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Abstract

Deep learning has gained significant development in the field of scientific computing, especially in its
application to solve problems related to differential operators using deep neural networks. However,
the utilization of neural networks to solve problems involving singularities still faces challenges. In
this paper, we discussed the failure of deep learning methods for the singular variational problems
exhibiting the Lavrentiev phenomenon. For such problems, we show the standard deep Ritz method
and some variants fail to detect the singular minimizers. We then introduce a guiding term that
renders the neural network to explore solutions as desired during training. Numerical experiments
demonstrate that the method achieves much better approximations than the previous methods.
Furthermore, we apply the same algorithm to solve problems with regular solutions to show the
robustness of the proposed method.
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1. Introduction1

Artificial intelligence for science has been receiving increasing attention in recent years, es-2

pecially in the utilization of deep neural networks (DNNs) to solve problems related to differ-3

ential operators. Numerous works have gained significant attention, such as physics-informed4

neural network (PINN) [1], deep Galerkin method (DGM) [2], deep Ritz method (DRM) [3],5

weak adversarial network (WAN) [4, 5, 6, 7], tensor neural network (TNN) [8, 9], and many oth-6

ers [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. For a more comprehensive review, we refer to [20, 21, 22, 23]7

and references therein.8

It is known that deep learning methods have advantages in dealing with high dimensional9

problems which can not be solved efficiently by traditional numerical methods due to the curse10

of dimensionality. In addition to high dimensional problems, standard methods are inefficient for11

problems with singularity. Therefore, it would be interesting to see whether the deep learning12

methods have advantages in solving problems with singularity. This is the main problem we study13

in this work. To be more specific, we consider problems exhibiting the Lavrentiev phenomenon14

(which will be specified in Section 2.1 and 3). These problems pose a challenge when attempting15

to solve them using traditional numerical methods such as finite difference methods and finite16
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element methods [24]. However, in the context of deep learning, to the best of our knowledge,17

there has been no exploration of utilizing deep learning based methods to solve problems with the18

Lavrentiev phenomenon. The most relevant problems are solving PDEs in regions with complex19

domain or corner singularities, or situations where the solutions of evolving PDEs become singular20

over time. There is an extensive range of related methods, such as adaptive weight or sampling21

methods [25, 26, 27, 28, 29], adaptive loss function methods [18], and many others [30, 31, 32].22

When we use deep learning methods to solve problems exhibiting the Lavrentiev phenomenon,23

they struggle to obtain the global minimizer, which behaves similarly to traditional numerical meth-24

ods. We have also tried some alternative approaches commonly used to deal with such problems25

but resulted in little improvement (as will be seen in Section 3). The failure of these deep learn-26

ing methods indicates that the essence of problems exhibiting the Lavrentiev phenomenon differs27

from other extensively studied cases. Although the universal approximation property of DNNs to28

continuous functions is well established [33], a gap exists between what can be approximated and29

what is prone to be approximated, and this gap is the intrinsic difficulty of problems exhibiting the30

Lavrentiev phenomenon.31

To mitigate the gap that exists between function spaces and to obtain better approximations32

of problems exhibiting the Lavrentiev phenomenon, we propose a novel method in the framework33

of deep learning. Specifically, we incorporate a guiding term and a scheduling technique into34

the standard deep learning process. The proposed method effectively mitigates the Lavrentiev35

phenomenon and achieves promising approximations for such problems. Additionally, we can apply36

the same method to handle problems without the Lavrentiev phenomenon, yielding consistent37

results. This once again demonstrates the capabilities of the proposed method. Furthermore, we38

compare the proposed method with some other commonly used deep learning methods to highlight39

the differences and capabilities it possesses.40

The rest of this paper is organized as follows. In Section 2.1, we briefly introduce the Lavrentiev41

phenomenon and the difficulties associated with it. Some standard techniques used for solving42

differential operator related problems with DNNs are reviewed in Section 2.2. The failures of43

conventional numerical methods and deep learning methods are discussed in Section 3. Section 4.144

presents the framework of the proposed method, and Section 4.2 provides a brief review of some45

related methods. Numeric examples and comparisons are provided in Section 5. Finally, we draw46

conclusions and discussions in Section 6.47

2. Preliminary48

2.1. The Lavrentiev phenomenon49

The Lavrentiev phenomenon is a fascinating property observed in certain functionals within
the calculus of variations [34]. Suppose A is an admissible function space and I(u) is a functional
defined on A. The Lavrentiev phenomenon refers to the property that

inf
u∈A

I(u) < inf
u∈A1

I(u), (1)

where A1 is a dense subspace of A. The first example was found by Lavrentiev [35] in 1927.50

