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A THEORETICAL FRAMEWORK FOR A MOVING GRID FINITE
ELEMENT METHOD *

XIANMIN XU ¥

Abstract. In this paper, we present a novel theoretical framework for a moving finite element
method and prove the convergence of the method under some mild conditions. We introduce a regu-
larized metric to the finite element space with free knots. This leads to a smooth Riemann manifold
and a metric space when considering geodesic distance. We show that the moving finite element dis-
cretization for a nonlinear reaction-diffusion equation can be viewed as a curve of maximal slope in
the discrete metric space. This inspires us to propose a JKO scheme and an explicit stabilized numer-
ical scheme for the moving finite element method. We further prove the convergence of the moving
finite element method in a general case using the gradient flow theory in metric spaces. Numerical
examples are given to show that the discrete schemes work efficiently for both one dimensional and
two dimensional problems.

Key words. Moving finite element method, gradient flows, metric spaces, moving meshes

1. Introduction. Adaptive finite element methods have been widely used in
solving partial differential equations (PDEs) in various scientific and engineering fields,
particularly when dealing with singularities or sharp inner/boundary layers in the
solution. There are mainly three types of adaptive methods: the h-type method, the
p-type method, and the r-type method. The h-type method, widely acknowledged
and extensively studied in the literature, involves adaptively refining or coarsening
local meshes based on a posteriori error estimates [3, 1, 40]. The method has been
proven to achieve optimal convergence [8, 37]. The p-type method, on the other hand,
adjusts the local order of the finite element basis to increase or decrease it according
to the solution errors. The p-type method can be combined with the h-type method,
resulting in the hp method, where both the meshes and the polynomial orders are
altered locally based on a posteriori error estimates [1]. The r-type method, often
referred to as moving mesh (grid) finite element methods in the literature [10, 39],
redistributes the mesh locations according to the solution and is typically utilized for
time-dependent problems.

Compared to methods based on local mesh or polynomial order refinement, the
theoretical analysis of the moving mesh methods is currently very limited [7, 20, 29,
25, 15], despite their widespread use in various problems (e.g., [32, 31, 22, 35, 26, 11,
38, 19, 5, 33, 43, 6], among many others). One important result in this field is the
work done by N. Kopteva in [25], where the first order convergence of the moving mesh
finite element method is proved for a stationary linear singularly perturbed equation
in one dimension.

Recently, there exists much interest in developing Lagrangian type methods for
gradient flow systems [28, 27, 14]. The methods have very close relations with the
moving finite element method (MFEM) [32, 4, 21]. In particular, it is found that the
moving finite element method for gradient flow systems can be derived naturally from
the Onsager variational principle [42]. Based on the variational principle, it is possible
to provide optimal error estimates for the stationary solution of the system, which
improves the previous results [20, 23]. However, analyzing the dynamic solutions still
poses a significant challenge, as it requires a more complex analysis of the discrete
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gradient flows.

The main objective of this paper is to establish a theoretical framework to the
moving finite element method for gradient flow systems. To accomplish this, we
leverage the deep connections between the Onsager variational principle and gradient
flows in metric spaces [30, 2]. We introduce a novel mathematical framework for
the moving finite element method applied to dissipative systems, formulating it as a
discrete gradient flow system in metric spaces. Based on the framework, we develop
a Jordan-Kinderlehrer-Otto (JKO) scheme [24] and a new explicit stabilized scheme
for the discrete gradient flow system. By utilizing the analysis tools from the theory
of gradient flows in metric spaces [2, 34, 36], we are able to prove the convergence of
the JKO scheme for a nonlinear gradient flow system.

