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Abstract. In this paper, we propose a mathematical model to describe ion transports in liquid solution under the effect of
electromagnetic fields, which is a coupled system of the Navier-Stokes equations, the Nernst-Planck equations and the Maxwell
equations. We show that the coupled system possesses an energy-dissipative structure while also preserving several important
physical properties. We then develop a novel decoupled numerical method for the system by integrating well-designed implicit-
explicit discretization for the nonlinear coupling terms, incorporating additional stabilization terms, and utilizing structure-
preserving finite element pairs for the Navier-Stokes equations and the Maxwell equations. This method is very efficient, as
it requires solving the Nernst-Planck equation for each ion concentration, the electric field equation, the magnetic field equation,
and the Navier-Stokes equations separately at each time step. We prove that the fully discrete scheme exhibits several important
properties: it conserves mass, maintains positivity, preserves magnetic flux, and is unconditionally energy stable. Numerical
examples are given to verify the theoretical results.
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1. Introduction. Electromagnetic fields are widely used in our daily life, which may also affect biological
systems in many aspects. In particular, recent studies have investigated the direct effects of electromagnetic
fields on neuronal ion channels [15, 5]. These investigations include experiments conducted on live animals
[1, 12, 28, 35] as well as molecular dynamics simulations [31, 25]. The experiments examine different types
of electromagnetic fields across a range of frequencies, from extremely low-frequency to radio-frequency and
terahertz frequencies. However, the findings of these studies vary widely and even present controversies in
certain aspects [5]. Consequently, there is a growing interest in exploring the interactions between electromagnetic
fields and ion transport within ion channels in greater detail.

In the literature, the Navier-Stokes-Poisson-Nernst-Planck system is a widely used electrokinetic model for
studying the dynamics of electrically charged fluids, including the motion of ions and their interactions with
electric fields and the surrounding fluid (see [40, 36, 46, 7, 8] among many others). In this system, the Navier-
Stokes equations describe the dynamics of incompressible fluids, the Nernst-Planck equations characterize
ion transport and diffusion, and the Poisson equation addresses the electric potential. However, since the
Poisson equation primarily models static electric fields, it is inadequate for capturing the effects of dynamic
electromagnetic fields. In this work, we focus on ion transport within ion channels influenced by electromagnetic
fields [5, 31]. Therefore, we propose a continuum model that consists of a coupled Navier-Stokes-Nernst-Planck-
Maxwell system (see Equ. (2.12)). The system is designed to address three distinct physical processes: the
Navier-Stokes equations for fluid dynamics, the Nernst-Planck equations for ion transport and diffusion, and
the Maxwell equations for electromagnetic fields. Beyond its potential applications in biology, this system can
also be used to describe fluid motion at the nanoscale, where the interactions between ions and fluid dynamics
are critical [2, 27].

There already exists many mathematical studies on systems with two of the three physical processes in
charged fluids. For example, the well-posedness of a coupled system of the Navier-Stokes equations and the
Poisson-Nernst-Planck equations has been studied in [40, 46, 8, 9]. The coupled system of the Navier-Stokes
equations and the Maxwell equations has also been analyzed theoretically in [17, 4, 3]. Numerically, the Navier-
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2 2. THE MATHEMATICAL MODELS

Stokes-Poisson-Nernst-Planck equations have been extensively studied recently, e.g. in [36, 22, 13, 10, 23, 7],
where different finite element methods have been adopted to solve the system. Optimal convergence rate is
proved in [36, 13] for the nonlinear fully implicit schemes. The coupled system of an inviscid Navier-Stokes
equation and the Maxwell equations has been solved by conservative Riemann solvers in [43]. In addition,
some structure-preserving schemes are proposed for a Maxwell-Ampère-Nernst-Planck model in [38, 39] where
the possion equation for the electric potential is replaced by the Maxwell-Ampère equation for the electric
displacement [37]. In comparison to the previous studies, the Navier-Stokes-Nernst-Planck-Maxwell system
with three coupled physical processes will be much more complicated to analyze and to solve numerically.

We try to develop a decoupled numerical scheme for the Navier-Stokes-Nernst-Planck-Maxwell system
(2.12) which preserves the physical properties as much as possible. We prove that the system (2.12) preserves
positivity and the total mass for each ion concentration, preserves the magnetic flux and also has an energy
dissipative structure. To design efficient numerical scheme for the multi-physics system, we take several
important strategies. Firstly, we keep the term

∑m
i=1 α̂∇ci in the first equation of (2.12), which has been

absorbed in the pressure term in the literature(e.g [40, 7, 8, 22, 13]). The strategy seems nothing special, but it
is important in getting rid of the exactly divergence-free condition for the velocity, which is essensial to prove the
energy stability in the previous methods [7, 13]. Then we do a log transformation to ion density function ci in
the system, which helps on preserve the positivity for the ion concentrations. Based on the transformed model,
we further design a decoupled fully discrete numerical scheme by choosing proper implicit-explicit discretization
for the nonlinear coupling terms, incorporating additional stabilization terms, and utilizing structure-preserving
finite element pairs for the Navier-Stokes equations and the Maxwell equations. In each time step, we need
only to solve the Navier-Stokes equations, the Nernst-Planck equations and the Maxwell equations sequentially,
which can be solved efficiently by standard numerical techniques. Moreover, the computations of magnetic field
and the electric field are also decoupled, and the concentrations of each ion can be solved separately. We prove
that the decoupled fully discrete scheme preserves the positivity and the total mass for each component of the
ions, preserves the magnetic flux, and also keeps the same energy stability structure as that for the continuous
problem. Numerical experiments verify the theoretical results and also show that our method has optimal
convergence rates for the velocity, the concentration, the pressure and the magnetic fields. In addition, the
decoupled numerical scheme can be used to solve some interesting three dimensional problems efficiently.

The rest of the paper is organized as follows. In Section 2, we develop the mathematical model and do
non-dimensionalization to the system. We also prove some key properties of the system, including the positivity
and the mass conservation for the ion concentration, the divergence free property for the magnetic field, and the
energy dissipation structure. We develop a decoupled fully discrete numerical scheme for the model in Section
3. In Section 4, we prove that the numerical scheme preserves the key physical properties for the continuous
problem shown in Section 2. Some numerical examples are given to verify the theoretical result and to test the
convergence in Section 5. Finally, we give some concluding remarks in Section 6.

2. The mathematical models. In this section, we first derive a mathematical model for charge transport
and fluid motion for incompressible electrolyte solution under electromagnetic fields. Then we investigate some
key properties of the model.

2.1. Model derivation. Consider an electrolyte solution composed of m species of ions within a bounded
and connected domain Ω ⊂ R3 that has a Lipschitz continuous boundary Γ := ∂Ω. We begin by introducing
the governing equations for the fluid motion of the solution. We assume that the solution is an incompressible,
homogeneous, Newtonian fluid with a constant density ρ and a constant dynamic viscosity η. At a given point
x in space and time t, the fluid’s velocity and pressure are denoted by u(x, t) and p(x, t), respectively. For
the i-th species (i = 1, · · · ,m), let ci(x, t) be its ion concentration, zi be its valency and vi(x, t) be its average
velocity. It is well-known that when the velocity of the ions is inconsistent with the velocity of the electrolyte
solution, the ions have a friction effect on the motion of the fluid [20]. In the range of linear response, we can
assume that the friction force is proportional to the relative velocity, fi = ξici(vi − u), where ξi is the friction
coefficient of the i-th type of ions with respect to the solution. Thus, we model the incompressible flow by the
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following Navier-Stokes equations,

ρ

(
∂u

∂t
+ u · ∇u

)
− η∆u+∇p =

m∑
i=1

ξici (vi − u) , (2.1)

divu = 0. (2.2)

Next, we consider the motion of ions in the solution. The concentration of the ions satisfies the mass
conservation law,

∂ci
∂t

+∇ · (civi) = 0, i = 1, 2, · · · ,m. (2.3)

These equations are also referred to as continuity equations. For the average velocity vi(x, t), we use the
following constitutive relation,

ξici(vi − u) = −α∇ci + ciziE + cizivi ×B, (2.4)

where α stands for the diffusion coefficient, E is the electric field and B is the magnetic induction. Physically,
the above equation describes the balance of forces. The left-hand side of equation (2.4) represents the negative
resistance of the fluid to the movement of ions, while the right-hand side denotes the driving force. This driving
force encompasses the generalized force associated with diffusion processes, the force exerted by the electric
field, and the Lorentz force resulting from the magnetic field.

