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Abstract. Dynamic contact angle hysteresis is of critical importance for many two-phase flow
problems with moving contact lines. It is induced by inhomogeneity or roughness of the substrates.
In this paper, we present theoretical studies on the time averaging of a reduced model for wetting on
rough surfaces and also the analysis on the effect of stochastic thermal forces. We derive equations for
the averaged dynamics and show that the apparent contact angle depends on the harmonic averaging
of the geometric and chemical properties of the substrates as well as the contact line velocity. The
contact angle hysteresis can be determined quantitatively by the equations. The averaging results
are proved rigorously by multi-scale analysis and verified by some numerical examples.

1. Introduction. Wetting on rough surfaces has many applications in industry
and our daily life. It has attracted much interest in many different fields [8, 22, 4, 10].
If without considering the dynamics of fluids, wetting is a problem to minimize the
total surface energy in the system. Mathematically, wetting on rough surface gives
a free interface problem with multi-scale boundary conditions and has been studied
a lot recently, see for example in [1, 5, 2, 19, 35, 6, 33, 11, 32]. Various numerical
methods have also been developed for wetting problems based on different models
models [30, 18, 12, 13].

Dynamic wetting is a typical two-phase flow with moving contact lines. The
standard no slip boundary conditions for viscous fluids will lead to infinite energy
dissipation when the contact line moves. There are extensive studies on the moving
contact line problem [7, 21, 3, 24, 26, 29], while there still exist some controversies
[27]. If one further consider the effect of the rough surfaces, the problem will be much
more complicated [17, 23, 14, 31, 25]. In general the advancing and receding contact
angles will be different and may depend on the contact line velocity. Such phenomena
are called contact angle hysteresis(CAH). It is of critical importance to quantitatively
study the wetting phenomena in many applications.

In [39], a macroscopic boundary condition is derived for the dynamic contact angle
hysteresis on chemically inhomogeneous surfaces, which has been used to explain the
dynamic contact angle hysteresis recently observed in experiments [15, 16]. The key
idea there is to use the Onsager variational principle [9] and asymptotic analysis
to derive a coarse graining boundary condition for the apparent contact angle. The
boundary condition gives results fit with experiments very well [36, 39]. The boundary
conditions can also be coupled with the standard two-phase Navier-Stokes equation
to simulate two-phase flows with moving contact lines[38].

The main contributions of the paper are three folds. Firstly, we generalize the
analysis in [39] to wetting on surfaces with both geometrical roughness and chemical
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Fig. 1. The fiber with smooth oscillating boundaries

inhomogeneity. We derive an equation for the time averaged system when the rough-
ness coefficient goes to zero. It leads to an explicit formula for the dynamic contact
angle hysteresis on such surfaces. This will be much more useful in many applications
than that only considering chemical inhomogeneity of the substrates. Secondly, we
characterize quantitatively the effect of stochastic thermal forces by a detailed analy-
sis for a stochastic model. We study the time averaging for the stochastic model and
derive an averaged system by asymptotic analysis for the backward Kolmogrov equa-
tion. We derive a new formula for the contact angle hysteresis, which takes account
of the stochastic effects. We also show that the averaged system converges to that
of the deterministic model when the stochastic coefficient goes to zero. Thirdly, we
present rigorous analysis for the asymptotic results, which has not been studied even
for the simple problem with chemically inhomogeneous surfaces before.

The rest of the paper is organized as follows. In section 2, we derive some reduced
models for dynamic wetting problems. In section 3, we present the analysis for the
deterministic model. We derive an averaged system and prove that the original system
converges to the averaged one when the period of the oscillations goes to zero. In
section 4, we study the averaging of a stochastic system which describes the effect of
the stochastic thermal forces. Several numerical examples are illustrated in Section
5 to verify our theoretical results. Some concluding remarks are given in the last
section.

2. Reduced models for dynamic wetting. We develop a reduced model for
some dynamic wetting problems in this section. We first introduce two illustrative
examples and then show a general model in the last subsection.

2.1. Forced wetting of a fiber. We consider the motion of a fiber in a liquid
reservoir, as shown in Figure 1. This is motivated by the recent experiments in [15].
Suppose that the surface of the fiber is rough and inhomogeneous. For simplicity, we
assume that the surface is axis-symmetric and the radius of the section is described
by a function

r = R(z) = R0 + εR1(
z

ε
)
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where R0 is a positive constant and R1(·) is a smooth function with periodic 1, and
ε ≪ 1 is a small parameter. The wetting property of the solid surface is characterized
by the Young’s angle θY (

z
ε ), which is a function of z with a period ε. When the fiber

moves with a velocity vw, the solid surface at time t is given by

(1) r = R̃(z, t) := R0 + εR1(
z − vwt

ε
).

For a liquid-vapor interface on the rough surface, the local contact angle θd is
the angle between the tangential plane of the interface and that of the solid surface
on the contact line. It is usually different from the apparent contact angle θa, which
is the angle between the two-phase interface and the the homogenized surface of the
substrate(the vertical surface in this example). As shown in Figure 1, we have

(2) θd = θa + θg,

where θg characterizes the local slope of the oscillating substrate on the contact line
and is given by θg = arctan

(
R′

1(
zct−vwt

ε )
)
. Here we denote by zct the vertical coordi-

nate of the contact line.
In equilibrium states, the local contact angle θd is equal to the local Young’s angle.

However, when the interface is moving, the contact angle θd can be different from θY .
By using the Onsager principle as an approximation tool, we derive an equation for
the dynamic contact angle in [39],

(3)
µvct
F(θd)

= γ(cos θY − cos θd),

where µ is the viscosity of the liquid, γ is the surface tension of the interface, and

F(θd) =
(
α+ 2| ln ζ| sin2 θd

θd−sin θd cos θd

)−1

, α is a friction parameter of the contact line, and ζ

is a dimensionless cut-off parameter. The equation shows that the unbalanced Young
force is equal to the viscous friction force near the contact line. It is the first order
approximation of the well-known Cox’s formula (c.f. [7]) when the capillary number
Ca = µv/γ is small.

As shown in [15], when the fiber is thin, the liquid surface approaches very rapidly
to its equilibrium shape, which is given by [8, 34]

(4) z = H(r) = h(t)− R̃(zct, t) cos θa ln
r +

√
r2 − R̃2(zct, t) cos2 θa

R̃(zct, t) cos θa
.

This indicates a geometrical relation between the contact line position zct and the
apparent contact angle θa.

By the equations (3) and (4) and by setting ẑct = zct − vwt , we can derive an
ordinary differential system as follows (see details in Appendix A),

(5)

{
˙̂zct = f(θa, ẑct)(cos θY (ẑct)− cos(θa + θg(ẑct))),

θ̇a = −g1(θa, ẑct)
(
g2(θa, ẑct) ˙̂zct + vw

)
,
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where

f(θa, ẑct) =
γF(θd) cos θg

µ
=

γ

µ

(
α+

2| ln ζ| sin2 θd
θd − sin θd cos θd

)−1 (
1 +

(
R′

1(
ẑct
ε
)
)2

)− 1
2

,

g1(θa, ẑct) =
1(

R0 + εR1(
ẑct
ε )

)(
sin θaG (θa, ẑct) + 1

) ,
g2(θa, ẑct) = 1−R′

1(
ẑct
ε
)G (θa, ẑct) cos θa,

with G (θa, ẑct) ≈ ln 2rc
R(ẑct)(1+sin θa)

− 1. Equ. (5) is a reduced model for the forced

wetting problem of a moving fiber. When the surface is flat, (5) is reduced to a model
for chemically inhomogeneous surfaces in [34, 39].