Since then, many researchers have considered this problem from different points of view. For a51

more comprehensive review, we refer to [36, 37] and references therein. Despite its theoretical52

significance, the Lavrentiev phenomenon causes a major obstacle to numerical approximation to53

the minimization problems.54
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To make the above definition clear, we consider the following Manià [38] example,

min
u

I1(u) =

∫ 1

0
(u3(x)− x)2(u′(x))6dx

s.t . u(0) = 0, u(1) = 1.

(2)

It is easy to observe that the analytical solution of this problem is u∗ = x
1
3 which is in W 1,1

D ([0, 1])

but not in W 1,∞
D ([0, 1]). Here W 1,p

D := {u ∈W 1,p : u(0) = 0, u(1) = 1}. This problem was proposed
by Manià [38] in 1934 and exhibits the Lavrentiev phenomenon, i.e.,

inf
u∈W 1,1

D ([0,1])
I1(u) < inf

u∈W 1,∞
D ([0,1])

I1(u). (3)

The proof can be found in [39]. Due to the existence of the Lavrentiev phenomena, the standard55

numerical methods such as the conforming finite element method fail to approximate the global56

minimizer of I1 inW 1,1
D . Actually, one can only approximate the minimizer inW 1,∞

D by the standard57

method since the finite element space is a subspace of W 1,∞
D .58

To solve variational problems with Lavrentiev phenomena numerically, some specific numerical59

techniques have been developed(c.f. [40, 41, 42, 24, 43]). For example, an element removal method60

was proposed to deal with this problem in [41]. However, it needs to estimate the position of the61

singular point and remove the neighboring elements of it in the subsequent computational process.62

The auxiliary variable technique was used in [42] to decouple u and u′, which does not require63

prior information about the singularity position. The main disadvantage is the introduction of64

additional unknowns in the decoupled problem. For more related methods, we refer to [37, 39, 36]65

and references therein.66

2.2. Deep Ritz method67

Using deep neural networks to solve problems related to differential operators has gained signif-68

icant attention in recent years [3, 1, 44]. Since the problems we considered are of variational form,69

the deep Ritz method (DRM) [3] is the most natural choice and will be described below.70

The general form of problems interested in [3] is as follows,

min
u∈H

Ih(u) :=

∫
Ω
L(u)dx, (4)

where H is the set of admissible functions represented by a neural network. For example, a ResNet
with Nd hidden layer and width Nw is constructed to represent the admissible function space H as
follows:

u(x0; θ) = WoutxNd+1 + bout,

xk+1 = fk(xk) = Φk(Wkxk + bk) + xk, k = Nd, ..., 1,

x1 = Winx0 + bin,

(5)

here x0 ∈ Ω represents the input of dimension d. The weight matrices of the input layer, the k-th71

hidden layer, and the output layer are denoted by {Win ∈ RNw×d,Wk ∈ RNw×Nw ,Wout ∈ Rn×Nw},72

respectively. The corresponding biases are {bin ∈ RNw ,bk ∈ RNw ,bout ∈ Rn}. Φk represents the73

activation function. The integration in I is computed approximately by the Monte Carlo (MC)74

method, and then the optimization process is performed using Adam [45]. The numeric results75

presented in this paper are obtained using this ResNet structure in combination with the activation76

function tanh3(·) (unless otherwise stated), which has been used and verified for its effectiveness77

in [7]. In many problems, one may have to deal with the Dirichlet boundary condition. This is78

usually done by a penalty method[3], a Nitsche type method [44] or some direct method [46] as79

described below.80
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3. Deep Ritz methods for the Lavrentiev phenomenon.81

