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Abstract. In this paper, we present a novel theoretical framework for a moving finite element4
method and prove the convergence of the method under some mild conditions. We introduce a regu-5
larized metric to the finite element space with free knots. This leads to a smooth Riemann manifold6
and a metric space when considering geodesic distance. We show that the moving finite element dis-7
cretization for a nonlinear reaction-diffusion equation can be viewed as a curve of maximal slope in8
the discrete metric space. This inspires us to propose a JKO scheme and an explicit stabilized numer-9
ical scheme for the moving finite element method. We further prove the convergence of the moving10
finite element method in a general case using the gradient flow theory in metric spaces. Numerical11
examples are given to show that the discrete schemes work efficiently for both one dimensional and12
two dimensional problems.13
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1. Introduction. Adaptive finite element methods have been widely used in15

solving partial differential equations (PDEs) in various scientific and engineering fields,16

particularly when dealing with singularities or sharp inner/boundary layers in the17

solution. There are mainly three types of adaptive methods: the h-type method, the18

p-type method, and the r-type method. The h-type method, widely acknowledged19

and extensively studied in the literature, involves adaptively refining or coarsening20

local meshes based on a posteriori error estimates [3, 1, 40]. The method has been21

proven to achieve optimal convergence [8, 37]. The p-type method, on the other hand,22

adjusts the local order of the finite element basis to increase or decrease it according23

to the solution errors. The p-type method can be combined with the h-type method,24

resulting in the hp method, where both the meshes and the polynomial orders are25

altered locally based on a posteriori error estimates [1]. The r-type method, often26

referred to as moving mesh (grid) finite element methods in the literature [10, 39],27

redistributes the mesh locations according to the solution and is typically utilized for28

time-dependent problems.29

Compared to methods based on local mesh or polynomial order refinement, the30

theoretical analysis of the moving mesh methods is currently very limited [7, 20, 29,31

25, 15], despite their widespread use in various problems (e.g., [32, 31, 22, 35, 26, 11,32

38, 19, 5, 33, 43, 6], among many others). One important result in this field is the33

work done by N. Kopteva in [25], where the first order convergence of the moving mesh34

finite element method is proved for a stationary linear singularly perturbed equation35

in one dimension.36

Recently, there exists much interest in developing Lagrangian type methods for37

gradient flow systems [28, 27, 14]. The methods have very close relations with the38

moving finite element method (MFEM) [32, 4, 21]. In particular, it is found that the39

moving finite element method for gradient flow systems can be derived naturally from40

the Onsager variational principle [42]. Based on the variational principle, it is possible41

to provide optimal error estimates for the stationary solution of the system, which42

improves the previous results [20, 23]. However, analyzing the dynamic solutions still43

poses a significant challenge, as it requires a more complex analysis of the discrete44
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gradient flows.45

The main objective of this paper is to establish a theoretical framework to the46

moving finite element method for gradient flow systems. To accomplish this, we47

leverage the deep connections between the Onsager variational principle and gradient48

flows in metric spaces [30, 2]. We introduce a novel mathematical framework for49

the moving finite element method applied to dissipative systems, formulating it as a50

discrete gradient flow system in metric spaces. Based on the framework, we develop51

a Jordan-Kinderlehrer-Otto (JKO) scheme [24] and a new explicit stabilized scheme52

for the discrete gradient flow system. By utilizing the analysis tools from the theory53

of gradient flows in metric spaces [2, 34, 36], we are able to prove the convergence of54

the JKO scheme for a nonlinear gradient flow system.55

More precisely, we consider a model problem which is a nonlinear reaction dif-56

fusion equation and can be viewed as a (continuous) gradient flow in a metric space57

with a L2-distance. To discretize this problem, we first introduce a natural metric on58

the nonlinear approximation space for polynomials with free knots. We prove that59

this nonlinear space, equipped with the metric, forms a finite-dimensional Riemann60

manifold. However, there is a possibility of degeneracy in the manifold, so we add a61

regularized term to the metric. This regularization also allows us to define a distance62

measure by considering the geodesic distance within the manifold. We prove that the63

discrete manifold, equipped with the geodesic distance, results in a discrete metric64

space. Next, we study the approximation of the continuous gradient flow in the dis-65

crete metric spaces, which precisely corresponds to the moving finite element method.66

We then propose a fully discrete JKO scheme for the discrete gradient flows and prove67

its convergence to the solution of the continuous problem under mild assumptions. In68

the implementations, we develop a new explicit stabilized scheme by approximation69

to the optimization problem in the JKO scheme. Numerical experiments show that70

the method works well for both one dimensional and two dimensional problems.71

The remaining sections of this paper are organized as follows. In Section 2, we72

briefly introduce some definitions in gradient flow theory in metric spaces. Section73

3 introduces the continuous convection-diffusion equation and reformulates it as a74

gradient flow in a metric space in the L2-distance. To transition to the discrete75

setting, Section 4 defines the discrete metric space for the finite element functions76

with free knots. Subsequently, in Section 5, we present the approximation of the77

convection-diffusion equation in the discrete metric space while also illustrate the main78

theoretical results. Section 6 is dedicated to presenting the proof of the existence and79

convergence results. In section 7, we present an explicit stabilized scheme and some80

numerical examples. In the final section, we present some concluding remarks.81

2. Preliminary: Gradient flows in metric spaces. We recall some defini-82

tions on gradient flows in metric spaces in [2]. Let (S , d) be a given complete metric83

space equipped with the distance d. We first introduce the definition of absolutely84

continuous curves in (S , d).85

Definition 2.1 (absolutely continuous curve). Let (a, b) be an interval of R.86

We say a curve v : (a, b) 7→ S is a p-absolutely continuous curve or belongs to87

ACp(a, b;S ) for p ≥ 1, if there exists a function m ∈ Lp(a, b), such that88

d(v(s), v(t)) ≤
∫ t

s

m(r)dr, ∀a < s ≤ t < b.(2.1)89

In the case p = 1, v is called an absolutely continuous curve and the corresponding90

space is simply denoted as AC(a, b;S ).91
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For absolutely continuous curves, the metric derivative is defined as follows.92

Definition 2.2 (metric derivative). For any curve v in ACp(a, b;S ) with p ≥ 1,93

the limit94

|v′|(t) := lim
s→t

d(v(s), v(t))

|s− t|
,(2.2)95

exists for a.e. t ∈ (a, b) and is called the metric derivative of v. Moreover, |v′|(t) ∈96

Lp(a, b) is the smallest admissible function m in Definition 2.1.97

Let E : S 7→ (−∞,+∞] be a functional defined on S . Define the admissible set98

D(E) := {v ∈ S |E(v) < +∞}.99

Then the strong upper gradient of E can be defined as follows100

Definition 2.3 (strong upper gradient). A function g : S 7→ [0,+∞] is a strong101

upper gradient of E if for every curve v ∈ AC[a, b;S ], the function g ◦ v(t) := g(v(t))102

is Borel and satisfies103

|E(v(t))− E(v(s))| ≤
∫ t

s

g ◦ v(r)|v′|(r)dr, ∀a < s ≤ t < b.(2.3)104

In particular, if g ◦ v|v′| ∈ L1(a, b), then E(v(t)) is absolutely continuous and105

|(E ◦ v)′|(t) ≤ g ◦ v(t)|v′|(t), a.e. t ∈ (a, b).(2.4)106

A natural candidate for the upper gradient is the local slope of the functional.107

