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Abstract. Two-phase flow with moving contact lines is an unsolved problem in fluid dynamics.5
It is challenging to solve the problem numerically due to its intrinsic multiscale nature that the6
microscopic slipness must be taken into account in a macroscopic model. It is even more difficult7
when the solid substrate has microscopically inhomogeneity or roughness. In this paper, we propose8
a novel unified numerical framework for two-phase flows with moving contact lines. The framework9
cover some typical sharp-interface models for moving contact lines and can deal with the contact angle10
hysteresis(CAH) naturally. We prove that all the models, including the nonlinear Cox model and11
a CAH model, are thermodynamically consistent in the sense that an energy dissipation relation is12
satisfied. We further derive a new variational formula which leads to a stable and consistent numerical13
method independent of the choice of the slip length and the contact line frictions. This enables us to14
solve efficiently the macroscopic models for moving contact lines without resolving very small scale15
in the vicinity of the contact line. We prove the well-posedness of the fully decoupled scheme which16
is based on a stabilized extended finite element discretization and a level-set representation for the17
free interface. Numerical examples are given to show the efficiency of the numerical framework.18

1. Introduction. A contact line in two-phase flow is the intersection of the19

two-fluid interface with the solid boundary. Two-phase flow with moving contact20

lines(MCLs) is very common in nature and our daily life, such as in wetting, printing,21

coating, etc. Modeling and numerical simulations for the moving contact line problem22

are very challenging due to its intrinsic multiscale property [1, 2]. It is known that23

the microscopic slipness near the moving contact line must be taken into account in a24

macroscopic continuum model. Otherwise, the standard no slip boundary condition25

may lead to infinite energy dissipations [3]. The is referred to as contact line paradox26

in literature. In addition, microscopic inhomogeneity of the solid surface may induce27

the phenomena of contact angle hysteresis [4, 5, 6]. This makes solving the two-phase28

problem with MCLs very difficult in real applications.29

To avoid the contact line paradox, there exist many models in literature (c.f.30

[7, 8, 9, 10]). One simple way is to use the Navier slip boundary condition instead of31

the no-slip boundary condition and to assume that the microscopic contact angle is32

equal to the equilibrium Young’s angle [7] . By molecular dynamics simulations, Qian33

et al found that the microscopic dynamic contact angle can be different from the static34

one and they proposed a phase-field model with a generalized Navier slip boundary35

condition [11, 12]. A sharp interface model is proposed by Ren & E [13, 14], which36

is also consistent with molecular dynamics simulations. Other widely used boundary37

conditions for MCLs include the model based on the molecular kinetic theory [15], the38

surface generation model [16, 17], and the phase-field models with effective slipness39

[18, 19].40

All the above-mentioned models are microscopic models in the sense that they41

describes behavior of the contact angle in a microscopic scale. The models include42

some microscopic parameters, such as the slip length, the molecular adhesive parame-43

ter, etc. To solve such models numerically, usually one needs to choose triangulations44

with mesh size smaller than the microscopic parameters to get reasonable approxi-45

mations. In general, it is very expensive to quantitatively simulate a problem with46
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a macroscopic size. Therefore, most previous numerical studies for the microscopic47

models are for problems with very small size or to present qualitative simulations in48

the sense that some parameters are chosen artificially [20, 21, 22, 23, 24, 25, 26, 27].49

To solve the MCL problem with macroscopic size, Sui & Spelt developed numerical50

methods for a macroscopic model on homogeneous surfaces [28, 29]. They adopt the51

boundary conditions proposed by Cox [30, 31]. The Cox model gives a nonlinear52

relation between the apparent contact angle in macroscopic scale and the velocity53

of contact line motion. In [28, 29], the authors use a finite difference method to54

discretize the partial differential equations and choose mesh dependent parameters in55

Cox’s model. Numerical examples show that the method gives results consistent with56

physical experiments. Mesh depedent models have also been studied in a volume of57

fluid method [32]. Numerical simulations for three dimensional problems are presented58

in [33].59

For two-phase flow problems with contact angle hysteresis, there is relatively few60

numerical work in literature(c.f [21, 34, 33, 35, 36]). Most previous work assumes61

that the advancing and receding contact angle are known a priori. In simulations, the62

contact line velocity is set to be zero if the contact angle is in the interval [θr, θa].63

Very recently, Yue developed efficient methods for two-phase flow problems with CAH64

[35, 36]. They proposed a phase field model and a level-set model, both of which65

guarantee the CAH condition automatically.66

Recently, some new macroscopic models are developed for MCLs on both ho-67

mogeneous and chemically patterned surfaces [37, 38]. The derivation of the models68

are based on a model reduction method by the Onsager principle and a multiscale69

analysis for the reduced dynamic system for problems with periodic inhomogeneity70

on solid surface. The boundary conditions give quantitative relations between the71

apparent contact angle, the contact line velocity and the local chemical property of72

the substrate near the contact line. It is found that the boundary condition on ho-73

mogeneous substrates is a first order approximation to the standard Cox boundary74

condition when the capillary number is small. The boundary condition on inhomoge-75

neous substrates explains very well the experimental results on dynamic contact angle76

hysteresis in [39, 40].77

In this paper, we present studies on numerical methods for two-phase flow with78

MCLs. We first develop a unified mathematical framework which can handle many79

sharp interface models, such as the Ren-E model, the Cox model, the Onsager model80

and the CAH model. We show that all the models are thermodynamically consistent81

in the sense that an energy dissipation relation is satisfied. As far as we know, this is82

new for the Cox model and the CAH model, where the boundary conditions need a83

transformation. Motivated by the work [41, 42], we further derive a new variational84

formula, which can handle the unbounded parameters in the MCL models efficiently.85

This enables us to develop a finite element method which is stable independent of86

the choice of slip length and the contact line friction coefficient.We prove an inf-sup87

inequality and the well-posedness for the fully discrete problem. Numerical experi-88

ments are given to show the efficiency of the method and to compare various models.89

It turns out that the method has nice convergence property even on triangulations90

with mesh size larger than the slip length. The two-phase problem with contact angle91

hysteresis can also be solved efficiently.92

The rest of the paper is organized as follows. In section 2, we introduce several93

sharp interface models, including the Ren-E model, the Cox model, the Onsager model94

and a model for CAH. We reformulate them into a unified form. We proved that all95

the models are thermodynamically consistent. In section 3, we derived a variational96
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formula for the MCL problem. In the variational problem, we impose the boundary97

condition weakly by a Nitsche technique and use a rescaling technique to ensure the98

coefficient in the variational formula bounded away from infinity. In section 4, we99

introduce the finite element discretization to the variational problem by using the100

XFEM for the discrete pressure and the level-set method capturing the free interface.101

In section 5, we show the well-posedness of the fully decoupled problem by proving a102

discrete inf-sup condition. Numerical examples are shown in section 6 to verify the103

efficiency of the method and to compare different models. Some conclusion remarks104

are given in section 7.105

2. A mathematical framework. In this section, we introduce some continuum106

models for moving contact lines, including one for contact angle hysteresis which is107

proposed recently in [37]. We will reformulate them into a unified form. We show108

that all the models are thermodynamically consistent in the sense that they satisfies109

an energy dissipation relation. However, the friction coefficient can be unbounded in110

some situations, especially for the model with contact angle hysteresis.111

2.1. The fluid equation. Suppose a domain Ω = Ω1∪Ω2 ⊂ R3 is occupied by112

two immiscible fluids. Away from the moving contact line, the viscous fluids can be113

described by a system of impressible Navier-Stokes equations,114

(2.1)

ß
ρi

(
∂u
∂t + u · ∇u

)
= divσi + ρig, in Ωi(t),

∇ · u = 0, in Ωi(t),
115

where u is the velocity of the fluids, ρi(i = 1, 2) is the density, g is the gravitational
acceleration, and σi is the stress. For viscous fluids, we have