2.2. Dynamict wetting in a capillary tube. In the second example, we con-
sider the imbibition of a liquid in a two-dimensional channel with oscillating and
inhomogeneous boundaries. As shown in Figure 2, suppose that the boundaries of the
channel are given by z = ±(h0 + εh1(

x
ε )), where h0 is a positive number, h1(·) is a

smooth function with periodic 1 and ε ≪ 1 is a small parameter. The chemical inho-
mogeneity of the boundaries is characterized by the Young’s angle θY (

x
ε ) which is a

periodic function with period ε. Similarly as in the above example, θd = θa+ θg gives
a relation between the local contact angle θd, the apparent contact angle θa, and an
angle θg = arctanh′

1(
xct

ε ) characterizing the local slope of the oscillating substrates.
Suppose the two-phase interface moves to the right with a velocity v. The relation

between the local dynamic contact angle θd and the contact line velocity is still given
by (3). When the height of the channel is very small, we can assume that the shape
of the interface is circular. This leads to an additional constraint on the contact point
position and the apparent contact angle θa. Similar to the derivation in previous
example (c.f. [37]), we can derive a system of ordinary differential equations as follows,

(6)

{
ẋct = f̃(θa, xct)(cos θY (

xct

ε )− cos θd),

θ̇a = −g̃1(θa, xct)
(
g̃2(θa, xct)f̃(θa, xct)(cos θY (

xct

ε )− cos θd)− h0

h(xct)
v
)
,
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where

f̃(θa, xct) =
γ

µ

(
α+

2| ln ζ| sin2 θd
θd − sin θd cos θd

)−1 (
1 +

(
h′
1(
xct

ε
)
)2

)− 1
2

,

g̃1(θa, xct) =
cos θ3a

h(xct)(cos θa + (θa − π
2 ) sin θa)

,

g̃2(θa, xct) = 1 + h′
1(
xct

ε
)
θa − π

2 + sin θa cos θa

cos2 θa
.

with h(xct) = h0 + εh1(
xct

ε ). Equ. (6) is a reduced model for imbibition in a micro-
channel. It is easy to see that Equ. (6) has the same structure with (5). Furthermore,
the viscous dissipation coefficient f̃(·, ·) has the same form as f(·, ·).

2.3. A general reduced model for dynamic wetting. The previous exam-
ples motivate us to consider a general mathematical model for dynamic wetting on
rough and inhomogeneous solid surfaces. It is a system of ordinary differential equa-
tions for the contact point xct and the apparent contact angle θa:

ẋct = f(θa,
xct

ε
)
(
cos θY (

xct

ε
)− cos(θa + θg(

xct

ε
))
)
+ εr1(θa,

xct

ε
, v)(7a)

θ̇a = −g(θa)
(
(1 + p(θa,

xct

ε
))ẋct − v

)
+ εr2(θa,

xct

ε
, v).(7b)

Here v denotes the fluid velocity and ε > 0 is a small roughness parameter. The
Young’s angle θY (·) and the geometric angle θg(·) respectively characterize the chem-
ical and geometrical roughness of the substrate. f(·) characterizes the viscous dissi-
pation coefficient near the contact line, which depends only on the physical property
of the fluid and the local oscillations of the substrate. g and p are functions depends
on the specific setups of the problem. εr1 and εr2 represent two possible higher order
terms. We make the following assumptions on the functions in the system:
(A1). All the functions f(θ, y), g(θ), p(θ, y), r1(θ, v, y), r2(θ, v, y), θY (y), θg(y) are

smooth functions and periodic in y with period 1. Furthermore, we have∫ 1

0
p(θ, y)dy = 0.

(A2). There exists a positive constant c0 such that f, g, p ≥ c0 > 0.
(A3). There exists two constants θ1, θ2 ∈ (0, π) such that

0 < θ1 ≤ θY (y)− θg(y) ≤ θ2 < π, ∀y ∈ (0, 1].

The general model (7) covers the equations (5) and (6) in previous subsections.
For example, g(θ) can be seen as the leading order term of the Taylor expansion of g1
in (5) with respect to ε and the higher order terms are included in εr2. In addition,
it also covers a model in [37] which is derived from the sharp-interface limit of the
phase-field equation.

In some cases, there may exist stochastic forces (e.g. thermal force) that affect
the motion of contact lines [15, 16]. We add a stochastic force term in (7) and obtain
a stochastic differential equation,

ẋct = f(θa,
xct

ε
)(cos θY (

xct

ε
)− cos(θa + θg(

xct

ε
)) + σ

√
εẆ ) + εr1

(
θa,

xct

ε
, v
)
,(8a)

θ̇a = −g(θa)
(
(1 + p(θa,

xct

ε
))ẋct − v

)
+ εr2

(
θa,

xct

ε
, v)

)
,(8b)

whereW (t) is a Brownian motion and σ is a constant coefficient. Here we assume that
the stochastic force is relatively small so that there is a factor

√
ε in the coefficient.
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3. Time averaging of the deterministic model. We are interested in the
averaged dynamics of the systems (7) and (8) when ε goes to zero. For simplicity in
presentation, we introduce a fast variable yct =

xct

ε and some notations. The system
(7) can be transformed to:

ẏct =
1

ε
A(θa, yct) + F1(θa, yct, v),(9a)

θ̇a = B(θa, yct) + εF2(θa, yct, v),(9b)

where

A(θ, y) = f(θ, y)(cos θY (y)− cos(θ + θg(y))),

B(θ, y) = −g(θ)
(
(1 + p(θ, y))A(θ, y)− v

)
F1(θ, y) = r1(θ, y, v)

F2(θ, y, t) = −g(θ)(1 + p(θ, y))r1(θ, y, v) + r2(θ, y, v).

In this section, we first derive the averaged equation of (9) by asymptotic analysis
and then prove the results rigorously.

3.1. The case with an invariant manifold. It turns out that the averaging
of Equ. (9) depends on the range of the apparent contact angle θa. In this subsection,
we show that there may exist an invariant manifold for the dynamic system when θa
is in an interval (θ1 +O(ε), θ2 +O(ε)).

Since A(θ, y) = f(θ, y)(cos θY (y) − cos(θ + θg(y))) and f > 0, we know that
A(θ, y) = 0 only when θY (y) = θ + θg(y). By Assumption (A3), this happens when
θ ∈ [θ1, θ2]. Notice both A(θ, ·) and F1(θ, ·, v) are smooth and periodic functions for
any fixed θ and v. There exists an interval (θ1+O(ε), θ2+O(ε)), such that any θ in the
interval corresponds to a value y = Ψ(θ) satisfying A(θ,Ψ(θ)) + εF1(θ,Ψ(θ), v) = 0
and ∂yA(θ,Ψ(θ)) + ε∂yF1(θ,Ψ(θ), v) ≤ 0. The graph (θ,Ψ(θ)) is called an invariant
manifold of (9) (see definition in [20]), since (θa, yct) will move along the graph except
a possible intial layer when θa ∈ (θ1 +O(ε), θ2 +O(ε)). (This can be easily seen from
Equ. (9a).)

