,7). In this case, the averaged
model reads,

08 = (L[ ) ser
. ons\Ug)UL =7 7C080a ; €T S-

€ Jo cosby(z,z2)

Here 6, is the time averaged contact angle. The formula describes the contact angle
hysteresis naturally. It can be verified that when uy goes to zero, the advancing
contact angle approaches to f and the receding one approaches to 6; [37].

For the purpose of numerical simulations, we rewrite the boundary condition into
an equivalent form,

(2.9) ghys(ﬂa)uL =7 (%/ cos Oy (x, z)dz — cos 9a) ,
0
where
& 0)= {0,15(9)(% foe cos Oy (z, z)dz — cos 9)(% fOE —Cosey(ii)fcose) , if 0 ¢ [61,05],
v 400, if 0 € (01,6

In the above definition, fhys (0,) can be equal to infinity when the contact angle is
in the interval of the receding contact angle and advancing angle since the integral

1 foe m diverges when 6 € [61,65]. This means the contact line is pinned

there, i.e. uy, = 0. To avoid using the infinity in numerical simulations, we use

(210) fhys(aa) = min(ghys (0(1)7 500)7
instead of éhys in (2.9) with £ > 0 being a large regularized parameter. The coarse-

grained model for CAH reads

€

(2.11) Enys(Ba)ur, = (1 /6 cos Oy (x, z)dz — cos Ha) .
0

5
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Table 1: Choice of the parameters for different models.

Model | B | Y(Oy)
Ren-E Em cos Oy
Cox Econ cos Oy
Onsager | &ong cos by

CAH | &uys | 2 [y cosfydC

Finally, we can write all the above models into a unified form,

(2.12) Brur =~(¥(fy) — cosba),

where the choice of the parameters S5, and ¥ (fy) are listed in Table 1 for various
models. We will propose a numerical framework for the general problem.

2.3. Energy dissipation relations. We first show that all the friction coef-
ficients are positive. The conclusion is trivial for the Ren-E model. The following
proposition presents results for the other models.

PROPOSITION 2.1. Suppose 6, € (0,7), p1 > 0 and X > 0. Then all the coeffi-
cients Eons, Ecoxs Enys N the previous macroscopic models are positive. Furthermore,
the coefficients may approach to zero or infinity in different situations.

Proof. We first consider £,,s. From the formula of F(6,\), we could see that all
the terms in F(,\) are positive when 6 € (0,7). For example, it is easy to verify
that §2 —sin?0 > 0, 7 — 60 +cosfsinf > 0, (7 —6)> —sin?@ > 0 and § — cosfsinh > 0
when 0 € (0, 7). This implies that F (6, \) is a positive number and so is F (6, \) .
This simply implies that &,,s > 0. We then show that &,,s can approach to zero
and infinity in various situations. In the first case, direct calculations show that
limg_,o F(0,A) = 0. This indicates limg_,0€ons = 00. Next if we set A\ = 0 and take
0 goes to m, we can get limg_,, F(6,0) = co. This implies that &,,s goes to zero if

We then consider ... By the formula of G(6,\), we know that % =
F(0,\)sinf > 0 when 0 € (0,7). Therefore G(6,)) is a monotonously increasing

function with respect to € in (0, 7). Notice that cos 6 is monotonously deceasing with
(cos Oy —cos 0,)

respect to 6 in (0, 7). We can easily see that GO NGOy 0 whenever 6, # 6y .

(cos Oy —cos 0,)

Notice again limg, _, 9, GO NGOy ) = ]-‘(Gif 5 > 0. We see that &, is always pos-

itive. By the above analysis for F(fy, ), we also know that £.,, can also approach
to zero and infinity in different situations.
We now consider £p,ys. We need only to analyze the value of the term

1 € 1 € dz
I(0,,7) := (6/0 cos Oy (z,2) — cos@adz) (6/0 cos Oy (z.2) = cosﬁa)'

Notice that cosf; > % f0€ cos By (z,z)dz > cosfs. Tt is easy to see that both terms in
1(6,,x) have the same sign when 6, ¢ [01,02] with 61,02 € (0, 7) being the lower and
upper bound of the smooth function 6y (x,-) in one period. This leads to I(0,,z) > 0
when 6, ¢ [61,02]. By the definition of &y, we can easily see that &ys > 0, for
all 6, € (0,7). We could also see that limg - I(04,z) = limy g 1(0,, ) = +oo.

6
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Therefore, £hys approaches to infinity when the regularized parameter {., goes to
infinity. 0

Proposition 2.1 shows that the friction coefficients in the above models are all
positive. This enables us to show the energy dissipation relation for all the above
models for MCLs. However, the unboundedness of the friction coefficients may cause
troubles in numerical simulations.

For models without CAH, the total potential energy in the system is given as

(2.13) & :/ 731d5—|—/ ’yggds+/fyds—/pg~:cdx,
sy Is2 r Q

where vg1 and g2 denote the solid-fluid interface energy densities, I's; = I's N 0024
and I'ga = I's N 0. By the Young’s equation, we have the relation

7y cos by = vs2 — Ys1-

The kinetic energy is defined as

(2.14) & = / P \u|?dz.
Q2
We also define the energy dissipation functional
(2.15) P = / P D(w)2dx + B—S|P5u|2ds +/ B—Luids,
o4 rs 2 L 2

where (;, corresponds to &, , {ons OF Ecop for different contact line models.
The following energy dissipation relation can be derived for the solution of the
problem (2.1)-(2.3) coupled with one MCL model on homogeneous surfaces.