More precisely, we consider a model problem which is a nonlinear reaction dif-
fusion equation and can be viewed as a (continuous) gradient flow in a metric space
with a L?-distance. To discretize this problem, we first introduce a natural metric on
the nonlinear approximation space for polynomials with free knots. We prove that
this nonlinear space, equipped with the metric, forms a finite-dimensional Riemann
manifold. However, there is a possibility of degeneracy in the manifold, so we add a
regularized term to the metric. This regularization also allows us to define a distance
measure by considering the geodesic distance within the manifold. We prove that the
discrete manifold, equipped with the geodesic distance, results in a discrete metric
space. Next, we study the approximation of the continuous gradient flow in the dis-
crete metric spaces, which precisely corresponds to the moving finite element method.
We then propose a fully discrete JKO scheme for the discrete gradient flows and prove
its convergence to the solution of the continuous problem under mild assumptions. In
the implementations, we develop a new explicit stabilized scheme by approximation
to the optimization problem in the JKO scheme. Numerical experiments show that
the method works well for both one dimensional and two dimensional problems.

The remaining sections of this paper are organized as follows. In Section 2, we
briefly introduce some definitions in gradient flow theory in metric spaces. Section
3 introduces the continuous convection-diffusion equation and reformulates it as a
gradient flow in a metric space in the L2-distance. To transition to the discrete
setting, Section 4 defines the discrete metric space for the finite element functions
with free knots. Subsequently, in Section 5, we present the approximation of the
convection-diffusion equation in the discrete metric space while also illustrate the main
theoretical results. Section 6 is dedicated to presenting the proof of the existence and
convergence results. In section 7, we present an explicit stabilized scheme and some
numerical examples. In the final section, we present some concluding remarks.

2. Preliminary: Gradient flows in metric spaces. We recall some defini-
tions on gradient flows in metric spaces in [2]. Let (., d) be a given complete metric
space equipped with the distance d. We first introduce the definition of absolutely
continuous curves in (., d).

DEFINITION 2.1 (absolutely continuous curve). Let (a,b) be an interval of R.
We say a curve v : (a,b) — % is a p-absolutely continuous curve or belongs to
ACP(a,b;.) for p > 1, if there exists a function m € LP(a,b), such that

t
(2.1) d(v(s),v(t)) < / m(r)dr, Va < s <t<b.

In the case p = 1, v is called an absolutely continuous curve and the corresponding
space is simply denoted as AC(a,b; 7).
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For absolutely continuous curves, the metric derivative is defined as follows.

DEFINITION 2.2 (metric derivative). For any curve v in AC?(a,b; ) withp > 1,
the limit

(2.2) [o|(t) := lim 38020

s—t |5 — t|
exists for a.e. t € (a,b) and is called the metric derivative of v. Moreover, |v'|(t) €
LP(a,b) is the smallest admissible function m in Definition 2.1.

Let £ : ¥ +— (—00, +00] be a functional defined on .. Define the admissible set
D(€) :={v e Z|E(v) < Ho0}.

Then the strong upper gradient of £ can be defined as follows

DEFINITION 2.3 (strong upper gradient). A function g : . +— [0, 400] is a strong
upper gradient of € if for every curve v € AC]a,b;.], the function gowv(t) := g(v(t))
is Borel and satisfies

(2.3) [E((t)) —E(v(s))| < / gov(r)[v'|(r)dr, Ya <s<t<b.

In particular, if g ov|v'| € L' (a,b), then E(v(t)) is absolutely continuous and
(2.4) [(Eov)|(t) < gouv(t)|v|(t), a.e. t € (a,b).

A natural candidate for the upper gradient is the local slope of the functional.

DEFINITION 2.4 (local slope). The local slope of € at v € D(E) is defined by

(2.5) \88|(v) := lim sup M7

w—v d(U, UJ)

where fT = max(f,0) is the positive part of a function f.

Notice that the local slope is not a strong upper gradient in general and some extra
conditions are needed [2].

The following definition is a generalization of the standard gradient flow in metric
spaces.