Finally, the electromagnetic fields are described by the standard Maxwell equations,

∇×E +
∂B

∂t
= 0, (2.5)

1

µ0
∇×B − ε0

∂E

∂t
=

m∑
i=1

cizivi, (2.6)

ε0∇ ·E =

m∑
i=1

cizi, (2.7)

∇ ·B = 0. (2.8)

Note that the charge density contributed by the i-th ion is cizi, and the summation of then,
∑i=1

m cizi is called
net charge. Since the last two equations (2.7)-(2.8) can be deduced from (2.3) and (2.5)-(2.6), we will omit
them in the remainder of the paper.

To summarize, we obtain the Navier–Stokes-Nernst-Planck-Maxwell (NSNPM) system as follows,

ρ

(
∂u

∂t
+ u · ∇u

)
− η∆u+∇p =

m∑
i=1

ξici(vi − u), (2.9a)

divu = 0, (2.9b)
∂ci
∂t

+∇ · (civi) = 0, i = 1, 2, · · · ,m, (2.9c)

− α∇ci + ziE + cizivi ×B = ξici(vi − u), i = 1, 2, · · · ,m, (2.9d)

∇×E +
∂B

∂t
= 0, (2.9e)

1

µ0
∇×B − ε0

∂E

∂t
=

m∑
i=1

cizivi. (2.9f)
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2.2. Nondimensionalize and simplification. We now deduce the dimensionless form for the system (2.9)
and make some simplifications.

Let L, t0, B0, E0, c0, z0, u0 = L/t0 be characteristic quantities of length, time, magnetic field, electric field,
ion concentration, charge and fluid velocity, respectively. We introduce the dimensionless variables as follows

x← x/L, t← t/t0, u← u/u0, p← p/
(
ρu2

0

)
,

ci ← ci/c0, zi ← zi/z0, B ← B/B0, E ← E/E0.

Let c be the speed of light, when we assume that E0 = B0c, the system (2.9) can be written in a dimensionless
form as,

∂u

∂t
+ u · ∇u−R−1

e ∆u+∇p =

m∑
i=1

fr,ici(vi − u), (2.10a)

divu = 0, (2.10b)
∂ci
∂t

+∇ · (civi) = 0, i = 1, 2, · · · ,m, (2.10c)

− α̂∇ci + β̂ciziE + β̂ϵcizivi ×B = fr,ici(vi − u), i = 1, 2, · · · ,m, (2.10d)

∇×E + ϵ
∂B

∂t
= 0, (2.10e)

∇×B − ϵ
∂E

∂t
= ϵR

m∑
i=1

cizivi, (2.10f)

where Re = ρLu0/η is the Reynolds number, fr,i = ξic0L/(ρu0) is a friction coefficient, α̂ = αc0/(ρu
2
0),

β̂ = z0c0E0L/
(
ρu2

0

)
, ϵ = u0/c and R = c0z0L/(E0ε0).

Since the velocity of the fluid is small compared to the speed of light, the Lorentz force term β̂ϵcizivi ×B
is small relative to the other terms in (2.10d). Then we ignore this term in (2.10d) and derive a relation

fr,ici(vi − u) = −α̂∇ci + β̂ciziE, i = 1, 2, · · · ,m. (2.11)

We substitute the relation to other equations in (2.10) to eliminate vi. This leads to

∂u

∂t
+ u · ∇u−R−1

e ∆u+∇p+
m∑
i=1

α̂∇ci =
m∑
i=1

β̂ciziE, (2.12a)

divu = 0, (2.12b)
∂ci
∂t

+∇ · (ciu)−Di∆ci + βi∇ · (ciziE) = 0, i = 1, 2, · · · ,m, (2.12c)

∇×E + ϵ
∂B

∂t
= 0, (2.12d)

∇×B − ϵ
∂E

∂t
= ϵR

m∑
i=1

(
ciziu− ziDi∇ci + βiciz

2
iE
)
, (2.12e)

where Di = α̂/fr,i is the (dimensionless) diffusion coefficient and βi = β̂/fr,i is the drift coefficient. To close
the system, we set the initial and boundary conditions as

u(x, 0) = u0, ci(x, 0) = c0i , B(x, 0) = B0, E(x, 0) = E0 in Ω, (2.13)
u = 0, (−Di∇ci + ciu+ βiciziE) · n = 0, B × n = 0 on Γ, (2.14)
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where u0 and B0 satisfy ∇ · u0 = ∇ ·B0 = 0. We would like to address that the boundary condition for the
magnetic field B also implies a boundary condition for the electric field E,

E · n = 0 on Γ. (2.15)

Actually, by using (2.12e), (2.14) and the fact that divΓ (B × n) = curl×B ·n [34], we deduce ∂ (E · n) /∂t = 0
on Γ. Thus, (2.15) follows provided that the initial electric field satisfies E0 · n = 0 on Γ.

2.3. Some key properties. We first prove the non-negativity of the ion concentrations of the NSNPM
model in the following proposition.

Proposition 2.1 (Non-negativity). If the initial ion concentrations are non-negative,

c0i (x, 0) ≥ 0, i = 1, 2, · · · ,m, a.e. x ∈ Ω,

then the ion concentrations of the NSNPM model (2.12) are non-negative, that is

ci(x, t) ≥ 0, i = 1, 2, · · · ,m, a.e. x ∈ Ω, ∀t > 0. (2.16)

Proof. Following [40, 16], we first introduce the auxiliary problem,

∂ci
∂t

+∇ · (c+i u)−Di∆ci + βi∇ · (c+i ziE) = 0, (2.17)

where c+i := sup {ci, 0}. Obviously, if ci is the solution to (2.12c) and satisfies ci ≥ 0, then it is the solution to
(2.17). Conversely, if ci is the solution to (2.17) and satisfies ci ≥ 0, then it is also the solution to (2.12c).

Define c−i := sup {−ci, 0}, we can write ci as ci = c+i − c−i . Multiplying (2.17) by c−i and integrating by
parts, we have

1

2

d

dt

∥∥c−i ∥∥2 +Di

∥∥∇c−i ∥∥2 =

∫
Ω

c+i (u+ βiziE) · ∇c−i = 0,

where we have used the properties of c−i and ∇c−i , the boundary conditions (2.14) and (2.15), see [18]. Then,
we integrate the above equation over (0, t) and use the non-negativity of the initial ion concentrations to deduce

∥c−i (x, t)∥
2 = ∥(c0i )−∥2 −

∫ t

0

∥∇c−i (x, s)∥
2ds = −

∫ t

0

∥∇c−i (x, s)∥
2ds ≤ 0.

This yields c−i (x, t) = 0, so that the solution of the auxiliary problem (2.17) satisfies ci(x, t) ≥ 0. Therefore, ci
is also a solution of the original problem (2.12c) and non-negative. The proof is complete.

Then, we can easily prove the mass conservation for each type of ions in the solution, as shown in the
following proposition.

Proposition 2.2 (Mass conservation). The mass of the model is conservated in the following sense,∫
Ω

ci(x, t) =

∫
Ω

ci(x, 0), ∀t > 0. (2.18)

Proof. Integrating (2.12c) over Ω, using the integration by parts and (2.14), we obtain (2.18).

Next, we present the magnetic-flux conservation for the magnetic field in the solution in the following
proposition. This property is a precise physical law in electromagnetics, which means that there is no source
of the magnetic field in the domain.

Proposition 2.3 (Magnetic-flux conservation). The magnetic flux of the model is conservated in the
following sense,

∇ ·B = 0, ∀t > 0. (2.19)
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In the following theorem, we present an energy dissipation property for the system (2.12). Hereinafter, we
assume that ci(x, t) ̸= 0 in Ω.