In this section, we demonstrate that the direct application of the DRM to variational problems82

exhibiting the Lavrentiev phenomenon fails to capture global minimizers, similar to standard nu-83

merical methods. For clarity, we use Manià’s problem (2) as an example to illustrate the main84

challenges.85

To handle the Dirichlet boundary condition, we enforce it precisely by multiplying the output
of the network by a bubble function that vanishes on the boundary and then adding x, which is a
natural choice satisfying the given Dirichlet boundary condition, i.e., u(x; θ) = x(1−x)ũ(x; θ)+x.
(We use the technique for all the numerical examples in this paper.) The optimization problem is
given by

min
ũ∈H

I1(ũ) :=

∫ 1

0

(
(x(1− x)ũ+ x)3 − x

)2(
(x(1− x)ũ+ x)′

)6
dx, (6)

We approximate ũ(x; θ) by a ResNet as described by Equation. (5) with Nd = 8 hidden layers and86

width Nw = 120. We set 1000 uniformly random points in the computational domain Ω = [0, 1]87

to compute the integration by the Monte Carlo method, unless otherwise stated. We test several88

implementations of the DRM and the numerical results are listed below.89

Test for the standard DRM. As shown in Figure 1, under two different initializations of the90

network(blue curves), the corresponding training results(red curves) fail to approximate the global91

minimizer u∗(x) = x
1
3 (black curves). Instead, the results are around u(x) = x. More specifically,92

Figure 1 (a) shows the training result under a random initialization, while Figure 1 (b) shows the93

result under an initialization close to the global minimizer u∗(x) = x
1
3 . The latter case shows94

the essential difficulty of the deep learning method in dealing with the variational problem with95

Lavrentiev phenomena. Even if the initial state is close to the global minimizer, the training result96

can only approximate the minimizer in W 1,∞.97

(a). DRM (random initialization) (b). DRM (x
1
3 initialization)

Figure 1: Training results of DRM on the Manià’s example with different initializations. See Section 3.

98

Test for the DRM with non-uniform sampling. One naive idea to approximate well the global99

minimizer u∗ = x
1
3 is to use non-uniform sampling method. Since the minimizer is singular at100

the left boundary x = 0, we add more points in its vicinity. Specifically, we add 1000 uniform101

distributed points within [0, 0.25] in addition to the 1000 random points in the whole domain102

Ω = [0, 1]. The numerical result is shown in Figure 2 (a). We can see that adding more sampling103
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points near 0 does not improve the results. Instead, it flattens the curve in the interval [0, 0.25],104

resulting in a worse approximation.105

Another idea to improve the DRM is to use the techniques from the numerical methods devel-106

oped in the literature. For example. we can introduce an auxiliary variable as in [42] or use an107

element removal technique as in [41]. We will test these techniques in the following two experiments.108

Test for the DRM for a model with auxiliary variable. In this test, we introduce an auxiliary
variable v such that v ≈ u′ in the auxiliary variable method, resulting in the following loss functional,

Ĩ1(u, v) =

∫ 1

0
(u3(x)− x)2v6(x)dx+ λ

∫ 1

0
(u′(x)− v(x))2dx, (7)

where λ is the penalty weight and u = x(1 − x)ũ + x. In the test, the unknown functions ũ(x, θ)109

and v(x, θ) are the output of one neural network, whose output is a 2-dimensional vector function,110

with the first component approximating ũ and the second approximating v. Numerical experiments111

show that the method still fails to produce satisfactory results and leads to similar training results112

around u = x, as shown in Figure 2 (b).113

Test for the DRM with element removal method. Motivated by the element removal method [41],
we sample on [x0, 1] instead of on the whole domain [0, 1] in the DRM, resulting in the following
loss functional,

Î1(ũ) =

∫ 1

x0

(
(x(1− x)ũ+ x)3 − x

)2(
(x(1− x)ũ+ x)′

)6
dx. (8)

Numerical experiments show that the results are better than the other techniques but still sensitive114

to the choice of x0. We show one result in Figure 2 (c), where we set x0 = 0.01. We can see that115

the numerical results agree well with the global minimizer in an interval [0.2, 1] while there is a116

larger error in the interval (0.01, 0.2].117

Test for the DRM with special activation function. Finally, we test the effect of the activation118

function. Since the global minimizer is u∗ = x
1
3 , we consider f(x) = x

1
3 as an activation function.119

Note that x
1
3 is not a reasonable activation function in general, but we use it here to test if the DRM120

approximates well to the singular global minimizer using a singular activation function. However,121

as shown in Figure 2 (d), the training result of DRM with the activation function x
1
3 with a random122

initialization is close to u = x. This once again highlights the intrinsic difficulty of this problem.123