Hereinafter, we denote by

Γ = {(θ, y)|y = Ψ(θ)},

the invariant manifold of (9). Then we easily derive

dy

dt

∣∣∣
Γ
= ∂θΨ(θ)

dθ

dt
.

Equ. (9) is reduced to

∂θΨ(θa)
dθa
dt

=
1

ε
A(θa,Ψ(θa)) + F1(θa,Ψ(θa), v)(10a)

dθa
dt

= B(θa,Ψ(θa)) + εF2(θa,Ψ(θa), v).(10b)

This leads to

(11) ∂θΨ(θa)(B(θa,Ψ(θa)) + εF2(θa,Ψ(θa), v)) =
1

ε
A(θa,Ψ(θa)) + F1(θa,Ψ(θa), v)
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Suppose that the function Ψ(θ) has the following formal expansion:

Ψ(θ) = Ψ0(θ) + εΨ1(θ) +O(ε2).

We substitute the expansion into (11). In leading order of ε, we have

O(ε−1) : A(θa,Ψ0(θa)) = 0.

By the formula of A, the equation has a solution only when θa ∈ [θ1, θ2]. Notice that
A(θ, ·) is a periodic function with period 1. We can assume that Ψ0(θ) = k + η(θ)
with k ∈ Z and η(θ) ∈ (0, 1] satisfying A(θ, η(θ)) = 0 and ∂yA(θ, η(θ)) ≤ 0. Then the
leading order of Equ. (10b) is reduced to

O(1) :
dθa
dt

= B(θa,Ψ0(θa)) = g(θa)v.

where we use the formula of B.
In summary, for a small ε, the leading order approximation of (9) when θa ∈

[θ1, θ2] is given by

(12)
dΘ

dt
= vg(Θ), y

(0)
ct = k + η(Θ),

where η(θ) satisfies

A(θ, η(θ)) = 0, ∂yA(θ, η(θ)) ≤ 0, η(θ) ∈ [0, 1),

and the integer k depends on the initial condition of yct.

3.2. The general case. By Equ. (12), we see that θ will increase monotonously
when v > 0 (or decrease monotonously when v < 0) noticing that g(·) ≥ c0 > 0 in
Assumption (A2). Therefore, even when θ ∈ [θ1, θ2] initially, it will go out of the
interval soon. In this subsection, we derive the leading order approximation for (9) in
the general case when θ /∈ [θ1, θ2], by considering the formal approximation expansion
of the backward Kolmorov equation of (9) (c.f. [20]).

The backward Kolmorov equation of Equ. (9) is a partial differential equation

(13)
∂ϕ

∂t
= Lϕ,

with the generator L = 1
εL0 + L1 + εL2 and

(14)

L0 = A(θ, y)∂y,

L1 = B(θ, y)∂θ + F1(θ, y, v)∂y,

L2 = F2(θ, y, v)∂θ.

Here we impose the periodic condition for ϕ(θ, y, t) along y with period 1. Notice
that A(θ, y) ̸= 0 when θ ̸∈ [θ1, θ2]. We easily know that the kernel space of L0 is
one dimensional and given by N (L0) = span{1(y)}, where 1(y) represents a constant
function with respect to y. Let L∗

0 be the dual operator of L0, i.e.

L∗
0ρ = −∂y(A(θ, y)ρ).

7



Then by the Fredholm alternative, L0 also has a one-dimensional kernel space which
is given N (L∗

0) = span{ρ∞}. ρ∞ is obtained by solving the equation

L∗
0ρ

∞(y; θ) = 0,

with periodic condition for y with period 1 and the condition
∫
T ρ

∞(y; θ)dy = 1 where
T = [0, 1]. Direct calculations give

(15) ρ∞(y; θ) =
C0(θ)

A(θ, y)
,

where

(16) C0(θ) =
(∫

T

1

A(θ, y)
dy

)−1

.

It is easy to see that ρ∞(θ, ·) is a probability density function with respect to y.
Now we seek a solution to the backward Kolmogorov equation (13) in form of a

multi-scale expansion

ϕ = ϕ0 + εϕ1 +O(ε2).

By substituting the expansion into (13) and equating coefficients of successive powers
of ε to zero yields the hierarchy

O(ε−1) L0ϕ0 = 0,(17)

O(1) L0ϕ1 =
∂ϕ0

∂t
− L1ϕ0.(18)

From Equ. (17) and the property of N (L0), we know that ϕ0 is a function inde-
pendent of y. By the Fredholm alternative, the second equation (18) is solvable only
when

∂ϕ0

∂t
− L1ϕ0⊥Null{L∗

0}.

This implies that ∫
T
ρ∞(y; θ)

(∂ϕ0

∂t
(θ, t)−B(θ, y)∂θϕ0(θ, t)

)
dy = 0.

The equation can also be derived simply by multiplying (18) with ρ∞ and integration
in an period [0, 1). The equation can be further reduced to

∂ϕ0

∂t
=

(∫
T
ρ∞(y; θ)B(θ, y)dy

)
∂θϕ0(θ, t).

It is the backward Kolmogrov equation for the following ordinary differential equation

(19)
dΘ

dt
=

∫
T
B(Θ, y)ρ∞(y; Θ)dy,

where ρ∞ is given by (15). The equation (19) is the leading order approximation of
the equation (9b). By the formula of B and ρ∞, Equ. (19) can be rewritten as

(20)
dΘ

dt
= −g(Θ)(C0(Θ)− v).
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Here we used the fact that
∫
T p(θ, y)dy = 0 in Assumption (A1).

We then derive the time evolution of the contact point xct = εyct. Notice that
Eq. (9a) can be rewritten as

(21)
dxct

dt
= A(θa, yct) + εF1(θa, yct, v),

which has the same structure as (9b). Similar derivations give the leading order
approximation

(22)
dX

dt
=

∫
T
A(Θ, y)ρ∞(y; Θ)dy = C0(Θ),

where we have used the formula of ρ∞. The equation should be coupled with the
equation (20) which gives the dynamics of Θ.

In summary, when θa /∈ [θ0, θ1], the leading order approximation of (9) is given
by

dΘ

dt
= −g(Θ)(C0(Θ)− v),(23a)

dX

dt
= C0(Θ),(23b)

where (Θ, X) approximates (θa, xct), C0(θ) is defined in (16) representing the har-
monic average of A(θ, y) in a period T.

The equation (23) has a steady solution for the apparent contact angle Θ when

(24) C0(Θ) =
(∫

T

1

A(Θ, y)
dy

)−1

= v.

In this case, the contact line moves with a constant velocity v by the second equation
of (23). One can easily see that the steady state solution Θ is a function of v. It
can be verified that the function is not continuous around v = 0. Actually, notice
that A(θ, y) = f(θ, y)(cos θY (y)− cos(θ + θg(y))). We can expect that θ > θ2 so that
A > 0 when v is positive; and similarly θ < θ1 so that A < 0 when v is negative.
The different limits of the function when v → ±0 corresponds to the contact angle
hysteresis. Equ. (24) shows that the averaged apparent contact angle is determined
by a harmonic average of A(·, ·) but independent of B(·, ·). Notice that the two
examples in Section 2 have the same formula for A but not B. This implies that
the averaged contact angle depends on the local geometric and chemical properties
of the substrate, as well as the physical property of the fluid, but not on the specific
setup of the wetting problem. In this sense, Equ. (24) can be applied to more general
two-phase flow systems.