Definition 2.4 (local slope). The local slope of E at v ∈ D(E) is defined by108

|∂E|(v) := lim sup
w→v

(E(v)− E(w))+

d(v, w)
,(2.5)109

where f+ = max(f, 0) is the positive part of a function f .110

Notice that the local slope is not a strong upper gradient in general and some extra111

conditions are needed [2].112

The following definition is a generalization of the standard gradient flow in metric113

spaces.114

Definition 2.5 (p-curve of maximal slope). We say a locally absolutely continu-115

ous map u : (a, b) 7→ S is a p-curve of maximal slope with respect to its upper gradient116

g, if E ◦ u(t) is a.e. equal to a non-increasing map ψ, and117

ψ′(t) ≤ −1

p
|u′|(t)− 1

q
(g ◦ u(t))q, for a.e. t ∈ (a, b),(2.6)118

where 1
p + 1

q = 1. If p = 2, we call u a curve of maximal slope.119

The existence of a curve of maximal slope for a functional is established in [2]120

by investigating the JKO (implicit Euler) scheme in time [24], under appropriate121

conditions. Building upon this analysis, [34] explores the approximation of the en-122

ergy functional E using a similar approach. In the subsequent sections, we adopt123

this framework to investigate the convergence of a moving finite element method for124

reaction-diffusion equations with gradient flow structures.125
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3. The continuous problem. We consider the following reaction diffusion126

equation,127

∂tu = α∆u− f ′(u), in Ω,(3.1)128

u = 0, on ∂Ω,(3.2)129130

where α > 0 is the diffusion coefficient and f ≥ 0 is an energy density function. We131

assume that Ω ⊂ R2 is a simple connected domain with smooth boundary, and f(u)132

is a smooth function such that f ′′(u) ≥ λ0 for some λ0 ∈ R.133

It is well known that the equation (3.1) can be viewed as a L2 gradient flow for134

the energy functional135

E(u) =
∫
Ω

α

2
|∇u|2 + f(u)dx.136

For later applications, we rewrite the energy as137

(3.3) E(u) =
ß ∫

Ω
α
2 |∇u|

2 + f(u)dx, if u ∈ H1
0 (Ω);

+∞, otherwise.
138

We will formulate the problem as a curve of maximal slope in a metric space with a139

L2-distance by using the definitions in the previous section.140

Consider the Lebesgue space L2(Ω). Let (u, v)0 =
∫
Ω
uvdx be the inner product141

of two functions u and v in L2(Ω); and ∥u∥0 =
(∫

(u(x))2dx
) 1

2 be the L2 norm of u.142

Then the distance between the two functions u and v in L2(Ω) can be defined as143

d(u, v) = ∥u− v∥0.(3.4)144

It is easy to see that (L2(Ω), d) is a complete metric space.145

For an absolutely continuous curve u(t, ·) : (0, T ) → L2(Ω), the metric derivative146

is given as |u′|. When u is differentiable with respect to t, we denote the “time”147

partial derivative as ∂tu. When ∂tu ∈ L2(Ω), the metric derivative of u is equivalent148

to the L2 norm of the time derivative, i.e. |u′| = ∥∂tu∥0.149

For the energy functional E defined in (3.3), the local slope at u(t1) is defined as150

|∂E(u)| = lim sup
v→u

|E(v)− E(u)|
d(u, v)

.151

If u ∈ H2(Ω), the local slope can be computed analytically,152

|∂E(u)| = ∥ − α∆u+ f ′(u)∥0.153

In this case, a curve of maximal slope is an absolutely continuous curve u(t) ∈154

AC(L2(Ω)), satisfying155

d

dt
E(u(t)) ≤ −1

2
|u′|2(t)− 1

2
|∂E|2(u(t)).(3.5)156

One can easily show that the curve of maximal slope is a solution of the partial157

differential equation (3.1). Actually, by the equation (3.5), we can derive that158

−1

2
|u′|2(t)− 1

2
|∂E|2(u(t)) ≥ d

dt
E(u(t)) = (−α∆u+ f ′(u), u̇)0159

≥ −∥ − α∆u+ f ′(u)∥0∥u̇∥0160

≥ −1

2
|u′|2(t)− 1

2
|∂E|2(u(t)).161

162
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Therefore, all the inequalities in above equation are equalities and we have

∂tu = α∆u− f ′(u),

which is exactly the equation (3.1).163

4. The discrete metric space. For simplicity in notations, we consider only164

the two-dimensional case.165

4.1. The finite element space with free knots. We introduce a nonlinear166

approximation space of piecewisely linear functions with free-knots as follows ([18]).167

Let Ω̂ be a reference domain, T̂N be a regular triangulation of Ω̂, and N̂ be the set168

of vertexes of T̂N . We suppose that #N̂ = N , i.e. N is the total number of the169

vertexes in the triangulation T̂N . Let F : x̂ 7→ x be a bijection from Ω̂ to Ω such that170

TN := F T̂N be a triangulation of Ω in the following sense:171

• The vertex set N of TN is given by172

N := {x : x = F (x̂), x̂ ∈ N̂}.173

• Each element in TN is a triangle formed by three vertexes in N . The elements174

do not overlap and have positive areas.175

• TN has the same topology as T̂N .176

If F satisfies all the above conditions, we say F is admissible and denote the admissible177

set178

Aad := {F : F is admissible}.179

By the above definition, for F ∈ Aad, we have F (x̂) is on the boundary of Ω whenever180

x̂ is on the boundary of Ω̂. Notice that F is a nonlinear mapping from Ω̂ to Ω in181

general.182

Let TN be a triangulation of Ω. We define the standard finite element space on183

TN as follows184

Vh(TN ) := {vh ∈ C(Ω) : vh is piecewisely linear on TN , vh = 0 on ∂Ω.}185

Then the nonlinear approximation space associated to T̂N is defined as follows,186

VN :=
⋃

F∈Aad

Vh(F T̂N ).187

Notice that VN is not a linear space, since the summation of two functions in the188

space may not belong to VN if they correspond to different partitions of Ω. Instead VN189

forms a finite dimensional manifold. We can determine the dimension of the manifold.190

Denote by N̂b the set of nodes on the boundary of ∂Ω̂ and by N̂in the set of inner191

nodes. We assume that the number of vertexes in N̂b isM , i.e. #N̂b =M < N . Then192

we have #N̂in = N −M . It is easy to see that the number of freedoms in Vh(TN )193

is N −M for any fixed triangulation TN . Notice that the nodes in the triangulation194

for functions in VN can also change positions. For simplicity, we assume that the195

nodes on the boundary ∂Ω are fixed. Each vertex in N̂in has two freedoms. Then the196

dimension of the manifold VN is 3(N −M).197
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4.2. The regularized metric space. We introduce a natural metric for func-198

tions in VN . For any vh ∈ VN , suppose the corresponding triangulation for vh is TN ,199

then it can be written as vh =
∑N−M

i=1 viϕi, where vi is the value of vh on the vertex200

xi ∈ Nin and ϕi is the standard linear finite element basis function with respect to xi.201

For any xi ∈ N , let ωi be the patch composed by all elements which includes xi as a202

vertex. Let N (ωi) be the set of vortexes which is included in ωi in the triangulation.203

We now consider the tangential space of the manifold VN . Without loss of generality,204

suppose that vh(t) is a curve on the manifold given by205

vh(t) =

N−M∑
i=1

vi(t)ϕi(t, x).206

Notice that ϕi(t, x) = ϕi(· · · , xj(t), · · · ; x) depends on all the vertexes xj(t) ∈ N (ωi).207

Denote by (xj(t), yj(t)) the coordinate of xj(t). Then we have208

dvh
dt

=

N−M∑
i=1

(dvi
dt
ϕi +

dxi
dt

∑
xj∈N (ωi)

vj∂xiϕj +
dyi
dt

∑
xj∈N (ωi)

vj∂yiϕj

)
.209

210

Hereinafter, we denote by Nin = {xi : 1 ≤ i ≤ N −M} the set of inner vertexes in211

TN .212

Denote by213

βi :=
∑

xj∈N (ωi)

vj∂xi
ϕj , 1 ≤ i ≤ N −M214

γi :=
∑

xj∈N (ωi)

vj∂yiϕj , 1 ≤ i ≤ N −M.215

216

Then the tangential space of VN corresponding to a function vh ∈ VN can be given by217

TvhVN = span{ϕi, βi, γi : 1 ≤ i ≤ N −M}.(4.1)218

We say VN is non-degenerate at vh whenever TvhVN is a 3(N −M) dimensional linear219

space. In this case, we say vh is non-degenerate in VN . When vh is non-degenerate,220

the functions {ϕi, βi, γi : 1 ≤ i ≤ N −M} forms a basis of TvhVN .221

In this case, we can introduce a metric on TvhVN as follows,222

g(vh) =

Ñ
A B C
BT D E
CT ET F

é
,223

where224

A ∈ R(N−M)×(N−M), aij =
∫
Ω
ϕiϕjdx;

B ∈ R(N−M)×(N−M), bij =
∫
Ω
ϕiβjdx;

C ∈ R(N−M)×(N−M), cij =
∫
Ω
ϕiγjdx;

D ∈ R(N−M)×(N−M), dij =
∫
Ω
βiβjdx;

E ∈ R(N−M)×(N−M), eij =
∫
Ω
βiγjdx;

F ∈ R(N−M)×(N−M), fij =
∫
Ω
γiγjdx.

