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Abstract. Small parameters in partial differential equations can give rise to solutions with sharp4
inner layers that evolve over time. However, the standard model reduction method becomes inefficient5
when applied to these problems due to the slowly decaying Kolmogorov N -width of the solution6
manifold. To address this issue, a natural approach is to transform the equation in such a way that the7
transformed solution manifold exhibits a fast decaying Kolmogorov N -width. In this paper, we focus8
on the Allen-Cahn equation as a model problem. We employ asymptotic analysis to identify slow9
variables and perform a transformation of the partial differential equations accordingly. Subsequently,10
we apply the Proper Orthogonal Decomposition (POD) method and a qDEIM technique to the11
transformed equation with the slow variables. Numerical experiments demonstrate that the new12
model reduction method yield significantly improved results compared to direct model reduction13
applied to the original equation. Furthermore, this approach can be extended to other equations,14
such as the convection equation and the Burgers equation.15
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1. Introduction. Numerous physical, chemical, and biological processes can be17

effectively described by nonlinear partial differential equations (PDEs) that involve18

small parameters. These small parameters are often associated with the multiscale19

behavior exhibited by the solutions. However, numerical computations for such prob-20

lems tend to be time-consuming and demand significant computational resources.21

This inefficiency becomes particularly pronounced when the equations need to be22

solved repeatedly or in real-time scenarios to control systems or industrial processes.23

Consequently, there is a strong motivation to perform model reduction on these sys-24

tems and solve the resulting reduced models in practical applications.25

After spatial discretization of the PDEs with small parameters, a nonlinear para-26

metric dynamic system can be obtained as follows:27

Eε
du

dt
= Aεu+ Fε(u).28

Here u ∈ Rn and ε≪ 1 is a parameter. Eε,Aε ∈ Rn×n are matrices and Fε : Rn → Rn29

is a nonlinear vector-valued function. Eε, Aε and Fε may depend on ε. For simplicity,30

we will ignore the notation ε and use E, A, F (u) to represent Eε, Aε and Fε(u)31

respectively. This leads to a model referred to as the Full Order Model (FOM),32

represented by equation (1.1):33

(1.1) E
du

dt
= Au+ F (u),34

The FOM has very large state-space dimension, i.e. n ≫ 1, since it originates from35

the spacial discretization of a PDE system. The objective is to find a low-dimensional36

representation of the FOM, known as the Reduced Order Model (ROM), represented37
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by equation (1.2):38

(1.2) Ẽ
dũ

dt
= Ãũ+ F̃ (ũ).39

Here, ũ ∈ Rr, Ẽ, Ã ∈ Rr×r, F̃ : Rr → Rr, and r ≪ n. This model is called Reduced40

Order Model (ROM). There exists a function g : Rr → Rn that reconstructs u from41

ũ, for example g(ũ) = Gũ, where G ∈ Rn×r.42

There are numerous model reduction methods to derive the ROM in the literature43

[5]. One category of these methods is the sampling-based approach, which involves44

constructing low-order models by sampling the parameter space or time domain. Com-45

monly used methods in this category include the Proper Orthogonal Decomposition46

(POD) method [47], the Reduced Basis method [39], and techniques based on tensor47

analysis [44, 32]. Another category of methods is motivated by the system’s dynami-48

cal behavior or theoretical knowledge of a specific model. For example, the balanced49

truncation method [21] can ensure system stability and provides a priori error es-50

timation. It has been successfully applied to nonlinear control systems [28]. The51

Loewner interpolation framework has been employed for parameter-independent in-52

put and output systems [33]. Furthermore, there has been recent research in model53

reduction methods that combine machine learning approaches [6, 9].54

In our work, we primarily focus on the POD method. This method has been55

extensively studied and successfully applied to various problems over the past few56

decades [30, 41, 40, 38]. The POD method is based on sampling, which emphasizes57

the need to estimate the approximation of the sample manifold and the true solution58

manifold. The optimal r-dimensional subspace approximation of the manifold M is59

characterized by the Kolmogorov N -width [34, 22]. Assuming M is a subset of H60

where H is some Banach or Hilbert space with norm |·|H . The Kolmogorov N -width61

of M is defined as62

dN (M) := inf
dimY=N

sup
u∈M

|u− PY u|H ,63

where Y is a N -dimensional linear subspace of H and PY denotes the projection onto64

Y . The efficiency of the POD method relies on the decay rate of the Kolmogorov65

N -width with respect to N [46, 20]. However, if the solution manifold of a PDE66

has a slow-decaying width, such as in convection-dominated problems, the standard67

POD method may not provide satisfactory results, necessitating the development of68

specialized techniques [37, 35, 36].69

In addition to the slow decay of the Kolmogorov N -width, the presence of non-70

linear terms in a dynamic system poses additional challenges. This is because the71

standard POD method may require full order computations when dealing with these72

terms. Fortunately, there are several techniques available to handle the nonlinearity73

in model reduction methods. One approach, proposed by Benner et al. [4], is the74

design of a two-sided projection method specifically tailored for nonlinear terms with75

quadratic form. Another widely used technique is the empirical interpolation method76

(EIM) and its discrete form, known as the Discrete Empirical Interpolation Method77

(DEIM) [2, 10]. These methods utilize a linear combination of low-dimensional basis78

functions to approximate the nonlinear terms. For a detailed analysis of the error79

estimation in DEIM, refer to Chaturantabut’s work [11]. Building upon the DEIM80

technique, Drmac̆ et al. introduced an algorithm framework that incorporates a new81

selection operator called the qDEIM technique [14]. This technique further enhances82

the accuracy of the approximation.83
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In this paper, our objective is to develop an efficient model reduction method for84

nonlinear partial differential equations involving small parameters. To illustrate our85

approach, we focus on the Allen-Cahn equation, which is commonly used to model86

phase transitions in material sciences [1]. This equation has found applications in var-87

ious fields such as fluid dynamics [42, 26], image processing [3], and more. Extensive88

literature exists on the Allen-Cahn equation, covering aspects such as asymptotic and89

rigorous analysis, numerical methods, and diverse applications [16, 13, 17, 43, 31, 15].90

The equation includes a parameter, denoted by ε, which governs the width of the91

interface between different phases. As ε becomes smaller, finding accurate numeri-92

cal solutions becomes increasingly difficult. Additionally, the decay rate of the Kol-93

mogorov N -width for the discrete solution manifold associated with the equation may94

be remarkably slow, posing a significant obstacle for model reduction techniques.95

Our method revolves around the concept of identifying and learning slow latent96

variables, which allows us to perform model reduction on the transformed system.97

Specifically, for the Allen-Cahn equation, we conduct asymptotic analysis and lever-98

age the leading order solution to derive an explicit variable transformation. The99

slow variable exhibits superior regularity compared to the phase field function in100

the Allen-Cahn equation. Subsequently, we employ a POD method in conjunction101

with a qDEIM technique to construct a reduced model for the transformed equa-102

tion. Through numerical experiments, we demonstrate that the transformed system103

exhibits a significantly faster decaying Kolmogorov N -width, resulting in a highly104

efficient model reduction approach compared to the original equation. Remarkably,105

this method’s natural and straightforward idea can be extended to other nonlinear106