For the failure of these commonly used deep learning methods on problems exhibiting the
Lavrentiev phenomenon, there are some possible reasons as presented in [15]. Some commonly used
numerical techniques in deep learning, such as initialization schemes, over-parameterized models,
stochastic gradient descent (SGD), and others, result in the approximation function having a lower
geometric complexity (GC) as defined in [15]

< uθ, D >G=
1

|D|
∑
x∈D
∥∇xuθ(x)∥2F . (9)

Here, uθ represents the training results of the neural network, D is a dataset in the computational124

domain, and ∥ · ∥F means the Frobenius norm of a matrix. This GC index is also related to the125

Lipschitz constant and some other regularity indexes [15]. For more details, we refer to [15, 47]126

and the references therein. Hence, these commonly used deep learning techniques tend to make the127

neural network solutions smoother, thus making it inherently difficult to use neural networks to128

solve such problems. As shown by the numerical experiments using the Manià’s example, the deep129

learning methods tend to learn the minimizer u = x in W 1,∞
D which is similar to the traditional130

numerical methods, although the global minimizer u = x
1
3 is a continuous function, which can131
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be approximated well by neural network by the universal approximation theorem [33]. In the132

following, we propose a new knowledge-guided learning (KGL) method for the deep neural network133

to approximate the global minimizer of such problems.134

(a). Non-uniform sampling (b). Auxiliary variable

(c). Element removal (x0 = 0.01) (d). Special activation function

Figure 2: Training results of some adaptive deep learning methods on the Manià’s example. See Section 3.

135

4. Knowledge-guided learning algorithm for Lavrentiev phenomenon136

4.1. The algorithm137

Consider a variational problem
inf
u∈A

I(u) (10)

with Lavrentiev phenomena as shown in Equation (1), with its corresponding neural network for-
mulation

min
θ∈Θ

I(u(x; θ)) (11)

where Θ represents the parameter space of the neural network. The tests in the previous section138

show that direct application of the DRM can only detect the local minimizer in the dense subspace139

A1. To overcome the limitation of conventional deep learning methods, we propose the following140

knowledge-guided learning method to deal with problems exhibiting the Lavrentiev phenomenon.141

Specifically, we integrate a guiding term G related to the decision variable into the standard142

process of training neural networks. The guiding term G will lead a function u in A1 approaches to143
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functions inA\A1. For instance, in the Manià example (2), A = W 1,1
D ([0, 1]) andA1 = W 1,∞

D ([0, 1]),144

where W 1,p
D := {u ∈ W 1,p : u(0) = 0, u(1) = 1}. In this case, G is defined as −∥u′∥∞, and as G145

decreases, it encourages u to approach the boundary of the function space W 1,∞
D ([0, 1]). To achieve146

this, we propose an iterative approach that alternates between optimizing the objective functional147

and updating the guiding term values toward expected directions. By incorporating this guiding148

term, it is expected that the training process will yield higher accuracy, particularly for problems149

affected by the Lavrentiev phenomenon.150

The specific algorithm is given in Algorithm 1, and the guiding term will be specified in the151

corresponding numerical examples in Section 5. In the algorithm, Nd and Nw denote the number152

of hidden layers and the width of the neural network; N represents the number of training steps;153

Nu, Ng, τu and τg represent the scheduling numbers for the original loss functional and the guiding154

term and their corresponding learning rates, respectively.155

Algorithm 1: Knowledge-guided learning.

1 Inputs:
2 Nd, Nw: number of hidden layers and width of the neural network representing the

decision variable u = u(x; θ).
3 N : number of training steps.
4 Nu, Ng: scheduling numbers of the original functional and the guiding term updates per

iteration step.
5 τu, τg: learning rates of the objective functional and the guiding term.
6 for i = 1 : N do
7 for j = 1 : Nu do
8 Update θ ← θ − τu∇θI.
9 end

10 for k = 1 : Ng do
11 Update θ ← θ − τg∇θG.
12 end

13 end
14 Outputs: Neural network u(x; θ) with arbitrary input x and trained parameters θ.