PROPOSITION 2.2. Let (u,p) be the solution of (2.1)-(2.3) coupled with one con-
tact line model (2.4), (2.6) or (2.7), we have

d
— (& + &) = —29.
Proof. The proof of the proposition is standard. We briefly state the main steps

for convenience of the readers. Firstly, the time derivative of the potential energy can
be calculated as

d
—& = / (vs1 — vs2)urds + / cos O urds + fy/ kVrds — / pg - udx
dt L(t) L(t) () Q

= / (cos B, — cosby )urds + ’y/ kVrds — / pg - udz.
L(t) r(t) Q
By the boundary conditions (2.4), (2.6) or (2.7), this leads to
d
(2.16) —& = —/ Bru3ds + 'y/ kVrds — / pg - udz,
dt L(t) T(t) Q

where 81, = &, Ecox OF Eons respectively for different models.
The time derivative of the kinetic energy is

d ou
g&cf/ﬂa~u+(u.Vu)oudz.
7
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By the equation (2.1), this leads to

d 2
—& = / divo; + p;g) - udx
tey [ )

2
:Z{/ (O'in)-uds—/ UZ--Vu}—l—/pg-udx
= “Joq, o Q

1
(2.17) =— Bs|Psul?ds — fy/ kVpds — / ~|D(uw)|?dx + / pg - udx.
T's T'(t) Q2 Q
where in the last equation, we have used the interface condition (2.2), the Navier
slip boundary condition (2.3), the incompressibility condition in (2.1), and also the
relation that D(u) : Vu = 3|D(u)|?.

Add the two equations (2.16) and (2.17) together, we finish the proof of the
proposition. 0

For the model with contact angle hysteresis, we also have an energy dissipation
relation, which characterizes the averaged behaviour of the system. In this case, we
set

~ 1 1
(2.18) &, :/ f/VSl(s,z)dzds—F/ */’)/SQ(S,Z)dZdS—F/’}/dS—F/ pg - xdz,
Is; € Iga € r Q

Here 1 [ vsi(s, z)dz denotes the averaged solid-liquid interface energy density in the
normal direction of the contact line at a point s on S.

PROPOSITION 2.3. Let (u,p) be the solution of (2.1)-(2.3) coupled with the con-
tact angle hysteresis model (2.11), we have

d -

Proof. The proof of the proposition is similar to that of Proposition 2.2. The only
difference is that the surface energy in ths solid surface is replaced by the averaged
energy densities. This leads to the relation that
(2.19)

%gp = fL(t) (cos 0, — % J cos by (s, z)dz) urds + 'Vfr(t) kVeds — [, pg - uda.
Then use the condition (2.11) and the same arguments as above lead to the conclusion
of the proposition. 0

The propositions 2.2 and 2.3 show that the macroscopic CAH model we considered
is thermodynamically consistent. Furthermore, the interface energies in (2.18) have
clear physical meaning for chemically inhomogeneous surfaces.

3. The variational formulae.

3.1. A standard weak formula. In the previous section, we rewrite several
MCL models into a unified form. Now we derive a weak formula for the continuum
equations. We first introduce some functional spaces,

Xo:={veH(Q)?):v=00n00\Ts,v-ng=0onTlg},
= L*(Q) : dr=0p.
Q {qG () /qu 0}

8
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For functions in X and @, we define the following bilinear and trilinear forms, as
well as some linear functionals,

m(u,v) ::/pu-'uda:,
Q
1

a(u,v) := = /Q uD(u) : D(v)dx +

5 ,BSPSu~PSvds+/BLu-nLv-nLds,
L

Ts
bv,q) == — / (divv)gdz, c(w;u,v):= / p(w - Vu) - vdzx,
Q Q
fext(v) = / rg - 'Ud.lf, fF(v) = _’Y/ vFidF : VF’UCZZ'7
Q r

fo(w) ==~ / $(0 )0 - ds.

. _ P1 ifﬁL’GQl _ { M1 if.TGQl
Here we set p(z) = { by ifzEQy and p(x) = uy ifzeQy Both of them
are piecewisely constant functions. idr(z) := z, for € T" and Vr is the surface

gradient operator on I' [44]. In addition, we suppose that 3; and ¥ (0y) represent
different parameter for different models(as shown in Table 1).

With the above notations, the weak formula for the two-phase Navier-Stokes
equations (2.1)-(2.3) coupled with (2.12) can be written as follows. To find a pair
(u,q) € (Xo,Q), such that

(3.1)
m(Opu, v) + c(u; u,v) + a(u, v) + b(v,p) = fext(v) + fr(v) + fr(v),Vv € Xy;
(3.2) b(u,q) =0, Vq € Q.

where the two-phase interface I'(¢) moves with the normal velocity Vi = u - nr.

The derivation of the weak formula for Ren-E model can be found in [26]. For
the other several models, the derivation is similar as the Ren-E model, since we have
rewritten them into a similar form.