3.3. Rigorous results. We prove the asymptotic results in this subsection.

Proposition 3.1. Suppose that θεa ∈ [θ1, θ2] and η(θ) ∈ (0, 1] is the unique func-
tion satisfying A(θ, η(θ)) = 0 and ∂yA(θ, η(θ)) < −λ for some positive λ > 0. Let

(yεct, θ
ε
ct) be the solution of (9) and (y

(0)
ct ,Θ) satisfies (12) with a proper k. We also

assume that θεct(0) = Θ(0). Then there exist constants K, c > 0 such that

|yεct(t)− y
(0)
ct (t)|2 ≤ c(e−λt/ε|yεct(0)− y

(0)
ct (0)|2 + ε2)

|θεa(t)−Θ(t)|2 ≤ ceKt(ε|yεct(0)− y
(0)
ct (0)|2 + ε2).
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Proof. The proof is similar to that of Theorem 15.2 in [20]. Let e(t) = yεct(t) −
y
(0)
ct (t) = yεct(t)− k − η(θεa(t)). Then we have

de(t)

dt
=

dyεct
dt

− η′(θεa)
dθεa
dt

=
1

ε
A(θεa, y

ε
ct) + F1(θ

ε
a, y

ε
ct, v)− η′(θεa)(B(θεa, y

ε
ct) + εF2(θ

ε
a, y

ε
ct, t))

=
1

ε

(
A(θεa, y

ε
ct)−A(θεa, k + η(θεa))

)
+ F1(θ

ε
a, y

ε
ct, v)

− η′(θεa)(B(θεa, y
ε
ct) + εF2(θ

ε
a, y

ε
ct, v)).

In the last equation, we have used the fact that A(θεa, k + η(θεa)) = A(θεa, η(θ
ε
a)) = 0.

We multiply the above inequality with e(t) and obtain that

1

2

de2(t)

dt
=
1

ε

(
A(θεa, y

ε
ct)−A(θεa, k + η(θεa))

)
e(t)

+ F1(θ
ε
a, y

ε
ct, v)e(t)− η′(θεa)(B(θεa, y

ε
ct) + εF2(θ

ε
a, y

ε
cy, v))e(t).

Notice that the assumption (A1) and the condition on η imply(
A(θεa, y

ε
ct)−A(θεa, k + η(θεa))

)
e(t)

=
(
A(θεa, k + η(θεa) + e(t))−A(θεa, k + η(θεa))

)
e(t) ≤ −λe2(t),

and
|F1(θ

ε
a, y

ε
ct, v)− η′(θεa)(B(θεa, y

ε
ct) + εF2(θ

ε
a, y

ε
cy, v))| ≤ c

for some positive number c.
By using the Cauchy-Schwartz inequality and choosing δ = ε

λ , we have

1

2

de2(t)

dt
≤ −λ

ε
e2(t) + c|e(t)| ≤ −λ

ε
e2(t) +

e2(t)

2δ
+

δc2

2
= − λ

2ε
e2(t) +

εc2

2λ
.

By Gronwall’s lemma, we have

(25) e2(t) ≤ e−
λ
ε te2(0) + (1− e−

λ
ε t)

ε2c2

λ2
.

This gives the first estimate of the proposition.
Now we consider the approximation error to θεa. Set eθ(t) = θεa(t)−Θ(t). By the

equations (9) and (12), we have

deθ
dt

= B(θεa, y
ε
ct) + εF2(θ

ε
a, y

ε
ct, t)− vg(Θ)

= −g(θεa)(1 + p(θεa, y
ε
ct))A(θεa, y

ε
ct) + vg(θεa) + εF2(θ

ε
a, y

ε
ct, v)− vg(Θ)

= −g(θεa)(1 + p(θεa, y
ε
ct))

(
A(θεa, y

ε
ct)−A(θεa, k + η(θεct))

)
+ v(g(θεa)− g(Θ)) + εF2(θ

ε
a, yctε, v),

We multiply the above inequality by eθ(t). By the smoothness of the related functions,
we have

1

2

de2θ
dt

=
deθ
dt

eθ(t) ≤ c|e(t)||eθ(t)|+ c|eθ(t)|2 + cε|eθ| ≤ C(|eθ(t)|2 + (|e(t)|2 + ε2)).

By using the Gronwall’s inequality and noticing eθ(0) = 0, we obtain the second
estimate of the proposition with K = 2C.
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When θ ̸∈ [θ1, θ2], the function A(θ, y) do not equal to zero, then we have the
following result.

Proposition 3.2. When θ ̸∈ [θ1, θ2], under the assumptions (A1)-(A3), the so-
lution of (9) converges uniformly to the solution of (23) as ε goes to zero if they start
from the same initial values.

Proof. The result is a direct conclusion of Theorem 14, P. 173 in [28].

Theorem 3.1. Assume the conditions (A1)-(A3) hold and v is small. Then the
averaged dynamics of the (9) approaches to a steady state when t is large enough,
where the averaged contact line position X and the averaged apparent contact angle
Θ are given by

(26)
dX

dt
= v,

(∫
T

1

A(Θ, y)
dy

)−1

− v = 0.

In addition, Θ(v) is discontinuous at v = 0, s.t.

lim
v→0+

Θ(v) ≥ θ2 > θ1 ≥ lim
v→0−

Θ(v).

Proof. We first consider the case when v > 0. If initially θa < θ1, the averaged
dynamics will be described by (23). Notice that

C0 =
(∫

T

1

A(Θ, y)
dy

)−1

=
(∫

T

1

f(Θ, y)(cos θY (y)− cos(Θ + θg(y)))
dy

)−1

Since Θ < θ1 and f(Θ, y) ≥ c0 > 0, we easily know that C0 < 0. Then the equation
dΘ
dt = −g(Θ)(C0−v) ≥ c0v > 0, where we use the fact that g(Θ) ≥ c0 > 0. Therefore,
the contact angle will increase monotonously and will enter into the interval [θ1, θ2].

If θa is in [θ1, θ2], the averaged dynamics is described by (12). Since g(θ) > c0 > 0,
we have dΘ

dt ≥ c0v > 0, then the apparent contact angle Θ will increase monotonously
until it goes beyond θ2.

When θa > θ2, the averaged dynamics will again be determined by (23). Notice
that C0 > 0 in this case and limθ→θ+

2
C0(θ) ↓ 0. Therefore when v is small enough,

there exists a Θ > θ2 such that C0(Θ) = v. This gives a steady state of the system.
Similar arguments can be done for the case when v < 0 which leads to a steady

state with an apparent contact angle Θ < θ1. This ends the proof of the theorem.

4. Time averaging of the stochastic model. Similar to the deterministic
case, we set yct =

xct

ε and reformulate the stochastic equation (8) to

ẏct =
1

ε
A(θa, yct) +

1√
ε
α(θa, yct)Ẇ + F1(θa, yct, v),(27a)

θ̇a = B(θa, yct) +
√
εβ(θa, yct)Ẇ + εF2(θa, yct, v),(27b)

where A, B, F1 and F2 are the same as in the deterministic case, α(θ, y) = σf(θ, y)
and β(θ, y) = −σg(θ, y)(1 + p(θ, y))f(θ, y). We study the averaged dynamics of the
stochastic system (27). We first derive the averaged equation by formal derivation
and then prove the results rigorously.