4.2. Related methods156

To the best of our knowledge, there are currently no deep learning methods that have been157

researched for problems exhibiting the Lavrentiev phenomenon. Therefore, we will only review158

some relevant methods in this section, rather than relevant literature.159

The training process of the proposed knowledge-guided learning is similar to alternating direc-160

tion optimization methods, with the difference that it does not involve optimizing a single objective161

functional under constraints with multiple variables. Instead, it focuses on separately optimizing162

multiple objective functionals (the original objective functional I(u) and the guiding term G(u)),163

which aligns more closely with auxiliary-task learning [48] and multi-task learning [48, 49].164

Auxiliary-task learning improves the performance of the main task through one or more aux-165

iliary tasks, while multi-task learning equally considers enhancing the performance of all tasks.166

Specifically, in auxiliary-task learning, there is a method similar to the one proposed in this paper,167

called ’Hints’ [48], which can be traced back to the 1990s [50, 51]. Systematic use of hints(auxiliary168

information) in the learning-from-examples paradigm was presented in [51], where several relevant169

and insightful examples were provided. It also presented some related optimization algorithms,170
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including the weighted method and the scheduling technique. The weighted rotation scheduling,171

as reflected in the settings of Nu and Ng in Algorithm 1, is what we used in this paper.172

The distinction between learning from hints and this work lies in the construction and demands173

of the auxiliary information. In [51], the requirement is to convert the hint into a non-negative174

quantity (or quantity bounded from below) and then minimize it to provide information regarding175

the main task. However, the guiding term we consider here can be unbounded from below (as176

demonstrated in the subsequent section, we set the guiding term as −∥∇u∥∞), indicating that this177

guiding term offers more essential information, for example, the regularity of the solution.178

This is also the distinction between the proposed method and the penalty method that uses
λG(u) as a penalty term resulting in the following loss functional,

Loss = I(u) + λG(u). (12)

In the next section, we will show that the proposed knowledge-guided learning can handle problems179

with or without the Lavrentiev phenomenon by employing the same guiding term. In other words,180

the proposed method does not alter the landscape of the objective functional, but rather serves as a181

guideline to the original problem. When the guiding term aligns well with the original objective, the182

results improve after guidance. However, if the guideline is inconsistent with the original objective183

functional, the neural network can still find the minimizer of the original problem, which is the184

main difference between the proposed method and the penalty method. Numerical examples in the185

next section show that the penalty method fails to deal with both cases.186

5. Numerical results187

In this section, we use the knowledge-guided learning method to deal with problems exhibiting188

the Lavrentiv phenomenon to demonstrate its capability. In Section 5.1, we show that the proposed189

method works well for the Manià’s example. Section 5.2 investigates the use of knowledge-guided190

learning to solve problems without the Lavrentiv phenomenon, emphasizing the difference between191

the proposed method and the penalty method. Additionally, some 2-dimensional problems are192

considered in Section 5.3 and 5.4 to showcase the capability of the proposed method. The code is193

available at https://github.com/BoyiZou/Knowledge-Guided-learning.194

5.1. Manià’s example195

Considering the Manià’s example as given in Equation (2), we use the knowledge-guided learning196

method (Algorithm 1) with the guiding term G(u) = −∥u′∥∞ to solve the problem. This guiding197

term aims to induce a derivative blow-up in the training solution. As G(u) decreases, the infinity198

norm of the derivative of the training results increases, allowing the training result to ideally escape199

the space ofW 1,∞[0, 1]. However, it is important to note that this is still a numerical approximation,200

and as a result, the final training results still belong to W 1,∞[0, 1]. Nevertheless, this approach201

provides a more accurate and instructive approximation to Manià’s example as shown in Figure 3202