PDEs, such as the convection equation and the Burgers equation.107

The paper is organized as follows. Section 2 introduces the POD-qDEIM method108

for nonlinear model reduction, highlighting its key steps and principles. In Section109

3, we present a general framework for the transformed model reduction method for110

second order quasi-linear PDEs with small parameters. In particular, we utilize the111

2D Allen-Cahn equation as a model problem, elucidating our motivation and outlining112

the methodology employed to derive the slow variable. To validate the efficacy of our113

approach, Section 4 presents numerical results for the model reduction method for the114

Allen-Cahn equation in various cases. Additionally, Section 5 shows the application115

of our method to other equations. Finally, in Section 6, we provide conclusions and116

discuss potential avenues for future research and development.117

2. Preliminary: POD-qDEIM Framework. We utilize the POD method as118

a basic tool to establish the reduced order model. To overcome the difficulties caused119

by the nonlinearity of the dynamic system, we apply the DEIM technique and its120

variant, qDEIM. We briefly introduce the widely used techniques below.121

2.1. Proper orthogonal decomposition. Consider a FOM given by equation122

(1.1). Let u(t) denote the solution of the FOM at each time t. Suppose the solutions123

in a time interval [0, T ] form a manifold M ⊂ Rn with n≫ 1. By sampling the time124

variable t over the time interval, we obtain a set of snapshots u1, . . . ,uM ∈ Rn, which125

are the solutions of the FOM computed at different time instances t1, . . . , tM . LetU =126

[u1, . . . ,uM ] ∈ Rn×M . The linear space span(U) spanned by these snapshots may not127

directly coincide with the solution manifold of the dynamic system. However, it serves128

as a good representation of the manifold if the number of snapshots is sufficiently large.129

The POD method aims at determining an r-dimensional subspace within span(U) and130

find an approximate solution ũ within this subspace.131
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Suppose that U admits the singular value decomposition,132

U = XΣYT ,133

where X = [x1, · · · ,xM ] ∈ Rn×M , Σ = diag(σ1, · · · , σM ) ∈ RM×M satisfies σ1 ≥134

· · · ≥ σM ≥ 0, Y ∈ RM×M . The POD method consist in obtaining a subspace135

range(V), where V is defined as the first r columns of X corresponding to the r136

largest singular values of U. All columns of V compose a set of POD basis. The137

approximation error of the subspace range(V) to range(U) can be estimated by the138

sum of the squares of the singular values corresponding to those left singular vectors139

not included in the POD basis, i.e.140

(2.1)
∥∥U−VVTU

∥∥2
F
=

M∑
i=1

∥∥ui −VVTui

∥∥2
2
=

M∑
i=r+1

σ2
i ,141

where ∥·∥F is the Frobenius norm.142

Assuming that u ≈ Vũ, where ũ ∈ Rr, we substitute this approximation into the143

equation (1.1) and multiply the left side by VT . This allows us to obtain a ROM as144

follows:145

VTEV
dũ

dt
= VTAVũ+VTF (Vũ).146

Define Ẽ := VTEV, Ã := VTAV and F̃ (ũ) := VTF (Vũ). The equation can be147

written as148

(2.2) Ẽ
dũ

dt
= Ãũ+ F̃ (ũ).149

Notice that both Ẽ, Ã ∈ Rr×r can be pre-computed in many cases when ε is fixed or150

when A and E are homogeneous with respect to ε, e.g. A = εk0A0, E = εk1E0 with151

k0, k1 ≥ 0, A0 and E0 independent of ε. This leads to a standard POD algorithm(see152

in Appendix A.).153

2.2. Reduction of the nonlinear term. Notice that the evaluation of F̃ (ũ) =154

VTF (Vũ) in (2.2) contains high order computation due to the nonlinearity of F . We155

now present two popular techniques, DEIM and qDEIM, for handling the nonlinear156

term. For more details, we refer the reader to [10, 14].157

In DEIM it is assumed that the nonlinear function F can be approximated by158

F (w) ≈ DC(w),159

where w ∈ Rn, D ∈ Rn×m, and C : Rn → Rm is a nonlinear function with m ≪ n.160

To obtain the low-dimensional nonlinear function C, we equate m rows from both161

sides of the equation, i.e.162

PTF (w) = PTDC(w),163

where P = [eid1
, · · · , eidm

] ∈ Rn×m is called selection operator. Here eidk
is the idk-th164

column of the identity matrix In ∈ Rn×n. Assuming PTD is non-singular, then C(w)165

can be uniquely determined by166

(2.3) C(w) = (PTD)−1PTF (w).167
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Define D̄ := D(PTD)−1, C̄(w) := PTF (w), then168

(2.4) F (w) ≈ DC(w) = D(PTD)−1PTF (w) = D̄C̄(w).169

Therefore, the approximation of F (w) involves two steps: compute the DEIM basis170

D and identify the indices {id1, · · · , idm}.171

By defining F := [F (w1), · · · , F (wN )] ∈ Rn×N where w1, · · · ,wN are the sam-172

ples over the domain of F , the DEIM basis D is obtained by choosing the first m173

left singular vectors of F similarly to the POD process. The indices are determined174

iteratively based on the choice of D.175

The qDEIM improves the error bound of DEIM [10, Lemma 3.2] by using a new176

selecting operator strategy [14, Theorem 2.1], and shares the same DEIM basis matrix177

D with the original DEIM. In this method, {id1, · · · , idm} are selected as the first m178

indices of pivoted QR factorization of DT . That is to choose indices corresponding to179

the columns of the leading submatrix of a factorized matrix DT . The details of the180

DEIM algorithm and qDEIM algorithm are given in Appendix A.181

Combining the POD method and the qDEIM technique, the reduced order model182

of (1.1) is of this form183

VTEV
dũ

dt
= VTAVũ+VT D̄C̄(Vũ),184

where V is the POD basis matrix, D̄ and C̄ are defined as in (2.4). Let B̃ := VT D̄,185

the model can be rewritten as186

(2.5) Ẽ
dũ

dt
= Ãũ+ B̃C̄(Vũ).187

Here C̄(Vũ) contains at most m nonlinear functions and does not require computing188