225

When vh is non-degenerate, we can easily see that g(vh) is a positive definite sym-226

metric matrix.227
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Notice that there may exist degenerate functions in VN . One trivial example is228

the zero function (when vi = 0, for all i = 1, · · · , N −M), for which we have βi = 0229

and γj = 0. In this case, we easily see that B, C, · · · and F in g(vh) are all zero230

matrices. There also exist other type of degenerate functions in VN . For example, if231

vh is a constant function in a patch ωi, we easily have βi = γi = 0 so that g(vh) will232

be degenerate.233

When vh ∈ Vh is degenerate, g(vh) is a degenerate matrix. We may introduce a234

regularized metric on TvhVN as235

gδ(vh) =

Ñ
A B C
BT D + δI E
CT ET F + δI

é
,(4.2)236

where δ > 0, I is the unit matrix in R(N−M)×(N−M). With the above defined regu-237

larized metric, (VN , gδ) gives a smooth Riemann manifold, as stated in the following238

lemma.239

Proposition 4.1. (VN , gδ) forms a smooth Riemann manifold.240

Proof. We need to prove that gδ(vh) is a Riemann metric on TvhVN for all vh ∈
VN . It is easy to check that gδ(vh) is semi-positive definite for all vh ∈ VN . We will
only need to show it is non-degenerate as follows. Let (aT ,bT , cT ) be a vector in
R3(N−M), such that a,b, c ∈ RN−M . Suppose that

(aT ,bT , cT )gδ(vh)

Ñ
a
b
c

é
= 0.

This implies that

(aT ,bT , cT )g(vh)

Ñ
a
b
c

é
+ δ(|b|2 + |c|2) = 0.

Notice that g(vh) is a semi-positive matrix. We have |b| = |c| = 0. Then we are led
to

aTAa = 0.

Since A is a mass matrix for standard linear finite element space on TN , we easily241

have a = 0.242

Consider a curve in VN given by243

Γ(t) := {vh(t) =
N−M∑
i=1

vi(t)ϕi(t, x)},244

with differentiable coefficients in t ∈ (a, b). The arc length of Γ(t) is given by245

L(Γ) =

∫ b

a

(v̇T , ẋT , ẏT )gδ(uh)

Ñ
v̇
ẋ
ẏ

é 1
2

ds,(4.3)246

where v = (v1, · · · , vN−M )T , x = (x1, · · · , xN−M )T and y = (y1, · · · , yN−M )T . v̇ is247

the derivative of v with respect to t and similar definitions are for ẋ and ẏ. Then, the248
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geodesic distance between two points v
(1)
h and v

(2)
h in VN can be defined as follows249

dN,δ(v
(1)
h , v

(2)
h ) := inf

Γ

{
L(Γ) : Γ is a piecewise differentiable curve250

connecting v
(1)
h and v

(2)
h

}
.251

By the theory in Riemann geometry, (VN , dN,δ) gives a metric space, as shown in the252

following lemma.253

254

Proposition 4.2. (VN , dN,δ) is a metric space.255

Proof. We need only to prove dN,δ is a metric. By the definition of dN,δ, we easily

see the symmetry dN,δ(v
(1)
h , v

(2)
h ) = dN,δ(v

(2)
h , v

(1)
h ), and the inequality

dN,δ(v
(1)
h , v

(2)
h ) ≤ dN,δ(v

(1)
h , v

(3)
h ) + dN,δ(v

(3)
h , v

(2)
h ),

for all v
(1)
h , v

(2)
h , v

(3)
h ∈ VN . Meanwhile, we also have dN,δ(v

(1)
h , v

(2)
h ) ≥ 0.256

Now suppose that dN,δ(v
(1)
h , v

(2)
h ) = 0, we need to prove that v

(1)
h = v

(2)
h . In this

case we have infΓ L(Γ) = 0 for all curves Γ connecting v
(1)
h and v

(2)
h . If the infimum

is obtained for a curve Γ0, we have

L(Γ0) =

∫ b

a

(v̇T , ẋT , ẏT )gδ(uh)

Ñ
v̇
ẋ
ẏ

é 1
2

dt = 0.

This leads to (v̇T , ẋT , ẏT ) = 0, a.e. t ∈ (a, b). We thus have v
(1)
h = v

(2)
h . If the257

minimum is not obtained, we can prove the equality by taking limits of a minimizing258

sequence.259

Notice that the space VN might not be complete, since the limit of a Cauchy260

sequence of the functions in the space might correspond to a triangulation which is not261

admissible. For example, suppose a sequence v
(k)
h is equal to a constant in a large patch262

which includes at least one triangle T not intersecting with the boundary. Suppose263

the triangle shrinks to a point when k goes to infinity and the other vertexes do not264

change. We also assume that the value of the functions (i.e. v
(k)
h (xi)) on the vertexes265

does not change. We can easily show that v
(k)
h is a Cauchy sequence in (VN , dN,δ)266

since d2N,δ(v
(k1)
h , v

(k2)
h ) = δ

∑3
i=1 |x

(k1)
i,T − x

(k2)
i,T |2. Here x

(k1)
i,T and x

(k2)
i,T (i=1,2,3) are the267

vertexes of the triangle T corresponding to v
(k1)
h and v

(k2)
h , respectively. However, the268

limit of the meshes corresponds to a triangulation of Ω with different topology, which269

is not admissible by the definition of Aad. The incompleteness of the discrete space270

may cause troubles to a numerical method. The degeneracy of the triangulation can271

be avoided by adding a penalty term to the discrete energy in next section.272

5. The discrete problem and the convergence results.273

5.1. The discrete gradient flow. In the metric space (VN , dN,δ), the discrete274

energy corresponding to the energy E in (3.3) is defined as275

E δ̃
N (uh) :=

∫
Ω

α

2
|∇uh|2 + f(uh)dx + δ̃

∫
Ω̂

W (∇x̂F (x̂))dx̂(5.1)276
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where δ̃ is a positive parameter and the last term is a penalty term to make sure no277

degenerate triangles in real simulations. In this paper, we assume Ω̂ = Ω and T̂h is a278

quasi-uniform partition of Ω. We suppose that W (·) ≥ 0 is a given function such that279

(5.2) W (I) = 0; W (∇x̂F (x̂)) → ∞ as det(∇x̂F (x̂)) → 0+.280

The local upper gradient of E δ̃
N in (VN , dN,δ) is calculated as281

|∂E δ̃
N (uh)| =

(fT1 , fT2 , fT3 )gδ(uh)
−1

Ñ
f1
f2
f3

é 1
2

(5.3)282

where

f1,i =
∂E δ̃

N

∂ui
, f2,i =

∂E δ̃
N

∂xi
, f3,i =

∂E δ̃
N

∂yi
, i = 1, · · · , N −M.

Notice that the metric derivative of an absolutely continuous curve Γ = {uh(t)}283

in (VN , dN,δ) is given by284

|Γ′(t)| =

(u̇T , ẋT , ẏT )gδ(uh)

Ñ
u̇
ẋ
ẏ

é 1
2

.(5.4)285

By definition and direct calculations, the gradient flow in metric space, i.e. the curve286

of maximal slope is given by287

gδ(uh)

Ñ
u̇
ẋ
ẏ

é
= −

Ñ
f1
f2
f3

é
.(5.5)288

This is exactly the semi-discrete formula derived in the moving finite element scheme289

[42], which originates from the seminal work in [32, 31].290

We consider the problem (5.5) in an interval [0, T ]. In addition, we assume that
Ω̂ = Ω and the mapping F (x̂) = x̂ at initial time t = 0. With these notations, we
can derive a fully discrete problem by the so-called Jordan-Kinderlehrer-Otto(JKO)
scheme [24]. We partition the time interval [0, T ] by

0 = t0 < t1 < · · · < tK = T.