There exists several challenges to solve the weak problem numerically. The pa-
rameters in the system may have very large values. For example, the slip length
parameter /s is usually very small so that Sg > 1. Similarly, the parameter 57 may
change from zero to infinity, especially for the model with contact angle hysteresis
where 81, = &uys can be equal to £ > 1. The very large parameters make di-
rect discretization for (3.1)-(3.2) lead to algebraic systems with very large condition
number.

3.2. A regularized weak formula. To avoid the numerical difficulties encoun-
tered in solving (3.1)-(3.2), we introduce a new regularized weak formula below. The
main idea is to use a Nitsche type technique for general boundary conditions as in
[41, 42]. The regularized weak form is the basis of our numerical method.

Let h > 0 be a given small parameter which is the mesh size in a numerical
method. Let u, = u-ng, u, = Psu on I's and uy, = w-ny on L where ny, is the
out normal of L in the tangential surface of I'g. Similar notations are used also for a

9
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343

test function v. We introduce some new notations,

1 a18s aq
ap(u,v) := = D(u :Dvdm+/ 7u7~vrds+—/ Up Uy dS
n(u,v) 2/QM() (v) . 7Bs + an B

hBs hBs
/FS hﬂs_'_alS(u,n) v,ds /FS hﬁs_i_alS(v,n) u-ds

h
— ——S(u,n) - S(v,n)ds — n"D(u)nv,d
[ i S-S mds — [ pm Dlwjnods

7/ ,unTD(v)nunds+/ LﬂLuLde&
I's L

hBr + oo
/ qupds — / (divv)qdz,
I's Q

1 1
é(u;u,v) = §c(u;u,v) - §c(u;v,u)

fr.n(v) :vaw(Qy)des+'y/Lvnsineads—’y/L

b(v,q) :

hBL

m(iﬁ(@ﬂ — cos f,)vrds,

where «;,i = 1,2 are positive parameters of order O(1). We can easily see that the
coefficients s.at.isfy l'irnBS_>OO hgslﬁsal = %', limg.s_>Oo hﬂ}ffal = 1,.li.rnBL_>Oo h;‘jfﬁw =
92, etc. This implies that all the coefficients in the above definitions are uniformly
bounded even when Sg and 1 go to infinity.

We then introduce a functional space

X :={ve(H'(? :v=00n002\Ts}.

The regularized problem is defined as follows. To find a pair (u,q) € (X,Q), such
that

(3.3)
m (D, v) + &(u;w,v) + ap(w,v) + b(v,p) = foxt(v) + fr(v) + fr.n(v), Vo € X;
(3.4) b(u,q) =0, Vg € Q.

where the two-phase interface I'(¢) moves with the normal velocity Vr = u-nr. In the
weak formula, all the boundary conditions on I'g are imposed weakly by a Nitcshe type
technique. In addition, we use an antisymmetric representation ¢ for the convection
term.

3.3. Consistency. The following theorem show the consistency of the regular-
ized weak formula (3.3)-(3.4) with two-phase Navier-Stokes equations described in
Section 2.

THEOREM 3.1. If (u,p) is a solution of the equations (2.1)-(2.3) coupled with the
boundary condition (2.12), then the pair (u,p) also satisfies the weak problem (3.3)-
(3.4).

Proof. Tt is easy to see that the equation (3.4) can be simply obtained by the
second equation of (2.1) and the fact that u, =0 on I's.

We now prove the equation (3.3). We multiply the first equation in (2.1) by a
function v€X and integrate in €2; respectively. We have

(3.5) / Pi (88—1; +u- Vu) cvdr = / (dive; + pig) - vdz.
Q Q

i

10
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374 By adding the equations together for ¢ = 1,2, the left hand side terms lead to
375 m(Opu, v) + ¢(u; u,v). Here we have used the fact that

2 2
1 1
376 ;:1 /Qi 5u -Vu-vder = — ;:1 /QZ 5u -Vv - udz,

377 which is obtained by integration by part and the conditions V-u=0in Q;, u-n=20
378 on 022 and [u] = 0 on I". In addition, it is easy to see that the second term in the
379 right hand side of (3.5) gives fext(v). We need only to consider the first term in right
380 hand side of the equation (3.5). Direct calculations give

381 / diveo; - vdz = / (oim) - vds — / o;: Vvdx
(o a0, (o
382 = / (oin) - vds +/ p(V - v)dx — Hi D(u) : D(v)dz.
0% Q 2 Jo,

383  Summarize the equation for ¢ = 1,2, we have

2
384 Z/ dive; - vdx
i=17%%
385 :/ (ong) - vds —|—/[ain1~] -vds + / p(V - v)dx —/ HD(u) : D(v)dx
I's r Q Q2
386 = / Pgsong -v,ds —|—/ ngansvnds — 7/ Knr - vds
Ts T's T

387 (3.6) —|—/Qp(V-v)dx - /Q gD(u) : D(v)dz.

By using the Navier slip boundary condition (2.3), we have

Figure 1: Vectors near the contact line.