Vũ in every time step.189

The error estimate (2.1) implies that the approximation error of the POD method190

depends on the decay rate of the singular values. The faster the singular values decay,191

the better the approximation of the original snapshot space for a given reduced order192

r. The decay property of the singular values is characterized by the Kolmogorov N -193

width. For many partial differential equations with small parameters, the solution194

may have small transition layers. The numerical solution may correspond to a slowly195

decaying Kolmogorov N -width, which poses a major challenge for deriving a ROM196

for such problems. In the following, we will present a model reduction method for197

problems with small parameters by learning the intrinsic slow variable in the system198

which corresponds to fast decaying Kolmogorov N -width.199

3. Transformed model reduction method. In this section, we will introduce200

the transformed model reduction method for a general nonlinear partial differential201

equation with small parameters. We first introduce the main idea of the method and202

the algorithm. Then we apply the method to the Allen-Cahn equation.203

3.1. A general framework. We consider a general second order quasi-linear204

partial differential equation in a domain Ω ⊂ Rd as follows,205

(3.1) ut = ε∇ · (A(x)∇u) + b(x, u) · ∇u+ ε−1f(x, u),206

where u : Ω× [0, T ] → R is a scalar unknown function, the coefficiences A : Ω → Rd×d,207

b : Ω×R → Rd and f : Ω×R → R are given functions. We suppose that ε is a small208
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positive parameter. Notice that the last two terms in the right hand side of (3.1) may209

be nonlinear with respect to u. The equation covers some widely used models. For210

example, when A(x) is equal to the identity matrix, b(x, u) = 0 and f(x, u) = u−u3,211

(3.1) is reduced to the standard Allen-Cahn equation. When A(x) is the identity212

matrix, b(x, u) = ub0 with b0 ∈ Rd and f = 0, this is the Burgers equation. If213

A(x) = 0, b(x, u) = b0 and f(x, u) = 0, the equation is reduced to a linear convection214

equation.215

When ε is small, the solution u of (3.1) may exhibit an evolving sharp transition216

layer of order O(ε) in thickness. In this case, the solution of the equation lies on a217

manifold with slowly decaying Kolmogorov N -width. Applying the standard model218

reduction method from the previous section directly to the equation is very inefficient.219

To improve the efficiency of the model reduction applied to the equation (3.1) with220

sharp transition layer, we seek a slow variable v in its dynamics. By transforming221

Eq. (3.1), we obtain an equation for v. We expect that the transformed equation has222

a faster decaying Kolmogorov N -width and is more amenable to model reduction.223

Finding a suitable transformation for a nonlinear PDE is usually challenging [23].224

We employ an asymptotic analysis method. The main idea is to find a transformation225

u = ϕ(v) such that the leading order approximation of v is independent of ε. In other226

words, we want to rewrite v = v0 + εv1 + · · · and v0 does not depend on ε.227

Asymptotic analysis. We find the leading order approximation of u in regions
far from the transition layer (outer expansion) and in the layer (inner expansion)
separately by asymptotic analysis [7, 8]. Firstly, we consider the outer expansions far
from the layer. Suppose that the solution u can be expanded with respect to ε as
follows,

u = u0 + εu1 + · · · .
Substitute the expansion into (3.1) and equal the same orders. We obtain a series of228

equations,229

O(ε−1) : f(x, u0) = 0,230

O(1) : u0,t + b(x, u0) · ∇u0 + ∂uf(x, u0)u1 = 0,231

· · ·232233

When f and b are given, it is possible to derive the explicit form of the leading order234

term u0. For simplicity, we assume there exist two different phases in the system.235

The values of u0 in the two phases are denoted as u+0 and u−0 , respectively.236

We then consider the inner expansions near the transition layer between the two237

phases. Suppose the centering surface of the transition layer is given by Γ(t).We define238

d(x, t) as the signed distance function from point x to Γ(t). By its definition, we have239

n = ∇d and κ = ∆d, where n is the unit vector normal to Γ and κ is the curvature of240

Γ. We introduce an inner layer coordinate ξ(x, t) := d(x, t)/ε. We represent u(x, t)241

in the neighborhood of Γ(t) by the function ũ(x, ξ, t). We express the derivatives of242

u as243

∂tu =
1

ε
∂td(x, t)∂ξũ(x, ξ, t) + ∂tũ(x, ξ, t),244

∇u =
1

ε
∂ξũ(x, ξ, t)n+∇xũ(x, ξ, t).245

246

The asymptotic expansion of ũ is247

ũ(x, ξ, t) ∼ ũ0(x, ξ, t) + εũ1(x, ξ, t) + ε2ũ2(x, ξ, t) + · · · .248
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We substitute the expansion into Eq. (3.1). By considering the leading order terms,249

we obtain250

O(ε−1) : (nTA(x)n)ũ0,ξξ + (b(x, ũ0) · n)ũ0,ξ + f(x, ũ0) = 0.(3.2)251252

By matching the outer and inner expansions, we have

lim
ξ→±∞

ũ0 = u±0 .

We assume that there exists a unique solution ũ0 = ϕ̃(ξ) to the equation (3.2) together253

with the matching condition.254

Transformation and Discretization in space. Motivated by the asymptotic analy-
sis results, we introduce the following transformation that

u = ϕ(v) := ϕ̃(
v

ε
).

We substitute the transformation into Eq. (3.1) to derive a model for v,255

(3.3) vt = ε∇·(A(x)∇v)+
(
ε(ϕ′)−1∇·(ϕ′A(x))+b(x, ϕ(v))

)
·∇v+(εϕ′)−1f(x, ϕ(v)).256

We expect that the solution of the transformed equation (3.3) has a much faster257

decaying Kolmogorov width compared to the original model (3.1) for u.258

The equation (3.3) can be discretized by standard numerical methods, like the259

finite difference method etc. We obtain the following discrete model for v,260

(3.4)
dv

dt
= Avv + Fv(v),261

where Av arises from ε∇(A(x)∇v) and Fv(v) is obtained from the other terms.262

Finally, we apply the POD-qDEIM method introduced in the previous section263

to perform model reduction for the equation (3.4). This further leads to a model264

reduction method for the equation (3.1). In summary, the general framework for the265

transformed model reduction method can be described in the following Algorithm 3.1.266

Algorithm 3.1 A POD-qDEIM method based on transformation

Input: model of u;
Output: reduced approximation ũ;
1: Find the slow variable transformation u = ϕ(v) by asymptotic analysis;
2: Derive a transformed model for v and discretize;
3: Compute ṽ by applying POD-qDEIM(Algorithm A1 and Algorithm A3) on the

discrete model of v;
4: ũ := ϕ(ṽ).