Let ∆t = T/K be the time step size. A proximal functional related to E δ̃
N is defined291

as292

Φδ,δ̃
N (∆t, uh; vh) :=

d2N,δ(uh, vh)

2∆t
+ E δ̃

N (vh),(5.6)293

for all uh, vh ∈ VN . Then the JKO scheme of the semi-discrete problem (5.5) is defined294

as follows. For a given discrete solution un−1
h at the time tn−1, the solution at tn is295

computed by296

unh ∈ argminvhΦ
δ,δ̃
N (∆t, un−1

h ; vh)(5.7)297
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5.2. The theoretical results. We define the piecewisely constant functions in298

time299

ūh(t) =

ß
u0h, t = 0,
unh, t ∈ (tn−1, tn],

(5.8)300

which is an approximated solution to the model problem (3.1). We also define the301

discrete metric gradient for the discrete solution as302

|u′h|(t) :=
dN,δ(u

n
h, u

n−1
h )

tn − tn−1
, t ∈ (tn, tn−1).303

Then, we have the following existence and convergence theorems.304

Theorem 5.1 (Existence of the discrete solution). For an initial function u0h ∈305

VN and a partition of the time interval (0, T ) with time step ∆t, there exists at least306

one discrete solution ūh(t) defined as in (5.8).307

Theorem 5.2 (Convergence). Suppose that u0h
L2

−−→ u0, E δ̃
N (u0h) → E(u0), as308

N → ∞; and u0 ∈ D(E). We also assume that the parameters ∆t = o(1), δ =309

o(N−1) and δ̃ = o(1). Let ūh(t) be a sequence of discrete solutions of the discrete310

problem (5.8). Then there exists a subsequence, still denoted as ūh(t) and a curve311

u(t) belongs to AC2
loc([0,∞), L2(Ω)), such that u(0) = u0,312

lim
N→∞

∥ūh(t)− u(t)∥L2 = 0, ∀t ∈ (0, T ],313

lim
N→∞

E δ̃
N (ūh(t)) = E(u(t)), ∀t ∈ (0, T ],314

lim
N→∞

|∂E δ̃
N |(ūh) = |∂E|(u), inLp

loc[0, T ],315

lim
N→∞

|u′h| = |u′|, inLp
loc[0, T ].316

Furthermore, u(t) is a curve of maximal slope for E with respect to |∂E|, which is a317

strong upper gradient for E. We also have the following energy identity318

E(u(t)) = E(u(0))− 1

2

∫ t

0

|u′|2(s)ds− 1

2

∫ t

0

|∂E|2(u(s))ds, ∀t ∈ (0, T ]319

The two theorems will be proved in next section.320

6. Proof of the main results. In this section, we present the proof of the main321

results. The proof follows the approach in [2] and also in [34].322

6.1. Moreau-Yosida approximation. We first introduce the Moreau-Yosida323

approximation of the discrete energy E δ̃
N and its properties. Let s > 0, the Moreau-324

Yosida approximation of E δ̃
N at vh ∈ VN is defined as325

EN,s(vh) := inf
wh∈VN

Φδ,δ̃
N (s, vh;wh) = inf

wh∈VN

d2N,δ(vh, wh)

2s
+ E δ̃

N (wh).(6.1)326

The set of minimizes is denoted as327

JN,s[vh] := argminwh∈VN
Φδ,δ̃

N (s, vh;wh).328

With the above notations, it is easy to see that the discrete solution unh ∈ JN,∆t[u
n−1
h ].329

The following theorem show the existence of the Moreau-Yosida approximation,330

which covers the results in Theorem 5.1.331
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Proposition 6.1 (Existence of the Moreau-Yosida approximation). For any s >332

0 and vh ∈ VN , we have333

Jh,s[vh] ̸= ∅.(6.2)334

In particular, for every choice of u0h ∈ VN and a partition of the time with step size335

∆t, there exists at least one discrete solution ūh(t) defined as in (5.8).336

Proof. By the assumption that f ≥ 0 in Section 3, we have Φδ,δ̃
N ≥ 0. For given

vh ∈ VN , we can find a minimizing sequence w
(k)
h ∈ VN such that

lim
k→∞

Φδ,δ̃
N (s, vh;w

(k)
h ) = inf

wh∈VN

Φδ,δ̃
N (s, vh;wh) ≥ 0.

Notice that337

inf
wh∈VN

Φδ,δ̃
N (s, vh;wh) ≤ Φδ,δ̃

N (s, vh; vh) = E δ̃
N (vh) =: C0 <∞.338

Then there exists a positive number K ∈ N+, such that

d2N,δ(vh, w
(k)
h )

2s
+ E δ̃

N (w
(k)
h ) < 2C0, when k > K.

We then have

d2N,δ(vh, w
(k)
h ) < 2C0s, and E δ̃

N (w
(k)
h ) < 2C0, when k > K.

Notice that w
(k)
h =

∑
w

(k)
i ϕi(x) has finite dimensions. We can find a subsequence,339

which is still denoted as w
(k)
h without loss of generality, such that w(k), x(k) and340

y(k) converge in Eulerian distance. Here w(k) ∈ RN−M is the vector of w
(k)
h (xi) for341

xi ∈ Nin, x
(k) ∈ RN−M and y(k) ∈ RN−M are respectively the coordinates of inner342

vertexes in the triangulation corresponding to w
(k)
h . By the definition of E δ̃

N and the343

property (5.2), we know the area of each element in the triangulation corresponding344

to w
(k)
h has a lower bound independent of k. Therefore, the limit of x(k)and y(k) will345

correspond to an admissible triangulation of Ω. We then have w̃h = limk→∞ w
(k)
h is346

still in VN .347

By the continuity of Φδ,δ̃
N , we also have

lim
k→∞

Φδ,δ̃
N (s, vh;w

(k)
h ) = Φδ,δ̃

N (s, vh; w̃h) = infwh∈VN
Φh(s, vh;wh).

This ends the proof of the theorem.348

By the above theorem, we know that the Moreau-Yosida approximation of E δ̃
N is349

well defined for any s > 0 and vh ∈ VN . This means JN,s[vh] is not empty. However,350

the minimizes might not be unique. Thus we can define351

d+N,s(vh) := sup
wh∈JN,s[vh]

dN,δ(vh, wh), d−N,s(vh) := inf
wh∈JN,s[vh]

dN,δ(vh, wh).352

The following properties of the Moreau-Yosida approximation are direct applications353

of some known results in literature (e.g. Section 3.1 in [2]).354
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Lemma 6.1 (Properties of the Moreau-Yosida approximation). For the Moreau-355

Yosida approximation of E δ̃
N defined above, the following properties hold.356

(1). The map (s, vh) → EN,s(vh) is constiuous.357

(2). If 0 < s0 < s1 and v
(i)
h ∈ JN,si [vh], we have358

E δ̃
N (vh) ≥ EN,s0(vh) ≥ EN,s1(vh), dN,δ(v

(1)
h , vh) ≤ dN,δ(v

(0)
h , vh),359

E δ̃
N (vh) ≥ E δ̃

N (v
(0)
h ) ≥ E δ̃

N (v
(1)
h ), d+N,s0

(vh) ≤ d−N,s1
(vh) ≤ d+N,s1

(vh).360

(3). It holds that361

lim
s↓0

EN,s(vh) = lim
s↓0

inf
wh∈JN,s[vh]

E δ̃
N (vh) = E δ̃

N (vh).362

(4). There exists at most countable set Nvh ⊂ R+, such that363

d+N,s(vh) = d−N,s(vh), ∀s ∈ R+ \ Nvh .364

and lims↓0 d
+
N,s(vh) = 0.365

(5). If vh,s ∈ JN,s[vh], then we have366

|∂E δ̃
N |(vh,s) ≤

dN,δ(vh,s, vh)

s
.367

(6). For every vh ∈ VN , the map s 7→ EN,s(vh) is Lipschitz and satisfies368

dEN,s(vh)

ds
= −

(d±N,s(vh))
2

2s2
, ∀s ∈ R+ \ Nvh ,369

and370

d2N,δ(vh,s, vh)