Theorem 2.1 (Energy dissipation). The NSNPM equations (2.12)-(2.14) satisfy the energy dissipation
relation,

dE
dt

= −R, (2.20)

where the energy and the dissipation terms are respectively given by

E =

∫
Ω

1

2
|u|2 +

m∑
i=1

∫
Ω

α̂ci log ci +

∫
Ω

β̂

R

(
1

2
|B|2 + 1

2
|E|2

)
,

R = R−1
e

∫
Ω

|∇u|2 +
m∑
i=1

∫
Ω

ci

∣∣∣∣√α̂Di

ci
∇ci −

√
β̂βiziE

∣∣∣∣2 .
Proof. By taking the L2-inner product of (2.12a) with u, using the integration by parts, (u · ∇u,u) = 0,

and (2.12b), we get

d

dt

∫
Ω

1

2
|u|2 +R−1

e

∫
Ω

|∇u|2 +
m∑
i=1

∫
Ω

α̂∇ci · u =

m∑
i=1

∫
Ω

β̂ciziE · u. (2.21)

By taking the L2-inner product of (2.12c) with log ci + 1, integrating by parts and using (2.14), ∇ci =
ci∇(log ci) and (2.12b), we have for i = 1, 2, · · · ,m,

d

dt

∫
Ω

ci log ci +Di

∫
Ω

ci

∣∣∣∣ 1ci∇ci
∣∣∣∣2 =

∫
Ω

u · ∇ci +
∫
Ω

βiziE · ∇ci. (2.22)

Multiplying α̂ to the above equation and summing them up for i = 1, 2, · · · ,m, we get

d

dt

m∑
i=1

∫
Ω

α̂ci log ci +

m∑
i=1

α̂Di

∫
Ω

ci

∣∣∣∣ 1ci∇ci
∣∣∣∣2 =

m∑
i=1

∫
Ω

α̂u · ∇ci +
m∑
i=1

∫
Ω

α̂βiziE · ∇ci. (2.23)

By taking the L2-inner product of (2.12d) with B, we have∫
Ω

∇×E ·B +
d

dt

∫
Ω

ϵ

2
|B|2 = 0.

By taking the L2-inner product of (2.12e) with E, using the integration by parts and (2.14), we get∫
Ω

B · ∇ ×E − d

dt

∫
Ω

ϵ

2
|E|2 =

n∑
i=1

∫
Ω

ϵR
(
ciziu− ziDi∇ci + βiciz

2
iE
)
·E.

Multiplying β̂/(ϵR) to the above two equations and summing them up, we obtain

d

dt

∫
Ω

β̂

R

(
1

2
|B|2 + 1

2
|E|2

)
= −

m∑
i=1

∫
Ω

β̂
(
ciziu− ziDi∇ci + βiciz

2
iE
)
·E. (2.24)

Then, combining (2.21)-(2.24) and using the relation that α̂βi = β̂Di, we have
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d

dt

∫
Ω

1

2
|u|2 + d

dt

m∑
i=1

∫
Ω

α̂ci log ci +
d

dt

∫
Ω

β̂

R

(
1

2
|B|2 + 1

2
|E|2

)

= −R−1
e

∫
Ω

|∇u|2 −
m∑
i=1

α̂Di

∫
Ω

ci

∣∣∣∣ 1ci∇ci
∣∣∣∣2 + m∑

i=1

∫
Ω

α̂βiziE · ∇ci +
n∑

i=1

∫
Ω

β̂
(
ziDi∇ci − βiciz

2
iE
)
·E

= −R−1
e

∫
Ω

|∇u|2 −
m∑
i=1

∫
Ω

ci

∣∣∣∣√α̂Di

ci
∇ci −

√
β̂βiziE

∣∣∣∣2 .
The proof is complete.

Remark 2.1. The last term in the dissipation function R looks very complicated. But it has clear physical
meanings as shown below. Notice that

√
α̂Di

ci
∇ci −

√
β̂βiziE =

1√
fr,i

(
α̂

ci
∇ci − β̂ziE

)
= −

√
fr,i(vi − u),

where we have used (2.11) in the last equation. Then the last term of R is reduced to
∫
Ω
fr,ici|vi − u|2dx.

This is the energy dissipation due to the friction between the ion molecular and the solution.
Remark 2.2. Notice that the gradient term

∑m
i=1 α̂∇ci in (2.12a) can be absorbed into the pressure term

by setting p̃ = p +
∑m

i=1 α̂ci, as in the standard Naver-Stokes-Possion-Nernst-Planck system [40]. However,
we would like to remark that it will be convenient for us to design stable and efficient numerical schemes when
keeping the gradient term as in (2.12a). We will give some explanation below. It is known that the proof of the
discrete energy law for a numerical scheme usually follows the same line as for the continuous system. From
(2.21) and (2.23), we can see that the coupling terms

∑m
i=1

∫
Ω
α̂∇ci ·u cancel each other out directly. However,

once we absorb the gradient term into the pressure, the term α̂
∫
Ω
u · ∇ci in the concentration equation (2.23)

can not be canceled and we have to do integrate by parts and use (2.12b), to derive
∫
Ω
u ·∇ci = −

∫
Ω
∇·uci = 0.

By doing so, we can prove that the energy dissipation property still holds on the continuous level. However,
if we generalize the proof to the discrete case, we need to make sure the discrete velocity satisfies the same
divergence-free property. This is not an easy task for standard numerical methods. That is why a H(div)-based
discontinuous Galerkin methods [7] and a virtual finite element method [13] have been proposed for the Naver-
Stokes-Possion-Nernst-Planck system in literature. Our strategy to keep the term

∑m
i=1 α̂∇ci in (2.12a) can

essentially overcome the difficulty, which makes many commonly used finite element pairs preserve the energy
dissipation law, as shown in the Section 4. The technique applies also to the standard Naver-Stokes-Possion-
Nernst-Planck system.

2.4. The log-density formulation. The NSNPM system (2.12) is a highly nonlinear, coupled multiphysics
PDE system, making it challenging to solve numerically. Furthermore, designing numerical methods that
preserve the physical properties discussed in the previous subsection adds to the complexity. To ensure that
the ion densities ci remain positive, we implement the following transformation (as in [33, 7])

ηi = log ci so that ∇ci = eηi∇ηi.

We will use ηi as unknowns instead of ci. The transformed system is given by

∂u

∂t
+ u · ∇u−R−1

e ∆u+∇p+
m∑
i=1

α̂eηi∇ηi =
m∑
i=1

β̂eηiziE, (2.25a)

divu = 0, (2.25b)
∂eηi

∂t
+∇ · (eηiu)−Di∇ · (eηi∇ηi) + βi∇ · (eηiziE) = 0, i = 1, 2, · · · ,m, (2.25c)
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∇×E + ϵ
∂B

∂t
= 0, (2.25d)

∇×B − ϵ
∂E

∂t
= ϵR

m∑
i=1

(
eηiziu− ziDie

ηi∇ηi + βie
ηiz2iE

)
. (2.25e)

The initial and boundary conditions are correspondingly changed to

u(0) = u0, ηi(0) = η0i , B(0) = B0, E(0) = E0 in Ω, (2.26)
u = 0, (−Di∇ηi + u+ βiziE) · n = 0, B × n = 0 on Γ. (2.27)

3. Numerical Methods. In this section, we first introduce the weak form for the system (2.25). Then
we introduce a fully decoupled method for the system.

3.1. The weak form. We start by introducing some notations. As usual, the inner product and norm
in L2(Ω) are denoted by (·, ·) and ∥·∥, respectively. For convenience in later use, we introduce some function
spaces

S := H1 (Ω) , Q := L2
0 (Ω) =

{
q ∈ L2 (Ω) , (q, 1) = 0

}
,

V := H1
0 (Ω) =

{
v ∈H1 (Ω) , v|Γ = 0

}
,

W := H (curl,Ω) =
{
M ∈ L2 (Ω) ,∇×M ∈ L2 (Ω)

}
,

D := H (div,Ω) =
{
C ∈ L2 (Ω) ,∇ ·C ∈ L2 (Ω)

}
.

The standard norms in H (div,Ω) and H (curl,Ω) are denoted by ∥·∥div and ∥·∥curl, respectively. In order to
deal with the convection term in (2.25a), we define the following trilinear form for u,v,w ∈ V ,

O (u,v,w) :=
1

2
((u · ∇v,w)− (u · ∇w,v))

Then we can derive the weak form of the NSNPM system (2.25) by standard approach. It is to find
(u, p,B,E) ∈ V ×Q×W ×D and ηi ∈ S, i = 1, 2, · · · ,m, such that the following equations hold

(∂tu,v) +R−1
e (∇u,∇v) +O (u,u,v)− (p,∇ · v) +

m∑
i=1

(α̂eηi∇ηi,v)−
m∑
i=1

(
β̂eηiziE,v

)
= 0, (3.1a)

(∇ · u, q) = 0, (3.1b)
(∂te

ηi , s)− (ueηi ,∇s) + (Die
ηi∇ηi,∇s)− (βie

ηiziE,∇s) = 0, i = 1, 2, · · · ,m, (3.1c)
(ϵ∂tB,C) + (∇×E,C) = 0, (3.1d)

(B,∇×M)− (ϵ∂tE,M)−
m∑
i=1

(
ϵR
(
eηiziu− ziDie

ηi∇ηi + βie
ηiz2iE

)
,M

)
= 0, (3.1e)

for all (v, q,C,M) ∈ V × Q ×W ×D and s ∈ S. In the following, we will consider the space and time
discretization to the weak problem.