388

389 / Pgsong - -v,ds=— Bsu, - vrds.
T's s

390  We can also compute

391 / ngansvndSZ—/ pvnds—i—/ ungD(v)nSvnds.
I's I's I's

11
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392 Notice the fact that —Aridr(z) = k(z)nr where Ar is the Laplace-Beltrami operator
3093 (c.f. [44]). By integration by part, the third term in the right hand side of (3.6) leads
394 to

395 —7/ kny - vds = fy/ m” (Vridr)vds — Vridr - Vrvds
r L

s
396 = fy/ mTProds — v Vridr - Vrvds
L I's
397 = 7/ v, cos By + v, sinf,ds — vy Vridr - Vrods
L I's
398 = —/ Brurvrds + 7/ v (y) + vy sinf,ds — v Vridr - Vrvds
L L I's
399 = —/ Brurvrds + 7/ v (0y) + vy, sinb,ds + fr(v).
L L

100 Here m is out normal of L in the tangential surface of I', the relation m”Prv =
101 v -m = vp cosf, + v, sinf, can be seen from Figure 1, and we also have used the
102 boundary condition (2.12) for MCLs. Combining the above calculations, we are led
403 to

(3.7)
104 m(Opu, v) + ¢(u;u,v) —|—/ gD(u) :D(v)dz + Bsu, - vds —|—/ Brurvrds
Q I's L
05 — / 1 TD(0) 150, ds + B0, p) = faxe (v) + 7 / v mpb(By) + vy sin Buds + fi(v).
406 s L

407 Noticing the Navier slip boundary condition (2.3) on I'g, the boundary condition
108 (2.12) on L, and also the definition of S(u,n) = pPsD(u)ng = Pgong, we can
109 further derive the relation that

410 ap(uw,v) = %/ uD(u) : D(v)dm+/ LﬁSuT v.ds
Q r

s hBs +an
411 - /1“5 %Psans cv,ds — /FS %S(v,n) cu,ds
412 /1“3 W}:_alpsﬂns -S(v,n)ds — /FS pn D (u)nv,ds
413 +/LMO;,27§LOZ3ULULdS
414 = %/Q,uD(u) :D(v)dx + . hﬁo;lif-saluT ‘v,ds
415 +/Fs W:%BSUT vrds — /Fs pnTD(u)nv,ds + /L %u,;v,;ds
416 _ 1 / pD(u) : D(v)dx + g Bsu, - v,ds —/F pn D (u)nv,ds
s s

417 /ﬂL )ULULdS
a2

12
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418

419

420

422
423
424
425
426
427

428

429

430

431

432

433

434

435

436

437

438

439

140

441

442

144

445

4477
448

449

1
=- /Q,uD(u) : D(v)dx +

5 Bsu, - v.ds 7/ ,unTD(u)nvnder/ Brurvrds
I's L

I's

hBr.
—’Y/L m(w(ey) — cos b, )vpds.

Submit the equation into (3.7) and notice the definition of fr 5, we obtain (3.3). 0O

Based on the weak formula (3.3)-(3.4), we develop a stable finite element method
for the two-phase flow with MCLs as shown in the following sections.

4. The discrete problem. Before we introduce the discrete problem, we first
introduce the level-set method to capture the motion of the two-phase interface. Let
¢(x,t) be a smooth level-set function corresponding to I'(¢), namely

D(t) = {z € Qo (a, ) = 0}.
Then the motion of I'(t) can be described by the equation

(4.1) %—i—u-V(gﬁ:O.

The equation will be solved together with the system (3.3)-(3.4).

4.1. The finite element discretization. Let 7} be a regular triangulation of
Q with mesh size h. We define some finite element spaces as follows. To discretize
the level-set function, we use the standard P>,-FEM approach and denoted by

Vi = {¢h S C(Q) : ¢h|T € P, VT € E}
To discretize the velocity, we choose the P, finite element vector space and define
Xy = {’Uh S C(Q) : 'Uh|T S (7)2)3 forall T € ﬁ,vhlag\ps = 0}

For the pressure, we use an extended finite element method(XFEM) defined as follows.
Let the discrete interface I'j, generated by the discrete level-set function ¢y, [44]. The
domain {2 is divided by I'j, into two parts €; ,, © = 1,2. We introduce two subdomains
17, that overlap across the discrete interface as,

Q7 1, = UreT; meas;(Tna; ) >01
The corresponding P; finite element spaces are defined as
Qin={q€ C(Q7})lqn|r € Py for all T € Q7 }.

Then for a pair p, = (p1,h,P2,n) € Q1,1 X Q2,1, it may have two values in the over-
lapped region. We define a uni-valued function pg as

ph(z) = pin(z), forx € Q.

Notice that the function in p} may be discontinuous across I'y, and we can use it to
approximate pressure. The XFEM space is defined as

Q= {pn € Qui X Qo /Q PF (2)dz = 0.},

13
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It is known that the resulted algebraic system may be ill-conditioned if one element
T is cut by T', into two subsets with very large volume ratio(i.e. the volume of one
subset is close to zero). To avoid the difficulty, many different techniques can be
applied [45, 26]. Typically one can either simply remove the basis functions with
small support in the finite element space QY [46] or add some ghost penalty terms to
the weak form [45, 26]. In our numerical experiments, we stabilize the problem using
the ghost penalty techniques. That is to add some penalty terms in the bilinear form,
ie.