σi := −pI+ µiD(u),

where µi is the viscous coefficient, D(u) := ∇u+(∇u)T , and p is the pressure. Denote116

by Γ(t) = ∂Ω1 ∪ ∂Ω2 the interface between the two fluid regions. On the interface we117

have the standard interface conditions,118

(2.2) [σnΓ] = −γκnΓ, [u] = 0, VΓ = u·nΓ, on Γ(t).119

The first equality in (2.2) means balance of the stress across the interface, where120

[σnΓ] := (σ1−σ2)nΓ, nΓ is the unit normal of Γ(t) pointing into Ω2, γ is the surface121

tension and κ is the mean curvature of the interface. Notice that [u] := u1 − u2 is122

the jump of the fluid velocity and VΓ is the velocity of the interface. The other two123

equations in (2.2) imply that the fluid velocity is continuous across the interface and124

the interface evolves with the normal velocity of the fluid.125

Suppose a part of the boundary of Ω is solid surface which is denoted as ΓS . On126

the solid surface we use the Navier slip boundary condition for both fluids,127

(2.3) u · nS = 0, βiPSu = −PSσinS , on ΓS ,128

where nS is the unit out normal of ΓS, PS = I−nSn
T
S is the projection operator which129

maps a vector to the tangential surface of ΓS, βi is an phenomenological coefficient130

and ls,i =
µi

βi
denotes the slip length, which is of nanoscale in general. One can easily131

show that132

PSσinS = µiPSD(u)nS =: S(u, nS),133

which represents the shear stress on the solid surface.134
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On the rest part of the boundary ∂Ω, other boundary conditions should be chosen135

accordingly. For example, inflow and outflow conditions may be used in the parts136

where the fluids moves in or out of the domain. For simplicity, we suppose that u = 0137

on ∂Ω \ ΓS in this paper.138

When the two-phase interface Γ(t) does not intersect with the solid boundary ΓS ,139

the above equations compose a complete system. Otherwise, when there is a contact140

line L(t) = Γ(t) ∩ ΓS , one needs extra conditions for MCLs to complete the model.141

2.2. Boundary conditions for MCLs. In the following, we introduce several142

boundary conditions associated with the motion of contact lines. All of them can be143

coupled with the sharp interface two-phase flow equations described above.144

The Ren-E model. A typical model for moving contact lines is proposed by Ren145

& E [14], which reads146

(2.4) ξmuL = γ(cos θY − cos θa).147

Here θY is the Young’s angle, θa is the microscopic dynamic contact angle, and ξm > 0148

is the contact line friction coefficient. uL denotes the contact line velocity, which is149

in the normal direction of the contact line L(t) in the tangential surface of ΓS . In150

general, ξm might be quite small since it accounts to the friction of the contact line151

[43]. In principle, we could solve the equations (2.1)-(2.4) to simulate a moving contact152

line problem. However, it is usually very challenging to do this for a problem with153

macroscopic size. The reason is that one needs to use very fine meshes which is smaller154

than the slip length ls (of nanoscale) [26].155

The Cox model. To avoid using too fine meshes near the contact line, we can156

consider some macroscopic models as in [28]. The first macroscopic model is the well-157

known boundary condition by Cox, which is derived by delicate asymptotic analysis158

[30]. The condition reads159

(2.5) µ1| ln ζ|uL = γ(G(θa, λ)− G(θY , λ)),160

where θa is the apparent contact angle on a mesoscale l, ζ = l
ls

is the ratio between l161

and the slip length ls and λ = µ2

µ1
is the ratio between the viscosity of the two fluids.162

Here the nonlinear function163

G(θ, λ) =
∫ θ

0

F(α, λ) sinαdα,164

with165

F(α, λ) =
λ(α2 − sin2 α)(π − α+ cosα sinα) + ((π − α)2 − sin2 α)(α− cosα sinα)

2 sin2 α(λ2(α2 − sin2 α) + 2λ(sin2 α+ α(π − α)) + ((π − α)2 − sin2 α))
.166

For later applications, we will rewrite Cox’s model into a different form as follows,167

(2.6) ξcox(θa)uL = γ(cos θY − cos θa),168

where ξcox(θa) =
µ1| ln ζ|(cos θY −cos θa)

(G(θa,λ)−G(θY ,λ)) and

ξcox(θY ) = lim
θa→θY

µ1| ln ζ|(cos θY − cos θa)

(G(θa, λ)− G(θY , λ))
=

µ1| ln ζ|
F(θY , λ)

.

It is easy to check that ξcox(θa) is a continuous function in the above definition. Later169

we will show that ξcox(θa) is always positive so that the Cox boundary condition will170

lead to a thermodynamically consistent system.171
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A model derived from the Onsager principle. The second macroscopic model is172

that derived recently by using the Onsager principle as an approximation tool [37].173

The boundary condition reads174

(2.7) ξons(θa)uL = γ(cos θY − cos θa),175

where ξons(θa) =
Ä
ξm + µ1| ln ζ|

F(θa,λ)

ä
. One can see that the equation is a first order176

approximation to the Cox model (2.6) when the capillary number Ca := µuL/γ is177

small and ξm in the coefficient ξons is negligible.178

To use the macroscopic models in a numerical method, the resolution near the179

contact line is characterized by the local mesh size h. Therefore, we set h as the180

characteristic mesoscopic length where the apparent contact angle is defined. In this181

case, we choose ζ = h
ls

in our numerical method in this paper. Similar techniques182

have been used in [32, 28].183

A coarse-grained model for contact angle hysteresis. When the solid surface is184

inhomogeneous, the apparent advancing angle is different from the receding one. This185

is referred to as contact angle hysteresis. A coarse-grained model for CAH is developed186

recently in [37]. For simplicity, we assume that θY (x, z) is a smooth function which187

depends on a fast variable z in the normal direction of the contact line. For any188

given x, we suppose that θY (x, z) is a periodic function of z with period ϵ, and189

θ1 = minz θY (x, z), θ2 = maxz θY (x, z) with θi ∈ (0, π). In this case, the averaged190

model reads,191

(2.8) ξons(θa)uL = γ

Å
1

ϵ

∫ ϵ

0

dz

cos θY (x, z)− cos θa

ã−1

, x ∈ ΓS .192

Here θa is the time averaged contact angle. The formula describes the contact angle193

hysteresis naturally. It can be verified that when uL goes to zero, the advancing194

contact angle approaches to θ2 and the receding one approaches to θ1 [37].195

For the purpose of numerical simulations, we rewrite the boundary condition into196

an equivalent form,197

(2.9) ξ̃hys(θa)uL = γ

Å
1

ϵ

∫ ϵ

0

cos θY (x, z)dz − cos θa

ã
,198

where199

ξ̃hys(θ)=

®
ξons(θ)

(
1
ϵ

∫ ϵ

0
cos θY (x, z)dz − cos θ

)Ä
1
ϵ

∫ ϵ

0
dz

cos θY (x,z)−cos θ

ä
, if θ /∈ [θ1, θ2],

+∞, if θ ∈ [θ1, θ2].
200

In the above definition, ξ̃hys(θa) can be equal to infinity when the contact angle is201

in the interval of the receding contact angle and advancing angle since the integral202
1
ϵ

∫ ϵ

0
dz

cos θY (x,z)−cos θ diverges when θ ∈ [θ1, θ2]. This means the contact line is pinned203

there, i.e. uL = 0. To avoid using the infinity in numerical simulations, we use204

(2.10) ξhys(θa) = min(ξ̃hys(θa), ξ∞),205

instead of ξ̃hys in (2.9) with ξ∞ ≫ 0 being a large regularized parameter. The coarse-206

grained model for CAH reads207

(2.11) ξhys(θa)uL = γ

Å
1

ϵ

∫ ϵ

0

cos θY (x, z)dz − cos θa

ã
.208
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Table 1: Choice of the parameters for different models.