4.1. Formal derivation. We will study the leading order approximation of (27)
by using the backward Kolmogrov equation as in Section 3.2. The backward equation
of (27) can be defined as,

(28)
∂ϕ

∂t
= L̃ϕ,
11



where the generator L̃ is

L̃ = (B + εF2)∂θ + (ε−1A+ F1)∂y +
1

2

(
εβ2∂θθ + 2αβ∂θy + ε−1α2∂yy

)
(29)

Notice that the operator can be expanded as L̃ = ε−1L̃0 + L̃1 + εL̃2 with

L̃0 = A∂y +
1

2
α2∂yy

L̃1 = B∂θ + αβ∂θy + F1∂y

L̃2 =
1

2
β2∂θθ + F2∂θ.

We seek a solution ϕ of the backward equation (28) in the form of the multi-scale
expansion that

ϕ = ϕ0 + εϕ1 + ε2ϕ2 +O(ε3).

Substitute the equation into (28) and equate coefficients of powers of ε to zero. We
derive

O(ε−1) L̃0ϕ0 = 0(30)

O(1) L̃0ϕ1 =
∂ϕ0

∂t
− L̃1ϕ0(31)

O(ε) L̃0ϕ2 =
∂ϕ1

∂t
− L̃1ϕ1 − L̃2ϕ0(32)

Let L̃∗
0 be the adjoint operator. Then for each fixed θ, one can verify that L̃0

satisfies the ergodicity condition, i.e. both L̃0 and L̃∗
0 have a one-dimensional null

space characterized by

L̃01(y) = 0,(33)

L̃∗
0ρ

∞(y; θ) = 0,

∫
T
ρ∞dy = 1,(34)

where the operator L̃0 and L̃∗
0 are equipped with periodic boundary conditions in y.

Then the equation (30) implies that ϕ0 is in the null space of L0, i.e. ϕ0 is independent
of y. By the Fredholm alternative for (31), viewed as a differential equation in y, we
see that

∂ϕ0

∂t
− L̃1ϕ0⊥Null{L̃∗

0}.

This implies that ∫
T

∂ϕ0

∂t
ρ∞(y; θ)−B(θ, y)∂θϕ0ρ

∞(y; θ)dy = 0.

Notice that ρ∞ is a probability density, we have

∂ϕ0

∂t
=

(∫
T
B(θ, y)ρ∞(y; θ)dy

)
∂θϕ0.

12



It is the backward equation of the following deterministic differential equation,

(35)
dΘ

dt
=

∫
T
B(Θ, y)ρ∞(y; Θ)dy, Θ(0) = θ0.

Here ρ∞ is solved from (34). Actually, we have the explicit formula of the probability
density ρ∞ that

(36) ρ∞ = C exp
(
−
∫ y

0

2(αα′ −A)

α2
dy

)[
D +

∫ y

0

2

α2
exp

(∫ ỹ

0

2(αα′ −A)

α2
dȳ

)
dỹ

]
,

where

D =
[
exp

(∫
T

2(αα′ −A)

α2
dy

)
− 1

]−1
∫
T

2

α2
exp

(∫ y

0

2(αα′ −A)

α2
dȳ

)
dy,

C =
[ ∫

T
exp

(
−
∫ y

0

2(αα′ −A)

α2
dȳ

)(
D +

∫ y

0

2

α2
exp

(∫ ỹ

0

2(αα′ −A)

α2
dȳ

)
dỹ

)
dy

]−1

.

Similarly, for the contact point x̃ct = εỹct, we can derive its leading order approx-
imation which is given by

(37)
dX

dt
=

∫
T
A(Θ, y)ρ∞(Θ, y)dy, X(0) = x0.

The equation should be coupled with (35).
In summary, the leading order approximation of the stochastic equation (27) is

given by the equations (35) and (37). In steady state, the averaged apparent contact
angle will be given by ∫

T
B(Θ, y)ρ∞(y; Θ)dy = 0

By the the formula for B, it is rewritten as

(38)

∫
T
(1 + p(Θ, y))f(Θ, y)(cos θY (y)− cos(Θ + θg(y)))ρ

∞(y; Θ)dy = v.

It characterizes the averaged dynamic contact angles in steady states. Direct compu-
tations show that the averaged dynamics by (35) generates contact angle hysteresis
phenomena and (38) gives an explicit formula for the averaged advancing and receding
contact angles. This will also be shown by numerical examples in Section 5.

4.2. Rigorous Results. We present a rigorous result for the multi-scale analysis
in the previous subsection. The proof of the theorem follows that of Theorem 17.1 in
[20].

Theorem 4.1. Assume the conditions (A1)-(A3) hold. Let p > 1 and Θ(0) =
θ0, X(0) = x̃ct(0). Then the function θ̃(t) which solving (27) converges to Θ(t) solving
(35) in the sense that : for any T > 0, there is C1 = C1(T ) such that

(39) E
(

sup
0≤t≤T

|θ̃a(t)−Θ(t)|p
)
≤ C1ε

p/2.

Similarly, the contact point x̃ct = εỹct converges to X(t) solving (37) in the sense
that: for any T > 0, there is C2 = C2(T ) such that

(40) E
(

sup
0≤t≤T

|x̃ct(t)−X(t)|p
)
≤ C2ε

p/2.
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Proof. Let H(θ) =
∫
T B(θ, y)ρ∞(y; θ)dy. Since L̃0 is a differential operator in y

only; θ appears as a parameter, we can construct an elliptic boundary value problem:

L̃0ϕ(θ, y) = B(θ, y)−H(θ)∫
T
ϕ(θ, y)ρ∞(y; θ)dy = 0

ϕ(θ, ·) is periodic on T.

Due to the condition of B(θ, y), we know that the function H(θ) is smooth and
periodic in θ. Hence ϕ and all its derivatives are smooth and periodic.

By construction we have∫
T
(B(θ, y)−H(θ))ρ∞(y; θ)dy = 0

and ρ∞ spans N(L̃∗
0). Hence, by the Fredholm alternative, ϕ has an unique solution.

Notice that the generator for (27) is

L̃ = ε−1L̃0 + L̃1 + εL̃2

Now we apply the Ito formula to ϕ(θ(t), y(t)) to obtain the following informal expres-
sion [20], with precise interpretation found by integrating in time:

dϕ

dt
= L̃ϕ+

√
ε∂θϕβẆ +

1√
ε
∂yϕαẆ

= ε−1L̃0ϕ+ L̃1ϕ+ εL̃2ϕ+
√
ε∂θϕβẆ +

1√
ε
∂yϕαẆ

Since L̃0ϕ = B(θ, y)−H(θ), we obtain

dθ

dt
= B(θ, y) + εF2(θ, y, t) +

√
εβ(θ, y)Ẇ

= H(θ) + ε(
dϕ

dt
− L̃1ϕ+ F2)− ε2L̃2ϕ+

√
ε(β − ∂yϕα)Ẇ − ε

√
ε∂θϕβẆ(41)

The function B,F2, ϕ and its derivatives are smooth and bounded. Set

h1(t) =

∫ t

0

dϕ

dt
− L̃1ϕ+ F2dt

= (ϕ(θ(t), y(t))− ϕ(θ(0)− y(0)))−
∫ t

0

B∂θϕ+ αβ∂θ∂yϕ+ F1∂yϕ+ F2ds

and

h2(t) = −
∫ t

0

L̃2ϕds = −
∫ t

0

1

2
β2∂θ∂θϕ+ F2∂θϕds.