(a) and (b).203

We compare the results of the knowledge-guided learning method and the penalty method (12)204

with the same network settings as used in Section 3, and set Nu = 4, Ng = 1 in knowledge-guided205

learning. As shown in Figure 3, the first row presents the training result of the proposed method206

along with the corresponding point-wise error. It is observed that with the proposed method, the207

neural network can effectively approximate the global minimizer beyond a small region surrounding208

x = 0. It is worth noting that the guiding term used here does not require specific information209

about the exact points of blow-up. We only need to provide the neural network with a guideline that210
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there may be cases of derivative blow-up in the solution, and the network can learn to approximate211

the solution effectively.212

For the penalty method, incorporating the penalty term −λ∥u′∥∞, the loss functional is defined
as follows,

min
u

∫ 1

0

(
u3 − x

)2(
u′
)6
dx− λ∥u′∥∞. (13)

Figure 3 (c) and (d) display the results of the penalty method, which represent the best performance213

we obtained through parameter tuning. These two figures depict the training results at different214

iteration steps of the same training process. Figure 3 (c) represents the closest approximation215

obtained during the training process, while Figure 3 (d) illustrates the final converged result. To216

be more specific, we plot the changes of the loss functional and the infinity norm of the error217

during the training process corresponding to the penalty method in Figure 3 (e) and (f). It can be218

observed that during the training process, the loss functional decreases, while the infinity norm error219

initially decreases and then increases, which corresponds to the solution exhibiting a tendency to220

approximate the analytic solution in the initial stage, but failing to stabilize or converge. The result221

converges to a solution where the derivative at the origin becomes sufficiently large, while away from222

the origin, it approximates a straight line, significantly deviating from the analytic solution. This223

is due to the fact that the penalty term affects the landscape of the original objective functional224

and leads to a change in the minimizer. Moreover, the minimizer and convergence process heavily225

depend on the magnitude of the penalty terms and the original functional.226

More importantly, the penalty method fails to train results with regular solutions, as will be227

demonstrated in the next section. To gain a better intuitive understanding, Figure 5 presents a228

schematic diagram to show the distinction between the proposed method and the penalty method229

for problems with and without the Lavrentiev phenomenon, which will be further explained in230

Section 5.2.231

To better understand how the knowledge-guided learning method works, we define the local232

loss as Loss[0.005,1] =
∫ 1
0.005(u

3(x)− x)2(u′(x))6dx to demonstrate more intrinsic results. As shown233

in Table 1, the local loss decreases to a small range while the global loss remains around 0.1 for234

the knowledge-guided learning method. However, both the global loss and local loss of the results235

obtained using standard DRM, are approximately 0.0666. This also illustrates why using standard236

DRM can only yield the result around u(x) = x, as the global loss is approximately 0.0666, which237

is less than the global loss computed by the knowledge-guided learning method.238

239

Number of training points\Loss Global Loss, Loss[0,1] Local Loss, Loss[0.005,1]
KGL: 200 0.09697798 0.01304583

KGL: 1000 0.09206629 0.00051850

KGL: 2000 0.11957884 0.00000224

DRM: 200 0.06659865 0.06669694

DRM: 1000 0.06659041 0.06670607

DRM: 2000 0.06658889 0.06670415

Table 1: Comparisons correspond to the relationship between the number of training points and the global and local
Loss of knowledge-guided learning and penalty method. See Section 5.1.

However, using the proposed method, we give the neural network a guideline that the result of240

this problem may not be in W 1,∞, enabling it to approximate the global minimizer efficiently. More241
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(a). Knowledge-guided learning (b). Point-wise error (KGL)

(c). Penalty method (Closest exact iteration) (d). Penalty method (Final result)

(e). Training Loss (Penalty) (f). L∞ Error (Penalty)

Figure 3: Comparisons of the results on Manià’s example of knowledge-guided learning and penalty method. See
Section 5.1.

importantly, while the guiding term is inconsistent with the original problem, the neural network242

can disregard this guiding term and obtain the original minimizer. This will be demonstrated in243

the next section.244

5.2. Problems without the Lavrentiev phenomenon245

In this section, we use the knowledge-guided learning method to solve a variational problem246

without the Lavrentiev phenomenon. Surprisingly, the proposed method still works well even when247

the solution is regular. This demonstrates the robustness of the method. To make the statement248

clear, we also compare the proposed method with the penalty method.249

We consider the following variational problem with u(x) = 2x− x2 as the global minimizer,250

min
u

∫ 1

0

1

2
|u′(x)|2 − 2u(x)dx

s.t . u(0) = 0, u(1) = 1.