3.2. A decoupled numerical scheme. For the time discretization, let {tn = nτ : n = 0, 1, · · · , N},
τ = T/N, be an equidistant partition of [0, T ]. Given a function v (x, t), the semidiscrete approximation to
v (x, tn) will be denoted by vn(x). For n ≥ 1 and any function v, we define the first-order backward finite
difference operator as δtv

n = (vn − vn−1)/τ .
For the space discretization, let Th be a quasi-uniform and shape-regular tetrahedral mesh of Ω. Denote

the local mesh size by hK = diam (K) and the global mesh size by h := max
K∈Th

hK . For any integer k ≥ 0, let

Pk(K) be the space of polynomials of degree k on element K and define P k(K) = Pk(K)3. To approximate
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the unknown functions ηi, we adopt a conforming finite element space Sh ⊂ S. To approximate the velocity
and pressure (u, p), we use a conforming finite element pair (V h ×Qh) ⊂ (V ×Q), which satisfies the discrete
inf-sup condition,

inf
0̸=qh∈Qh

sup
0̸=vh∈V h

(qh,divvh)

∥∇vh∥ ∥qh∥
≥ βs, (3.2)

where βs is a positive constant independent of mesh size h. To approximate the magnetic field B, we employ
a conforming finite element space Dh ⊂D. To approximate the electric field E, we utilize a conforming finite
element space W h ⊂W . In addition, the electromagnetic pair (W h,Dh) should meet the following de-Rham
sequence,

H1(Ω)
grad−−−−→ W

curl−−−−→ D
div−−−−→ L2(Ω)yΠgrad

h

yΠcurl
h

yΠdiv
h

yΠ0
h

Vh
grad−−−−→ W h

curl−−−−→ Dh
div−−−−→ Rh

, (3.3)

where Vh ⊂ H1(Ω) and Rh ⊂ L2(Ω) are conforming finite element spaces, Πgrad
h , Πcurl

h , Πdiv
h and Π0

h are the
corresponding standard interpolation operators. We will utilize the lowest-order finite element spaces in our
numerical experiments in Section 5. The theoretical analysis presented in this section and the next is applicable
to various other pairs of stable finite element pairs (see [19, 6, 26]). For convenience, we write the standard
interpolation operators of V h and Sh as Πgrad

0,h and Πgrad
1,h , respectively.

Inspired by the stabilization method in [41, 42], we propose a decoupled first-order scheme for solving the
system (2.12). At the initial time step, we set u0

h = Πgrad
0,h u0, η0i,h = Πgrad

1,h η0i , i = 1, 2, · · · ,m, B0
h = Πdiv

h B0

and E0
h = Πcurl

h E0. For n ≥ 1, we compute
(
un+1
h , pn+1

h ,Bn+1
h ,En+1

h

)
∈ V h × Qh ×Dh ×W h and ηn+1

i,h ∈
Sh, i = 1, 2, · · · ,m, by solving the following three substeps:

Step 1: Find ηn+1
i,h ∈ Sh, i = 1, 2, · · · ,m, by solving the discrete Nernst-Planck equations separately,

(δte
ηn+1
i,h , sh)−

(
un
he

ηn
i,h ,∇sh

)
+
(
Die

ηn
i,h∇ηn+1

i,h ,∇sh
)
−
(
βie

ηn
i,hziE

n
h,∇sh

)
+ a1stab

(
ηn+1
i,h , sh

)
= 0, (3.4)

for all sh ∈ Sh, where a1stab(·, ·) is a bilinear form on Sh×Sh including two extra first-order stabilization terms,

a1stab (wh, sh) := τm
(
α̂eη

n
i,h∇wh, e

ηn
i,h∇sh

)
+

τm

2

(
βiz

2
iDiReη

n
i,h∇wh, e

ηn
i,h∇sh

)
. (3.5)

Step 2: Find
(
Bn+1

h ,En+1
h

)
∈Dh ×W h by solving the discrete Maxwell equations,(

ϵδtB
n+1
h ,Ch

)
+
(
∇×En+1

h ,Ch

)
= 0, (3.6a)(

Bn+1
h ,∇×Mh

)
−
(
ϵδtE

n+1
h ,Mh

)
−

m∑
i=1

(
ϵR
(
eη

n
i,hziu

n
h − ziDie

ηn
i,h∇ηn+1

i,h

)
,Mh

)
−

m∑
i=1

(
ϵRβie

ηn
i,hz2iE

n+1
h ,Mh

)
− a2stab

(
En+1

h ,Mh

)
= 0, (3.6b)

for all (Ch,Mh) ∈Dh ×W h, where a2stab(·, ·) is a bilinear form on W h ×W h including one extra first-order
stabilization term,

a2stab(Nh,Mh) := τ

ϵRβ̂

m∑
i=1

eη
n
i,hzi

m∑
j=1

eη
n
j,hzjNh,Mh

 . (3.7)



10 3. NUMERICAL METHODS

Step 3: Find
(
un+1
h , pn+1

h

)
∈ V h ×Qh by solving the discrete Navier-Stokes equations,(

δtu
n+1
h ,vh

)
+R−1

e

(
∇un+1

h ,∇vh

)
+ γ(∇ · un+1

h ,∇ · vh) +O
(
un
h,u

n+1
h ,vh

)
−
(
pn+1
h ,∇ · vh

)
+

m∑
i=1

(
α̂eη

n
i,h∇ηn+1

i,h ,vh

)
−

m∑
i=1

(
β̂eη

n
i,hziE

n+1
h ,vh

)
= 0, (3.8a)(

∇ · un+1
h , qh

)
= 0, (3.8b)

for all (vh, qh) ∈ V h ×Qh, where γ > 0 is the stabilization parameter.
Remark 3.1. We explain the strategy behind developing the above scheme.
(i) In Step 1 of (3.4), we add two first-order stabilized terms (3.5) to balance the explicit treatment of the

velocity and electric field in the coupling terms. These perturbation terms are important in decoupling
the computation of Nernst-Planck equations from the Navier-Stokes equations and Maxwell equations
while ensuring the unconditional energy stability. Particularly, we can compute the ion concentration
ηi separately for each i. The details can be found in the proof of Theorem 4.1.

(ii) In Step 2 of (3.6b), we also introduce a stabilized term (3.7) to balance the explicit treatment of the
velocity in the coupling term. This term is important in decoupling the computation of the Maxwell
equations from the Navier-Stokes equations while ensuring the unconditional energy stability.

(iii) In Step 3, we introduce an augmented Lagrangian stabilization to control the divergence of discrete
velocity and relax the effects of the pressure error on the velocity error in (3.8a). In addition, this
stabilization has advantages in designing robust solvers for the discrete problems, especially when the
Reynolds number is large [30, 11]. Without further specification, we choose γ = 1 in our numerical
tests.

Thanks to the structure-preserving property of finite element pair (W h,Dh), we can further decouple
the computations of the magnetic field and electric field. Specifically, invoking with (3.3), we notice that
∇×W h ⊂Dh. Thus, for any Mh ∈W h, taking Ch = ∇×Mh in (3.6a), we have(

ϵδtB
n+1
h ,∇×Mh

)
+
(
∇×En+1

h ,∇×Mh

)
= 0. (3.9)

Then we plug (3.9) into (3.6b) to get

(Bn
h,∇×Mh)− τϵ−1

(
∇×En+1

h ,∇×Mh

)
−
(
ϵδtE

n+1
h ,Mh

)
−

(
ϵR

m∑
i=1

(
eη

n
i,hziu

n
h − ziDie

ηn
i,h∇ηn+1

i,h + βie
ηn
i,hz2iE

n+1
h

)
,Mh

)
− a2stab

(
En+1

h ,Mh

)
= 0. (3.10)

This is an equation with only one unknown function En+1
h , which can be solved independently. Thus, we can

rewrite Step 2 equivalently into the following two substeps:
Step 2.1 : Find En+1

h ∈W h such that (3.10) holds for any Mh ∈W h.
Step 2.2 : Update Bn+1

h ∈Dh by

Bn+1
h = Bn

h − τϵ−1∇×En+1
h . (3.11)

In summary, the fully discrete decoupled scheme is stated in detail in Algorithm 1.
Before proceeding with the analysis, we present some additional comments on the decoupled scheme.