Then there exists a constant C > 0 such that

sup
0≤t≤T

|h1(t)| ≤ C, sup
0≤t≤T

|h2(t)| ≤ C

14



Now consider the martingale terms

M1(t) = −
∫ t

0

(α∂yϕ− β)dW and M2(t) = −
∫ t

0

β∂θϕdW.

Since ∂yϕ, ∂θϕ, β, α are bounded and smooth, the Ito isometry gives

E| ⟨M1⟩t | ≤
∫ t

0

E(|(α∂yϕ− β)|2F )ds =
∫ t

0

E(|M1(t)|2)ds ≤ C1t.

Similarly, for p ≥ 1,

E| ⟨M1⟩t |
p/2 ≤ C1.

We can get the similar result of M2(t):

E| ⟨M2⟩t | ≤ C1t, E| ⟨M2⟩t |
p/2 ≤ C1

Notice that H(θ) is a Lipschitz function, then the rigorous interpretation of (41) is

θ(t) = θ(0) +

∫ t

0

H(θ(s))ds+ εh1(t) + ε2h2(t) +
√
εM1(t) + ε

√
εM2(t).

We also have

Θ(t) = Θ(0) +

∫ t

0

H(Θ(s))ds

Let e(t) = θ(t)−Θ(t), and e(0) = 0,

|e(t)| ≤
∫ t

0

L|e(s)|ds+ εC1 + ε2C1 +
√
ε|M1(t)|+ ε

√
ε|M2(t)|.

Hence, by the Burkholder-Davis-Gundy inequality [20], we obtain

E( sup
0≤t≤T

|e(t)|p) ≤ C1(ε
2 + ε2p + εp/2E| ⟨M1⟩t |

p/2 + ε3p/2E| ⟨M2⟩t |
p/2

+ LpT p−1

∫ T

0

E(|e(s)|p)ds)

≤ C1(ε
p/2 +

∫ T

0

E( sup
0≤τ≤s

|e(τ)|p)ds)

By Gronwall inequality, we deduce that

E( sup
0≤t≤T

|e(t)|p) ≤ C1ε
p/2.

This is the estimate in (39). The proof on the convergence of the dynamics of the
contact point (i.e. (40)) is similar (even simpler) and we ignore it.

4.3. Convergence of the stochastic system to the deterministic system.
In this subsection, we want to show that the averaging stochastic dynamics (35)
converges to that of the deterministic averaged dynamics (12) and (20) when the
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noise level σ → 0. To this end, we need to consider two different cases: i) A > 0 or
A < 0 always holds; ii) there exists at least one y0 such that A(Θ, y0) = 0. Since
f(Θ, y) > 0 always holds due to the fact that θg < 90◦, it is obvious that the first
case occurs when Θ /∈ [θ1, θ2], while the second case occurs when Θ ∈ [θ1, θ2].

Case i): We first assume that A(Θ, y) < 0 always holds for all y ∈ T. It is
sufficient to prove that the invariant measure (36) of the stochastic system converges
to the invariant measure (15) of the deterministic system. For simplicity, we will omit
the dependence of all the functions on Θ.

Denoting V (y) = −
∫ y

0
2A
f2 dy, which is positive and strictly monotonically increas-

ing in y, we can rewrite the invariant measure (36) as

(42) C−1ρ∞σ =
(f(y)
f(0)

)−2

e−
V (y)

σ2

{ 1

e
V (1)

σ2 − 1
Q(1) +Q(y)

}
,

where Q(y) =
∫ y

0
2

σ2f2(0)e
V (ỹ)

σ2 dỹ. Due to the monotonicity of V (ỹ), we can apply

the change of variable z̃ = V (y) − V (ỹ). Then Q(y) (for 0 < y ⩽ 1) can be further
simplified as

Q(y) = −e
V (y)

σ2

∫ V (y)

0

f2(V −1(V (y)− z̃))

σ2f2(0)A(V −1(V (y)− z̃))
e−

z̃
σ2 dz̃

= e
V (y)

σ2

(
− f2(y)

f2(0)A(y)
+O(σ2)

)
,(43)

where we have used Watson’ lemma (or simply an integration by parts) to deduce the
leading order behavior in the second equality. Putting this estimate into (42), we find
that

C−1ρ∞σ = − 1

A(y)
+O(σ2) +

(f(y)
f(0)

)−2 e
V (1)−V (y)

σ2

e
V (1)

σ2 − 1
(− 1

A(0)
+O(σ2)),

which converges to − 1
A(y) as σ2 → 0 for any 0 < y ⩽ 1. In fact, we can show

that for any function ζ(y) ∈ C∞(T), lim
σ→0

∫ 1

0
ζ(y)C−1ρ∞σ (y)dy = −

∫ 1

0
ζ(y)
A(y)dy. This is

easily seen by noticing that
∫ 1

0

(
f(y)
f(0)

)−2

ζ(y)e−
V (y)

σ2 dy = − f2(0)ζ(0)
2A(0) σ2 + O(σ4) using

Watson’s lemma. Taking ζ ≡ 1, we obtain that C−1 → −
∫ 1

0
dy

A(y) as σ → 0. As

a result, the right side of (35) converges to that of (20). Moreover, we have the
pointwise (and weak) convergence in T:

(44) lim
σ→0

ρ∞σ (y) =
1

A(y)

(∫ 1

0

dy

A(y)

)−1

.

When A < 0, by change of variables ȳ = 1− y and Ā = −A > 0, we can rewrite
the equation for the invariant measure as L̃∗

0ρ
∞(ȳ; θ) = 0 so that ρ∞ is represented

using ȳ and Ā > 0 instead of y and A. Thus the previous argument can still apply.
Case ii): We first make an assumption that for the periodic function A(y), there

are two zeros y1 and y0 in [0, 1) such that A′(y1) > 0 and A′(y0) < 0, i.e., y1 is an
unstable equilibrium for the fast deterministic dynamics (9a) while y0 is an asymp-
totically stable equilibrium. Due to the periodicity of A, we can assume y1 = 0 and
y0 ∈ (0, 1) without loss of generality. These assumptions hold for our choices of θY in
the numerical examples.
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We introduce V (y) = −
∫ y

y0

2A
f2 dy, which now plays the role of potential function

in the fast dynamics (9a) or (27). Then V is strictly monotonically decreasing in
(0, y0) and strictly monotonically increasing in (y0, 1). In particular, it achieves its
maxima at y = 0 and y = 1 while it has a minimum at y = y0, i.e., V

′(0) = V ′(1) = 0,
V ′′(0) = V ′′(1) < 0, V (y0) = V ′(y0) = 0, V ′′(y0) > 0. For our convenience, we rewrite
the invariant measure (36) by using a different integrating factor as

(45) C−1ρ∞σ =
( f(y)

f(y0)

)−2

e−
V (y)

σ2

{ e
V (0)

σ2

e
V (1)

σ2 − e
V (0)

σ2

Q(1)− e
V (1)

σ2

e
V (1)

σ2 − e
V (0)

σ2

Q(0) +Q(y)
}

where Q(y) =
∫ y

y0

2
σ2f2(y0)

e
V (ỹ)

σ2 dỹ.

We claim that for any function ζ(y) ∈ C∞(T), lim
σ→0

∫ 1

0
ζ(y)ρ∞σ (y)dy = ζ(y0). For

this purpose, we need to estimate the quantities Q(0), Q(1),
∫ 1

0
ζ(y)

(
f(y)
f(y0)

)−2

e−
V (y)

σ2 dy,

and
∫ 1

0
ζ(y)

(
f(y)
f(y0)

)−2

e−
V (y)

σ2 Q(y)dy.