3.2. Application to the Allen-Cahn equation. To further demonstrate how267

we derive a ROM by transforming the PDE, we use the Allen-Cahn equation as a268

model problem. The equation is given by269

(3.5) ut = ∆u+
1

ε2
f(u), (x, t) ∈ Ω× [0, T ].270

where f(u) = u−u3, Ω ⊂ R2 is a two-dimensional domain, and ε is a small parameter.271

The Allen-Cahn equation has many applications in phase transitions, wetting prob-272

lems and image processing (c.f. [12, 31, 3]). Notice that we have re-scaled the time273

7

This manuscript is for review purposes only.



variable in (3.5) in comparison to (3.1) so that the equation approximates a standard274

mean curvature flow when ε goes to zero.275

We seek a leading approximation for u(x, t) by asymptotic analysis. Let Γ(t) ⊂ Ω276

be the zero-level set of the solution u(x, t) of the equation at time t. It is known that277

u has a sharp transition layer around Γ(t).278

We first consider the outer expansions. We assume that u has the following279

asymptotic expansion with respect to ε in Ω± away from Γ(t):280

u(x, t) ∼ u±0 (x, t) + εu±1 (x, t) + · · · , in Ω±.281

We substitute the expansion into the equation (3.5). Comparing the leading order282

terms on both sides, namely the O(ε−2) terms, we obtain283

u±0 − (u±0 )
3 = 0,284

which implies u0(x, t)
± = ±1 for x ∈ Ω±.285

We then consider the solution near Γ(t). Let d(x, t) be the signed distance function286

from point x to Γ(t) and introduce an inner layer coordinate ξ(x, t) := d(x, t)/ε. We287

represent u(x, t) in the neighborhood of Γ(t) by the function ũ(x, ξ, t). By inner288

expansions, the leading order of ũ satisfies289

(3.6) ∂ξξũ0 + ũ0 − (ũ0)
3 = 0.290

Matching the leading order term of the outer expansion and the inner expansion gives291

(3.7) lim
ξ→±∞

ũ0(x, ξ, t) = ±1.292

293

From (3.6) and (3.7), noticing ũ(x, ξ, t) = 0 when ξ = 0, we derive an ordinary294

differential equation in terms of ξ satisfied by ũ0,295 
Φ′′(ξ) = −(Φ− Φ3), −∞ < z < +∞,
lim

ξ→±∞
Φ = ±1,

Φ(0) = 0.

296

The unique solution of the equation is297

Φ(ξ) = tanh(
1√
2
ξ),298

which implies ũ0(x, ξ, t) = tanh( ξ√
2
).299

The leading order term of u in Ω can be obtained by adding the outer and inner300

approximations together and subtracting the common part:301

(3.8) u0(x, t) = u±0 (x, t) + ũ0(x,
d(x, t)

ε
, t)− lim

x→Γ(t)
u±0 (x, t) = tanh(

d(x, t)√
2ε

).302

Here d(x, t) is a signed distance function to Γ(t) that does not depend on ε. The303

next-order expansion analysis will reveal that the evolution of d(x, t) corresponds to a304

mean curvature flow. We omit the analysis here because the expression (3.8) suffices305

to define a transformation for the Allen-Cahn equation.306

Motivated by the above asymptotic results, we choose v =
√
2ε tanh−1(u) as a307

slow variable. Note that the leading order approximation of v is the signed distance308
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function d(x, t) which is independent of ε. Compared to u, the numerical approxima-309

tion to v should correspond to a faster singular value decaying snapshot matrix. By310

applying the transformation311

(3.9) u(x, t) = ϕ(v(x, t)) := tanh(
v(x, t)√

2ε
),312

into (3.5), we obtain a full order model of the new variable v:313

(3.10) vt = ∆v +
√
2
ε ϕ(v)(1− |∇v|2), x ∈ Ω, t ∈ [0, T ].314

After solving this equation, we can use (3.9) to obtain u(x, t). In the following, we315

will develop a numerical discretization to (3.10) and perform model reduction on the316

discrete problem.317

We then discretize the modified equation (3.10) in space. The discrete equation318

has a similar structure to the Allen-Cahn equation (3.5), which also includes a small319

parameter ε. Many numerical methods for the Allen-Cahn equation, e.g. the finite320

element method [17, 18], the finite difference method [45, 29] and the spectral method321

[43], etc, can be adapted to solve the transformed equation. Moreover, the second322

term is of order O(ε−1) instead of O(ε−2) as in (3.5). This makes the problem (3.10)323

easier to solve numerically. Since we aim at developing a reduced model for the324

equation (3.10), we use the finite difference method for simplicity.325

Assume that Ω = [−1, 1]× [−1, 1]. We uniformly discretize the domain as follows.326

We introduce a partition along two coordinates, −1 = x1 < · · · < xK = 1 and327

−1 = y1 < · · · < yK = 1 with mesh size h := 2
K−1 . This induces a two dimensional328

partition for Ω with grid points (xi, yj), 1 ≤ i, j ≤ K.329

Suppose that vi,j(t) approximates v(xi, yj , t) for i, j = 1, · · · ,K. We can use330

a finite difference method to discretize the equation (3.10). The Laplacian ∆v is331

discretized by a second-order central difference scheme332

−∆h(vi,j) =
−vi−1,j+2vi,j+vi+1,j

h2 +
−vi,j−1+2vi,j−vi,j+1

h2 .333

Alternatively, we can use a fourth-order central difference to discretize the Laplacian,334

which has better numerical properties in solving the original Allen-Cahn equation335

(3.5), which serves as a reference solution in our numerical experiments. The first-336

order derivatives in (3.10) are discretized by a second-order central difference337

(vi,j)x =
vi+1,j − vi−1,j

2h
, (vi,j)y =

vi,j+1 − vi,j−1

2h
.338

Let v(t) := [v1,1(t) · · · , v1,K(t), v2,1(t), · · · , vK,K(t)]T . Then the semi-discrete scheme339

for (3.10) is given by340

(3.11)
dv

dt
= Avv + Fv(v),341

whereAv arises from ∆v and Fv(v) is obtained from the second term in the right hand342

side of (3.10). This is a full order model of the partial differential equation (3.10).343

We finally apply the POD-qDEIM(Algorithm A1 and Algorithm A3) to (3.10). The344

numerical results will be illustrated in next section.345

4. Numerical experiments for the Allen-Cahn equation. In this section,346

we present some numerical experiments that demonstrate the superior performance347
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of the model reduction method based on the transformation compared to the direct348

model reduction of the equation (3.5) for u.349

To compare with the reference solution for the original equation (3.5), we also
introduce a finite difference scheme for the equation. Let

u(t) := [u1,1(t) · · · , u1,K(t), u2,1(t), · · · , uK,K(t)]T .

The discrete model for (3.5) is given by350

(4.1)
du

dt
= Auu+ Fu(u),351

where Au arises from the Laplace term ∆u and Fu(u) is obtained from the nonlinear352

term 1
ε2 (u − u3). Note that Au may differ from Av in (3.11) even when we use the353

same finite difference scheme for the Laplace operator, since the boundary condition354

may vary for u and v.355

To solve the equation (3.5), we need set a boundary condition and an initial356

boundary condition. In the first experiment, we choose a natural boundary condition357
∂u
∂n = 0 on ∂Ω and an initial boundary condition u(x, y, 0) = u0(x, y), where358

(4.2) u0(x, y) = tanh(

√
x2 + y2 − 0.6√

2ε
).359

The initial condition v0(x, y) can be derived directly from the transformation that

v0(x, y) = ϕ−1(u0(x, y)) =
√
x2 + y2 − 0.6.