Model βL ψ(θY )

Ren-E ξm cos θY
Cox ξcox cos θY

Onsager ξong cos θY
CAH ξhys

1
ϵ

∫ ϵ

0
cos θY dζ

Finally, we can write all the above models into a unified form,209

(2.12) βLuL = γ(ψ(θY )− cos θa),210

where the choice of the parameters βL and ψ(θY ) are listed in Table 1 for various211

models. We will propose a numerical framework for the general problem.212

2.3. Energy dissipation relations. We first show that all the friction coef-213

ficients are positive. The conclusion is trivial for the Ren-E model. The following214

proposition presents results for the other models.215

Proposition 2.1. Suppose θa ∈ (0, π), µ1 > 0 and λ ≥ 0. Then all the coeffi-216

cients ξons, ξcox, ξhys in the previous macroscopic models are positive. Furthermore,217

the coefficients may approach to zero or infinity in different situations.218

Proof. We first consider ξons. From the formula of F(θ, λ), we could see that all219

the terms in F(θ, λ) are positive when θ ∈ (0, π). For example, it is easy to verify220

that θ2− sin2 θ > 0, π− θ+cos θ sin θ > 0, (π− θ)2− sin2 θ > 0 and θ− cos θ sin θ > 0221

when θ ∈ (0, π). This implies that F(θ, λ) is a positive number and so is F(θ, λ)−1.222

This simply implies that ξons > 0. We then show that ξons can approach to zero223

and infinity in various situations. In the first case, direct calculations show that224

limθ→0 F(θ, λ) = 0. This indicates limθ→0ξons = ∞. Next if we set λ = 0 and take225

θ goes to π, we can get limθ→π F(θ, 0) = ∞. This implies that ξons goes to zero if226

ξm = 0.227

We then consider ξcox. By the formula of G(θ, λ), we know that dG(θ,λ)
dθ =228

F(θ, λ) sin θ > 0 when θ ∈ (0, π). Therefore G(θ, λ) is a monotonously increasing229

function with respect to θ in (0, π). Notice that cos θ is monotonously deceasing with230

respect to θ in (0, π). We can easily see that (cos θY −cos θa)
(G(θa,λ)−G(θY ,λ)) > 0 whenever θa ̸= θY .231

Notice again limθa→θY
(cos θY −cos θa)

(G(θa,λ)−G(θY ,λ)) =
1

F(θY ,λ) > 0. We see that ξcox is always pos-232

itive. By the above analysis for F(θY , λ), we also know that ξcox can also approach233

to zero and infinity in different situations.234

We now consider ξhys. We need only to analyze the value of the term

I(θa, x) :=

Å
1

ϵ

∫ ϵ

0

cos θY (x, z)− cos θadz

ãÅ
1

ϵ

∫ ϵ

0

dz

cos θY (x, z)− cos θa

ã
.

Notice that cos θ1 ≥ 1
ϵ

∫ ϵ

0
cos θY (x, z)dz ≥ cos θ2. It is easy to see that both terms in235

I(θa, x) have the same sign when θa /∈ [θ1, θ2] with θ1, θ2 ∈ (0, π) being the lower and236

upper bound of the smooth function θY (x, ·) in one period. This leads to I(θa, x) > 0237

when θa /∈ [θ1, θ2]. By the definition of ξhys, we can easily see that ξhys > 0, for238

all θa ∈ (0, π). We could also see that limθa→θ−
1
I(θa, x) = limθa→θ+

2
I(θa, x) = +∞.239
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Therefore, ξhys approaches to infinity when the regularized parameter ξ∞ goes to240

infinity.241

Proposition 2.1 shows that the friction coefficients in the above models are all242

positive. This enables us to show the energy dissipation relation for all the above243

models for MCLs. However, the unboundedness of the friction coefficients may cause244

troubles in numerical simulations.245

For models without CAH, the total potential energy in the system is given as246

(2.13) Ep =

∫
ΓS1

γS1ds+

∫
ΓS2

γS2ds+

∫
Γ

γds−
∫
Ω

ρg · xdx,247

where γS1 and γS2 denote the solid-fluid interface energy densities, ΓS1 = ΓS ∩ ∂Ω1248

and ΓS2 = ΓS ∩ ∂Ω2. By the Young’s equation, we have the relation249

γ cos θY = γS2 − γS1.250

The kinetic energy is defined as251

(2.14) Ek =

∫
Ω

ρ

2
|u|2dx.252

We also define the energy dissipation functional253

(2.15) Φ =

∫
Ω

µ

4
|D(u)|2dx+

∫
ΓS

βS
2
|PSu|2ds+

∫
L

βL
2
u2Lds,254

where βL corresponds to ξm , ξons or ξcox for different contact line models.255

The following energy dissipation relation can be derived for the solution of the256

problem (2.1)-(2.3) coupled with one MCL model on homogeneous surfaces.257

Proposition 2.2. Let (u, p) be the solution of (2.1)-(2.3) coupled with one con-258

tact line model (2.4), (2.6) or (2.7), we have259

d

dt
(Ep + Ek) = −2Φ.260

Proof. The proof of the proposition is standard. We briefly state the main steps261

for convenience of the readers. Firstly, the time derivative of the potential energy can262

be calculated as263

d

dt
Ep =

∫
L(t)

(γS1 − γS2)uLds+

∫
L(t)

cos θauLds+ γ

∫
Γ(t)

κVΓds−
∫
Ω

ρg · udx264

=

∫
L(t)

(cos θa − cos θY )uLds+ γ

∫
Γ(t)

κVΓds−
∫
Ω

ρg · udx.265

By the boundary conditions (2.4), (2.6) or (2.7), this leads to266

(2.16)
d

dt
Ep = −

∫
L(t)

βLu
2
Lds+ γ

∫
Γ(t)

κVΓds−
∫
Ω

ρg · udx,267

where βL = ξm, ξcox or ξons respectively for different models.268

The time derivative of the kinetic energy is269

d

dt
Ek =

∫
Ω

∂u

∂t
· u+ (u · ∇u) · udx.270
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By the equation (2.1), this leads to271

d

dt
Ek =

2∑
i=1

∫
Ωi

(divσi + ρig) · udx272

=

2∑
i=1

ß∫
∂Ωi

(σin) · uds−
∫
Ωi

σi · ∇u

™
+

∫
Ω

ρg · udx273

= −
∫
ΓS

βS |PSu|2ds− γ

∫
Γ(t)

κVΓds−
∫
Ω

1

2
|D(u)|2dx+

∫
Ω

ρg · udx.(2.17)274

where in the last equation, we have used the interface condition (2.2), the Navier275

slip boundary condition (2.3), the incompressibility condition in (2.1), and also the276

relation that D(u) : ∇u = 1
2 |D(u)|2.277

Add the two equations (2.16) and (2.17) together, we finish the proof of the278

proposition.279

For the model with contact angle hysteresis, we also have an energy dissipation280

relation, which characterizes the averaged behaviour of the system. In this case, we281

set282

(2.18) Ẽp =

∫
ΓS1

1

ϵ

∫
γS1(s, z)dzds+

∫
ΓS2

1

ϵ

∫
γS2(s, z)dzds+

∫
Γ

γds+

∫
Ω

ρg ·xdx,283

Here 1
ϵ

∫
γSi(s, z)dz denotes the averaged solid-liquid interface energy density in the284

normal direction of the contact line at a point s on S.285

Proposition 2.3. Let (u, p) be the solution of (2.1)-(2.3) coupled with the con-286

tact angle hysteresis model (2.11), we have287

d

dt
(Ẽp + Ek) = −2Φ.288

Proof. The proof of the proposition is similar to that of Proposition 2.2. The only289

difference is that the surface energy in ths solid surface is replaced by the averaged290

energy densities. This leads to the relation that291

(2.19)
d
dt Ẽp =

∫
L(t)

(
cos θa − 1

ϵ

∫
cos θY (s, z)dz

)
uLds+ γ

∫
Γ(t)