3 (Phsqn) ij Pi,h» Gi,h) Phyqn € Q1n X Q2,n

with  ji(pi,n, Gin) == M;l Z hE([Vpin - r), [Vain - nr))o,r.
FeF;

where hp is the diameter of the face F' and [Vp; ;-np] denotes the jump of the normal
components of the piecewise constant function Vp; j across the face F'. Here F; is the
set of surfaces of elements that intersect with I', minus the boundary of Q7. More
details on the definition of the XFEM and the stabilization terms can be found for
example in [26].

With the above notations, we can introduce the semi-discrete problem as follows.
To find a pair of functions (up,pr) and a function ¢, satisfying,

(4.2)
m(Opun, vi) + E(un; wp, vy) + an(wn, vn) + b(vn, pr) — b(un, qn) + a3j(Ph, qn)
= fext(vn) + fr(vn) + fr.n(vn), Yoy, € Xp,qn € Qhs
(4.3) (Otdn + up - Vop, on + 07wy - Vipp,) = 0, Yo € Vi.

Here (-,-) represents the L? inner product on €. In the above equations, all the
integrals on T'(t) and L(t) will be replaced by those on the discrete interface I'y,(¢)
and the discrete contact line Ly (t) := I',NT'g. In addition, we use the the streamline
diffusion finite element (SDFEM) to stabilize the discretization of the convection
equation for the levelset function and dp = cm with eg > 0 and ¢ = O(1)
is a stabilization parameter.

4.2. The fully discrete scheme. The fully discrete scheme is simply to replace
the time derivative in (4.2)-(4.3) by a finite difference scheme. Let 0 =g < ¢ < --- <
ty = T be a partition of a time interval (0,7). Denote by (uf,p¥,#%) the discrete
solution on the time t; and let Aty = tx — tx—1. Then the fully implicit backward
Euler scheme can be defined as

k—1

uf —u 5 -
) (s M o) 4 o o)+ oGl ) + Hehion )

—b(PFsuf,an) + (O hy an) = foxt (B3 0n) + fr(df;vn) + fra(df;vn),
Vvn € Xhn,qn € Qg(ﬁbﬁ)%

(4.5) <¢h Aj) + ’U,Z : Vd)ﬁ, wn + 5TUI,§ : Véph) =0. Yo € Vi.

Notice all the linear, bilinear, and trilinear forms in the above equations are written
in a way to explicitly show their dependence on gbfl. Notice that all the integration in

14
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489
490

491

these terms depends on the location of the discrete interface and the discrete contact
line, which is described by qS’,j. For example, we have

2
m(¢h; vn, vh) = Z/ vy - vpda,
=1 th

where Qﬁh are the subsets of Q separated by I'f := {z € Q: ¢f(z) = 0}.

There are several issues to solve the fully discrete problem. Firstly, the equation
is a fully coupled nonlinear equation. We can solve it by iterative methods. Secondly,
the reparametrization of the level-set function is needed to keep the gradient |V ¢y
away from zero. Thirdly, we may need to adjust ¢ every a few time steps to keep the
volume in €2; conserved. All these issues have been discussed extensively in literature,
c.f. [26, 44].

In applications, it is more convenient to solve a decoupled problem which is de-
scribed as follows. For given solution (u’;_l,pi_l, Z_l) in the (k — 1)-th step, we
first solve
(4.6)

k-1

k
u; —Uu - _ _ _ g _
; b h »’Uh> + el hup T ul, vn) + an (8wl vg) + b s, pf)

Tn<¢;€;17 Aty
Tkl k k=1, _ k1, _1 -1
—b(oy Sup,qn) +5(0y PRy an) = fext(P) svn) + (o) vn) + fra(d) vm),

Yo € Xp,qn € Qh (o8 );

to get a solution (uf,pF). Then we solve

ko k-1
(4.7) (m +up - Vé§, o + oruf - V80h> =0, Von € Vi,

to obtain (b’,i. When the time step is small and the interface does not change much in
one time step, the decoupled scheme is a good approximation to the coupled problem
(4.4)-(4.5).

5. Well-posedness of the fully discrete problem. In this section, we prove
the well-posedness of the decoupled scheme (4.6)-(4.7). For simplicity in notations,
we ignore the explicit dependence on gb’,j‘l in the formulae. All the integrals are done
on I‘Z*l or in the domains separated by the interface. The constants in the following
estimates is independent of the mesh size h, the large friction coefficient Sg and By,
and also independent of how the triangulation intersects with the interface. This
implies the stability of the discrete problem..

We first introduce some discrete norms. For the discrete velocity, we define

1 a1 f8

2 2 2 1Ps 2
u = | aglup|dx + = D(u d:c+/ — |uy, |°ds
[[wnlly / olun| 4/M| (un)] s 2(hﬁs+al)| horl

26134_/%'“}%“2%7
L

- |
+ U
hin hBr + as

2h Jr.

where ag = £;. Then we define a norm for the pair (up,pn) € Xp x QL
2

_1 .
s )1 5= el + ||~ + 5 (pn ).
0,921,,UQ2 1

The following lemma show the inf-sup condition for 13(, ).
15

This manuscript is for review purposes only.



at
[}
oo

529

546

547

LEMMA 5.1. Let Fﬁ_l be a non-degenerate interface. Then there exists a hg > 0
and c1,co > 0 such that for all h < hy,
b
sup (Vn,qn)
v, Xy ||UhHh

J(an, an)
C2 1
|10~ 2 qn|

. Vg eQh.