2s
+

∫ s

0

(d±N,r(vh))
2

2r2
dr = E δ̃

N (vh)− E δ̃
N (vh,s).371

(7). There exists a sequence sn ↓ 0 such that372

|∂E δ̃
N |2(vh) = lim

k→∞

d2N,δ(vh,sk , vh)

s2k
= lim

k→∞

E δ̃
N (vh)− E δ̃

N (vh,sk)

sk
≥ lim inf

s↓0
|∂E δ̃

N |2(vh,s).373

6.2. A priori error estimate. To prove convergence of the discrete gradient374

flow, it is necessary to introduce the De-Giorgi interpolation defined below.375

Definition 6.1 (De Giorgi variational interpolation). Let {unh} be a solution of376

the variational scheme (5.7), we denote by ũh : [0,∞) → VN an interpolant of the377

discrete values satisfying378

ũh(t) = ũh(tn−1 + s) ∈ JN,s[u
n−1
h ], if t = tn−1 + s ∈ (tn−1, tn).(6.3)379

Introduce a notation380

GN (t) :=
d+N,s(u

n−1
h )

s
≥

dN,δ(ũh(t), u
n−1
h )

t− tn−1
, t = tn−1 + s ∈ (tn−1, tn].381

By the property (5) of the Moreau-Yosida approximation in Lemma 6.1, we have382

|∂E δ̃
h|(ũh) ≤ GN (t), ∀t ∈ (0, T ].383

The following lemma gives some a priori estimates of the fully discrete problem, which384

are useful in the proof the convergence theorem.385
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Lemma 6.2 (A priori estimates). For each couple of integers 1 ≤ i ≤ j ≤ K, we386

have387

1

2

∫ tj

ti

|u′h|2(t)dt+
1

2

∫ tj

ti

G2
N (t)dt+ E δ̃

N (ujh) = E δ̃
N (uih).(6.4)388

Moreover for any 1 ≤ n ≤ K, there exists a constant C independent of N and K such389

that390

n∑
j=1

d2N,δ(u
j
h, u

j−1
h )

2∆t
≤ E δ̃

N (u0h)− E δ̃
N (un−1

h ) ≤ C391

d2N,δ(ũh, ūh) ≤ C∆t.392

Proof. We use the property (6) of the Moreau-Yosida approximation,393

d2N,δ(u
j
h, u

j−1
h )

2∆t
+

1

2

∫ tj

tj−1

d+s (u
n−1
h )

2r2
dr = E δ̃

h(u
j−1
h )− E δ̃

h(u
j
h).394

Summarizing the above equation from j = 1 to n and use the definitions of |u′h| and
GN , we get the first equation of the lemma. Ignoring the second term of the equation,
we get the second inequality of the lemma. For the last inequality, we have

d2N,δ(ũh(t), ūh(t)) = d2N,δ(ũh(t), u
n
h)

≤ (dN,δ(ũh(t), u
n−1
h ) + dN,δ(u

n−1
h , unh))

2

≤ 2d2N,δ(ũh(t), u
n−1
h ) + 2d2N,δ(u

n−1
h , unh)

≤ 4d2N,δ(u
n−1
h , unh) ≤ 4∆t

∑n
j=1

d2N,δ(u
j−1
h ,uj

h)

∆t ≤ 4C∆t.

Here in the fourth inequality, we use the property (2) of the Moreau-Yosida approxi-395

mation.396

6.3. Gamma-Convergence of the discrete energy. We now show the con-397

vergence of the discrete energy E δ̃
N to the continuous energy N under mild conditions.398

Lemma 6.3 (Γ-convergence of the energy). Suppose that δ̃ = o(1), and f in the399

definition of E is Lipschitz continuous, then we have E δ̃
N Γ-converges to E in L2(Ω)400

norm as N → ∞.401

Proof. We prove the results by the definition of Γ-convergence [9, 16]. We need402

prove the liminf inequality and limsup inequality, respectively.403

i). Liminf inequality. For any vh ∈ VN s.t. vh → v in L2(Ω), we need to prove404

E(v) ≤ lim inf
N→∞

E δ̃
N (vh).405

If limN→∞ E δ̃
N (vh) = +∞, the above equality holds surely. Otherwise, we assume406

that lim infN E δ̃
N (vh) < +∞. There exists a N0 > 0 and C > 0, such that E δ̃

N (vh) ≤ C,407

for all N > N0. Notice that f(vh) ≥ 0 and the regularized term is also positive, we408

then have409

α

2
∥∇vh∥2 ≤ E δ̃

N (vh) < C.410

Notice that vh ∈ H1
0 (Ω), there exists a subsequence, still denoted as vh, and a function411

ṽ ∈ H1(Ω), such that vh ⇀ ṽ in H1(Ω) and vh → ṽ in L2. By the condition that412

vh
L2

−−→ v, we have v = ṽ ∈ H1(Ω).413
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Notice that α
2

∫
Ω
|∇v|2dx is convex with respect to ∇v. f(v) is a Lipschitz con-414

tinuous function with respect to v. We can derive that E(v) is lower semi-continuous415

with respect to the weak H1 norm. This leads to416

E(v) ≤ lim inf
N→∞

E(vh) ≤ lim inf
N→∞

E δ̃
N (vh).417

ii) Limsup inequality. For any v ∈ L2(Ω), we need to prove that there exists a418

sequence ṽh ∈ VN , such that ṽh
L2

−−→ v and419

E(v) ≥ lim sup
N→∞

E δ̃
N (ṽh).420

If v ̸∈ H1
0 (Ω), we have E(v) = ∞. There is nothing to prove. Otherwise, we421

can assume v ∈ H1
0 (Ω) such that E(v) < ∞. In this case, we can choose a fixed422

triangulation T̃ of Ω such that F (x̂) = x̂. Then by the assumption for W (Eq. (5.2)),423

we know that the regularized term is zero in E δ̃
N . Let ṽh = πhv ∈ Vh(T̃ ) to be the424

projection of v on such a mesh. By the density of the piecewise continuous functional425

space inH1
0 (Ω), we have ∥v−ṽh∥H1 → 0. Notice further that f is Lipschitz continuous.426

This leads to E δ̃
N (ṽh) → E(v).427

6.4. Continuity of distances. In the discrete spaces, we have introduced a428

distance which is different from that for continuous problems. We need the following429

results on continuity of distances.430

Lemma 6.4 (Continuity of the distances). Suppose that δ = o(N−1). Let u and431

v be two functions in H1
0 (Ω), and uh, vh ∈ VN be two sequences of functions satisfying432

uh
L2

−−→ u and vh
L2

−−→ v as N → ∞, then we have433

dN,δ(uh, vh) → d(u, v) := ∥u− v∥L2(Ω), as N → ∞.434

Proof. We first assume u = v = 0. This implies that uh and vh converge to the435

same zero function in L2(Ω) when N → ∞. We will show that dN,δ(uh, vh) → 0 in436

this case. Actually, notice that437

dN,δ(uh, vh) ≤ dN,δ(uh, 0(TN )) + dN,δ(0(TN ), 0(T̃N )) + dN,δ(0(T̃h), vh)438

= d(uh, 0) +

Ñ
δ
∑
x̂i∈N̂

|F1(x̂i)− F2(x̂i)|2
é1/2

+ d(0, vh) → 0,439

440

where TN = F1T̂N and T̃N = F2T̂N (with Fi ∈ Aad) are respectively partitions of Ω441

with respect to uh and vh, 0(TN ) and 0(T̃N ) are the corresponding zero functions in442

Vh(TN ) and Vh(T̃N ). Here in the last limit, we have used the condition that uh
L2

−−→ 0,443

vh
L2

−−→ 0 and limN→∞Nδ = 0.444

Then, we consider a (quasi-)uniform partition ‹T and let πhu be the projection445

of u on Vh(‹T ). Notice that both uh and πhu converges to u in L2(Ω). By similar446

arguments as above, this leads to the fact that dN,δ(uh, πhu) → 0. Similarly, we also447

have dN,δ(vh, πhv) → 0. Notice that448

|dN,δ(uh, vh)− dN,δ(πhu, πhv)| ≤ dN,δ(uh, πhu) + dN,δ(πhv, vh).449450

and dN,δ(πhu, πhv) = d(πhu, πhv). This gives451

|dN,δ(uh, vh)− d(πhu, πhv)| → 0,452

This implies that d(πhu, πhv) → d(u, v). This ends the proof of the lemma.453
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6.5. λ-convexity. The following lemma states that λ-convexity of the proximal454

functional Φδ,δ̃
N and Φ. The results are essential for the proof of the convergence455

theorem.456

Lemma 6.5 (Uniform λ-convexity). Suppose that f in the definition of E is a
smooth function satisfying f ′′(·) ≥ λ0 for a constant λ0 ∈ R. Let

Φ(τ, u; v) :=
d2(u, v)

τ
+ E .