κVΓds−
∫
Ω
ρg · udx.292

Then use the condition (2.11) and the same arguments as above lead to the conclusion293

of the proposition.294

The propositions 2.2 and 2.3 show that the macroscopic CAH model we considered295

is thermodynamically consistent. Furthermore, the interface energies in (2.18) have296

clear physical meaning for chemically inhomogeneous surfaces.297

3. The variational formulae.298

3.1. A standard weak formula. In the previous section, we rewrite several299

MCL models into a unified form. Now we derive a weak formula for the continuum300

equations. We first introduce some functional spaces,301

X0 := {v ∈ (H1(Ω)3) : v = 0 on ∂Ω \ ΓS ,v · nS = 0 on ΓS},302

Q :=

ß
q ∈ L2(Ω) :

∫
Ω

qdx = 0

™
.303
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For functions in X0 and Q, we define the following bilinear and trilinear forms, as304

well as some linear functionals,305

306

m(u,v) :=

∫
Ω

ρu · vdx,307

a(u,v) :=
1

2

∫
Ω

µD(u) : D(v)dx+

∫
ΓS

βSPSu ·PSvds+

∫
L

βLu · nLv · nLds,308

b(v, q) := −
∫
Ω

(divv)qdx, c(w;u,v) :=

∫
Ω

ρ(w · ∇u) · vdx,309

fext(v) :=

∫
Ω

ρg · vdx, fΓ(v) := −γ
∫
Γ

∇ΓidΓ : ∇Γvdx,310

fL(v) := γ

∫
L

ψ(θY )v · nLds.311

Here we set ρ(x) =

ß
ρ1 if x ∈ Ω1

ρ2 if x ∈ Ω2
, and µ(x) =

ß
µ1 if x ∈ Ω1

µ2 if x ∈ Ω2
. Both of them312

are piecewisely constant functions. idΓ(x) := x, for x ∈ Γ and ∇Γ is the surface313

gradient operator on Γ [44]. In addition, we suppose that βL and ψ(θY ) represent314

different parameter for different models(as shown in Table 1).315

With the above notations, the weak formula for the two-phase Navier-Stokes316

equations (2.1)-(2.3) coupled with (2.12) can be written as follows. To find a pair317

(u, q) ∈ (X0, Q), such that318

m(∂tu,v) + c(u;u,v) + a(u,v) + b(v, p) = fext(v) + fΓ(v) + fL(v),∀v ∈ X0;
(3.1)

319

b(u, q) = 0, ∀q ∈ Q.(3.2)320321

where the two-phase interface Γ(t) moves with the normal velocity VΓ = u · nΓ.322

The derivation of the weak formula for Ren-E model can be found in [26]. For323

the other several models, the derivation is similar as the Ren-E model, since we have324

rewritten them into a similar form.325

There exists several challenges to solve the weak problem numerically. The pa-326

rameters in the system may have very large values. For example, the slip length327

parameter ls is usually very small so that βS ≫ 1. Similarly, the parameter βL may328

change from zero to infinity, especially for the model with contact angle hysteresis329

where βL = ξhys can be equal to ξ∞ ≫ 1. The very large parameters make di-330

rect discretization for (3.1)-(3.2) lead to algebraic systems with very large condition331

number.332

3.2. A regularized weak formula. To avoid the numerical difficulties encoun-333

tered in solving (3.1)-(3.2), we introduce a new regularized weak formula below. The334

main idea is to use a Nitsche type technique for general boundary conditions as in335

[41, 42]. The regularized weak form is the basis of our numerical method.336

Let h > 0 be a given small parameter which is the mesh size in a numerical337

method. Let un = u · nS , uτ = PSu on ΓS and uL = u · nL on L where nL is the338

out normal of L in the tangential surface of ΓS . Similar notations are used also for a339
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test function v. We introduce some new notations,340

ah(u,v) :=
1

2

∫
Ω

µD(u) : D(v)dx+

∫
ΓS

α1βS
hβS + α1

uτ · vτds+
α1

h

∫
ΓS

unvnds341

−
∫
ΓS

hβS
hβS + α1

S(u,n) · vτds−
∫
ΓS

hβS
hβS + α1

S(v,n) · uτds342

−
∫
ΓS

h

hβS + α1
S(u,n) · S(v,n)ds−

∫
ΓS

µnTD(u)nvnds343

−
∫
ΓS

µnTD(v)nunds+

∫
L

α2βL
hβL + α2

uLvLds,344

b̃(v, q) :=

∫
ΓS

qvnds−
∫
Ω

(divv)qdx,345

c̃(u;u,v) :=
1

2
c(u;u,v)− 1

2
c(u;v,u)346

fL,h(v) := γ

∫
L

ψ(θY )vLds+ γ

∫
L

vn sin θads− γ

∫
L

hβL
hβL + α2

(ψ(θY )− cos θa)vLds,347

where αi, i = 1, 2 are positive parameters of order O(1). We can easily see that the348

coefficients satisfy limβS→∞
α1βS

hβS+α1
= α1

h , limβS→∞
hβS

hβS+α1
= 1, limβL→∞

α2βL

hβL+α2
=349

α2

h , etc. This implies that all the coefficients in the above definitions are uniformly350

bounded even when βS and βL go to infinity.351

We then introduce a functional space352

X := {v ∈ (H1(Ω)3) : v = 0 on ∂Ω \ ΓS}.353

The regularized problem is defined as follows. To find a pair (u, q) ∈ (X, Q), such354

that355

m(∂tu,v) + c̃(u;u,v) + ah(u,v) + b̃(v, p) = fext(v) + fΓ(v) + fL,h(v),∀v ∈ X;

(3.3)

356

b̃(u, q) = 0, ∀q ∈ Q.(3.4)357358

where the two-phase interface Γ(t) moves with the normal velocity VΓ = u ·nΓ. In the359

weak formula, all the boundary conditions on ΓS are imposed weakly by a Nitcshe type360

technique. In addition, we use an antisymmetric representation c̃ for the convection361

term.362

3.3. Consistency. The following theorem show the consistency of the regular-363

ized weak formula (3.3)-(3.4) with two-phase Navier-Stokes equations described in364

Section 2.365

Theorem 3.1. If (u, p) is a solution of the equations (2.1)-(2.3) coupled with the366

boundary condition (2.12), then the pair (u, p) also satisfies the weak problem (3.3)-367

(3.4).368

Proof. It is easy to see that the equation (3.4) can be simply obtained by the369

second equation of (2.1) and the fact that un = 0 on ΓS .370

We now prove the equation (3.3). We multiply the first equation in (2.1) by a371

function v∈X and integrate in Ωi respectively. We have372 ∫
Ωi

ρi

Å
∂u

∂t
+ u · ∇u

ã
· vdx =

∫
Ωi

(divσi + ρig) · vdx.(3.5)373
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By adding the equations together for i = 1, 2, the left hand side terms lead to374

m(∂tu,v) + c̃(u;u,v). Here we have used the fact that375

2∑
i=1

∫
Ωi

1

2
u · ∇u · vdx = −

2∑
i=1

∫
Ωi

1

2
u · ∇v · udx,376

which is obtained by integration by part and the conditions ∇ ·u = 0 in Ωi, u ·n = 0377

on ∂Ω and [u] = 0 on Γ. In addition, it is easy to see that the second term in the378

right hand side of (3.5) gives fext(v). We need only to consider the first term in right379

hand side of the equation (3.5). Direct calculations give380 ∫
Ωi

divσi · vdx =

∫
∂Ωi

(σin) · vds−
∫
Ωi

σi : ∇vdx381

=

∫
∂Ωi

(σin) · vds+
∫
Ωi

p(∇ · v)dx− µi

2

∫
Ωi

D(u) : D(v)dx.382

Summarize the equation for i = 1, 2, we have383

2∑
i=1

∫
Ωi

divσi · vdx384

=

∫
ΓS

(σnS) · vds+
∫
Γ

[σinΓ] · vds+
∫
Ω

p(∇ · v)dx−
∫
Ω

µ

2
D(u) : D(v)dx385

=

∫
ΓS

PSσnS · vτds+

∫
ΓS

nT
SσnSvnds− γ

∫
Γ

κnΓ · vds386

+

∫
Ω

p(∇ · v)dx−
∫
Ω

µ

2
D(u) : D(v)dx.(3.6)387

By using the Navier slip boundary condition (2.3), we have

Figure 1: Vectors near the contact line.