DEFINITION 2.5 (p-curve of maximal slope). We say a locally absolutely continu-
ous map u : (a,b) — % is a p-curve of maximal slope with respect to its upper gradient
g, if Eou(t) is a.e. equal to a non-increasing map ¥, and

(2.6) W) < —}Q\u’\(t) - 3@ ou®)t,  forae. te (ab),

where ]% + % =1. If p =2, we call u a curve of maximal slope.

The existence of a curve of maximal slope for a functional is established in [2]
by investigating the JKO (implicit Euler) scheme in time [24], under appropriate
conditions. Building upon this analysis, [34] explores the approximation of the en-
ergy functional £ using a similar approach. In the subsequent sections, we adopt
this framework to investigate the convergence of a moving finite element method for
reaction-diffusion equations with gradient flow structures.

3
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3. The continuous problem. We consider the following reaction diffusion
equation,

(3.1) Ou = alu — f'(u), in Q,
(3.2) u =0, on 02,
where a > 0 is the diffusion coefficient and f > 0 is an energy density function. We

assume that Q C R? is a simple connected domain with smooth boundary, and f(u)
is a smooth function such that f”(u) > Ao for some Ag € R.

It is well known that the equation (3.1) can be viewed as a L? gradient flow for
the energy functional

E(u) = /Q & Vul? + f(u)dr.

For later applications, we rewrite the energy as

_ [ Jo $IVulP + f(u)de, if u e Hi(Q);
(33 Ew) = { +00, otherwise.

We will formulate the problem as a curve of maximal slope in a metric space with a
L2-distance by using the definitions in the previous section.
Consider the Lebesgue space L*(2). Let (u,v)o = [, uvdz be the inner product

of two functions u and v in L*(Q); and [Jullo = ([ (u(x))?*dz)? be the L? norm of w.
Then the distance between the two functions u and v in L?(£2) can be defined as

(3.4) d(u,v) = ||lu —v||o-

It is easy to see that (L?(Q),d) is a complete metric space.

For an absolutely continuous curve u(t,-) : (0,7) — L*(Q2), the metric derivative
is given as |u/|. When u is differentiable with respect to t, we denote the “time”
partial derivative as d;u. When 9;u € L?(£2), the metric derivative of u is equivalent
to the L? norm of the time derivative, i.e. |u'| = ||0sul|o.

For the energy functional £ defined in (3.3), the local slope at w(¢1) is defined as
E(v) = E(u)]

_i |

If u € H%(Q)), the local slope can be computed analytically,
0E(w)| = || — alu+ f'(w)]o.

In this case, a curve of maximal slope is an absolutely continuous curve u(t) €
AC(L*(Q)), satisfying

1

(35) L e(u(t)) < 5 P(1) ~ 10EP w(r).

One can easily show that the curve of maximal slope is a solution of the partial
differential equation (3.1). Actually, by the equation (3.5), we can derive that

I~ IR (u(D) > L) = (~atu+ 1w, i)y

=l = adu+ f'(u)llo/llo

1 712 1 2
S 5108 ().
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Therefore, all the inequalities in above equation are equalities and we have
Ou = alu — f'(u),

which is exactly the equation (3.1).

4. The discrete metric space. For simplicity in notations, we consider only
the two-dimensional case.

4.1. The finite element space with free knots. We introduce a nonlinear
approximation space of piecewisely linear functions with free-knots as follows ([18]).
Let € be a reference domain, 7 be a regular triangulation of Q, and N be the set
of vertexes of Ty. We suppose that #/\/ N, i.e. N is the total number of the
vertexes in the triangulation Tn. Let F: % — x be a bijection from Q) to Q such that
Tn = FTx be a triangulation of Q in the following sense:

e The vertex set N of Ty is given by

N ={x:x=F(&),xeN}.

e Each element in 7Ty is a triangle formed by three vertexes in /. The elements
do not overlap and have positive areas.
e 7Tn has the same topology as TN
If F satisfies all the above conditions, we say F'is admissible and denote the admissible
set

Aga = {F : F is admissible}.