There exists a λ ∈ R and N0 ∈ N+ such that the following conclusions hold. For any457

v0, v1 ∈ H1
0 (Ω), there exists a curve v(t), t ∈ (0, 1), such that v(0) = v0, v(1) = v1,458

and for all 0 < τ < 1
λ− with λ− = max(0,−λ),459

Φ(τ, v0; v(s)) ≤ (1− s)Φ(τ, v0; v0) + sΦ(τ, v0; v1)460

−1

2
(λ+

1

τ
)s(1− s)d2(v0, v1).(6.5)461

A similar inequality also holds for Φδ,δ̃
N uniformly. For any v

(0)
h , v

(1)
h ∈ VN with N ≥462

N0, there exists a curve vh(s), s ∈ (0, 1), such that vh(0) = v
(0)
h , vh(1) = v

(1)
h and for463

all 0 < τ < 1
λ− ,464

Φδ,δ̃
N (τ, v

(0)
h ; vh(s)) ≤ (1− s)Φδ,δ̃

N (τ, v
(0)
h ; v

(0)
h ) + sΦδ,δ̃

N (τ, v
(0)
h ; v

(1)
h )465

−1

2
(λ+

1

τ
)s(1− s)d2N,δ(v

(0)
h , v

(1)
h ).(6.6)466

Proof. We first prove the inequality (6.5) for the continuous problem. For given467

v0 and v1, we simply set v(t) = (1−t)v0+tv1. Notice that the second order derivative468

f(·) is bounded from below. We easily have the following inequality469

f(v(t)) ≤ (1− t)f(v0) + tv1 −
λ0
2
t(1− t)|v0 − v1|2.470

Then by the convexity of the first term in E , we have471

E(v(t)) ≤ (1− t)E(v0) + tE(v1)−
λ0
2
t(1− t)∥v1 − v0∥20.(6.7)472

Notice again that473

∥v(t)− v0∥20
2τ

=
t2∥v1 − v0∥20

2τ
=

t

2τ
∥v1 − v0∥20 −

t(1− t)

2τ
∥v1 − v0∥20.474

This together with the equation (6.7) gives the inequality that475

Φ(τ, v0; v(t)) ≤ (1− t)Φ(τ, v0; v0) + tΦ(τ, v0; v1)−
1

2
(λ0 +

1

τ
)t(1− t)d2(v0, v1).476

This leads to (6.5) directly.477

By the similar arguments, we can prove the inequality (6.6) with λ ≤ λ0 when478

both v
(0)
h , v

(1)
h are piecewise linear functions on the same partition T̃ . In this case,479

both the penalty term in E δ̃
N and the stabilized term in dN,δ are constant or even480

zero on the curve linearly connecting v
(0)
h and v

(1)
h . For general cases, the result (6.6)481

can be proved by taking limit for N → ∞ and using the result (6.5) noticing that482

δ = o(N−1) and δ̃ = o(1). The rigorous proof is given in the appendix.483
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The following lemma show the property of the strong upper gradient under the484

condition of λ-convexity.485

Lemma 6.6. If the λ-convexity property holds as stated in the previous Lemma,486

then the local slope can be represented as487

|∂E|(v) = sup
w ̸=v

ÅE(v)− E(w)
d(v, w)

+
λ

2
d(v, w)

ã+
.488

If, in addition, E is d-lower semicontinuous, then |∂E| is also a strong upper gradient489

of E and is d-lower semicontinuous.490

Remark 6.1. The proof of the lemma is given in Theorem 2.4.9 and Corollary491

2.4.10 in [2]. The generalization of the lemma to the general p-curves can be found492

in [34].493

With the previous results, we can prove the following lemma easily.494

Lemma 6.7 (liminf condition for the slope). For any vh ∈ VN , such that vh → v495

in L2(Ω) when N → ∞, we have496

|∂E|(v) ≤ lim inf
N→∞

|∂E δ̃
N |(vN ).497

Proof. By the uniform λ-convexity of Lemma 6.5, the Γ-convergence of Lemma 6.3,498

and the continuity of the distances of Lemma 6.4, the result in this lemma is a direct499

conclusion of Proposition 13 in [34].500

6.6. Compactness. The following lemma states some important compactness501

results.502

Lemma 6.8. Suppose that limN→∞ ∆t = 0, u0h
L2

−−→ u0, E δ̃
N (u0h) → E(u0), as503

N → ∞, u0 ∈ D(E). Let uh(tk), k = 1, · · · ,K be the solutions of the discrete504

problem (5.7). Let ūh and ũh are the piecewisely constant approximation and the505

De Giorgi interpolation defined in (5.8) and (6.3), respectively. Then there exists506

a subsequence, still denoted as uh and a curve u(t) belongs to AC2
loc([0,∞), E), a507

non-increasing function φ : [0,∞) 7→ R and a function A ∈ L2
loc[0,∞), such that508

ūh(t)
L2

−−→ u(t), ũh(t)
L2

−−→ u(t), asN → ∞,∀t ∈ [0, T ],509

φ(t) := lim
N→∞

E δ̃
h(ūh) ≥ E(u), ∀t ∈ [0, T ],510

E(u(0)) = E(u0),511

|u′h|⇀ A inL2
loc([0,∞)), A(t) ≥ |u′|(t), forL1 − a.e. t ∈ (0,∞),512

lim inf
N→∞

GN (t) ≥ |∂E|(u(t)).513

Proof. Notice that E δ̃
N (u0h) → E(u0) as N → ∞. Without loss of generality, we514

can assume that E δ̃
N (u0h) < E(u0) + C0 for some C0 > 0. Therefore, we easily have515

E δ̃
N (unh) ≤ E δ̃

N (u0h) < E(u0) + C0 <∞.516

By the definition of E δ̃
N and the positivity of the function f , we have α

2 |u
n
h|21 ≤517

E δ̃
h(u

n
h) < E(u0) + C0. By the Rellich compact embedding theorem, we know that518

uh(t) ⊂ K := {E δ̃
h(vh) < C} is compact inL2.519
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By the energy estimate that,520 ∑n
j=1

d2N,δ(u
j
h,u

j−1
h )

2∆t ≤ E δ̃
h(u

0
h)− E δ̃

h(u
n−1
h ) ≤ E δ̃

h(u
0
h), ∀n > 0.521

This leads to
∫ T

0
|u′h|2(t) dt ≤ C. Then there exists a subsequence, still denoted522

as |u′h|, which converges weakly in L2(0, T ) to a function A as N → ∞. This is523

|u′h|⇀ A inL2
loc(0, T ).524

For any fixed 0 ≤ s < t, let us define s(n) = ⌊s/∆t⌋ and t(n) = ⌈t/∆t⌉. Then by525

limN→∞ ∆t = 0, we have526

s(n) ≤ s < t ≤ t(n), lim
N→∞

s(n) = s, lim
N→∞

t(n) = t.527

By the inequality528

∥ūh(s)− ūh(t)∥0 ≤ dN,δ(ūh(s), ūh(t)) ≤
∫ t(n)

s(n)

|u′h|(r)dr,529

we have530

lim sup
N→∞

∥ūh(s)− ūh(t)∥0 ≤
∫ t

s

A(r)dr.531

Then we could apply the Ascoli-Arzela theorem(c.f. Proposition 3.3.1 in [2]) to obtain532

ūh(t)
L2

−−→ u(t), ∀t∈[0, T ], where u(t) ∈ L2(Ω) is continuous with respect to t. By the533

estimate in Lemma 6.2, we also have ũh(t)
L2

−−→ u(t). Furthermore, the limit implies534

that535

∥u(s)− u(t)∥0 ≤
∫ t

s

A(r)dr.536

By the definition of the metric gradient, we have u(t) ∈ AC([0, t], L2(Ω)) and satisfies537

|u′|(t) ≤ A(t), a.e.t ∈ (0, T ).538

Notice that E δ̃
N (ūh(t)) is a non-increasing function for any given solution ūh(t) in539

VN . By Helly’s lemma (c.f. Lemma 3.3.3 in [2]) , there exists a subsequence of the540

discrete solution, still denoted as ūh, and a function φ(t), such that for all T̃ > 0,541

φ(t) = lim
N→∞

E δ̃
N (ūh(t)), ∀t ∈ (0, T̃ ).542

By Lemma 6.3, we have φ(t) = limN→∞ E δ̃
N (ūh(t)) ≥ E(u(t)). In particular, by the543

well-preparedness of the intial condition, we have φ(0) = E(u0) = E(u(0)).544

Finally, by the estimate |∂E δ̃
N |(ũh) ≤ GN (t), we have545

lim inf
N→∞

GN (t) ≥ lim inf
N→∞

|∂E δ̃
N |(ũh(t)).546

Notice that by Lemma 6.7, we have

lim inf
N→∞

|∂E δ̃
N |(ũh(t)) ≥ |∂E|(u(t)).