388 ∫
ΓS

PSσnS · vτds = −
∫
ΓS

βSuτ · vτds.389

We can also compute390 ∫
ΓS

nT
SσnSvnds = −

∫
ΓS

pvnds+

∫
ΓS

µnT
SD(v)nSvnds.391
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Notice the fact that −∆ΓidΓ(x) = κ(x)nΓ where ∆Γ is the Laplace-Beltrami operator392

(c.f. [44]). By integration by part, the third term in the right hand side of (3.6) leads393

to394

−γ
∫
Γ

κnΓ · vds = γ

∫
L

mT (∇ΓidΓ)vds− γ

∫
ΓS

∇ΓidΓ · ∇Γvds395

= γ

∫
L

mTPΓvds− γ

∫
ΓS

∇ΓidΓ · ∇Γvds396

= γ

∫
L

vL cos θa + vn sin θads− γ

∫
ΓS

∇ΓidΓ · ∇Γvds397

= −
∫
L

βLuLvLds+ γ

∫
L

vLψ(θY ) + vn sin θads− γ

∫
ΓS

∇ΓidΓ · ∇Γvds398

= −
∫
L

βLuLvLds+ γ

∫
L

vLψ(θY ) + vn sin θads+ fΓ(v).399

Here m is out normal of L in the tangential surface of Γ, the relation mTPΓv =400

v · m = vL cos θa + vn sin θa can be seen from Figure 1, and we also have used the401

boundary condition (2.12) for MCLs. Combining the above calculations, we are led402

to403

m(∂tu,v) + c̃(u;u,v) +

∫
Ω

µ

2
D(u) : D(v)dx+

∫
ΓS

βSuτ · vτds+

∫
L

βLuLvLds

(3.7)

404

−
∫
ΓS

µnT
SD(v)nSvnds+ b̃(v, p) = fext(v) + γ

∫
L

v · nLψ(θY ) + vn sin θads+ fΓ(v).405

406

Noticing the Navier slip boundary condition (2.3) on ΓS , the boundary condition407

(2.12) on L, and also the definition of S(u,n) = µPSD(u)nS = PSσnS , we can408

further derive the relation that409

ah(u,v) =
1

2

∫
Ω

µD(u) : D(v)dx+

∫
ΓS

α1βS
hβS + α1

uτ · vτds410

−
∫
ΓS

hβS
hβS + α1

PSσnS · vτds−
∫
ΓS

hβS
hβS + α1

S(v,n) · uτds411

−
∫
ΓS

h

hβS + α1
PSσnS · S(v,n)ds−

∫
ΓS

µnTD(u)nvnds412

+

∫
L

α2βL
hβL + α3

uLvLds413

=
1

2

∫
Ω

µD(u) : D(v)dx+

∫
ΓS

α1βS
hβS + α1

uτ · vτds414

+

∫
ΓS

hβS
hβS + α1

βSuτ · vτds−
∫
ΓS

µnTD(u)nvnds+

∫
L

α2βL
hβL + α3

uLvLds415

=
1

2

∫
Ω

µD(u) : D(v)dx+

∫
ΓS

βSuτ · vτds−
∫
ΓS

µnTD(u)nvnds416

+

∫
L

βL

Å
1− hβL

hβL + α2

ã
uLvLds417
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418

=
1

2

∫
Ω

µD(u) : D(v)dx+

∫
ΓS

βSuτ · vτds−
∫
ΓS

µnTD(u)nvnds+

∫
L

βLuLvLds419

−γ
∫
L

hβL
hβL + α2

(ψ(θY )− cos θa)vLds.420

Submit the equation into (3.7) and notice the definition of fL,h, we obtain (3.3).421

Based on the weak formula (3.3)-(3.4), we develop a stable finite element method422

for the two-phase flow with MCLs as shown in the following sections.423

4. The discrete problem. Before we introduce the discrete problem, we first424

introduce the level-set method to capture the motion of the two-phase interface. Let425

ϕ(x, t) be a smooth level-set function corresponding to Γ(t), namely426

Γ(t) = {x ∈ Ω|ϕ(x, t) = 0}.427

Then the motion of Γ(t) can be described by the equation428

(4.1)
∂ϕ

∂t
+ u · ∇ϕ = 0.429

The equation will be solved together with the system (3.3)-(3.4).430

4.1. The finite element discretization. Let Th be a regular triangulation of431

Ω with mesh size h. We define some finite element spaces as follows. To discretize432

the level-set function, we use the standard P2-FEM approach and denoted by433

Vh := {ϕh ∈ C(Ω) : ϕh|T ∈ P2,∀T ∈ Th} .434

To discretize the velocity, we choose the P2 finite element vector space and define435

Xh := {vh ∈ C(Ω) : vh|T ∈ (P2)
3 for all T ∈ Th,vh|∂Ω\ΓS

= 0}.436

For the pressure, we use an extended finite element method(XFEM) defined as follows.437

Let the discrete interface Γh generated by the discrete level-set function ϕh [44]. The438

domain Ω is divided by Γh into two parts Ωi,h, i = 1, 2. We introduce two subdomains439

Ωo
i,h that overlap across the discrete interface as,440

Ωo
i,h := ∪T∈Th,meas3(T∩Ωi,h)>0T.441

The corresponding P1 finite element spaces are defined as442

Qi,h := {q ∈ C(Ωo
i,h)|qh|T ∈ P1 for all T ∈ Ωo

i,h}.443

Then for a pair ph = (p1,h, p2,h) ∈ Q1,h × Q2,h, it may have two values in the over-444

lapped region. We define a uni-valued function pΓh as445

pΓh(x) = pi,h(x), for x ∈ Ωi,h.446

Notice that the function in pΓh may be discontinuous across Γh and we can use it to447

approximate pressure. The XFEM space is defined as448

QΓ
h := {ph ∈ Q1,h ×Q2,h|

∫
Ω

pΓh(x)dx = 0.}.449
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It is known that the resulted algebraic system may be ill-conditioned if one element450

T is cut by Γh into two subsets with very large volume ratio(i.e. the volume of one451

subset is close to zero). To avoid the difficulty, many different techniques can be452

applied [45, 26]. Typically one can either simply remove the basis functions with453

small support in the finite element space QΓ
h [46] or add some ghost penalty terms to454

the weak form [45, 26]. In our numerical experiments, we stabilize the problem using455

the ghost penalty techniques. That is to add some penalty terms in the bilinear form,456

i.e.457

j(ph, qh) :=

2∑
i=1

ji(pi,h, qi,h), ph, qh ∈ Q1,h ×Q2,h458

with ji(pi,h, qi,h) := µ−1
i

∑
F∈Fi

h3F ([∇pi,h · nF ], [∇qi,h · nF ])0,F.459

where hF is the diameter of the face F and [∇pi,h ·nF ] denotes the jump of the normal460

components of the piecewise constant function ∇pi,h across the face F . Here Fi is the461

set of surfaces of elements that intersect with Γh minus the boundary of Ωo
i,h. More462

details on the definition of the XFEM and the stabilization terms can be found for463

example in [26].464

With the above notations, we can introduce the semi-discrete problem as follows.465

To find a pair of functions (uh, ph) and a function ϕh satisfying,466

m(∂tuh,vh) + c̃(uh;uh,vh) + ah(uh,vh) + b̃(vh, ph)− b̃(uh, qh) + α3j(ph, qh)

(4.2)