(14)
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We solve this problem by the knowledge-guided learning method with the same guiding term251

G(u) = −∥u′∥∞. The guiding term is inconsistent with the analytic solution in this example.252

However, as shown in Figure 4 (a) and (b), the proposed method can still solve the problem253

correctly, albeit with more computational effort. It is noteworthy that we use the same parameters254

as in the previous Manià’s example, demonstrating the robustness of the proposed method.255

We then contrast the proposed method to the penalty method, as shown in Figure 4 (c) and (d),256

the results obtained by the penalty method deviate from the global minimizer due to the penalty257

term. To be more specific, the proposed method considers G(u) merely as a guiding term rather258

than an exact constraint term, unlike the penalty method. Therefore, during the optimization259

process, the proposed method explores the approximation of the original objective functional under260

a guideline, whereas the penalty method modifies the landscape of the objective functional through261

the penalty term and approximates the minimizer of the new system.262

For a more intuitive understanding of the proposed method, we illustrate the training process263

of knowledge-guided learning as a diagram in Figure 5 based on the numerical results obtained in264

Section 5.1 and Section 5.2, and compare it with the penalty method.265

For Manià’s example, the analytical solution u = x
1
3 , a continuous function, falls within the266

approximation capabilities of DNNs. However, as shown in Section 3, deep learning based numerical267

methods struggle to approximate the global minimizer of this problem. Therefore, we conclude that268

the global minimizer lies outside the easy-to-fit space of DNNs under this loss functional, and we269

consider using knowledge-guided learning to improve the training results with G(u) = −∥u′∥∞. As270

shown in Figure 5 (a), the guiding term indicates that the derivative of the training result could have271

a large infinity norm, which is a difficult feature to learn under Manià’s example, leading to a better272

approximation during the alternative optimization process. In contrast, we illustrate the training273

process of the penalty method, as shown in Figure 5 (c). With the penalty term λG(u) = −λ∥u′∥∞,274

the easy-to-fit space is altered (or one might say that the landscape of the modified loss functional275

is changed). However, it still struggles to achieve a good approximation, and the approximation276

space after penalization, along with the corresponding training result, heavily relies on the penalty277

weight λ.278

As for problems without the Lavrentiev phenomenon demonstrated in Section 5.2, the corre-279

sponding training diagrams are depicted in Figure 5 (b) and (d). In this regular case, the analytical280

solution falls in the easy-to-fit space of the original loss functional. We utilize the same guiding and281

penalty terms as in the previous example to showcase the differences. As shown in Figure 5 (b),282

the training result can still achieve a good approximation, albeit with a more oscillatory training283

process due to the improper guiding term. In contrast, as shown in Figure 5 (d), with the penalty284

method, the approximation space is modified after penalization, rendering the originally easy-to-fit285

analytical solution less readily trainable. Based on these observations, the proposed method can286

handle problems exhibiting the Lavrentiev phenomenon and may have the potential to assess the287

regularity of some unknown systems.288

289

290

5.3. Two-dimensional extension of Manià’s example.291

In this section, we consider the following variational problem in the unit square Ω = [0, 1]2,292

which can be viewed as a constant extension along the y-axis of Manià’s example,293
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(a). Knowledge-guided learning (b). Point-wise error (KGL)

(c). Penalty method (d). Point-wise error (Penalty)

Figure 4: Comparisons of the results on problem (14) of knowledge-guided learning and penalty method. See
Section 5.2.

min
u

∫ 1

0

∫ 1

0
(u3(x)− x)2(ux(x))

6dxdy

s.t . u(0, y) = 0, u(1, y) = 1.