In principle, the boundary condition for v(x, y) can be derived similarly by using the360

relation ∇u = 1√
2ε
(1 − tanh2( v√

2ε
))∇v. When ε is small, 1√

2ε
(1 − tanh2( v√

2ε
)) ≈ 0361

and v approximates a signed distance function so that we can simply choose |∇v| = 1362

on ∂Ω in the numerical experiments.363

It is well-known that the transition layer of the solution of the Allen-Cahn equa-364

tion evolves with time, that is a good approximation to a mean curvature flow[16, 19].365

Under the initial condition (4.2), the zero level set of u can be described approximately366

by a shrinking circle with radius367

(4.3) r =
√
0.36− 2t.368

We solve the Allen-Cahn equation (3.5) using the finite difference scheme (4.1).369

The ordinary differential equation (4.1) is solved by a fourth-order Runge-Kutta370

method. In the test, we take T = 0.181, K = 1000, ε = 0.005, and the time step371

∆t = 5e − 7. The numerical solution is shown in Figure 1, where we find that the372

hole disappears almost at t = 0.18, just as shown in (4.3). This indicates that the full373

order model (4.1) is solved correctly.374

Similarly, we solve the transformed equation (3.10) using the finite difference375

scheme (3.11). We choose the same numerical parameters as for u. The numerical376

solution for v and the corresponding phase field function Uv := ϕ(v) = tanh( v√
2ε
) are377

shown in Figure 2. We can see that v is a good approximation to a signed distance378

function while ϕ(v) behaves similarly to the solution of the Allen-Cahn equation in379

Figure 1. This implies that we can use the transformed equation (3.10) instead of the380

original Allen-Cahn equation (3.5) in numerical simulations. Furthermore, since there381
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(a) t = 0 (b) t = 0.11 (c) t = 0.18

Figure 1: Numerical results of 2D Allen-Cahn equation. (a) The initial condition
(4.2). (b) The reference solution at t = 0.11. (c) The reference solution at t = 0.18.

(a) v at t = 0 (b) v at t = 0.11 (c) v at t = 0.18

(d) ϕ(v) at t = 0 (e) ϕ(v) at t = 0.11 (f) ϕ(v) at t = 0.18

Figure 2: Numerical results of 2D Allen-Cahn equation. The solutions of V-
FOM (3.11) and the corresponding transformed solutions Uv = ϕ(v) at different
time instants.

is no sharp inner layer for the solution v, we expect that the solution manifold will382

correspond to a faster decaying Kolmogorov N -width, which will be verified below.383

In the following, we will check how the model reduction method (Algorithm 3.1)384

works well for the transformed equation. In comparison, we also apply a POD-qDEIM385

method to the original equation (3.5). For convenience, we introduce some notations386

here. Let U-FOM be the full order model (4.1) for u, and U-ROM be its reduced387

order model. Similarly, let V-FOM and V-ROM denote the full order model (3.11)388

for v and its reduced order model, respectively. We denote the solution of U-FOM as389

U and the solution of U-ROM as Uappr. Furthermore, we transform u = ϕ(v) to the390

solution of V-FOM to get an approximate solution Uv for the phase field function,391

i.e., Uv is the approximate FOM solution obtained by first solving the transformed392

original problem V-FOM to obtain v, then setting Uv = ϕ(v). Similarly, we denote393

11

This manuscript is for review purposes only.



0 500 1000
10

-20

10
-15

10
-10

10
-5

10
0

PODsigU
PODsigV

(a) singular values of POD matrices
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Figure 3: Normalized singular values σi/σ1 for the solution snapshots of the Allen-
Cahn equation. (a) PODsigU: singular values of the POD snapshot matrix for U-
FOM (4.1); PODsigV: singular values of the POD snapshot matrix for V-FOM (3.11).
(b) DEIMsigU: singular values of the DEIM snapshot matrix for U-FOM (4.1); DEIM-
sigV: singular values of the DEIM snapshot matrix for V-FOM (3.11).

by Uv
appr the approximate solution of u by first solving the reduced model V-ROM,394

then transforming it back with ϕ. The relative error of the U-ROM is defined as395

err(Uappr, U) :=
∥Uappr − U∥F

∥U∥F
.396

Here ∥·∥F denotes the Frobenius norm. Similarly, the relative error of the V-ROM is397

defined as398

err(Uv
appr, U) :=

∥∥Uv
appr − U

∥∥
F

∥U∥F
.399

v400

To derive the reduced order model, we takeM = 1000 uniform samples t1, · · · , tM401

over the time interval [0, T ] and use vi = v(ti) (or ui = u(ti)), i = 1, · · · ,M , to402

generate the POD and DEIM bases for V-ROM (or U-ROM). Figure 3(a) shows all the403

normalized singular values σi/σ1 for the POD snapshot matrices U := [u1, · · · ,uM ]404

andV := [v1, · · · ,vM ]. We can see that singular values decay much faster for the slow405

variable v than for u. This implies that the solution manifold for v has faster decaying406

Kolmogorov N -width, as expected. Figure 3(b) shows the normalized singular values407

for the DEIM snapshot matrices for u and v. Similarly, the slow variable v corresponds408

to faster decaying singular values.409

Then we can generate a reduced order model for v by the POD-qDEIM method410

as described in Algorithm 3.1. Here we choose r = 50 for the POD basis and m = 100411

for the DEIM basis in the V-ROM. The V-ROM is also solved numerically by a412

fourth-order Runge-Kutta method. By transforming the numerical solution of the413

V-ROM, we get an approximate solution Uv
appr. Figure 4 shows the error U − Uv

appr414

at various time instants. We can see that the maximum error is of order O(10−2),415

which occurs only near the transition layer of the phase field equation. We also show416

the radius of the zero level set for Uv
appr in Figure 5. The “exact radius” is given417
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(a) t = 0 (b) t = 0.07 (c) t = 0.14

Figure 4: Numerical errors of the transformed model reduction method for the 2D
Allen-Cahn equation. We use 50 POD bases and 100 DEIM bases. (a) The pointwise
error U − Uv

appr at t = 0. (b) The pointwise error U − Uv
appr at t = 0.07. (c) The

pointwise error U − Uv
appr at t = 0.14.
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Figure 5: Numerical results of the 2D Allen-Cahn equation. We use 50 POD bases
and 100 DEIM bases, and compare the exact radius and Uv

appr.

by the equation (4.3), corresponding to that for a mean curvature flow. We can see418

that the radius computed by the V-ROM is very close to the exact radius for all time419

t ∈ [0, T ].420

For comparison, we also study the numerical behavior of the reduced order model421

U-ROM for the original Allen-Cahn equation. That is to apply the POD-qDEIM422

method to (4.1). We still choose r = 50 for the POD basis and m = 100 for the DEIM423

basis in the U-ROM. The numerical solution Uappr and the pointwise error U −Uappr424

are shown in Figure 6. We can see that the U-ROM gives a totally wrong solution.425