467

= fext(vh) + fΓ(vh) + fL,h(vh), ∀vh ∈ Xh, qh ∈ QΓ
h;468

(∂tϕh + uh · ∇ϕh, φh + δTuh · ∇φh) = 0, ∀φh ∈ Vh.(4.3)469470

Here (·, ·) represents the L2 inner product on Ω. In the above equations, all the471

integrals on Γ(t) and L(t) will be replaced by those on the discrete interface Γh(t)472

and the discrete contact line Lh(t) := Γ̄h ∩ΓS . In addition, we use the the streamline473

diffusion finite element (SDFEM) to stabilize the discretization of the convection474

equation for the levelset function and δT = c hT

max(ε0,∥uh∥∞,T ) with ε0 > 0 and c = O(1)475

is a stabilization parameter.476

4.2. The fully discrete scheme. The fully discrete scheme is simply to replace477

the time derivative in (4.2)-(4.3) by a finite difference scheme. Let 0 = t0 < t1 < · · · <478

tN = T be a partition of a time interval (0, T ). Denote by (uk
h, p

k
h, ϕ

k
h) the discrete479

solution on the time tk and let ∆tk = tk − tk−1. Then the fully implicit backward480

Euler scheme can be defined as481

m

Ç
ϕkh;

uk
h − uk−1

h

∆tk
,vh

å
+ c̃(ϕkh;u

k
h;u

k
h,vh) + ah(ϕ

k
h;u

k
h,vh) + b̃(ϕkh;vh, p

k
h)(4.4)482

−b̃(ϕkh;uk
h, qh) + j(ϕkh; ph, qh) = fext(ϕ

k
h;vh) + fΓ(ϕ

k
h;vh) + fL,h(ϕ

k
h;vh),483

∀vh ∈ Xh, qh ∈ QΓ
h(ϕ

k
h);484 Ç

ϕkh − ϕk−1
h

∆tk
+ uk

h · ∇ϕkh, φh + δTu
k
h · ∇φh

å
= 0. ∀φh ∈ Vh.(4.5)485

486

Notice all the linear, bilinear, and trilinear forms in the above equations are written487

in a way to explicitly show their dependence on ϕkh. Notice that all the integration in488
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these terms depends on the location of the discrete interface and the discrete contact489

line, which is described by ϕkh. For example, we have490

m(ϕkh;vh,vh) =

2∑
i=1

∫
Ωk

i,h

vh · vhdx,491

where Ωk
i,h are the subsets of Ω separated by Γk

h := {x ∈ Ω : ϕkh(x) = 0}.492

There are several issues to solve the fully discrete problem. Firstly, the equation493

is a fully coupled nonlinear equation. We can solve it by iterative methods. Secondly,494

the reparametrization of the level-set function is needed to keep the gradient |∇ϕh|495

away from zero. Thirdly, we may need to adjust ϕh every a few time steps to keep the496

volume in Ωi conserved. All these issues have been discussed extensively in literature,497

c.f. [26, 44].498

In applications, it is more convenient to solve a decoupled problem which is de-499

scribed as follows. For given solution (uk−1
h , pk−1

h , ϕk−1
h ) in the (k − 1)-th step, we500

first solve501

m
(
ϕk−1
h ;

uk
h − uk−1

h

∆tk
,vh

)
+ c̃(ϕk−1

h ;uk−1
h ;uk

h,vh) + ah(ϕ
k−1
h ;uk

h,vh) + b̃(ϕk−1
h ;vh, p

k
h)

(4.6)

502

− b̃(ϕk−1
h ;uk

h, qh) + j(ϕk−1
h ; ph, qh) = fext(ϕ

k−1
h ;vh) + fΓ(ϕ

k−1
h ;vh) + fL,h(ϕ

k−1
h ;vh),503

∀vh ∈ Xh, qh ∈ QΓ
h(ϕ

k−1
h );504505

to get a solution (uk
h, p

k
h). Then we solve506

(4.7)

Ç
ϕkh − ϕk−1

h

∆tk
+ uk

h · ∇ϕkh, φh + δTu
k
h · ∇φh

å
= 0, ∀φh ∈ Vh,507

to obtain ϕkh. When the time step is small and the interface does not change much in508

one time step, the decoupled scheme is a good approximation to the coupled problem509

(4.4)-(4.5).510

5. Well-posedness of the fully discrete problem. In this section, we prove511

the well-posedness of the decoupled scheme (4.6)-(4.7). For simplicity in notations,512

we ignore the explicit dependence on ϕk−1
h in the formulae. All the integrals are done513

on Γk−1
h or in the domains separated by the interface. The constants in the following514

estimates is independent of the mesh size h, the large friction coefficient βS and βL,515

and also independent of how the triangulation intersects with the interface. This516

implies the stability of the discrete problem..517

We first introduce some discrete norms. For the discrete velocity, we define518

∥uh∥2h :=

∫
Ω

α0|uh|2dx+
1

4

∫
Ω

µ|D(uh)|2dx+

∫
ΓS

α1βS
2(hβS + α1)

|uh,τ |2ds519

+
α1

2h

∫
ΓS

|uh,n|2ds+
∫
L

α2βL
hβL + α2

|uh,L|2ds,520

521

where α0 = ρ
∆t . Then we define a norm for the pair (uh, ph) ∈ Xh ×QΓ

h,522

9(uh, ph)92
h := ∥uh∥2h +

∥∥∥µ− 1
2 ph

∥∥∥2
0,Ω1,h∪Ω2,h

+ j(ph, ph).523

The following lemma show the inf-sup condition for b̃(·, ·).524
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Lemma 5.1. Let Γk−1
h be a non-degenerate interface. Then there exists a h0 > 0525

and c1, c2 > 0 such that for all h ≤ h0,526

sup
vh∈Xh

b̃(vh, qh)

∥vh∥h
≥ c1∥µ− 1

2 qh∥0,Ω1,h∪Ω2,h
− c2

j(qh, qh)

∥µ− 1
2 qh∥0,Ω1,h∪Ω2,h

, ∀qh ∈ QΓ
h.527

Proof. The result is a direct generation of a result in [47]. There it is proved that
for any qh ∈ QΓ

h, there exists a function vh ∈ Xh,0 (vh = 0 on ∂Ω), such that∫
Ω
(divvh)qhdx

∥µ 1
2∇vh∥0

≥ c1∥µ− 1
2 qh∥0,Ω1,h∪Ω2,h

− c2
j(qh, qh)

∥µ− 1
2 qh∥0,Ω1,h∪Ω2,h

.

Notice that for vh ∈ Xh,0 ⊂ Xh, we have528

b̃(vh, qh) =

∫
Ω

(divvh)qhdx+

∫
ΓS

vnqhdx =

∫
Ω

(divvh)qhdx,529

and also ∥vh∥h =
(
1
4

∫
Ω
µ|D(vh)|2dx+

∫
Ω
α0|uh|2dx

) 1
2 ≤ c∥µ 1

2∇vh∥0. Here we use
the Kohn inequality. Then we have

b̃h(vh, qh)

∥vh∥h
≥

∫
Ω
(divvh)qhdx

c∥µ 1
2∇vh∥0

≥ c1
c
∥µ− 1

2 qh∥0,Ω1,h∪Ω2,h
− c2

c

j(qh, qh)

∥µ− 1
2 qh∥0,Ω1,h∪Ω2,h

.