By the above definition, for F' € A4, we have F'(£) is on the boundary of {2 whenever
Z is on the boundary of Q). Notice that F is a nonlinear mapping from Q to Qin
general.

Let 7Ty be a triangulation of 2. We define the standard finite element space on
Tw as follows

Vi(Tn) := {vn, € C(Q) : vy, is piecewisely linear on Ty, v, = 0 on 90Q.}

Then the nonlinear approximation space associated to Tu is defined as follows,

U VaFTw).

FeAqq

Notice that Vv is not a linear space, since the summation of two functions in the
space may not belong to Vi if they correspond to different partitions of 2. Instead Viy
forms a finite dimensional manifold. We can determine the dimension of the manifold.
Denote by N, the set of nodes on the boundary of o0 and by N, the set of inner
nodes. We assume that the number of vertexes in N is M, i.e. #N, = M < N. Then
we have #Mn = N — M. It is easy to see that the number of freedoms in Vj,(7Tx)
is N — M for any fixed triangulation Tx. Notice that the nodes in the triangulation
for functions in Vi can also change positions. For simplicity, we assume that the
nodes on the boundary 0 are fixed. Each vertex in N has two freedoms. Then the
dimension of the manifold Vy is 3(N — M).
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4.2. The regularized metric space. We introduce a natural metric for func-
tions in V. For any v, € Vi, suppose the corresponding triangulation for vy, is Ty,
then it can be written as vy, = Zi\SM v;¢;, where v; is the value of v, on the vertex
x; € Nj, and ¢; is the standard linear finite element basis function with respect to x;.
For any x; € N, let w; be the patch composed by all elements which includes x; as a
vertex. Let N (w;) be the set of vortexes which is included in w; in the triangulation.
We now consider the tangential space of the manifold V. Without loss of generality,
suppose that vy, (t) is a curve on the manifold given by

N-M
vp(t) = Z ;i ()i (t, x).

Notice that ¢;(t,x) = ¢;(--- ,x;(t), - ;x) depends on all the vertexes x;(t) € N (w;).
Denote by (z;(t), y;(t)) the coordinate of x;(¢). Then we have

duy, A dv; dz; dy;
T Z (E@ + gt Z 0O, b5 + dt Z Ujayi(bj)'
i=1 x; EN (w;) x5 EN (ws)

Hereinafter, we denote by Ny, = {x; : 1 <i < N — M} the set of inner vertexes in
TN

Denote by
Bi= > vi0n0;, 1<i<N-M
x; EN (w;)
Yi = Z vjayiqu, 1§Z§N—M
x; EN (w;)

Then the tangential space of Vi corresponding to a function v, € Vv can be given by
(41) thVN = span{gbi,ﬂi,’yi : 1 S ’L S N — M}

We say Vi is non-degenerate at v, whenever T, Vi is a 3(N — M) dimensional linear
space. In this case, we say vy is non-degenerate in V. When vj, is non-degenerate,
the functions {¢;, 8;,vi: 1 <i < N — M} forms a basis of T, V.

In this case, we can introduce a metric on T, Vy as follows,

A B C
g(vp) = BT D E |,
¢t ET F

where

Ac R(NiM)X(NiM), Qaij = fQ qﬁlgb]dx,
B € RWW-M)X(N=M) . — Jq @iB;dx;
C € RIN=MXIN=M) = .0 = [ diydx;
D e RIN=M)X(N=M) = g, = [ B;3;dx;
E e RWN-MXIN=M) = ¢.. = [ Biy;dx;
F e R(NiM)X(NiM), fij = fQ "}/Z’)/]dX

When vy, is non-degenerate, we can easily see that g(v,) is a positive definite sym-
metric matrix.
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Notice that there may exist degenerate functions in V. One trivial example is
the zero function (when v; =0, for all ¢ = 1,--- | N — M), for which we have 3; =0
and v; = 0. In this case, we easily see that B, C, --- and F in g(vs) are all zero
matrices. There also exist other type of degenerate functions in V. For example, if
vy, 18 a constant function in a patch w;, we easily have 8; = 7; = 0 so that g(v;,) will
be degenerate.