This end the proof of the lemma.547
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6.7. Proof of the convergence theorem. We are ready to prove the main548

convergence result as follows.549

Proof of Theorem 5.2. By the compact results in Lemma 6.8, we have the follow-550

ing relation up to a subsequence,551

E(u(t)) + 1

2

∫ t

0

|u′|2(t) dt+1

2

∫ t

0

|∂E|2(u(t)) dt552

≤ lim
N→∞

E δ̃
N (ūh) +

1

2

∫ t

0

A(t)2 dt+
1

2

∫ t

0

lim inf
N→∞

GN (t)2 dt553

≤ lim inf
N→∞

Ç
E δ̃
N (ūh) +

1

2

∫ t

0

GN (t)2 dt+
1

2

∫ t

0

|u′h|2(t)dt
å

554

≤ E(u(0)).555

In the last inequality, we have used the equation (6.4) in Lemma 6.2 and the as-556

sumptions on u0,h. On the other hand, since |∂E| is a strong upper gradient (i.e.557

Lemma 6.6), we have558

E(u0) ≤ E(u(t)) +
∫ t

0

|∂E|(u(s))|u′|(s) ds .559

Therefore, we have560

|u′|(t) = |∂E|(u(s)) a.e.t ∈ (0,∞),561

E(u0) = E(u(t)) +
∫ t

0

|u′|(t)|∂E|(u(t)) dt .562

This implies the energy identity in Theorem 5.2 and also the relation563

d

dt
E(u(t)) = −|∂E|(u(t))|u′|(t),564

i.e. u(t) is a curve of maximal slope for E with respect to |∂E|. This ends the proof.565

7. Numerical experiments.566

7.1. Implementations. The JKO scheme (5.7) gives a fully implicit scheme.567

Notice that Φδ,δ̃
N (∆t, uh;u

n−1
h ) is a nonlinear and nonconvex functional with respect568

to uh. To solve the optimization problem (5.7) is usually very difficult. We will569

consider some simplified schemes below.570

Firstly, we will do quadralization and compute the distance dN,δ(u
n−1
h , vh) ap-571

proximately. Let v, x and y be the coordinates with respect to vh. Suppose also that572

u(n−1), x(n−1) and y(n−1) are coordinates with respect to uh. Then we set573

d̃2N,δ(u
n−1
h , vh) =

Ñ
v − u(n−1)

x− x(n−1)

y − y(n−1)

éT

gδ(u
n−1
h )

Ñ
v − u(n−1)

x− x(n−1)

y − y(n−1)

é
.574

In each step, we minimize the following functional575

(7.1) inf
v,x,y

Φ̃δ,δ̃
N (v,x,y) :=

d̃2N,δ(u
n−1
h , vh)

2∆t
+ E δ̃

N (vh).576
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This is still a nonlinear optimization problem. We can further simplify it by doing

E δ̃
N (vh) and let

E δ̃
N (vh) ≈ E δ̃

N (u
(n−1)
h ) +

Ö
f
(n−1)
1

f
(n−1)
2

f
(n−1)
3

è
·

Ñ
v − u(n−1)

x− x(n−1)

y − y(n−1)

é
,

where f
(n−1)
1,i =

∂E δ̃
N

∂vi
(u

(n−1)
h ), f

(n−1)
2,i =

∂E δ̃
N

∂xi
(u

(n−1)
h ) and f

(n−1)
3,i =

∂E δ̃
N

∂yi
(u

(n−1)
h ). Then577

the solution of (7.1) can be approximated by578

(7.2) gδ(u
n−1
h )

Ñ
u(n) − u(n−1)

x(n) − x(n−1)

y(n) − y(n−1)

é
= −∆t

Ö
f
(n−1)
1

f
(n−1)
2

f
(n−1)
3

è
.579

This is an forward Euler scheme for (5.5) used in the standard MFEM [32, 42]. It is580

known that very small time step must be chosen for the forward Euler scheme since581

the corresponding ODE system (5.5) is very stiff in general cases.582

In our numerical experiments, we use a different scheme. We do Taylor expansions583

to E δ̃
N (vh) up to a second order term and set584

E δ̃
N (vh) ≈ E δ̃

N (u
(n−1)
h ) +

Ö
f
(n−1)
1

f
(n−1)
2

f
(n−1)
3

è
·

Ñ
v − u(n−1)

x− x(n−1)

y − y(n−1)

é
585

+
1

2

Ñ
v − u(n−1)

x− x(n−1)

y − y(n−1)

éT

H(u
(n−1)
h )

Ñ
v − u(n−1)

x− x(n−1)

y − y(n−1)

é
,586

587

where H(u
(n−1)
h ) is the Hessian matrix of E δ̃

N (vh) with respect to (v,x,y) at u
(n−1)
h .588

If we use this approximation to replace E δ̃
N in (7.1), we get a new explicit scheme589

(7.3) (gδ(u
n−1
h ) + ∆tH(u

(n−1)
h ))

Ñ
u(n) − u(n−1)

x(n) − x(n−1)

y(n) − y(n−1)

é
= −∆t

Ö
f
(n−1)
1

f
(n−1)
2

f
(n−1)
3

è
.590

It turns out the scheme is much more stable than the explicit scheme (7.2). We can591

choose relatively large time step ∆t in numerical simulations.592

7.2. Numerical examples. We first test the accuracy of the numerical scheme593

(7.3) by solving a model problem in one dimension. We consider a linear equation as594

in [42].595

(7.4) ∂tu = ∂xxu, x ∈ (−3, 3).596

The boundary condition is u(−3) = u(3) = 0. The initial condition is given by

u0 = 1√
4πε

e−
x2

4ε with ε = 0.001. The corresponding energy is

E(u) = 1

2

∫ 3

−3

(∂xu)
2dx.

19

This manuscript is for review purposes only.



The analytic solution of the equation is approximately given by u(x) = 1√
4π(ε+t)

e−
x2

4(ε+t)597

when time t is small.598

Since the initial value of the solution is a Gauss function concentrated in a narrow599

interval centered at x = 0. We choose the initial partition of I as follows. We separate600

the interval [−3, 3] into three parts, [−3, 0.2)∪ [−0.2, 0.2]∪(0.2, 3]. We choose uniform601

meshes in the three intervals, respectively, while we put 2/3 of the total number of the602

vertexes in the middle interval [−0.2, 0.2] and put 1/6 vertexes to each of the other603

two intervals. In numerical experiments, we take δ = δ̃ = 0.001 and the regularized604

term W = 1
Nk

∑
K∈Th

ln(Nk|K|
|Ω| ), where |K| is the length of a cell K of the partition,605

and Nk is the total number of cells. We solve the problem (7.4) until T = 0.05.606

The error between the discrete solution uh and the analytic solution u at T in607

energy norm is computed by608

errH1 :=
(∫

I

(∂xu(x, T )− ∂xuh(x, T ))
2dx

)1/2

,609

errL2 :=
(∫

I

(u(x, T )− uh(x, T ))
2dx

)1/2

.610
611

The numerical errors are shown in Table 1 for various choice of N and ∆t. We first612

test the convergence with respect to the spacial partitions. The convergence order613

is computed by si := ln(erri/erri+1)/ ln(Ni+1/Ni), which implies that the errors614

decrease with order O(N−s). We can see that the H1-error is of optimal convergence615

orderO(N−1) and the L2-error is of optimal orderO(N−2). We also compute similarly616

the convergence order with respect to time ∆t. Both the H1-error and L2-error are617

of optimal order O(∆t).618

In Figure 1, we show the numerical solution of the equation when N = 30 and619

∆t = 10−5. We could see that the numerical solution agrees with the analytical620

solution very well. The grid redistributes automatically when time increases. An621

interesting observation is that the grid seems to concentrate where the second order622

derivative of the solution is large.623

Table 1: The H1-norm and L2-norm of the error in Experiment 1.