This indicates that the V-ROM performs much better than the U-ROM. To make the426

comparison more clear, we show the relative error in Frobenius norm in Figure 7. It427

is easy to see that the relative error for the V-ROM for the transformed problem is428

much smaller than that for the U-ROM for the original Allen-Cahn equation.429

In the next experiment, we also use the V-ROM to solve problems with different430

initial conditions. We slightly change the initial values for u and consider431

u0(x, y) = tanh(

√
x2 + y2 − r0√

2ε
).432

with r0 = 0.8 and 0.4 respectively. We find that the V-ROM trained using the data433
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(a) t = 0 (b) t = 0.07 (c) t = 0.14

(d) t = 0 (e) t = 0.07 (f) t = 0.14

Figure 6: Numerical results of the 2D Allen-Cahn equation. We use 50 POD bases
and 100 DEIM bases. (a) Uappr at t = 0. (b) Uappr at t = 0.07. (c) Uappr at t = 0.14.
(d) The pointwise error U − Uappr at t = 0. (e) The pointwise error U − Uappr at
t = 0.07. (f) The pointwise error U − Uappr at t = 0.14.

0 0.05 0.1 0.15 0.2
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Figure 7: Relative errors in Frobenius norm of the 2D Allen-Cahn equation. We use
50 POD bases and 100 DEIM bases. Uappr: the relative errors of Uappr for t ∈ [0, T ];
Uv
appr: the relative errors of Uv

appr for t ∈ [0, T ].

for r0 = 0.6 still works well in the two cases. The reason is that the solution for the434

new initial values may still be in the solution manifold for v when we only change the435

radius of the transition layer. The radius of the zero level set of the solutions for the436

reduced order models are shown in Figure 8(a) and Figure 8(b), which agrees very437

well with the exact solutions obtained from the mean curvature flow.438

In the next experiment, we study how the transformed model reduction method439

works when we change the value of the parameter ε. We choose the above V-ROM440

trained in the case of ε = 0.005. Then we simply change the value of ε to approximate441
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(a) radius of Uv
appr for new initial condition
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(b) radius of Uv
appr for new initial condition

Figure 8: Numerical results of the 2D Allen-Cahn equation. (a) We apply the reduced
model to a new initial function with r0 = 0.8, and compare the radius of the new exact
solution and the reduced approximate solution. (b) We apply the reduced model to a
new initial function with r0 = 0.4, and compare the radius of the new exact solution
and the reduced approximate solution.

(a) t = 0 (b) t = 0.07 (c) t = 0.14

Figure 9: Numerical errors of the 2D Allen-Cahn equation with a different ε. We use
50 POD bases and 100 DEIM bases. (a) The pointwise error Û − Ûv

appr at t = 0.

(b) The pointwise error Û − Ûv
appr at t = 0.07. (c) The pointwise error Û − Ûv

appr at
t = 0.14.

the Allen-Cahn equation with a different parameter. For example, we change ε from442

0.005 to 0.01. The pointwise error Û − Ûv
appr is shown in Figure 9, where Û denotes443

the reference solution of the Allen-Cahn equation with ε = 0.01, and Ûv
appr denotes444

the approximation solution of the transformed model reduction method. We see that445

the errors are relatively small. This implies that the V-ROM still works well when we446

change the value of ε. This reason might be that the leading order of the solution v447

of the transformed equation does not depend on ε.448

Finally, we do experiments for the Allen-Cahn equation with two transition layers.449

Suppose that the initial value u0 has two circular layers as shown in Figure 10. We450

develop a ROM by Algorithm 3.1. We choose the end time T = 0.1, K = 1000, and451

ε = 0.005. The numerical solution and the approximation errors for the transformed452

model reduction method are shown in Figure 10. We see that the numerical errors453
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(a) t = 0 (b) t = 0.03 (c) t = 0.06

(d) t = 0 (e) t = 0.03 (f) t = 0.06

Figure 10: Numerical results of the 2D Allen-Cahn equation with two layers. We
use 50 POD bases and 100 DEIM bases. (a) The solution Uv

appr at t = 0. (b) The
solution Uv

appr at t = 0.03. (c) The solution Uv
appr at t = 0.06. (d) The pointwise error

U − Uv
appr at t = 0. (e) The pointwise error U − Uv

appr at t = 0.03. (f) The pointwise
error U − Uv

appr at t = 0.06.

are relatively small and locate mainly in the vicinity of layers. This is similar to the454

case with one transition layer.455

5. Applications to other equations. Although we use the Allen-Cahn equa-456

tion as a model problem to illustrate the model reduction method in the previous457

two sections, Algorithm 3.1 is quite general and applies to many other problems. In458

this section, we show applications of the algorithm to two other equations with slowly459

decaying Kolmogorov N -width. The two equations are a linear convection equation460

and a nonlinear Burgers equation.461

5.1. A linear convection equation. We consider a linear convection problem
as follows

ut + aux = 0,

with u0 = ψ(xε ). It is known that the solution of the equation is u(x, t) = ψ(x−at
ε ).

Here the initial function ψ is chosen as a pulse function such as

ψ(
x

ε
) = exp

(
− (x− x0)

2

ε

)
,

where x0 denotes the initial location of the pulse function. We can show that the462

solution manifold of the problem corresponds to slowly decaying Kolmogorov N -width463

when ε is small. This causes troubles for the standard POD method.464

For this problem, we consider a function transformation u = ψ( v(x,t)ε ). We can
see that v satisfies the same equation

vt + avx = 0,
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with v0 = x. Its solution is v(x, t) = x− at, which corresponds to a solution manifold465

with a basis set {1, x}. This implies a very narrow Kolmogorov N -width for the466

solution manifold. The standard POD method will work well for the transformed467

problem.468

We remark that Algorithm 3.1 reduces to the method developed in [37] for the469

linear convection equation. We will not present numerical tests here and refer to [37]470

for numerical examples and detailed discussions.471

5.2. Burgers equation. We then present an application of Algorithm 3.1 to a472

one-dimensional Burgers equation, which reads473

(5.1)

 ut = −uux + εuxx, (x, t) ∈ [0, L]× [0, T ],
ux(0, t) = 0, ux(L, t) = 0 t ∈ [0, T ],
u(x, 0) = u0(x), x ∈ [0, L].