When v, € V}, is degenerate, g(vy) is a degenerate matrix. We may introduce a
regularized metric on T, Vy as

A B C
(4.2) gs(vp) = BT D+461 E ,
ct  ET  F+4I

where § > 0, T is the unit matrix in RV=M)x(N=M) " \ith the above defined regu-
larized metric, (V, gs) gives a smooth Riemann manifold, as stated in the following
lemma.

PROPOSITION 4.1. (Vi,gs) forms a smooth Riemann manifold.

Proof. We need to prove that gs(vp) is a Riemann metric on T, Vi for all vy, €
V. It is easy to check that gs(vp) is semi-positive definite for all v, € Viy. We will
only need to show it is non-degenerate as follows. Let (a®,b”, c?) be a vector in
R3(N=M) "such that a,b,c € RVN=M_ Suppose that

a
(aT,bT,CT)g(;(Uh) b =0.
c
This implies that
a
(@, b cMg(on) | b | +8(bf* +c[*) =
c
Notice that g(vp) is a semi-positive matrix. We have |b| = |c| = 0. Then we are led
to
a’Aa = 0.

Since A is a mass matrix for standard linear finite element space on Ty, we easily
have a = 0. O

Consider a curve in Vj given by

N-—M
D) = (o) = S ()it )}
=1

with differentiable coefficients in ¢ € (a,b). The arc length of T'(¢) is given by

1
v 2

b
(4.3) L) = [ 67Dt | % )| ds,
@ y
where v = (v1,-- ,on_m)T, x = (z1,- ,on_a)T and y = (y1,- - ,ynv_m)T. Vis

the derivative of v with respect to t and similar definitions are for x and y. Then, the
7
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(1

geodesic distance between two points v, ) and vf) in Vv can be defined as follows

dwns (vh ), v}(f)) = irllf {L(F) : T is a piecewise differentiable curve
connecting v( ) and v,(lz)}.

By the theory in Riemann geometry, (Vi,dn,s) gives a metric space, as shown in the
following lemma.

PROPOSITION 4.2. (Viv,dn,s) is a metric space.

Proof. We need only to prove dy s is a metric. By the definition of dy 5, we easily

see the symmetry dN’g(’U}(l ), v,(f)) =dy 5(1},(3), v,(ll)) and the inequality

dNy(;(v,(Ll),v,(f)) <dy (vél),v,(l?’)) dy 5(11,(13),1;,(12)),

for all v,(l )7 v}(f), v,(f’) € Vn. Meanwhile, we also have dy 5(1},(1 ), (2))

Now suppose that dN’(g(vi(Ll)7 v,(f)) = 0, we need to prove that v,(ll) = v}(f). In this

case we have infr L(I") = 0 for all curves I' connecting v}(Ll) and U}(LQ)

is obtained for a curve I'g, we have

. If the infimum

[N

b v
L(Ty) = / 75T 3 )gs(w) [ % )| dt=o.
a y

This leads to (v, x7,yT) = 0, a.e. t € (a,b). We thus have v}(ll) = v}(f). If the
minimum is not obtalned7 we can prove the equality by taking limits of a minimizing
sequence. 0

Notice that the space Vy might not be complete, since the limit of a Cauchy
sequence of the functions in the space might correspond to a triangulation which is not
admissible. For example, suppose a sequence v,(lk) is equal to a constant in a large patch
which includes at least one triangle 7" not intersecting with the boundary. Suppose
the triangle shrinks to a point when k goes to infinity and the other vertexes do not

change. We also assume that the value of the functions (i.e. v,(lk)(xi)) on the vertexes

does not change. We can easily shovv that v,(lk) is a Cauchy sequence in (Vn,dn s)

since d3 5(v }(Lkl), kz)) 621 1 | —x(‘k2)|2 Here X( 1) and x(kz) (i=1,2,3) are the

vertexes of the triangle T Correspondmg to v(kl and v,(IkZ), respectively. However, the

limit of the meshes corresponds to a trlangulatlon of Q with different topology, which
is not admissible by the definition of A,4. The incompleteness of the discrete space
may cause troubles to a numerical method. The degeneracy of the triangulation can
be avoided by adding a penalty term to the discrete energy in next section.