∆t = 10−6 errH1 order errL2 order

N = 16 0.1837 – 0.0127 –
N = 30 0.1136 0.76 0.0038 1.92
N = 60 0.0362 1.81 0.000741 2.36
N = 120 0.0194 0.99 0.000148 2.32

N = 120 errH1 order errL2 order

∆t = 0.01 0.6013 – 0.0970 –
∆t = 0.005 0.2513 1.26 0.0430 1.17
∆t = 0.0025 0.1088 1.21 0.0181 1.25
∆t = 0.00125 0.0531 1.03 0.0092 0.98

In the second example, we show some numerical results for the two dimensional624

Allen-Cahn equation. We consider the equation625

(7.5) ∂tu = ε∆u+
1

ε
f(u), in Ω,626

20

This manuscript is for review purposes only.



-1.5 -1 -0.5 0 0.5 1 1.5

x

0

1

2

3

4

5

6

7

8

9

u

numerical solution

analytical solution

(a) t = 0

-1.5 -1 -0.5 0 0.5 1 1.5

x

0

0.5

1

1.5

2

2.5

u

numerical solution

analytical solution

(b) t = 0.5

-1.5 -1 -0.5 0 0.5 1 1.5

x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

u

numerical solution

analytic solution

(c) t = 2

-1.5 -1 -0.5 0 0.5 1 1.5

x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

u

numerical solution

analytic solution

(d) t = 4

Figure 1: Numerical results of 1D heat equation. The solution and grid of uh changes
with time.

with Ω = (0, 1) × (0, 1) and f(u) = u3 − u. Notice that f(u) = E′(u) with E(u) =
(1−u2)2

4 . The corresponding energy is

E(u) =
∫
Ω

ε

2
|∇u|2 + 1

ε
E(u)dx.

For the initial condition, we set u0 = (1 + tanh(
0.25−

√
(x−0.5)2+(y−0.5)2

0.1
√
2

)) − 1 inside627

the domain and set u(x) = −1 for the boundary condition.628

In our simulations, we set ε = 0.005, δ = δ̃ = 0.001 and ∆t = 0.0001. The629

regularized term is given by W (∇x̂F ) =
∫
Ω̂

1
2 |∇x̂F |2dx̂. The initial mesh is uniform630

with mesh size h = 0.025. The numerical results are shown in Figure 2. Then the631

solution evolves and the mesh changes accordingly. The mesh concentrates near the632

sharp inner layer of the solution. Across the inner layer, the solution of uh changes633

dramatically from 1 to −1. The inner layer has a circular shape and the radius634

decreases gradually with time. This is consistent with the asymptotic analysis result635

that the solution of the Allen-Cahn equation approximates to a mean curvature flow.636

We can also see that the meshes also change with time and capture well the evolution637

of the inner layers. This implies that the MFEM method works quite well for the638

Allen-Cahn equation.639
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(a) t = 0 (b) t = 0.5

(c) t = 2 (d) t = 4

Figure 2: Numerical results of 2D Allen-Cahn equation. The solution and meshes of
uh changes with time.

8. Conclusions. In conclusion, we present a novel mathematical framework and640

new numerical schemes for the moving finite element method. A key contribution is641

the introduction of a regularized metric that enables the formation of a non-degenerate642

Riemann manifold and a discrete metric space for the finite element space with free643

knots. To demonstrate the main idea of our approach, we consider a nonlinear re-644

action diffusion equation as a model problem, which can be interpreted as a curve645

of maximal slope in the L2-space. By employing the moving finite element method646

for numerical discretization, we show that the resulting approximation also follows a647

curve of maximal slope within the discrete metric space. Importantly, we are able to648

derive some new numerical schemes, such as the JKO scheme and an explicit stabilized649

numerical scheme. We establish the existence and convergence of the JKO scheme650

by utilizing the theory for gradient flows in metric spaces, under mild assumptions.651

Numerical experiments show that the method works well in both one dimensional and652

two dimensional problems.653

There are some other work need to be done in the future. Firstly, we prove654

the convergence JKO scheme which is a fully implicit scheme. It is also interesting655

to further study the convergence of the explicit stabilized scheme, which is much656

simpler than the JKO scheme and can be used in applications. Secondly, numerical657
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results show that the moving finite element method has optimal convergence rate658

with respect to space grids and time step size. It is very interesting to establish659

a priori error estimates for convergence order of the method. Finally, it is worth660

noting that the framework may be used for understanding other methods that involve661

moving meshes. Examples include the moving mesh methods [10], the Lagrangian662

type methods [28, 27, 14], and the arbitrary Lagrangian Eulerian method.663

Appendix: Details of the proof for the λ-convexity of the discrete prox-664

imal functional. We prove the inequality (6.6) for general cases by contradiction.665

If the inequality does not hold, we can find a series of functions v
(k)
h , ṽ

(k)
h ∈ VNk

with666

Nk → +∞, and an increasing series of numbers ck → ∞ and τk > 0, such that the667

following inequality holds for any curve v
(k)
h (t) connecting v

(k)
h and ṽ

(k)
h in VNk

,668

Φδ,δ̃
Nk

(τk, v
(k)
h ; v

(k)
h (tk)) >(1− tk)Φ

δ,δ̃
Nk

(τk, v
(k)
h ; v

(k)
h ) + tkΦ

δ,δ̃
Nk

(τk, v
(k)
h ; ṽ

(k)
h )669

+
1

2
cktk(1− tk)d

2
N,δ(v

(k)
h , ṽ

(k)
h ),(8.1)670

671

for some tk ∈ (0, 1). Clearly 0 or 1 can not be an accumulation point of tk. Otherwise,672

the above inequality will be an equality. Also 0 can not be an accumulation point673

of τk. Otherwise, both sides of the inequality will go to infinity. Without loss of674

generality, we can assume that tk → t̂ and τk → τ̂ as k → ∞. Then we have t̂ ∈ (0, 1)675

and τ̂ ∈ (0,∞].676

Then we can see that both Φδ,δ̃
Nk

(τk, v
(k)
h ; v

(k)
h ) and Φδ,δ̃

Nk
(τk, v

(k)
h ; ṽ

(k)
h ) are bounded677

from above. This leads to the fact that E δ̃
N (v

(k)
h ) and E δ̃

N (ṽ
(k)
h ) are bounded. By the678

Sobolev compact embedding theorem, there exist subsequences of v
(k)
h and ṽ

(k)
h , still679

denoted as the same notation, such that680

v
(k)
h → ṽ0 in L2, v

(k)
h ⇀ ṽ0 in H1

681

and682

ṽ
(k)
h → ṽ1 in L2, ṽ

(k)
h ⇀ ṽ1 in H1.683

We choose the curve connecting v
(k)
h and ṽ

(k)
h as follows. Let TNk

be the reference684

triangulation of Ω such that F (x̂) = x̂. Let πk
hṽ0 and πk

hṽ1 be the projection of ṽ0685

and ṽ1 on TNk
. By the Lemma 6.4, we have d

(k)
0 := dNk

(v
(k)
h , πk

hṽ0) → 0 and d
(k)
1 :=686

dNk
(ṽ

(k)
h , πk

hṽ1) → 0. We choose a curve which includes three parts, the geodesic curve687

γk0 (s) with s ∈ (0, d
(k)
0 ) between v

(k)
h and πk

hṽ0 such that dNk
(γk0 (s), v

(k)
h ) = s (the688

existence of such a curve can be seen in Lemma 1.1.4 in [2]), the linear combination689

between πk
hṽ0 and πk

hṽ1, and the geodesic curve γk1 (s) with s ∈ (1 − d
(k)
1 , 1) between690

ṽ
(k)
h and πk

hṽ1 such that dNk
(γk1 (s), ṽ

(k)
1 ) = (1− s). Defined as follows,691

v
(k)
h (t) =


γk0 (t) if 0 < t < d

(k)
1

πk
hṽ0(1−d

(k)
2 −t)+πk

hṽ1(t−d
(k)
1 )

1−d
(k)
2 −d

(k)
1

if d
(k)
1 < t < 1− d

(k)
2

γk1 (t) if 1− d
(k)
2 < t < 1.

692

Then by taking limit of the equation (8.1) when k → ∞, (noticing that ck → ∞,693

δ = o(N−1) and δ̃ = o(1)), we have694
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Φ(τ̂ , ṽ0; v̂(t̂)) >(1− t̂)Φ(τ̂ , ṽ0; ṽ0) + t̂Φ(τ̂ ; ṽ0, ṽ1) +∞.695696

This contradicts with the inequality (6.5).697
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