_1
> ClHN ZQh‘ 0,921 ,UQ2 n —

0,921,,UQ2 1

Proof. The result is a direct generation of a result in [47]. There it is proved that
for any g5, € QY there exists a function vy, € X0 (vi, = 0 on 99), such that

fﬂ(divvh)qhdac
|12 Vol

j(qthh>
27 1
[~ 2 qnl

_1
> cilln”2qnllo0, o, —c

0,921 ,UQ2 1

Notice that for v;, € X 0 C X}, we have

b(vn, qn) Z/Q(divvh)qhdw-F/

vnqhdx:/(divvh)qhdx,
I's Q

1

and also [lvp ||, = (3 [, u/D(wy)[2dz + [, aolun|?dz)? < c||uzVoy|lo. Here we use
the Kohn inequality. Then we have

br(Wnsqn) _ Jo(divop)gnde ¢ 1 co J(an, an)
> T = —lln"2anllo0r nu0en — — 7 :
[vnlln clluz Voo c ¢ [[u=2gnllo.0 0,
This concludes the proof of the lemma. ]

The following lemma is on the continuity of ap. The proof is trivial and we simply
ignore it.

LEMMA 5.2. There exists a constant cz > 0, such that
m(coun, vp) + E(up " un, vn) + an(wn, va) < csllugl|nllvn s
The next lemma states the coercivity of the bilinear forms.

LEMMA 5.3. Let F’,ffl is a non-degenerate interface. Then for given hg > 0, there
exists a constant c4 > 0 such that

m(aoun, wp) + bp(u) ™ un, wp) + ap (un, ) > |Jugl;

for all h < hg and ay > ¢4.

Proof. By definition, bh(uz_l; wup, up) = 0. Direct calculations show that

1 @ «a
on(unswn) = 5 [ D)o [ s 5 [P
Q I's

2 Fshﬂs—i_al
2hfBs / h 9
— ————uPsD(up)ng - up ,ds — —|uPsD(up)ng|°ds
/FS 1Bs o 'Fs (up)ns - up, . hﬂeroq"u sD(up)ns|

6L 2
-2 nTD(up)nu ds+/a27u ds.
/rsu (un ) LhﬁL-i-Ozz' Ll

Notice that

2hfs 1/ a1f8s 2
—————uPsD(up)ng - up rds < = ————|up |“ds
/pshﬂeral“S (up)ns - up, <3 1\h,|

h?Bs
+2/ P 1 PeD(uy)ng|?ds,
. (hﬁs+al)a1m sD(up)ns|

16
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548

549

550

ot
ot

566
567

568

569

1

570

571

and
T ! 2 2h T 2
2 un” D(up)nu,ds < — [upn|“ds + — |un’ D(up)n|=ds.
T's 2h T's (5] s

Then we have

1 20 Bsp hy 2hu) / 2
up) > <7 - - _ D(un)|?d
an(un, up) 2 2 (hBs+ai)an  hfs+ar a1/ Jg HID(un)[ de

a1 fs 2 g 2 aofr, 2
+/ ————|up - |“ds + —/ Uh,n ds+/ —————|up,L|"ds.
rs 2(hBs + al)| | 2h Jpg | L fun 2|
1

hBL + oo
For any h < hg, there exists a ¢4 > 0 such that for any a; > ¢4, we have 5 —

2

t h;gi’i Sl’;al - % 5;‘_‘:% - 221“ > %. Then the above inequality implies the conclusion of

the Lemma. ]
Denote by

A((un, pn), (v, qn)) =m(aown, vi) + Ch(’uZ—l; Up, vp) + an(un, vi) + by (vn, pr)
— bp(wn, qn) + @35 (Phs qn)-
We have the following theorem.
THEOREM 5.1. Under the conditions of the previous lemma, there exists constant

ho > 0, ¢5 > 0, such that

A
sup |A((un, pn), (vn, qn))|
(Vh,qn)EX R X QY 1 (vh, gn)llln

> s | (wns o)l

for all (wp,pr) € X x QL.

Proof. For any given (up,pn) € Xp X Q}:, by Lemma 5.1, we could choose a
function wj, € X}, such that

J(Pn,pn)

b(whvph) o
_1 °
I~ 2pnll0,01 U0,

|whlln

_1
> c1llp 2pnllo.0r v, —

Then rescale wy, by a constant still denote it as wy, so that|jwp|, = ||~ 2ps
Then we have

IO,Ql,hUﬂz,h i

1 .
b(wn,pr) > c1llp 2Ph||g,91,hu92,h — c25(Pn, ph)-
Take vy, = wp, + dwy, and g, = pp, then we have

A((un,pn), (vn, qn))
= agm(un, up) + aodm(up, wy) + dep(w) ™ un, wi) + ap (wn, up) + dan (wn, wy)
+0by (wh, pr) + 35 (Ph, Dh)

_1 .
> |Junlli — desllunlnllonlln + derlln™2pulld o, o, + (@ = c26)(pn, pa)

dcs dcr, _1 .
> (1- 2—01) o+ S Enl e+ (15 — €283 om )

where we used Lemma 5.2 and 5.3. By a proper choice of § and a3, so that 1— g%i’ = %
and az — cod > 1, then there exists a proper C' > 0,
A((un, pn); (0nsn)) > C [l (wn, ) |7 - 0

17
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618

Combine this with

2
_1 .
Il ns @)l = llun + dwnlf + |1 2pa + 5(on 1)
0,21,, U2
< s} + 3|2 + 5(n o)
o h 0,921, ,UQ2 1 ’ '

=3I (wn, pw) I3,

We finish the proof the theorem.