This concludes the proof of the lemma.530

The following lemma is on the continuity of ah. The proof is trivial and we simply531

ignore it.532

Lemma 5.2. There exists a constant c3 > 0, such that533

m(α0uh,vh) + c̃(un−1
h ;uh,vh) + ah(uh,vh) ≤ c3∥uh∥h∥vh∥h.534

The next lemma states the coercivity of the bilinear forms.535

Lemma 5.3. Let Γk−1
h is a non-degenerate interface. Then for given h0 > 0, there536

exists a constant c4 > 0 such that537

m(α0uh,uh) + bh(u
n−1
h ;uh,uh) + ah(uh,uh) ≥ ∥uh∥2h538

for all h ≤ h0 and α1 ≥ c4.539

Proof. By definition, bh(u
n−1
h ;uh,uh) = 0. Direct calculations show that540

ah(uh,uh) =
1

2

∫
Ω

µ|D(uh)|2dx+

∫
ΓS

α1βS
hβS + α1

|uh,τ |2ds+
α1

h

∫
ΓS

|uh,n|2ds541

−
∫
ΓS

2hβS
hβS + α1

µPSD(uh)nS · uh,τds−
∫
ΓS

h

hβS + α1
|µPSD(uh)nS |2ds542

− 2

∫
ΓS

µnTD(uh)nunds+

∫
L

α2βL
hβL + α2

|uh,L|2ds.543

544

Notice that545 ∫
ΓS

2hβS
hβS + α1

µPSD(uh)nS · uh,τds ≤
1

2

∫
ΓS

α1βS
hβS + α1

|uh,τ |2ds546

+2

∫
ΓS

h2βS
(hβS + α1)α1

|µPSD(uh)nS |2ds,547

16

This manuscript is for review purposes only.



and548

2

∫
ΓS

µnTD(uh)nunds ≤
α1

2h

∫
ΓS

|uh,n|2ds+
2h

α1

∫
ΓS

|µnTD(uh)n|2ds.549

Then we have550

ah(uh,uh) ≥
Å
1

2
− 2h2βSµ

(hβS + α1)α1
− hµ

hβS + α1
− 2hµ

α1

ã∫
Ω

µ|D(uh)|2dx551

+

∫
ΓS

α1βS
2(hβS + α1)

|uh,τ |2ds+
α1

2h

∫
ΓS

|uh,n|2ds+
∫
L

α2βL
hβL + α2

|uh,L|2ds.552

553

For any h ≤ h0, there exists a c4 > 0 such that for any α1 > c4, we have 1
2 −554

2h2βSµ
(hβS+α1)α1

− hµ
hβS+α1

− 2hµ
α1

≥ 1
4 . Then the above inequality implies the conclusion of555

the Lemma.556

Denote by557

A((uh, ph), (vh, qh)) :=m(α0uh,vh) + ch(u
n−1
h ;uh,vh) + ah(uh,vh) + bh(vh, ph)558

− bh(uh, qh) + α3j(ph, qh).559560

We have the following theorem.561

Theorem 5.1. Under the conditions of the previous lemma, there exists constant562

h0 > 0, c5 > 0, such that563

sup
(vh,qh)∈Xh×QΓ

h

|A((uh, ph), (vh, qh))|
9(vh, qh)9h

≥ c5 9 (uh, ph)9h,564

for all (uh, ph) ∈ Xh ×QΓ
h.565

Proof. For any given (uh, ph) ∈ Xh × QΓ
h, by Lemma 5.1, we could choose a

function wh ∈ Xh such that

b(wh, ph)

∥wh∥h
≥ c1∥µ− 1

2 ph∥0,Ω1,h∪Ω2,h
− c2

j(ph, ph)

∥µ− 1
2 ph∥0,Ω1,h∪Ω2,h

.

Then rescalewh by a constant still denote it aswh so that∥wh∥h=∥µ− 1
2ph∥0,Ω1,h∪Ω2,h

.566

Then we have567

b(wh, ph) ≥ c1∥µ− 1
2 ph∥20,Ω1,h∪Ω2,h

− c2j(ph, ph).568

Take vh = uh + δwh, and qh = ph, then we have569

A((uh, ph), (vh, qh))570

= α0m(uh,uh) + α0δm(uh,wh) + δch(u
n−1
h ;uh,wh) + ah(uh,uh) + δah(uh,wh)571

+δbh(wh, ph) + α3j(ph, ph)572

≥ ∥uh∥2h − δc3∥uh∥h∥vh∥h + δc1∥µ− 1
2 ph∥20,Ω1,h∪Ω2,h

+ (α3 − c2δ)j(ph, ph)573

≥
Å
1− δc3

2c1

ã
∥uh∥2h +

δc1
2

∥µ− 1
2 ph∥20,Ω1,h∪Ω2,h

+ (α3 − c2δ)j(ph, ph)574

where we used Lemma 5.2 and 5.3. By a proper choice of δ and α3, so that 1− δc3
2c1

= 1
2575

and α3 − c2δ ≥ 1, then there exists a proper C > 0,576

A((uh, ph), (vh, qh)) ≥ C 9 (uh, ph) 92
h .577
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Combine this with578

9(vh, qh)92
h = ∥uh + δwh∥2h +

∥∥∥µ− 1
2 ph

∥∥∥2
0,Ω1,h∪Ω2,h

+ j(ph, ph)579

≤ 2∥uh∥2h + 3
∥∥∥µ− 1

2 ph

∥∥∥2
0,Ω1,h∪Ω2,h

+ j(ph, ph).580

= 3 9 (uh, ph)92
h,581

We finish the proof the theorem.582

The above theorem is essential to show the well-posedness of the fully discrete583

scheme.584

Theorem 5.2. There exists a unique solution for the decoupled scheme (4.6)-585

(4.7).586

Proof. By standard arguments [48], the well-posedness of the discrete Oseen equa-587

tion (4.6) is a direct conclusion of Theorem 5.1 and the continuity of the belinear588

form A(·, ·). The inf-sup condition for SDFEM of the discrete level-set equation can589

be found in [44] and this makes sure the well-posedness of (4.7). In all, the decoupled590

scheme is well-posed.591

6. Numerical experiments. In this section, we present some numerical ex-592

amples to show the efficiency of the method. We will first test the accuracy of the593

numerical scheme and then present numerical simulations to some interesting two-594

phase flow problems with MCLs.595

6.1. Convergence tests. We first test the convergence behaviour of the numer-596

ical method proposed in Section 4. Here we use the Ren-E model for simplicity in the597

following two examples. The results for the Cox model and the Onsager model are598

similar.599

Example 1. Convergence rate for a stationary problem. In this example, we600

consider a stationary problem where the solution is known explicitly so that we can601

compute the errors of the velocity and pressure.602

In this examples, we set ρ1 = ρ2 = 1, η1 = η2 = 1 and γ = 1. We choose603

the parameters β1 = β2 = 106, which gives a slip length ls = η/βi = 10−6. The604

other parameters are chosen as βL = 30 and the Nitsche parameters α1 = α2 = 30.605

The effect of the Nitsche parameter has been studied numerically in [42] and the606

best results is obtained when it is in (10, 50). We ignore the gravity and assume607

that the Young’s angle is θY = 90◦. In equilibrium, the droplet will take a semi-608

spherical shape. The geometric setup of the example is as follows. We consider a609

domain Ω = (0, 0.5)× (0, 0.5)× (0, 0.25). The center of the droplet is on the bottom610

surface with coordinate (0.25,0.25,0). The radius of the droplet is R = 0.1. We611

set the initial conditions u = 0 and the initial shape is semi-spherical. Since the612

initial state is already in equilibrium, we can see that zero is the exact solution for613

velocity. The pressures in the two fluids are constants denoted as p±. By the Young-614

Laplace equation, the pressure difference satisfies p−−p+ = γR, where p− and p+ are615

respectively the pressures inside the droplet and in the outside fluid. By the condition616 ∫
Ω
pdx = 0, we can easily compute the exact solutions for the pressure are617

p− = p+ + γR = γR(|Ω| − V0)/|Ω|,

where |Ω| is the volume of Ω and V0 = 2π
3 R

3 is the volume of the droplet.618

18

This manuscript is for review purposes only.



We compute the L2-errors of the velocity and pressure. The results are shown619

in Table 2. We could see that both the pressure and velocity have a second order620

convergence rate with respect to mesh size. This is the same for two-phase flows621

problem without MCLs [47, 44].622

Table 2: The convergence rate for velocity and pressure.