474

where ε is the viscosity coefficient. We choose the initial condition as475

u0(x) =
1

2
(1− tanh(

x− x0
4ε

)).476

where x0 is the position of the transition layer. According to [25], such an initial477

condition may lead to a traveling wave solution with a moving inner layer. We use478

s(t), s(0) = x0, to represent the position of the inner layer. The smaller the viscosity479

coefficient ε, the sharper the layer. When ε = 0, the Burgers equation reduces to480

a nonlinear hyperbolic equation and the inner layer becomes a shock with a jump481

solution.482

We apply our method to the Burgers equation (5.1). We can also perform as-483

ymptotic analysis on the equation (see Appendix). The traveling wave solution of the484

Burgers equation motivates us to define a transformation as follows485

(5.2) u(x, t) = ϕ(v(x, t)) :=
1

2
(1− tanh

v(x, t)

4ε
).486

Here v(x, t) is a slow variable. Substituting the transformation (5.2) into (5.1), we487

get a model for the new variable v:488

(5.3)

 vt = − 1
2 (1− ψ(v))vx − 1

2ψ(v)v
2
x + εvxx, (x, t) ∈ [0, L]× [0, T ],

vx(0, t) = 0, vx(L, t) = 0 t ∈ [0, T ],
v(x, 0) = v0(x), x ∈ [0, L],

489

where ψ(v) := tanh( v
4ε ). The initial function v0(x) = x − x0 comes from the inverse490

of the transformation (5.2).491

We uniformly partition the spatial interval into n points: 0 = x1 < · · · < xn = L492

with a mesh size h := L
n−1 . Let ui(t) denote u(xi, t) and vi(t) denote v(xi, t) for493

i = 1, · · · , n. We apply the finite difference scheme to discretize both the Burgers494

equation and the transformed equation, and discretize the term −uux in (5.1) using a495

WCNS scheme [27] and the viscosity term εuxx using a fourth-order central difference496

(ui)xx =
−ui−2 + 16ui−1 − 30ui + 16ui+1 − ui+2

12h2
.497

Let u(t) := [u1(t), · · · , un(t)]T . The full order model corresponding to (5.1) is498

(5.4)
du

dt
= Auu+ Fu(u),499
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(a) reference solution (b) solution of V-FOM (c) Uv = ϕ(v)

Figure 11: Numerical results of Burgers equation. (a) The reference state solution of
Burgers equation (5.1) obtained by (5.4). (b) The state solution of V-FOM(5.5). (c)
The state transformation Uv = ϕ(v).

where Au comes from εuxx and Fu(u) comes from the nonlinear term −uux. We use500

a second-order central difference scheme to discretize the first order derivative vx in501

the transformed equation (5.3), i.e.502

(vi)x =
vi+1 − vi−1

2h
.503

Let v(t) := [v1(t), · · · , vn(t)]T denote the vector of the dependent variable. The full504

order model corresponding to (5.3) can be written as505

(5.5)
dv

dt
= Avv + Fv(v),506

where Av is the matrix arising from the diffusion term εvxx and Fv(v) is the vector507

function representing the other terms. Similar to the Allen-Cahn equation in the508

previous section, we can apply a POD-qDEIM method to derive reduced order models509

for the full order model.510

In our numerical experiments, we set L = 1, T = 1, x0 = 0.5, and the number of511

spatial points to n = 1000. The viscosity parameter is ε = 0.0001, which is very small.512

We use the ode15s solver in MATLAB to solve the two full order models and their513

reduced models, compute 1000 timesteps, i.e. ∆T = 1/999. The reference solution is514

obtained by solving U-FOM (5.4), as shown in Figure 11(a), which clearly displays a515

traveling wave with a very thin inner layer. The numerical solution for the full order516

model (V-FOM) (5.5) and its transformation Uv are shown in Figure 11. We observe517

that the solution for V-FOM is quite smooth and that the solution Uv is almost518

identical to the reference solution obtained by solving U-FOM. The moving inner519

layer structure of the reference solution makes it difficult to obtain a good reduction520

for U-FOM, while it is much easier to develop a reduced order model for V-FOM.521

To derive reduced-order models, we take M = 1000 uniform samples t1, · · · , tM522

over the time interval [0, 1] and use the solution snapshots at these time points to523

generate the POD and DEIM basis. Figure 12(a) shows the normalized singular values524

of the POD snapshot matrices for the solutions of U-FOM and V-FOM. Figure 12(b)525

shows the normalized singular values of the corresponding DEIM snapshot matrices.526

Clearly, the singular values for the slow variable v decay much faster than those for527

the original variable u.528

We set the POD basis number to r = 10 and the DEIM basis number to m = 20.529

The error U − Uappr is shown in Figure 12(c). In comparison, the error U − Uv
appr530
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(a) normalized singular values of POD matrices
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Figure 12: Numerical results of 1D Burgers equation. (a) PODsigU: normalized sin-
gular values of POD snapshot matrix for U-FOM (5.4); PODsigV: normalized singular
values of POD snapshot matrix for V-FOM (5.5). (b) DEIMsigU: normalized singular
values of DEIM snapshot matrix for U-FOM (5.4); DEIMsigV: normalized singular
values of DEIM snapshot matrix for V-FOM (5.5). (c) The error between the exact
solution and Uappr with 10 POD bases and 20 DEIM bases. (d) The error between
the exact solution and Uv

appr with 10 POD bases and 20 DEIM bases.

is shown in Figure 12(d). Clearly, we observe that V-ROM generates much smaller531

errors than U-ROM.532

The relative error of the solution of the reduced models at each time point is533

shown in Figure 13. It seems that the relative error of Uv
appr does not increase with534

time and is much smaller than that of Uappr. The relative error is of order O(10−12)535

in this case.536

We can also change the initial position of the transition layer. For example,537

we modify the initial function by changing x0 = 0.5 to x̃0 = 0.3. The difference538

between the reference solution and the solution of V-FOM obtained above is shown in539

Figure 14. It seems that V-ROM can be applied directly to these new initial values.540

This is similar to the Allen-Cahn equation, since the solution is still in the solution541

manifold for v when we only change the initial position of the transition layer.542
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Figure 13: Numerical results of 1D Burgers equation. With 10 POD bases and 20
DEIM bases, Uappr: the relative errors between the exact solution and Uappr over t ∈
[0, T ]; Uv

appr: the relative errors between the exact solution and Uv
appr over t ∈ [0, T ].

Figure 14: Numerical results of 1D Burgers equation. The error in the space-time
domain between the reference solution and Uv

appr obtained by applying the V-ROM
to a new initial function.

6. Conclusions. In this paper, we present a novel model reduction method for543

partial differential equations involving a small parameter. The solution manifold of544

these equations exhibits a slowly decaying Kolmogorov N -width, making the standard545

model reduction method highly inefficient. Our method revolves around learning slow546

variables for the dynamic problem and performing a transformation of the partial547

differential equation. We derive equations for these slow variables and apply well-548

established model reduction techniques, such as the POD-qDEIM method. Notably,549

the Kolmogorov N -width of the solution manifold for the slow variables decays much550

faster than that of the original function. Consequently, the model reduction method551

applied to the transformed equation demonstrates significantly improved performance552

compared to the original method. We validate our approach through numerous nu-553

merical experiments focusing on the Allen-Cahn equation. Furthermore, we demon-554

strate the applicability of our model reduction method to other equations, such as the555

convection equation and the Burgers equation.556

There are still some aspects that require further consideration in our future work.557

Firstly, in this paper, we primarily select slow variables through asymptotic analysis.558
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However, it would be intriguing to explore the possibility of learning slow variables di-559

rectly from data using machine learning algorithms. Secondly, it is crucial to conduct560

theoretical analysis for the model reduction method. Extending the standard analysis561

applied to the POD and qDEIM methods to the transformed equations should not562

pose significant challenges. Thirdly, the qDEIM method appears to be less effective563

for certain complex nonlinear problems. Therefore, improvements to the model reduc-564

tion methods for nonlinear problems are still necessary. Lastly, it would be of great565

interest to investigate the applicability of our method to other problems, such as the566

Fokker-Planck equation and the Cahn-Hilliard equation.567

Appendix A: Some standard model reduction algorithms. The standard568

POD algorithm for (1.1) is given in Algorithm A1.