The above theorem is essential to show the well-posedness of the fully discrete
scheme.

THEOREM 5.2. There exists a unique solution for the decoupled scheme (4.6)-
(4.7).

Proof. By standard arguments [48], the well-posedness of the discrete Oseen equa-
tion (4.6) is a direct conclusion of Theorem 5.1 and the continuity of the belinear
form A(-,-). The inf-sup condition for SDFEM of the discrete level-set equation can
be found in [44] and this makes sure the well-posedness of (4.7). In all, the decoupled
scheme is well-posed. ]

6. Numerical experiments. In this section, we present some numerical ex-
amples to show the efficiency of the method. We will first test the accuracy of the
numerical scheme and then present numerical simulations to some interesting two-
phase flow problems with MCLs.

6.1. Convergence tests. We first test the convergence behaviour of the numer-
ical method proposed in Section 4. Here we use the Ren-E model for simplicity in the
following two examples. The results for the Cox model and the Onsager model are
similar.

Example 1. Convergence rate for a stationary problem. In this example, we
consider a stationary problem where the solution is known explicitly so that we can
compute the errors of the velocity and pressure.

In this examples, we set py = po = 1, 731 = 12 = 1 and v = 1. We choose
the parameters (3, = 2 = 10°, which gives a slip length I, = n/8; = 1075, The
other parameters are chosen as 5 = 30 and the Nitsche parameters a; = ag = 30.
The effect of the Nitsche parameter has been studied numerically in [42] and the
best results is obtained when it is in (10,50). We ignore the gravity and assume
that the Young’s angle is 8y = 90°. In equilibrium, the droplet will take a semi-
spherical shape. The geometric setup of the example is as follows. We consider a
domain 2 = (0,0.5) x (0,0.5) x (0,0.25). The center of the droplet is on the bottom
surface with coordinate (0.25,0.25,0). The radius of the droplet is R = 0.1. We
set the initial conditions w = 0 and the initial shape is semi-spherical. Since the
initial state is already in equilibrium, we can see that zero is the exact solution for
velocity. The pressures in the two fluids are constants denoted as p*. By the Young-
Laplace equation, the pressure difference satisfies p~ —p™ = yR, where p~ and p* are
respectively the pressures inside the droplet and in the outside fluid. By the condition
fQ pdx = 0, we can easily compute the exact solutions for the pressure are

p- =p" +vR=~R(Q] - Vo)/[9,

where [ is the volume of Q and Vo = ZXR? is the volume of the droplet.
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We compute the L2-errors of the velocity and pressure. The results are shown
in Table 2. We could see that both the pressure and velocity have a second order
convergence rate with respect to mesh size. This is the same for two-phase flows
problem without MCLs [47, 44].

Table 2: The convergence rate for velocity and pressure.

‘ ‘ velocity ‘ pressure ‘
‘ Mesh level ‘ #Err ‘ #Rate ‘ #Err ‘ #Rate ‘
0 2.040E-5 | — 1.436E-3 | —

1 4.109E-6 | 2.31 3.889E-4 | 1.88
2 1.004E-6 | 2.03 9.714E-5 | 2.00
3 2.415E-7 | 2.06 2.384E-5 | 2.03
4 5.866E-8 | 2.04 5.796E-6 | 2.04

Example 2. Convergence for a dynamic problem. In this example, we will study
the convergence of the method for a dynamic problem. The setup are almost the same
as in the previous examples, except the Young’s angle. Here we set 6y = 30°. We use
adaptive meshes to solve the problem. The mesh is refined near the interface of the
two-phase flow and h denotes the size of the refined mesh.

Since the semi-spherical shape is not an equilibrium state anymore, the droplet
will spread to the equilibrium state. In Figure 2, we show that the numerical results for
the problem by using the numerical method presented in Section 4. Since the problem
is axis-symmetric, we show only the profile of the droplet in the plane {x; = 0.25}.
We see that the nice convergence of the numerical solutions even when the mesh size
is much larger than the slip length. The dynamics are almost the same for the three
meshes. In comparison, it is known that the numerical solutions may not converge
when the mesh size is larger than the slip length (1076 in this example) for standard
methods c.f. [26, 35]. This implies that our method has much better convergence
property than the standard methods.

6.2. Macroscopic computations. In this subsection we present some numer-
ical experiments by the macroscopic models. We first do some comparisons for the
Ren-E model, the Cox model and the Onsager model. Then we do comparison with
physical experiments. Finally, we show an example with contact angle hysteresis.