First, we we want to emphasize that retaining the gradient term
∑m

i=1

(
α̂∇eη

n+1
i,h ,vh

)
in the Navier-Stokes

equation (3.8) eliminates the cumbersome assumption regarding the finite element spaces (V h, Qh) that ∇ ·
V h ⊂ Qh (as discussed in Remark 2.2). This assumption is essential for demonstrating the energy stability
properties within the numerical schemes, even for the Navier-Stokes-Poisson-Nernst-Planck system [7, 13].
Second, we initialize the magnetic field as B0

h = Πdiv
h B0 to ensure that ∇·B0

h = 0, where Πdiv
h is the canonical

interpolation operator in (3.3). This is justified by the following commutativity: ∇ · B0
h = ∇ ·

(
Πdiv

h B0
)
=
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Algorithm 1: The fully decoupled numerical scheme
Data: Initial values and boundary values for the system (2.25)
Result: The discrete solution at time t = T .

1 Partition the time interval (0, T ), triangulate the space domain Ω and interpolate the initial values;
2 while tn < T do
3 Step 1 : Solve (3.4) to obtain ηn+1

i,h for i = 1, · · · ,m ;
4 Step 2.1 : Solve (3.10) to obtain En+1

h ;
5 Step 2.2 : Update Bn+1

h directly by (3.11) ;
6 Step 3 : Solve (3.8) to obtain

(
un+1
h , pn+1

h

)
;

7 Step 4 : n = n+ 1, tn = tn + τ ;
8 end

Π0
h

(
∇ ·B0

)
= 0. Finally, the velocity and pressure remain coupled in the algorithm. However, one could employ

the pressure-correction method [41, 21] or the gauge-Uzawa method [45, 14] to facilitate their decoupling. We
choose not to decouple the velocity and pressure because efficient solvers for the stationary Navier-Stokes
equations have already been developed in literature.

4. Physics preserving properties. In this section, we will prove that the fully discrete decoupled
scheme introduced in the previous section preserves key physical properties similar to those of the continuous
model. These properties include mass conservation, positivity of density, magnetic flux conservation, and
energy stability.

The positivity and the mass conservation for the ion concentrations computed by the fully discrete scheme
are given in the following two propositions.

Proposition 4.1 (Positivity). The positivity of each ion concentration ci,h follows directly from the
exponential formulation that

cn+1
i,h (x, t) := eη

n+1
i,h (x,t) > 0, i = 1, 2, · · · ,m, ∀n ≥ 0. (4.1)

Proposition 4.2 (Mass conservation). The mass of the scheme is conserved in the following sense,∫
Ω

eη
n+1
i,h =

∫
Ω

eη
0
i,h , ∀n ≥ 0. (4.2)

Proof. By taking sh = 1 in (3.4), we get (δte
ηn+1
i,h , 1) = 0. By recursion, we obtain immediately (4.2).

In the following proposition, we will prove that the divergence of the discrete magnetic field is zero. This
stems from the argument that the Faraday’s law still holds exactly on the discrete level and, as a result, the
Gauss’s law for the magnetic field is automatically satisfied.

Proposition 4.3 (Magnetic-flux conservation). The magnetic flux of the scheme is conservated in the
following sense,

∇ ·Bn
h = 0, n = 1, 2, · · · , N. (4.3)

Proof. Using ∇×W h ⊂Dh, we can take Ch = ϵδtB
n+1
h +∇×En+1

h in (3.1d) to get

ϵδtB
n+1
h +∇×En+1

h = 0. (4.4)

By taking the divergence of (4.4), we have ∇ ·Bn+1
h = ∇ ·Bn

h. By recursion, this implies (4.3).
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The next theorem presents the energy stability for the decoupled numerical scheme.
Theorem 4.1 (Energy dissipation). The scheme (3.4)-(3.8) satisfies an discrete energy dissipation

relation,

δtEn+1
h ≤ −Rn+1

h , (4.5)

where

Enh =

∫
Ω

1

2
|un

h|2 +
m∑
i=1

∫
Ω

α̂eη
n
i,hηni,h +

∫
Ω

β̂

R

(
1

2
|Bn

h|2 +
1

2
|En

h|2
)
,

Rn
h = R−1

e

∫
Ω

|∇un
h|

2
+ γ

∫
Ω

|∇ · un
h|

2
+

m∑
i=1

∫
Ω

eη
n−1
i,h

∣∣∣∣√α̂Di∇ηni,h −
√

β̂βiziE
n
h

∣∣∣∣2 .
Proof. By taking vh = un+1

h in (3.8a) and qh = pn+1
h in (3.8b), we get∥∥un+1

h

∥∥2 − ∥un
h∥

2
+
∥∥un+1

h − un
h

∥∥2
2τ

+R−1
e

∥∥∇un+1
h

∥∥2 + γ
∥∥∇ · un+1

h

∥∥2 + m∑
i=1

(
α̂eη

n
i,h∇ηn+1

i,h ,un+1
h

)
=

m∑
i=1

(
β̂eη

n
i,hziE

n+1
h ,un+1

h

)
. (4.6)

By taking sh = ηn+1
i,h + 1 in (3.4), we have for i = 1, 2, · · · ,m,(

δte
ηn+1
i,h , ηn+1

i,h + 1
)
+Di

∫
Ω

eη
n
i,h

∣∣∣∇ηn+1
i,h

∣∣∣2 + τmα̂

∫
Ω

∣∣∣eηn
i,h∇ηn+1

i,h

∣∣∣2 + τm

2
βiz

2
iDiR

∫
Ω

∣∣∣eηn
i,h∇ηn+1

i,h

∣∣∣2
=
(
un
h, e

ηn
i,h∇ηn+1

i,h

)
+
(
βiziE

n+1
h , eη

n
i,h∇ηn+1

i,h

)
.

To bound the first term on the left-hand side, we use the convexity of the function f(x) = x(log x − 1) for
x > 0 to show that

(x− y) log x ≥ x (log x− 1)− y (log y − 1) .

This follows from f ′(x) = log x, f ′′(x) = 1/x > 0, and Taylor expansion. Applying this bound with x = eη
n+1
i,h

and y = eη
n
i,h , we have(

eη
n+1
i,h , ηn+1

i,h

)
−
(
eη

n
i,h , ηni,h

)
τ

+Di

∫
Ω

eη
n
i,h

∣∣∣∇ηn+1
i,h

∣∣∣2 + τmα̂

∫
Ω

∣∣∣eηn
i,h∇ηn+1

i,h

∣∣∣2 + τm

2
βiz

2
iDiR

∫
Ω

∣∣∣eηn
i,h∇ηn+1

i,h

∣∣∣2
≤
(
un
h, e

ηn
i,h∇ηn+1

i,h

)
+
(
βiziE

n
h, e

ηn
i,h∇ηn+1

i,h

)
.

Multiplying α̂ to the above equation and summing them up for i = 1, 2, · · · ,m, we get

1

τ

(
m∑
i=1

∫
Ω

α̂eη
n+1
i,h ηn+1

i,h −
m∑
i=1

∫
Ω

α̂eη
n
i,hηni,h

)
+

m∑
i=1

α̂Di

∫
Ω

eη
n
i,h

∣∣∣∇ηn+1
i,h

∣∣∣2
+ τmα̂2

m∑
i=1

∫
Ω

∣∣∣eηn
i,h∇ηn+1

i,h

∣∣∣2 + τm

2

m∑
i=1

Rα̂βiz
2
iDiR

∫
Ω

∣∣∣eηn
i,h∇ηn+1

i,h

∣∣∣2
≤

m∑
i=1

α̂
(
un
h, e

ηn
i,h∇ηn+1

i,h

)
+

m∑
i=1

(
α̂βiziE

n
h, e

ηn
i,h∇ηn+1

i,h

)
. (4.7)
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By taking Ch = Bn+1
h in (3.6a), we have

(
∇×En+1

h ,Bn+1
h

)
+ ϵ

∥∥Bn+1
h

∥∥2 − ∥Bn
h∥

2
+
∥∥Bn+1

h −Bn
h

∥∥2
2τ

= 0.

By taking Mh = En+1
h in (3.6b), we get

(
Bn+1

h ,∇×En+1
h

)
− ϵ

∥∥En+1
h

∥∥2 − ∥En
h∥

2
+
∥∥En+1

h −En
h

∥∥2
2τ

− τϵRβ̂

∥∥∥∥∥
m∑
i=1

eη
n
i,hziE

n+1
h

∥∥∥∥∥
2

=

(
ϵR

m∑
i=1

(
eη

n
i,hziu

n
h − ziDie

ηn
i,h∇ηn+1

i,h + βie
ηn
i,hz2iE

n+1
h

)
,En+1

h

)
.