5. The discrete problem and the convergence results.

5.1. The discrete gradient flow. In the metric space (V,dy ), the discrete
energy corresponding to the energy £ in (3.3) is defined as

(5.1) & (un) ::/Q%Nuh\Q+f(uh)dx+5/QW(V;(F(§<))d§<

8
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where & is a positive parameter and the last term is a penalty term to make sure no
degenerate triangles in real simulations. In this paper, we assume Q = € and 7, is a
quasi-uniform partition of 2. We suppose that W(-) > 0 is a given function such that

(5.2) W(I)=0; W(ViF(%)) — 0o as det(ViF (X)) — 0F.

The local upper gradient of 515\, in (Vn,dp,s) is calculated as

~ f; :
(5.3) 0E (un)| = | (£7, €5, £ )gs(un) ™" | f2
fs
where s s s
fi=52, fu=5%2 fu=%%  di=1- ,N-M

Notice that the metric derivative of an absolutely continuous curve I' = {up ()}
in (Viy,dn,s) is given by

ol

u
(5.4) )] = | @75 5 gs0m) | %

y
By definition and direct calculations, the gradient flow in metric space, i.e. the curve
of maximal slope is given by

u fi
(5.5) gslun) | x | =—| £
y fs

This is exactly the semi-discrete formula derived in the moving finite element scheme
[42], which originates from the seminal work in [32, 31].

We consider the problem (5.5) in an interval [0,7]. In addition, we assume that
Q = Q and the mapping F(#) = & at initial time ¢ = 0. With these notations, we
can derive a fully discrete problem by the so-called Jordan-Kinderlehrer-Otto(JKO)
scheme [24]. We partition the time interval [0, 7] by

O=to<ti < ---<tg=T.

Let At = T/K be the time step size. A proximal functional related to 5]5\, is defined
as

d% 5 (un, o)

OAL + EX (vn),

(5.6) B3P (At up;on) =

for all up,vp, € V. Then the JKO scheme of the semi-discrete problem (5.5) is defined

as follows. For a given discrete solution uZ_l at the time t¢,,_1, the solution at ¢, is

computed by

(5.7) up € argminvhq)f\’,g(At,uz_l;vh)
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5.2. The theoretical results. We define the piecewisely constant functions in
time

0
_ ~_J o, =0,
(58) Uh(t) - { UZ, tec (tn_l,tn],

which is an approximated solution to the model problem (3.1). We also define the
discrete metric gradient for the discrete solution as

_ d,s(up,up ™)

. te (" .
tn*tn—l ( )

|up(2) :

Then, we have the following existence and convergence theorems.

THEOREM 5.1 (Existence of the discrete solution). For an initial function ul) €
VN and a partition of the time interval (0, T) with time step At, there exists at least
one discrete solution Uy (t) defined as in (5.8).

THEOREM 5.2 (Convergence).  Suppose that ul) 2, ug, E(uY) — E(up), as
N — oo; and ug € D(E). We also assume that the parameters At = o(1), § =
o(N~') and & = o(1). Let an(t) be a sequence of discrete solutions of the discrete
problem (5.8). Then there exists a subsequence, still denoted as un(t) and a curve
u(t) belongs to ACL.(]0,00), L?(Q)), such that u(0) = up,

lim [|a,(t) — u(®)||z2 =0,  Vie (0,T],
N—oc0

lim & (@n() = £(u(t),  Vte(0.T],

lim |03 |(n) = |0€|(u), inLP _[0,T),
N— oo
lim |uy,| = |u/|, in L}, [0, T].
N—oo

Furthermore, u(t) is a curve of mazimal slope for € with respect to |0E|, which is a
strong upper gradient for £. We also have the following energy identity

Eult)) = £(u(0)) — / P (s)ds — 5 / 082 (u(s))ds, Vi € (0.T]

The two theorems will be proved in next section.