Algorithm A1 A POD method

Input: E, A, F (u), U, r;
Output: V, Ẽ, Ã, F̃ (ũ);
1: [X,Σ,Y] = svd(U);
2: V = X(:, 1 : r); {Taking the first r columns of X.}
3: Ẽ = VTEV;
4: Ã = VTAV;
5: F̃ (ũ) = VTF (Vũ).

569
The standard DEIM algorithm is given in Algorithm A2.570

Algorithm A2 The DEIM technique

Input: F (u), {w1, · · · ,wM}, m;
Output: D, {id1, · · · , idm};
1: F = [F (w1), · · · , F (wM )];
2: [X,Σ,Y] = svd(F);
3: [d1, · · · ,dm] =: D = X(:, 1 : m); {Taking the first m columns of X.}
4: [|ρ1|, id1] = maxi=1,··· ,n{|d1,i|};
5: D1 := [d1],P1 := [eid1

];
6: for i = 2 to m do
7: r = di −Di−1(P

T
i−1Di−1)

−1PT
i−1di;

8: [|ρi|, idi] = maxk=1,··· ,n{|rk|};
9: Di := [Di−1 di],Pi := [Pi−1 eidi ];

10: end for

The qDEIM algorithm is given in Algorithm A3.

Algorithm A3 The qDEIM technique

Input: F (u), {w1, · · · ,wM}, m;
Output: D, {id1, · · · , idm};
1: F = [F (w1), · · · , F (wM )];
2: [X,Σ,Y] = svd(F);
3: D = X(:, 1 : m);{Taking the first m columns of X.}
4: [Q,R,Order] = qr(DT ); {Order denotes the column indices after pivoting.}
5: {id1, · · · , idm} = Order(1 : m). {Taking the first m indices.}

571
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Appendix B: Asymptotic analysis for the Burgers equation.572

We do asymptotic analysis for the following Burgers equation573

(B1) ut = −uux + εuxx, x ∈ (−∞,∞), t > 0574

with an initial value575

(B2) u(x, 0) =

ß
1 x < x0,
0 x > x0,

576

The analysis is inspired by that in [24]. Assume that there is an inner layer centered at577

s(t). Using the matched asymptotic expansions technique [24], we analyze the outer578

expansion of u(x, t) at x far from s(t) and the inner expansion in the neighborhood579

of s(t). We consider only the leading order term of u(x, t).580

Outer expansion. When ε is small, we assume the following expansion of u far581

from s(t),582

u(x, t) ∼ u0(x, t) + εu1(x, t) + ε2u2(x, t) + · · · .583

Substituting this expansion into the equation (B1), and comparing the leading order584

term on both sides, we can obtain585

(u0)t = −u0(u0)x586

This is the inviscid Burgers equation. Using the characteristic line method, we have587

u0(x, t) = u0(x̄, 0) when x = x̄+u0(x̄, 0)t. Since the initial value u(x, 0) is a piecewise588

constant function, u0(x, t) is589

u0(x, t) =

ß
1 x < s(t),
0 x > s(t).

590

Inner expansion. Next, we consider the situation in the neighborhood of s(t). Let591

the interior layer coordinate be592

z(x, t) :=
x− s(t)

εα
∈ (−∞,+∞),593

where α > 0. The variable z stretches the neighborhood of s(t). Use U(z, t) to594

represent u(x, t) in this neighborhood, then ut, ux, uxx are represented accordingly595

as596

ut = Uzzsst + Ut = − 1
εαUzs

′,
ux = Uzzx = 1

εαUz,
uxx = 1

ε2αUzz.
597

Substituting the relations into the equation (B1), U satisfies598

ε0Ut + ε−α(UUz − s′Uz)− ε1−2αUzz = 0.599

Balancing the orders of ε of terms in the above equation:600

1. −α = 1− 2α⇒ α = 1, in this case, the last two terms are balanced, and the601

order of the first term is zero satisfies 0 > −α, so the first term is a higher602

order term which is reasonable.603
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2. 1 − 2α = 0 ⇒ α = 1/2, in this case, the first term and the third term are604

balanced, but the second term −α = −1/2 < 0 is a lower order term which605

is not possible.606

Assume the asymptotic expansion of U(x, t) is607

U(z, t) ∼ U0(z, t) + εU1(z, t) + ε2U2(z, t) + · · · ,608

Substituting this and α = 1 into the equation (B1), comparing the leading order term609

on both sides, we can get610

−s′(U0)z + U0(U0)z = (U0)zz.611

Integrating the above formula with respect to z on R, we get612

(B3) A(t)− s′U0 +
1

2
(U0)

2 = (U0)z,613

where A(t) is a undefined function independent of z.614

Matching. Matching the leading order term of outer expansion and inner expan-615

sion gives616

lim
z→−∞

U0 = lim
x→s(t)−

u0 = (u0)− = 1,

lim
z→+∞

U0 = lim
x→s(t)+

u0 = (u0)+ = 0.
617

The derivative definition leads to lim
z→±∞

(U0)z = 0. Applying this limitation on (B3)618

gives619 ß
0 = A(t)− s′(u0)− + 1

2 ((u0)−)
2 = A(t)− s′ + 1

2 ,
0 = A(t)− s′(u0)+ + 1

2 ((u0)+)
2 = A(t).

620

Then s′(t) = 1/2. Combined with s(0) = x0, s(t) is solved to be621

s(t) =
1

2
t+ x0.622

Substituting the above results back into the inner expansion (B3), U0 satisfies the623

following ordinary differential equation about z624 ®
Φ′(z) = 1

2 (Φ
2 − Φ),

lim
z→−∞

Φ = 1, lim
z→+∞

Φ = 0.625

The solution to the above equation is Φ(z) = 1
2 (1− tanh( 14z)), Therefore

U0 =
1

2
(1− tanh(

x− ( 12 t+ x0)

4ε
)).

The leading order term of u on Ω can be obtained by adding the approximations626

together and subtracting the common part:627

u0(x, t) + U0(x, t)− lim
x→s(t)

u0(x, t) = U0(x, t).628
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