Summing up the above two equations and multiplying β̂/(ϵR), we obtain

β̂

R

∥∥Bn+1
h

∥∥2 − ∥Bn
h∥

2
+
∥∥Bn+1

h −Bn
h

∥∥2
2τ

+
β̂

R

∥∥En+1
h

∥∥2 − ∥En
h∥

2
+
∥∥En+1

h −En
h

∥∥2
2τ

+ τ β̂2

∥∥∥∥∥
m∑
i=1

eη
n
i,hziE

n+1
h

∥∥∥∥∥
2

= −
m∑
i=1

(
β̂
(
eη

n
i,hziu

n
h − ziDie

ηn
i,h∇ηn+1

i,h + βie
ηn
i,hz2iE

n+1
h

)
,En+1

h

)
. (4.8)

Then, combining (4.6)-(4.8), we have

∥∥un+1
h

∥∥2 − ∥un
h∥

2
+
∥∥un+1

h − un
h

∥∥2
2τ

+
1

τ

(
m∑
i=1

∫
Ω

α̂eη
n+1
i,h ηn+1

i,h −
m∑
i=1

∫
Ω

α̂eη
n
i,hηni,h

)

+
β̂

R

∥∥Bn+1
h

∥∥2 − ∥Bn
h∥

2
+
∥∥Bn+1

h −Bn
h

∥∥2
2τ

+
β̂

R

∥∥En+1
h

∥∥2 − ∥En
h∥

2
+
∥∥En+1

h −En
h

∥∥2
2τ

+ τmα̂2
m∑
i=1

∫
Ω

∣∣∣eηn
i,h∇ηn+1

i,h

∣∣∣2 + τm

2

m∑
i=1

Rα̂βiz
2
iDiR

∫
Ω

∣∣∣eηn
i,h∇ηn+1

i,h

∣∣∣2 + τ β̂2

∥∥∥∥∥
m∑
i=1

eη
n
i,hziE

n+1
h

∥∥∥∥∥
2

≤
m∑
i=1

(
β̂eη

n
i,hziE

n+1
h ,un+1

h − un
h

)
−

m∑
i=1

(
α̂eη

n
i,h∇ηn+1

i,h ,un+1
h − un

h

)
+

m∑
i=1

(
α̂βiziE

n
h, e

ηn
i,h∇ηn+1

i,h

)
+

m∑
i=1

(
β̂
(
ziDie

ηn
i,h∇ηn+1

i,h − βie
ηn
i,hz2iE

n+1
h

)
,En+1

h

)
−R−1

e

∫
Ω

∣∣∇un+1
h

∣∣2 − γ

∫
Ω

∣∣∇ · un+1
h

∣∣2 − m∑
i=1

α̂Di

∫
Ω

eη
n
i,h

∣∣∣∇ηn+1
i,h

∣∣∣2 .
=

m∑
i=1

(β̂eη
n
i,hziE

n+1
h ,un+1

h − un
h) +

m∑
i=1

(
α̂eη

n
i,h∇ηn+1

i,h ,un
h − un+1

h

)
+

m∑
i=1

(
β̂Dizi

(
En

h −En+1
h

)
, eη

n
i,h∇ηn+1

i,h

)
−R−1

e

∫
Ω

∣∣∇un+1
h

∣∣2
− γ

∫
Ω

∣∣∇ · un+1
h

∣∣2 − m∑
i=1

∫
Ω

eη
n
i,h

∣∣∣∣√α̂Di∇ηn+1
i,h −

√
β̂βiziE

n+1
h

∣∣∣∣2 , (4.9)
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where we have used the relation α̂βi = β̂Di. Using the Cauchy-Schwarz inequality and Young inequality, we
derive the first three terms on the right hand side of (4.9) that

m∑
i=1

(
β̂eη

n
i,hziE

n+1
h ,un+1

h − un
h

)
≤
∥∥un+1

h − un
h

∥∥∥∥∥∥∥β̂
m∑
i=1

eη
n
i,hziE

n+1

∥∥∥∥∥
≤ 1

4τ

∥∥un+1
h − un

h

∥∥2 + τ β̂2

∥∥∥∥∥
m∑
i=1

eη
n
i,hziE

n+1

∥∥∥∥∥
2

, (4.10)

m∑
i=1

(
α̂eη

n
i,h∇ηn+1

i,h ,un
h − un+1

h

)
≤

m∑
i=1

∥∥un+1
h − un

h

∥∥∥∥∥α̂eηn
i,h∇ηn+1

i,h

∥∥∥
≤ 1

4τ

∥∥un+1
h − un

h

∥∥2 + τmα̂2
m∑
i=1

∥∥∥eηn
i,h∇ηn+1

i,h

∥∥∥2 , (4.11)

m∑
i=1

(
β̂Dizi

(
En

h −En+1
h

)
, eη

n
i,h∇ηn+1

i,h

)
≤

m∑
i=1

β̂Dizi
∥∥En+1

h −En
h

∥∥∥∥∥eηn
i,h∇ηn+1

i,h

∥∥∥
≤ β̂

2τR

∥∥En+1
h −En

h

∥∥2 + τmβ̂R

2

m∑
i=1

D2
i z

2
i

∥∥∥eηn
i,h∇ηn+1

i,h

∥∥∥2 (4.12)

Plugging (4.10)-(4.12) into (4.9), we get the required estimate (4.5). The proof is thus complete.

5. Numerical experiments. In this section, we present a series of numerical examples to verify the
theoretical results in the previous section. The numerical experiments are implemented on the finite element
software Parallel Hierarchical Grid (PHG) [48]. All computations are carried out on the LSSC-IV Cluster
of the State Key Laboratory of Scientific and Engineering Computing, Chinese Academy of Sciences. In the
numerical experiments, we set

Sh := {sh ∈ S : sh|K ∈ P1(K), ∀K ∈ Th} ,
V h := {vh ∈ V : vh|K ∈ P 1,b(K), ∀K ∈ Th} ,
Qh :=

{
qh ∈ H1 (Ω) : qh|K ∈ P1(K), ∀K ∈ Th

}
∩Q,

Dh := {Ch ∈D : Ch|K ∈ P 0(K) + xP0(K), ∀K ∈ Th} ,
W h := {Mh ∈W : Mh|K ∈ P 0(K) + x× P 0(K), ∀K ∈ Th} ,

where P1,b(K) is the set of linear polynomials plus a bubble on K. We use the Newton method to solve the
nonlinear system in Step 1, and use the PCG and the FGMRES methods to solve the linear systems in Step
2.1 and Step 3, respectively. More implementation details are given in Appendix.

Example 5.1 (Accuracy test). This example is to test the convergence rate for the proposed scheme with
a two-component system. In the test, the computational domain is taken as a unit cube Ω = (0, 1)3, the final
time of the evolution is taken as T = 1 and the physical parameters are set by

Re = 1, α̂ = β̂ = 1, z1 = 1, z2 = −1,
D1 = D2 = β1 = β2 = 1, ϵ = R = 1.

The right-hand sides, initial conditions and the boundary conditions in the model are chosen such that the exact
solutions are given by

u = − exp(−t)/2 sin(πx) sin(πy) sin(πz)Ψ , p = exp(−t)(2x− 1)(2y − 1)(2z − 1),

E = cos(t)/2Ψ , B = 3π sin(t)/2(−(cos(πx) sin(πy) sin(πz), 0, cos(πz) sin(πx) sin(πy)),
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η1 = η2 = exp(−t) cos (πx) cos (πy) cos (πz) ,
Ψ = (sin (πx) cos (πy) cos (πz) ,−2 cos (πx) sin (πy) cos (πz) , cos (πx) cos (πy) sin (πz)) .

In the numerical test, the initial mesh size and time step are set by h0 =
√
3/4 and τ0 = 0.05. We decrease

the time step and the mesh size at the same time such that τ ∝ h to test the convergence orders for the
proposed scheme. The corresponding numerical errors are displayed in Table 5.1 for the proposed scheme.
Here we denote the numerical errors at t = tN as θNχ = χ(tN ) − χN

h for χ = u, p, ηi,B,E. We observe that
the errors become smaller and smaller as the mesh size and time step are refined, and the expected first-
order convergence rate is obtained asymptotically for all the unknowns. To further test the convergence rates
of L2-errors of u, η1 and η2, we decrease the time step and the mesh size simultaneously in the scaling of
τ ∝ h2. The corresponding results are displayed in Table 5.2, which indicates the expected optimal second
convergence rates of the proposed scheme are observed. In addition, from Tables 5.1-5.2, we can see that the
magnitudes of

∥∥∥divBN
h

∥∥∥ are in the order of 10−14 ∼ 10−13 . This confirms the exactness of the divergence-free

condition of BN
h on the discrete level when neglecting the accumulation of the round-off errors during the

computation. This implies that the Gauss’s law for the magnetic field holds exactly on the discrete level due
to the structure-preserving discretization.