6. Proof of the main results. In this section, we present the proof of the main
results. The proof follows the approach in [2] and also in [34].

6.1. Moreau-Yosida approximation. We first introduce the Moreau-Yosida
approximation of the discrete energy El‘i, and its properties. Let s > 0, the Moreau-
Yosida approximation of Sg, at vy € Vi is defined as

61) & inf @%9 i W) g
The set of minimizes is denoted as
Jn,s[vn] == argmin,, oy @%5(57%;111;1).

With the above notations, it is easy to see that the discrete solution u} € Jy At [uZ_l].
The following theorem show the existence of the Moreau-Yosida approximation,
which covers the results in Theorem 5.1.

10
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PRrOPOSITION 6.1 (Existence of the Moreau-Yosida approximation). For any s >
0 and vy, € Vy, we have

(6.2) Jh,s[vh] #+ 0.

In particular, for every choice of u% € Vi and a partition of the time with step size
At, there exists at least one discrete solution Uy (t) defined as in (5.8).

Proof. By the assumption that f > 0 in Section 3, we have @f\}é > 0. For given

v, € Vv, we can find a minimizing sequence wék) € Vi such that

. 5.5 (k) . 5.5
lim ®% (s, vp;w = inf ®F (s,vy;wy) > 0.
b 00 N ( s Uhy Wy, ) wn €V N ( s Uhy h) =

Notice that

. 5,6 5,6 5
inf ®Y (s,vp;wp) < Y (s, vnsvp) = éﬁ,(vh) =:Cy < o0.
wpEVN

Then there exists a positive number K € NT, such that

k
d?V,S (Uhv w}(L ))

9% + 5}?,(11)2@) < 2Cy, when k& > K.

We then have

d?v75(vh, w,(lk)) < 2Cps, and Ejiv(w,(f)) < 2C, when k > K.

Notice that wék) = ngk)qﬁi (x) has finite dimensions. We can find a subsequence,

(k)
h

which is still denoted as w," without loss of generality, such that w(*), x®*) and

y®) converge in Eulerian distance. Here w(¥) € R¥=M is the vector of w ™ (x;) for
x; € Nin, x(F) ¢ RN=M and y(k) € RN-M zr¢ respectively the coordinates of inner
vertexes in the triangulation corresponding to wgk). By the definition of £%, and the
property (5.2), we know the area of each element in the triangulation corresponding

to w,(lk) has a lower bound independent of k. Therefore, the limit of x*)and y*) will

correspond to an admissible triangulation of 2. We then have w, = limy_, w,(lk) is
still in V. i
By the continuity of <I>f\’,57 we also have

. 5 k 5 ~ .
khj& @f\}é(s,vh;wé )) = @f@ﬁ(s,vh;wh) = infy, cvy Pr(s, vp; wp).

This ends the proof of the theorem. 0

By the above theorem, we know that the Moreau-Yosida approximation of Ej‘i, is
well defined for any s > 0 and v;, € Viy. This means Jy s[vy] is not empty. However,
the minimizes might not be unique. Thus we can define

dps(vh) == sup  dwngs(on,wn), dy (o) = inf  dy,s(vn,wp).
wpE€JN, s [vn] wh€IN,s[vn]

The following properties of the Moreau-Yosida approximation are direct applications
of some known results in literature (e.g. Section 3.1 in [2]).