By using Laplace method near ỹ = 0, we can estimate Q(0) as

Q(0) = − 2e
V (0)

σ2

σ2f2(y0)

∫ y0

0

e
V (ỹ)−V (0)

σ2 dỹ = − 2e
V (0)

σ2

σ2f2(y0)

( √
πσ√

−2V ′′(0)
+ o(σ)

)
.

In the same way, Q(1) can be estimated as

Q(1) =
2e

V (1)

σ2

σ2f2(y0)

( √
πσ√

−2V ′′(1)
+ o(σ)

)
.

By using Laplace method near ỹ = y0, we obtain the following estimate∫ 1

0

ζ(y)
( f(y)

f(y0)

)−2

e−
V (y)

σ2 dy = ζ(y0)
( √

2πσ√
V ′′(y0)

+ o(σ)
)
.

For the last integral, we can bound it by an O( 1
σ2 ) term:∣∣∣ ∫ 1

0

ζ(y)
( f(y)

f(y0)

)−2

e−
V (y)

σ2 Q(y)dy
∣∣∣ ⩽ 2

σ2

∫ 1

0

∣∣∣ ζ(y)
f2(y)

∣∣∣dy,
where we have used V (ỹ) ⩽ V (y) for any ỹ between y0 and y to bound the exponential
term.

To sum up, we have from (45) that∫ 1

0

ζ(y)C−1ρ∞σ (y)dy = ζ(y0)
e

V (0)+V (1)

σ2

e
V (1)

σ2 − e
V (0)

σ2

( 2πf(0)

f(y0)
√
−A′(0)A′(y0)

+ o(1)
)
+O(

1

σ2
),

whose leading order term is O(exp(min{V (0),V (1)}
σ2 )) with an exponential growth as

σ → 0. In particular, when ζ ≡ 1, this implies that

C−1 =

∫ 1

0

C−1ρ∞σ (y)dy =
e

V (0)+V (1)

σ2

e
V (1)

σ2 − e
V (0)

σ2

( 2πf(0)

f(y0)
√
−A′(0)A′(y0)

+ o(1)
)
+O(

1

σ2
).

Combining these two estimates together, we arrive at our claim. Moreover, ρ∞σ (y)
weakly converges to δ(y − y0). Taking ζ(y) = B(Θ, y), we immediately obtain that
the right side of (35) converges to that of (12).
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5. Numerical examples. In this section, we present some numerical examples
for the deterministic model (9), the stochastic model (27) and their averaged systems.
We apply the forward Euler method to numerically solve the ordinary differential
equations and use the Milstein method to solve the stochastic system (27).

Example 1. We consider the problem for a fiber moving in a liquid reservoir
described in Section 2.1. The surface of the fiber is given by R(x, t) = R0 + εR1((x−
vt)/ε), with R0 = 0.1 and R1(y) = sin(2πy)/4. For the Young’s angle, we set θY (y) =
π/2 + π/12 sin(2πy). We solve the equation (5) by setting α = 0, ζ = 100, γ/µ = 1
and rc = 10.
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Fig. 3. Advancing dynamics for ε = 0.05, 0.01, 0.001 and 0.0001 and the averaged contact angle
and contact point with velocity vw = −0.01. Left panel: The dynamical contact angle starting from
θinit = 60◦. Right panel: The contact line position starting form 0.
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Fig. 4. Receding and advancing dynamics for ε = 0.1, 0.01, 0.001 and 0.0001 and their respective
averaged contact angle and contact point with the wall velocity vw = ±0.01. Left panel: The
dynamical contact angle starting from θinit = 90◦. Right panel: The contact line position starting
form 0.

We first did experiments for several choices of ε with the initial contact angle
θa = 60◦ and the initial contact point xct = 0. We choose vw = −0.01 for the fiber
velocity, which corresponds an advancing contact line with velocity v = −vw = 0.01
in (7). The numerical results are shown in Figure 3. We observe that the advancing
contact angle and corresponding contact point have a clear three-stage process. From
the left subfigure, we can see that there exist two critical values θ1 ≈ 69.2◦ and
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θ2 ≈ 110.7◦ for the dynamic contact angle. In the first stage that the contact angle is
smaller than θ1, the solutions of Equ. (5) converge to that of the averaged equation (23)
when ε goes to zero. In the second stage that the contact angle is between θ1 and θ2,
the solutions of Equ. (5) converge to that of the averaged system (12). The contact
angle increases monotonously in the first two stages. In the third stage, the solutions
of Equ. (5) again converge to that of the averaged system (23). In particular, the
contact angles oscillate around a value which corresponds to the steady state of (23),
which is actually characterized by Equ. (24). All the observations are consistent with
our analysis in Section 3.

To see the contact angle hysteresis, we did more tests by setting the velocity of
the fiber as vw = ±0.01. Here we choose the initial contact angle as θa = 90◦. The
numerical results are illustrated in Figure 4. Once again we observe the convergence
of the solutions of the system (5) to that of the corresponding averaged equations.
Furthermore, the averaged advancing contact angle is clearly much larger than the
receding one in steady states. Both of them can be described by Equ. (24) (noticing
the contact line velocity is opposite to the fiber velocity v = −vw). This verifies the
analytical results in Theorem 3.1.

Example 2. We consider the fiber motion in a liquid as in Example 1 with an
extra stochastic force term as in (8). We set the initial contact angle θa = 90◦, the
noise coefficient σ = 0.1, 0.3, 0.6, 0.8, and all other conditions are the same as in the
previous example. The numerical results are shown in Figure 5. We only show the
dynamics of the contact angles since the plots on the contact points are similar to
those in deterministic case. We can see that the numerical solutions of (8) converge
to that of the averaged equation (35)(red curves) in all the four cases. The contact
angle hysteresis is clearly observed. Furthermore, the contact angles in steady state
are affected by the value of σ. When σ becomes smaller, the averaged dynamics of
the stochastic system is much closer to that of the deterministic system. This verifies
the analysis in Section 4.

Example 3. We consider the imbibition of liquid channel with smoothly oscillating
boundary as described in Section 2.2. The boundary is given by h(x, t) = h0 +
εh1((x + vt)/ε) with h0 = 0.8 and h1 = sin(2πy)/4. The Young’s angle is θY (y) =
π/3+ π/20 sin(2πy). In the ODE system (6), we set α = 0, ξ = 100 and γ/µ = 1. We
did experiments for several choices of ε with the initial contact angle θa = 60◦ and
the initial contact point xct = 0. We set the velocity v = ±0.01 which respectively
correspond to the advancing and receding motion of the contact line. The numerical
results are shown in Figure 6. We observe that the dynamics by (6) converges to the
averaged system (12) and (23) in both the advancing and receding cases, similar to
that in Example 1.

Example 4. We study the corresponding stochastic model for the liquid imbibition
problem in a channel. We will solve the SDE model (8). We set the noise coefficient
σ = 0.1, 0.3, 0.6, 0.8, and all other conditions are the same as the previous example.
The numerical results on the dynamic contact angles are shown in Figure 7. Once
again, we observe the convergence of the solutions of the stochastic equation to those
of Equ. (35) with decreasing ε. When the coefficient σ is small, the averaged dynamics
of the stochastic system is close to that of the deterministic one.