Table 5.1: Errors and convergence rates for the proposed scheme with τ ∝ h.

(τ, h)
∥∥θNu ∥∥1 ∥∥θNp ∥∥ ∥∥θNη1

∥∥
1

∥∥θNη2

∥∥
1

(τ0, h0) 2.71e-01(—–) 4.71e-01(—–) 3.62e-01(—–) 3.62e-01(—–)
(τ0, h0) /2 1.49e-01(0.86) 2.49e-01(0.92) 1.95e-01(0.89) 1.95e-01(0.89)
(τ0, h0) /4 7.30e-02(1.03) 1.09e-01(1.19) 1.01e-01(0.95) 1.01e-01(0.95)
(τ0, h0) /8 3.58e-02(1.03) 4.08e-02(1.42) 5.11e-02(0.98) 5.11e-02(0.98)
(τ0, h0) /16 1.78e-02(1.01) 1.48e-02(1.46) 2.58e-02(0.99) 2.58e-02(0.99)

(τ, h)
∥∥θNE∥∥ ∥∥θNE∥∥curl ∥∥θNB∥∥ ∥∥∥∇ ·BN

h

∥∥∥
(τ0, h0) 7.69e-02(—–) 4.50e-01(—–) 6.77e-01(—–) 1.02e-14

(τ0, h0) /2 4.01e-02(0.94) 2.32e-01(0.96) 3.47e-01(0.97) 2.36e-14
(τ0, h0) /4 2.07e-02(0.96) 1.17e-01(0.99) 1.74e-01(0.99) 4.93e-14
(τ0, h0) /8 1.05e-02(0.97) 5.88e-02(0.99) 8.73e-02(1.00) 1.11e-13
(τ0, h0) /16 5.33e-03(0.98) 2.95e-02(1.00) 4.37e-02(1.00) 2.72e-13

Table 5.2: Errors and convergence rates for the proposed scheme with τ ∝ h2.

(τ, h)
∥∥θNu ∥∥ ∥∥θNη1

∥∥ ∥∥θNη2

∥∥ ∥∥∥∇ ·BN
h

∥∥∥
(τ0, h0) 2.63e-02(—–) 5.30e-02(—–) 5.31e-02(—–) 1.02e-14

(τ0/4, h0/2) 8.50e-03(1.63) 1.67e-02(1.66) 1.67e-02(1.66) 2.42e-14
(τ0/16, h0/4) 2.07e-03(2.04) 4.47e-03(1.90) 4.47e-03(1.90) 6.62e-14
(τ0/64, h0/8) 4.88e-04(2.08) 1.14e-03(1.98) 1.14e-03(1.98) 2.27e-13
(τ0/256, h0/16) 1.18e-04(2.05) 2.85e-04(1.99) 2.85e-04(1.99) 8.53e-13

To study the performance of the proposed solver, we further present the number of nonlinear and linear
iterations for each step in the algorithm with τ ∝ h at t = T in Table 5.3. As for the nonlinear iterations, we
find that the number of Newton iterations is almost the same and quite small. Thus, for this test, the Newton
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method enjoys the pretty good convergence. As for the linear iterations, there is no significant difference on
the numbers of iterations. This exhibits good performance of the proposed solver for the algebraic system.

Table 5.3: Numbers of nonlinear iterations and linear iterations at t = T .

(τ, h)
Step 1 Step 2.1 Step 3

Solver for η1 Solver for η2 Npcg NfgmresNnewton(Naverage
pcg ) Nnewton(Naverage

pcg )
(τ0, h0) 10(12) 10(12) 8 27

(τ0, h0) /2 7(10) 7(10) 8 33
(τ0, h0) /4 5(9) 5(9) 8 33
(τ0, h0) /8 3(9) 3(9) 8 33
(τ0, h0) /16 2(10) 2(10) 8 32

Example 5.2 (Physics preserving properties test). This example is to investigate the unconditional energy
stability, magnetic-flux-conservation and mass-conservation properties of the proposed scheme with a three-
component system. We take the domain as Ω = (0, 1)3 and set the initial conditions for u, ηi, B and E to
be

u0 = −1/2 sin (πx) sin (πy) sin (πz)Ψ , B0 = 0, E0 = −1/2Ψ ,

η01 = η02 = η03 = cos (πx) cos (πy) cos (πz) ,

Ψ = (sin (πx) cos (πy) cos (πz) ,−2 cos (πx) sin (πy) cos (πz) , cos (πx) cos (πy) sin (πz)) .

Moreover, the final time is given by T = 2.
With the given data, we test the properties under different physical parameters and time steps on a fixed

mesh with h =
√
3/16. Here, the physical number are taken as

Re = 100, α̂ = β̂ = 1, z1 = 1, z2 = 1, z3 = −2
D1 = D2 = D3 = β1 = β2 = β3 = 0.1, ϵ = 0.01, R = 1.

We carry out the numerical tests under different physical parameters and time steps. Figure 5.1 show
the time evolution of the total energy, the L2-norm for divBn

h and the mass for the three ions computed by
our numerical method. As for the energy stability, we can see that all energy curves decrease monotonically,
which means that the proposed scheme is unconditionally energy stable. As for the magnetic flux conservation,
∥divBn

h∥ stays at order of 10−15 ∼ 10−14, which verifies the exactness of the divergence-free condition on the
discrete level again. As for the mass conservation, all the mass for the ion 1 (M1,h), for the ion 2 (M2,h) and
for the ion 3 (M3,h) remain constants. This confirms the scheme is mass-conservative.

Example 5.3 (Ion spreading in a charged reservoir.). This example is to simulate the phenomenon of
electron-diffusion of ions in a charged reservoir. In the setting, we consider the flow with two species in a
cuboid micro-channel, Ω = (0, 1)× (0, 1)× (0, 2), under the external electric field Eb = (0, 0, 1). The boundary
conditions on all sides are no-slip, impenetrable and insulating for u, ηi and B. As for the initial conditions,
we consider an initial state where a Gaussian concentration profile of negatively charged species is placed above
and to the right, and the same profile of positively charged species is placed below and to the left of the center
of the micro-channel. Specifically, the initial velocity and magnetic field are set as zero, the initial electric field
is chosen as Eb and the initial concentrations of positively and negatively charged particles are as follows,

η01 = log

(
C0

2πR2
∗
exp

(
− (x− Lx/2 + lx)

2 + (y − Ly/2 + ly)
2 + (z − Lz/2 + lz)

2

2R2
∗

))
,
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(a) The total energy (b) The L2-norm of divBn
h

(c) The mass for ion 1 (d) The mass for ion 2 (e) The mass for ion 3

Fig. 5.1: Time evolution of some quantities with different time steps.

η02 = log

(
C0

2πR2
∗
exp

(
− (x− Lx/2− lx)

2 + (y − Ly/2− ly)
2 + (z − Lz/2− lz)

2

2R2
∗

))
,

where the parameters are given by C0 = 3, R∗ = 0.25, Lx = Ly = 1, Lz = 2, lx = ly = 0.125 and lz = 0.25.
Moreover, the physical parameters are given by

Re = 100, α̂ = 0.2, β̂ = 2, z1 = 1, z2 = −1,
D1 = D2 = 0.01, β1 = β2 = 0.1, ϵ = 0.01, R = 0.5.

Here, we use a regular and uniform tetrahedral mesh with the grid size h =
√
3/32, which consists of

393216 elements, 2875270 degrees of freedom in total. Then we conduct the simulations with the time step
τ = 0.005 until the final time T = 2.5 is reached. To investigate visually how the system evolutes, we display
snapshots on the cross section x = 0.5 at some time instants of the net charge in Figure 5.2, the streamlines of
the fluid velocity in Figure 5.3, the distributions of the electric field and magnetic field in Figures 5.4-5.5. Note
that our results in Figures 5.2-5.3 are similar to the previous results in [32], which studied the Navier-Stokes-
Poisson-Nernst-Planck model. The similarity is due to the fact that the magnetic field is relatively small in this
case (see Figure 5.5). As we can see, since the external electric field impels the ions towards opposite ends of
the reservoir, while the positive and negative charges are pulled towards each other, the flow occurs and then
decays due to dissipation. We also find the total electric field is almost equal to the applied electric field at the
very beginning and then the total electric field gradually deviates the external imposed electric field because
of the enhanced induced electric field.
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t = 0.05 t = 0.25 t = 0.35 t = 0.5

t = 1.0 t = 1.5 t = 2.0 t = 2.5

Fig. 5.2: Snapshots in time of the net charge on the cross section x = 0.5 with Eb = (0, 0, 1).