Mesh level
velocity pressure

#Err #Rate #Err #Rate

0 2.040E-5 – 1.436E-3 –
1 4.109E-6 2.31 3.889E-4 1.88
2 1.004E-6 2.03 9.714E-5 2.00
3 2.415E-7 2.06 2.384E-5 2.03
4 5.866E-8 2.04 5.796E-6 2.04

Example 2. Convergence for a dynamic problem. In this example, we will study623

the convergence of the method for a dynamic problem. The setup are almost the same624

as in the previous examples, except the Young’s angle. Here we set θY = 30◦. We use625

adaptive meshes to solve the problem. The mesh is refined near the interface of the626

two-phase flow and h denotes the size of the refined mesh.627

Since the semi-spherical shape is not an equilibrium state anymore, the droplet628

will spread to the equilibrium state. In Figure 2, we show that the numerical results for629

the problem by using the numerical method presented in Section 4. Since the problem630

is axis-symmetric, we show only the profile of the droplet in the plane {x1 = 0.25}.631

We see that the nice convergence of the numerical solutions even when the mesh size632

is much larger than the slip length. The dynamics are almost the same for the three633

meshes. In comparison, it is known that the numerical solutions may not converge634

when the mesh size is larger than the slip length (10−6 in this example) for standard635

methods c.f. [26, 35]. This implies that our method has much better convergence636

property than the standard methods.637

6.2. Macroscopic computations. In this subsection we present some numer-638

ical experiments by the macroscopic models. We first do some comparisons for the639

Ren-E model, the Cox model and the Onsager model. Then we do comparison with640

physical experiments. Finally, we show an example with contact angle hysteresis.641

Example 3. Comparisons for various models. In this example, we compare642

different models for MCLs introduced in Section 2. The setup of the numerical exper-643

iment is the same as in the previous example. Here we consider three different models644

for moving contact line, i.e. the Ren-E model, the Cox model and the Onsager model.645

The numerical results are shown in Figure 3. Here we also show only the intersection646

of the droplet with the plane {x = 0.25}. We can see that the dynamics of the droplet647

computed by the Onsager model is similar to that by the Cox model. However, there648

exists obvious difference between the numerical results by the Ren-E model and those649

by the other models. The droplet spreads much faster when we use the Ren-E model.650

This is easy to understand since there exists extra energy dissipation near the contact651

line for the two macroscopic models. The macroscopic models should be used for the652

problem when the characteristic size of the droplet is much larger than the slip length,653

as discussed [28].654
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(a) t = 0 (b) t = 1.6

(c) t = 2.4 (d) t = 4.0

Figure 2: Shape of a spreading droplet at different time. Red: h = 1/32, blue:
h = 1/64, green: h = 1/128. Background color shows the value of the level-set
function. The arrows represent the velocity.

Example 4. Comparison with experiments. In this example, we use our method655

to simulate a liquid-liquid displacement problem and compare with the physical ex-656

periments in [49]. The experimental setup of the problem is as follows. A water657

droplet is injected to a n-decane liquid by a glass capillary. The droplet detaches658

from the capillary and attaches with a flat quartz substrate. Due to gravity and the659

wetting properties, the water droplet will spread on the substrate and the profile is660

captured from the side by a high-speed camera. The spreading radius of the droplet661

on the substrate is a function of time. The physical parameters are as follows. The662

density of water is ρ1 = 1gcm−3 and that of n-decane is ρ2 = 0.73gcm−3. The vis-663

cosity of water and decane are µ1 = 1.0087cP and µ2 = 0.85cP, respectively. The664

interfacial tension of the interface between water and decane is γ = 50.12mN/m. The665

equilibrium Young’s angle of the water in decane is θY = 58.16o . The contact line666

friction ξm = 0.3072Pa · s.667

In our simulations, we choose the above physical parameters without any adjust-668

ment. We first do nondimensionalization to the problem (2.1)-(2.3) and (2.12). The669

characteristic length of the problem is 1mm and the characteristic velocity is chosen670

to be 1mm/s. The geometric setup of our simulations is as follows. We consider a box671

(0, 6)×(0, 6)×(0, 3). The initial radius droplet is 0.92 with centered as (3, 3, 0.91). We672

use the Onsager model to do simulations. The initial velocity is v = 0. We compare673

the spreading radius (as a function of time) with experimental observations and the674

results are shown in Figure 4. We could see that the simulation results are very close675

to the experiments. The curves are plotted in a log-log frame. The scaling law of676

the spreading radius in both simulations and experiments are almost the same with677
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(a) t = 0 (b) t = 1.2

(c) t = 2.4 (d) t = 4.8

Figure 3: Shape of a spreading droplet at different time computed by different models.
Blue: the Ren-E model; green: the Cox model, red: the Onsager model.

respect to time. The slight discrepancy between the numerical simulations and the678

experimental results may comes from the fact that the initial states may be different.679

In physical experiments, the detachment process between the droplet and the capil-680

lary may affect the initial dynamics, while in numerical simulations we assume that681

the droplet slightly attaches with the substrate with zero velocity in the initial state.682
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Figure 4: Compare with experimental data

683

Example 5. (Simulations for contact angle hysteresis.) We consider a sliding684
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droplet on a vertical wall with contact angle hysteresis. We set η1 = η2 = 1 and685

γ = 1. The gravitational acceleration is g = −9.81e3 and β1 = β2 = 106, βL = 0.05.686

The constant in Nitsche terms is set to be α1 = α2 = 30. We choose the CAH model687

in the simulations and θY (z) = θ1 + (θ2 − θ1)(1 + cos(4πz))/2 with θ1 = 30o and688

θ2 = 90o. The initial shape is a semi-spherical with radius r = 0.08 imposed on the689

left boundary {x2 = 0} of a box (0, 0.5)× (0, 0.15)× (0, 0.5). We choose an adaptive690

mesh and the meshsize near the interface is h = 1/64 and set ∆t = 0.125 in numerical691

experiment.692

In the first test, we set ρ1 = 5 and ρ2 = 1. The numerical results are shown in693

Figure 5. We could see that the initial droplet is a semi-spherical. Then the shape of694

the droplet changes due to the gravity effect. Finally, the droplet approaches to an695

equilibrium state and it is pinned on the vertical surfaces. This is due to the existence696

of the contact angle hysteresis.697

In the second test, we change the ratio of the density by setting ρ1 = 20 and698

ρ2 = 1. The difference between the advancing contact angle and the receding one is699

the same as in the previous one. The numerical results are shown in Figure 6. We700

could see that the droplet slides down from the substrate and the shape also changes701

during the process. There is no equilibrium state in this case since the pinning force702

can not balance the gravitational force anymore.703

(a) t = 0 (b) t = 2.5 (c) t = 5 (d) t = 20

Figure 5: Pinning of a droplet on a vertical wall with CAH

7. Conclusions. In this paper, we propose a unified framework for some im-704

portant sharp interface models for two-phase flow with moving contact lines. We705

reformulate the Cox boundary condition and a CAH model and prove them to be706

thermodynamically consistent. To handle the unbounded parameters in the models,707

we introduce a new variational form by using the Nitsche technique. This enables708

us to develop a stable and efficient numerical method independent of the choice the709

slip length and the contact line friction coefficient. By the method we can solve the710

Cox type models and the CAH model naturally without resolving the fine scale near711

the contact line. Overall, this leads to an efficient and reliable numerical framework712

for macroscopic simulations for the complicated two phase flow problems with MCLs.713

Numerical experiments show that the method has nice convergence property and can714

fit with the physical experiments very well even on a relatively coarse mesh.715

Theoretically, we show the stability of the numerical method by proving an inf-716
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(a) t = 0 (b) t = 10 (c) t = 20 (d) t = 40

Figure 6: Sliding of a droplet on a vertical wall with CAH

sup condition which is independent of the choice of the parameters. In the future, we717

will further do error analysis for the method. This is quite difficult since the flow field718

and the pressure might be less regular near the contact line [50].719
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