Example 5. In the last example, we will study the velocity dependence of the
dynamic contact angle hysteresis on the velocity. We solve the stochastic systems for
both the moving fiber problem (as in Example 2) and the liquid imbibition problem
(as in Example 4). We set ε = 0.001, σ = 0.1, and choose different velocity v. The
left subplot in Figure 8 describes the dynamics of the advancing and receding contact
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Fig. 5. Receding and advancing dynamics for ε = 0.05, 0.01, 0.001 and 0.0001 and the averaged
contact angle. Upper left panel: σ = 0.1. Upper right panel: σ = 0.3. Lower left panel: σ = 0.6.
Lower right panel: σ = 0.8.
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Fig. 6. Receding and advancing dynamics for ε = 0.05, 0.01, 0.001 and 0.0001 and their respec-
tive averaged contact angle and contact point with velocity v = ±0.01. Left panel: The dynamical
contact angle starting from θinit = 60◦. Right panel: The contact line position starting form 0.

angles for different contact line velocity on a fiber. We see clearly the asymmetric
dependence of the advancing and receding contact angles on the velocity. This is
consistent of the experimental observations in [15]. Interestingly, similar phenomena
are observed for the channel case as shown in the right subplot in Figure 8. More
discussions on such phenomena are referred to [39].
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Fig. 7. Receding and advancing dynamics for ε = 0.05, 0.01, 0.001 and 0.0001 and the averaged
contact angle. Upper left panel: σ = 0.1. Upper right panel: σ = 0.3. Lower left panel: σ = 0.6.
Lower right panel: σ = 0.8.
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Fig. 8. Velocity dependence of the CAH phenomena with ε = 0.001 and σ = 0.1 in Example 2
and Example 4.

6. Conclusions. We study the dynamic contact angle hysteresis of wetting on
geometrically and chemically rough surfaces. We derive averaged systems for both
a deterministic model and a stochastic model. For the deterministic model, we de-
rive an explicit formula (24) for the apparent contact angles in steady states. The
equation (24) indicates that the apparent contact angles depends on the contact line
velocity as well as the harmonic averaging of the geometrical and chemical inhomo-
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geneity near the contact line. It can be used as a dynamic boundary condition for
contact angle hysteresis in general cases, coupled with the two-phase Navier-Stokes
equation. For the stochastic model, the stochastic thermal forces play an important
role and a similar formula (38) is derived. The relations between the stochastic mod-
els and the deterministic models are also discussed. We provide rigorous analysis
for the multi-scale analysis by proving the convergence of the original systems to the
averaged systems when the roughness coefficient goes to zero. Numerical examples
are presented to verify the theoretical results.

In this study, we focus mainly on two dimensional problems. The three dimen-
sional problems can be discussed by combining the results in 2D with some previous
homogenization results [33]. This is very complicated and will be left for future work.

Appendix A. Derivation of the ODE system for the capillary problem
on a moving fiber. We first use the equation (4) for the liquid-air interfaces. On
the contact line, we have the consistent condition

zct = h(t)− R̃(zct, t) cos θa ln
R̃(zct, t) +

√
R̃(zct, t)2 − R̃2(zct, t) cos2 θa

R̃(zct, t) cos θa

= h(t)− R̃(zct, t) cos θa ln
1 + sin θa
cos θa

.

Substitute the equation to (4) and eliminate h(t), we have

(46) H(r) = zct − R̃(zct, t) cos θa ln
r +

√
r2 − R̃2(zct, t) cos2 θa

R̃(zct, t)(1 + sin θa)
.

Far from the fiber, the liquid surface becomes flat. We set H(rc) = 0 for a capillary
length rc. Then we have H(rc) = 0. This leads to an equation

(47) zct − R̃(zct, t) cos θa ln
rc +

√
r2c − R̃2(zct, t) cos2 θa

R̃(zct, )(1 + sin θa)
= 0.

The equation gives a relation between the contact angle and contact point. We will
use the equation and the equation (3) to derive a complete system to describe the
dynamic contact angle.

Actually, notice that the contact line velocity is given by vct = (żct − vw)/ cos θg.
The equation (3) is reduced to

(48) żct − vw =
γF(θd) cos θg

µ
(cos θY − cos θd).

Then the derivative for the equation (47) gives a relation that

(49) θ̇a = −g1(θa, zct, t)
(
g2(θa, zct, t)(ż − vw) + vw

)
where

g1(θa, zct, t) =
1

R̃(zct, t)
(
sin θaG (θa, zct, vw) + 1

)
g2(θa, zct, t) = 1−R′

1(
zct − vwt

ε
)G (θa, zct, t) cos θa.
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and

G (θa, zct, t) = ln
rc +

√
r2c − R̃2(zct, t) cos2 θa

R̃(zct, t)(1 + sin θa)
− 1

− R̃2(zct, t) cos
2 θa

(rc +
√
r2c − R̃2(zct, t) cos2 θa))

√
r2c − R̃2(zct, t) cos2 θa

.

If rc ≫ R0, the formula can be further simplified to

G (θa, zct, t) = ln
2rc

R̃(zct, t)(1 + sin θa)
− 1.

To further simplify the equations, we can introduce a new variable ẑct = zct −
vwt, which is actually the vertical coordinate of the contact line in a coordinate
system moving with the fiber. Then the equations (48) and (49) are reduced to the
equation (5).

Appendix B. Asymptotic Approximations of Stochastic System’s Inte-
grals. We show how to calculate the averaged stochastic dynamics (35) numerically.
Although we present the exact formula for the invariant measure in Section 4.1, it is
difficult to use when σ is very small. In this case we consider the asymptotic approx-
imation of the averaged equation. As discussed in Section 4.2, we have two different
cases: in the first case, A > 0 or A < 0 always holds; and in the second case, there
exists at least one y0 such that A(Θ, y0) = 0.

Firstly, when A does not have zeros, by using the Watson’ lemma, we have the
following approximation:

dΘ

dt
=

∫
T
B(Θ, y)ρ∞(Θ, y)dy

= C1

∫
T
B(Θ, y)

( 1

A(Θ, y)
+ σ2 2A(Θ, y)f(y)f ′(y)− f(y)A′(Θ, y)

2A3(Θ, y)

)
dy

where the constant C1 =
( ∫

T
1

A(Θ,y) + σ2 2A(Θ,y)f(y)f ′(y)−f(y)A′(Θ,y)
2A3(Θ,y) dy

)−1

.

In second case, there are a stable point y0 of the function A such that A(Θ, y0) = 0
and A′(y0) < 0. By using Laplace method, we obtain the following approximation:

dΘ

dt
=

∫
T
B(Θ, y)ρ∞(Θ, y)dy

= −σ
g(Θ)(1 + p(Θ, y))f2(y0)

√
A′(0)A′(y0)

C24πA′(y0)f(0)− 2f(y0)
√
−A′(0)A′(y0)

(
2√
π
+

√
π)− g(Θ)v

where the constant C2 = sgn(V (1)−V (0)) exp(min{V (0),V (1)}
σ2 ) and V (y) = −

∫ y

0
2A
f2 dy.

In the numerical examples in Section 5, we use the asymptotic approximations
when the noise coefficient σ = 0.1 and 0.3. And we calculate the averaged dynamics
using the exact formula (36) for the invariant measure when the noise coefficient
σ = 0.6 and 0.8.
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