Example 5.4 (Electro-convection flow subjected to charge injection.). In this example, we investigate
the electro-convection phenomena subjected to charge injection. The computational domain is a cuboid, Ω =
(0, 5)× (0, 1)× (0, 1) and the external electric field is set by Eb = (0, 0, 1). The boundary conditions are given
as

u = 0, B × n = 0 on Γ,

η1 = log 6, η2 = log 1 on ΓD,

(−Di∇ηi + u+ βiziE) · n = 0 on ΓN ,

where ΓD = {(x, y, 1) : 0 ≤ x ≤ 5, 0 ≤ y ≤ 1, } and ΓN = Γ\ΓD. The initial velocity and magnetic field are set
as zero, the initial electric field is chosen as Eb, and the initial concentrations of positive and negative charged
particles are given by η01 = η02 = log 1. Furthermore, the physical parameters are given by

Re = 300, α̂ = 2.0, β̂ = 10.0, z1 = 1, z2 = −1,
D1 = D2 = 0.01, β1 = β2 = 0.05, ϵ = 0.01, R = 0.25.

In the simulation, the mesh size, time step and final time are set as h =
√
3/16, τ = 0.005 and T = 30,

respectively. Figure 5.6 presents some snapshots on the cross section y = 0.5 at some time instants of the
streamlines of the fluid velocity. We find that a series of symmetric vortexes are gradually formed from the
left and right sides of the domain, and exhibits multiple cell-structures finally. These results are in a good
agreement with [44, 47].
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t = 0.05 t = 0.25 t = 0.35 t = 0.5

t = 1.0 t = 1.5 t = 2.0 t = 2.5

Fig. 5.3: Snapshots in time of streamlines of un
h on the cross section x = 0.5 with Eb = (0, 0, 1).

6. Conclusion. In conclusion, we present a new mathematical model and a novel physics-preserving
numerical scheme for ion transport in viscous liquid solutions under the influence of electromagnetic fields.
The model is represented as a coupled system of the Navier-Stokes, Nernst-Planck, and Maxwell equations.
We first establish several key properties of the continuous model, including the positivity and conservation
of ion concentration, the preservation of magnetic flux, and the structure of energy dissipation. Notably, we
demonstrate that retaining a gradient term for ion concentrations in the Navier-Stokes equations is crucial
for designing an energy-stable numerical scheme using standard finite element spaces. Typically, this gradient
term is absorbed into the pressure term in the conventional Navier-Stokes-Poisson-Nernst-Planck systems
found in the literature. We then develop a decoupled, fully discrete numerical scheme by integrating various
numerical techniques. These include applying a logarithmic transformation to the ion concentrations, employing
innovative implicit-explicit treatments for the nonlinear coupling terms, introducing additional stabilization
terms, and utilizing structure-preserving finite element pairs. In our algorithm, we sequentially solve the
Nernst-Planck equation, the Maxwell equation, and the Navier-Stokes equation. Importantly, the concentration
of each ion can be solved separately and in parallel, while the electric and magnetic fields are also decoupled.
Consequently, our method is highly efficient for solving the coupled Navier-Stokes-Nernst-Planck-Maxwell
system. Since we utilize standard finite element spaces for both the Maxwell and Navier-Stokes equations,
our algorithm can be implemented in various standard open-source software. Finally, we prove that the fully
discrete scheme preserves positivity, conserves mass, maintains magnetic flux, and is unconditionally energy
stable. We also conduct numerical simulations to validate the effectiveness of the proposed scheme and the
theoretical results. We note that the numerical techniques introduced in this work are novel and applicable
even to the standard Navier-Stokes-Poisson-Nernst-Planck system, which is simpler than the model considered
in this work. Future work will focus on designing high-order temporal schemes and conducting rigorous error
analysis of the proposed scheme.
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t = 0.05 t = 0.25 t = 0.35 t = 0.5

t = 1.0 t = 1.5 t = 2.0 t = 2.5

Fig. 5.4: Snapshots in time of distributions of En
h on the cross section x = 0.5 with Eb = (0, 0, 1).

Appendix. We give some implementation details of the decoupled scheme Algorithm 1. First of all,
note that Step 1 still needs to solve a nonlinear system at each time step, we adopt the Newton method to
solve it. Define the residuals as

Rn+1,k
i

(
ηn+1,k
i,h

)
:=

(
eη

n+1,k
i,h − eη

n
i,h

τ
, sh

)
−
(
un
he

ηn,k
i,h ,∇sh

)
+
(
Die

ηn
i,h∇ηn+1,k

i,h ,∇sh
)
−
(
βie

ηn
i,hziE

n
h,∇sh

)
+

τm

2

(
βiz

2
iDiReη

n
i,h∇ηn+1,k

i,h , eη
n
i,h∇sh

)
+ τm

(
α̂eη

n,k
i,h ∇ηn+1,k

i,h , eη
n,k
i,h ∇sh

)
,

for i = 1, 2, · · · ,m, and any sh ∈ Sh. The purpose of the solver is to compute ηn+1,k
i,h ∈ Sh such that

Rn+1,k
i

(
ηn+1,k
i,h

)
is zero for i = 1, · · · ,m. To solve the residual equation, the problem must be linearized, the

Frechét derivatives of the residuals are

J n+1,k
i

(
ηn+1,k
i,h

) [
δηn+1,k

i,h

]
=

1

τ

(
eη

n+1,k
i,h δηn+1,k

i,h , sh

)
+
(
Die

ηn
i,h∇δηn+1,k

i,h ,∇sh
)

+ τm
(
α̂eη

n,k
i,h ∇δηn+1,k

i,h , eη
n,k
i,h ∇sh
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+

τm

2

(
βiz

2
iDiReη

n
i,h∇δηn+1,k

i,h , eη
n
i,h∇sh

)
,

for i = 1, 2, · · · ,m. It is clear that the Frechét derivatives are linear operators of δηn+1,k
i,h . Given an initial

guess, ηn+1,0
i,h , that satisfies the boundary conditions, the solution to the residual equations is computed by the

sequence of approximate solutions defined by solving for δηn+1,k
i,h ∈ Sh such that

J n+1,k
i

(
ηn+1,k
i,h

) [
δηn+1,k

i,h

]
= −Rn+1

i

(
ηn+1,k
i,h

)
,

for i = 1, · · · , N , and updating with some damping factor 0 < µ ≤ 1,

ηn+1,k+1
i,h ← ηn+1,k

i,h + µδηn+1,k
i,h .
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t = 0.05 t = 0.25 t = 0.35 t = 0.5

t = 1.0 t = 1.5 t = 2.0 t = 2.5

Fig. 5.5: Snapshots in time of distributions of Bn
h on the cross section x = 0.5 with Eb = (0, 0, 1).

Since the previous value ηni,h provides a good initial value, the Newton solver only takes a few steps to
converge. Moreover, to solve the linear system at each iteration, we use the algebraic multigrid method
(AMG) preconditioned conjugate gradient method (PCG). The tolerance and maximum iterations for the
Newton method are set as ϵnewton = 1e−9 and Nmax

newton = 100. The relative tolerance and maximum iterations
for the PCG method are set as ϵ1pcg = 1e − 9 and Nmax

pcg,1 = 100. Being different from the scheme developed
in [7], the degrees of freedom for all the ion concentrations are decoupled, thus the nonlinear solver and linear
solver can be easily constructed. Next, in Step 2.1, we need to solve a H(curl)-elliptic problem in (3.10) at
each time step. Thus, we employ the PCG method with Hiptmair-Xu preconditioner [24], relative tolerance
ϵ2pcg = 1e − 9 and maximum iterations Nmax

pcg,2 = 100. Finally, Step 3 requires solving a discrete system
with saddle-point structure at each time step. To solve it efficiently, we adopted the augmented Lagrangian
block preconditioner [30] preconditioned flexible generalized minimal residual method (FGMRES). The relative
tolerance and maximum iterations for the FGMRES method are set as ϵ2gmres = 1e− 9 and Nmax

gmres = 100. We
refer to [29, 30] for the details on the preconditioner.
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