Example 3. Comparisons for various models. In this example, we compare
different models for MCLs introduced in Section 2. The setup of the numerical exper-
iment is the same as in the previous example. Here we consider three different models
for moving contact line, i.e. the Ren-E model, the Cox model and the Onsager model.
The numerical results are shown in Figure 3. Here we also show only the intersection
of the droplet with the plane {x = 0.25}. We can see that the dynamics of the droplet
computed by the Onsager model is similar to that by the Cox model. However, there
exists obvious difference between the numerical results by the Ren-E model and those
by the other models. The droplet spreads much faster when we use the Ren-E model.
This is easy to understand since there exists extra energy dissipation near the contact
line for the two macroscopic models. The macroscopic models should be used for the
problem when the characteristic size of the droplet is much larger than the slip length,
as discussed [28].
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Figure 2: Shape of a spreading droplet at different time. Red: h = 1/32; blue:
h = 1/64, green: h = 1/128. Background color shows the value of the level-set
function. The arrows represent the velocity.

Example 4. Comparison with experiments. In this example, we use our method
to simulate a liquid-liquid displacement problem and compare with the physical ex-
periments in [49]. The experimental setup of the problem is as follows. A water
droplet is injected to a n-decane liquid by a glass capillary. The droplet detaches
from the capillary and attaches with a flat quartz substrate. Due to gravity and the
wetting properties, the water droplet will spread on the substrate and the profile is
captured from the side by a high-speed camera. The spreading radius of the droplet
on the substrate is a function of time. The physical parameters are as follows. The
density of water is p; = 1lgcm™2 and that of n-decane is p» = 0.73gcm™3. The vis-
cosity of water and decane are p; = 1.0087cP and us = 0.85¢P, respectively. The
interfacial tension of the interface between water and decane is v = 50.12mN/m. The
equilibrium Young’s angle of the water in decane is 8y = 58.16° . The contact line
friction &, = 0.3072Pa - s.

In our simulations, we choose the above physical parameters without any adjust-
ment. We first do nondimensionalization to the problem (2.1)-(2.3) and (2.12). The
characteristic length of the problem is Imm and the characteristic velocity is chosen
to be Imm/s. The geometric setup of our simulations is as follows. We consider a box
(0,6) x (0,6) % (0, 3). The initial radius droplet is 0.92 with centered as (3,3,0.91). We
use the Onsager model to do simulations. The initial velocity is v = 0. We compare
the spreading radius (as a function of time) with experimental observations and the
results are shown in Figure 4. We could see that the simulation results are very close
to the experiments. The curves are plotted in a log-log frame. The scaling law of
the spreading radius in both simulations and experiments are almost the same with
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Figure 3: Shape of a spreading droplet at different time computed by different models.
Blue: the Ren-E model; green: the Cox model, red: the Onsager model.

respect to time. The slight discrepancy between the numerical simulations and the
experimental results may comes from the fact that the initial states may be different.
In physical experiments, the detachment process between the droplet and the capil-
lary may affect the initial dynamics, while in numerical simulations we assume that
the droplet slightly attaches with the substrate with zero velocity in the initial state.
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Figure 4: Compare with experimental data

Example 5. (Simulations for contact angle hysteresis.) We consider a sliding
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droplet on a vertical wall with contact angle hysteresis. We set 1 = 172 = 1 and
v = 1. The gravitational acceleration is g = —9.81es and ; = 2 = 10°%, B, = 0.05.
The constant in Nitsche terms is set to be oy = ap = 30. We choose the CAH model
in the simulations and 0y (z) = 61 + (62 — 61)(1 + cos(4nz))/2 with 6; = 30° and
0> = 90°. The initial shape is a semi-spherical with radius » = 0.08 imposed on the
left boundary {z3 = 0} of a box (0,0.5) x (0,0.15) x (0,0.5). We choose an adaptive
mesh and the meshsize near the interface is h = 1/64 and set At = 0.125 in numerical
experiment.

In the first test, we set py = 5 and p2 = 1. The numerical results are shown in
Figure 5. We could see that the initial droplet is a semi-spherical. Then the shape of
the droplet changes due to the gravity effect. Finally, the droplet approaches to an
equilibrium state and it is pinned on the vertical surfaces. This is due to the existence
of the contact angle hysteresis.

In the second test, we change the ratio of the density by setting p; = 20 and
p2 = 1. The difference between the advancing contact angle and the receding one is
the same as in the previous one. The numerical results are shown in Figure 6. We
could see that the droplet slides down from the substrate and the shape also changes
during the process. There is no equilibrium state in this case since the pinning force
can not balance the gravitational force anymore.

(a)t=0 (c)t=5

Figure 5: Pinning of a droplet on a vertical wall with CAH

7. Conclusions. In this paper, we propose a unified framework for some im-
portant sharp interface models for two-phase flow with moving contact lines. We
reformulate the Cox boundary condition and a CAH model and prove them to be
thermodynamically consistent. To handle the unbounded parameters in the models,
we introduce a new variational form by using the Nitsche technique. This enables
us to develop a stable and efficient numerical method independent of the choice the
slip length and the contact line friction coefficient. By the method we can solve the
Cox type models and the CAH model naturally without resolving the fine scale near
the contact line. Overall, this leads to an efficient and reliable numerical framework
for macroscopic simulations for the complicated two phase flow problems with MCLs.
Numerical experiments show that the method has nice convergence property and can
fit with the physical experiments very well even on a relatively coarse mesh.

Theoretically, we show the stability of the numerical method by proving an inf-
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Figure 6: Sliding of a droplet on a vertical wall with CAH

sup condition which is independent of the choice of the parameters. In the future, we
will further do error analysis for the method. This is quite difficult since the flow field
and the pressure might be less regular near the contact line [50].
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