(15)

The main difference between problems (2) and (15) is that the singularity here is a line segment294

{(x, y)|x = 0, y ∈ [0, 1]} instead of one single point. For this example, we use G(u) = −∥∇u∥∞ as295

the guiding term to demonstrate the capability of the proposed method. It is worth noting that296

in this case, we do not need to specify G(u) = −∥ux∥∞ or prioritize certain line configurations,297

but rather keep it simple as before. We compare the training results with those of the proposed298

method, vanilla DRM, and the penalty method with λG(u) = −λ∥ux∥∞ as the penalty term. The299

networks are set as Nd = 4 and Nw = 50, with 10000 training points for all methods, and set300

Nu = 4, Ng = 1 in knowledge-guided learning.301

As shown in Figure 6, the training results of knowledge-guided learning are consistent well with302

the analytical solution while other methods fail to get a good approximation. More differences can303

be seen in Figure 6 (b) and (c). The proposed method obtains a solution that is constantly extended304

along the y-axis, meaning it does not affect the original loss functional landscape. However, the305

penalty method is different as it affects the landscape of the original loss functional, resulting in306

an oscillating, non-constant solution along the y-axis. This further demonstrates the capability of307

the proposed method and corroborates the intuitive explanations provided in Figure 5.308

309
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Figure 5: Schematic diagram of knowledge-guided learning and penalty method on problems (2) and (14). See
Section 5.1 and 5.2.

(a). Deep Ritz method (b).Knowledge-guided learning (c).Penalty method

(d). Deep Ritz method (y = 1) (e). Knowledge-guided learning (y = 1) (f). Penalty method (y = 1)

Figure 6: Training results for problem (15). The first row displays the training results, while the second row displays
a slice of the training results alongside the analytical solution at y = 1. See Section 5.3
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5.4. Foss’s example310

In this section, we consider the Foss’s example [52] in 2-dimensional space which also exhibits
the Lavrentiev phenomenon,

min
u

I(u) = 66(
13

14
)14

∫
Ω
(

y

y − 1
)14|u|

14−3y
y−1 (|u|

y
y−1 − x)2(ux)

14dxdy

s.t . u(0, ·) = 0, and u(1, ·) = 1,

(16)

where Ω = [0, 1]× [1.5, 2.5]. The analytic solution of this problem is u(x, y) = x
y−1
y . It was shown

by Foss [52] that
0 = inf

u∈A
I(u) < inf

u∈A∞
I(u) = 1, (17)

where A = {u ∈ W 1,1(Ω) : u(0, ·) = 0, and u(1, ·) = 1} and A∞ = {u ∈ W 1,∞(Ω) : u(0, ·) =311

0, and u(1, ·) = 1}. The singularity of this problem is around {(x, y)|x = 0, y ∈ [1.5, 2.5]} with312

ux blowing up. Similar to the previous example, we use the guiding term G = −∥∇u∥∞ and the313

penalty term λG(u) = −λ∥∇u∥∞ to train the networks. The networks are set as Nd = 4 and314

Nw = 50, with 10000 training points for all methods, and set Nu = 1, Ng = 1 in knowledge-guided315

learning.316

As shown in Figure 7 (a) and (d), the training results of DRM demonstrate that the main317

difficulty of Foss’s example is around (0, 1.5) with the infinity norm of the error around 0.075. As318

for the results of knowledge-guided learning and penalty method, as shown in Figure 7 (b), (c),319

(e), and (f), knowledge-guided learning gets a better approximation than DRM while the penalty320

method fails. For a more intuitive comparison, we provide some 1-dimensional cross-section results,321

including the bottom line (y = 1.5), and the diagonal line y = x+1, between DRM and knowledge-322

guided learning. As shown in Figure 7 (g), and (h), knowledge-guided learning improves the323

approximation around (0, 1.5), with the infinity norm of the error around 0.04, while maintaining324

similar accuracy in other regions compared to the results of DRM.325

326

6. Summary327

In this paper, we use the deep learning methods to detect singular minimizers for a class of vari-328

ational problems exhibiting the Lavrentiev phenomenon. We have demonstrated that the standard329

deep Ritz method and some of its variations fail to find the global minimizers of these problems.330

We introduce a knowledge-guided learning algorithm to explore the singular solutions resulting in331

better approximation. Numerical experiments show that the method works well for both regular332

and singular variational problems. The work also highlights a gap between approximation of a func-333

tion and approximation of a solution of a variational problem. In the later case, the mathematical334

property of the variational problem and the optimization procedure play more significant roles.335

We will study more general methods and the corresponding mathematical theory in the machining336

learning approaches for singular problems in the future.337
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