11
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355 LEMMA 6.1 (Propertiqs of the Moreau-Yosida approximation). For the Moreau-

356 Yosida approrimation of 6']5\, defined above, the following properties hold.
357 (1). The map (s,vn) — En,s(vp) is constivous.
358 (2). If 0 < sp < s1 and v}(;) € Jn.s; [vn], we have
359 EX(0R) > Enoo(Uh) = Envey (0n), div s (W v0p) < divs(0), on),
360 Ex(vn) = Ex (o)) = EX(of), df ,, (vn) < diy,, (vn) < df, (v).
361 (8). It holds that
362 lim Ex s(vp) = lim inf 3 (o) = 2 (vp).

510 N, ( h) 510 wp€JN, s[vn] N( h) N( h)
363 (4). There exists at most countable set N, C RT, such that
364 df; J(vn) = dy ,(vn), Vs €RT\N,,.
365 and limg g dps(vh) =0.
366 (5). If vp,s € JN s[vn], then we have

5 d ER)
367 |0ES | (v.s) < M
368 (6). For every vy, € Vy, the map s+ En s(vp) is Lipschitz and satisfies
+ 2

dEns(vn)  (dy s(vn))
360 ’ = _— Vs e RT\ N, ,
369 s 52 0 VS € \ N,
370 and

ds(Wnsson)  ° (dy, (o)’ . i
2 ° / e dr = EX (o) — EX (vne).

372 (7). There exists a sequence sy, | 0 such that

% 5(Vh,s,, vn) £ (o) — E} (vns,)

. 5 - L . 5
373 |0EY|? (vp) = klgréo T = klingo o > hrg%]nﬂagmz(vh,s).

374 6.2. A priori error estimate. To prove convergence of the discrete gradient
5 flow, it is necessary to introduce the De-Giorgi interpolation defined below.

376 DEFINITION 6.1 (De Giorgi variational interpolation). Let {u}'} be a solution of
377 the variational scheme (5.7), we denote by @y, : [0,00) — Vi an interpolant of the
378 discrete values satisfying

379 (6.3) n(t) = tn(tn-1 + ) € Inslu) '], ift =tn_1+5€ (tno1,tn).

380 Introduce a notation
df (urt d G (1), w1
381 Gy(t) = Nl ) > N"Sguh(t)’uh ), t=tn 1 45€ (tn1,tn].
S —in—1

382 By the property (5) of the Moreau-Yosida approximation in Lemma 6.1, we have
383 0] |(iin) < Gy (t), V€ (0,T].

384 The following lemma gives some a priori estimates of the fully discrete problem, which
385 are useful in the proof the convergence theorem.

12
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386

387

388

389
390

394

LEMMA 6.2 (A priori estimates). For each couple of integers 1 <i < j < K, we
have

1 [t 1 [t 5 ;
(6.4) 5 [ lhPod g [ G gl = ).
t t;

Moreover for any 1 <n < K, there exists a constant C independent of N and K such
that

n_ 42 J" Jj—1 ~ -
S Dl ) e () — ) < €

J=1
d?v,é(ﬂh,’l_l,h) < CAt.

Proof. We use the property (6) of the Moreau-Yosida approximation,

d?vé(uj,uj_l) 1 t d:(un—l ~ o N )
TV 2/t - b o )dr:E‘s(ufl ) =& (u).

2 j—1 27"2 h
Summarizing the above equation from j = 1 to n and use the definitions of |u},| and

G, we get the first equation of the lemma. Ignoring the second term of the equation,
we get the second inequality of the lemma. For the last inequality, we have

dRy 5 (n (t), (1)) dRy 5 (@n (1), upy)

< (dws(an(t), uzfll) + dN,J(UTl»l“Z))Z
< 2l (). ™) 203 50 )
J— J
< 4d% g up) < dAryr | T ) < yong,

Here in the fourth inequality, we use the property (2) of the Moreau-Yosida approxi-
mation.

6.3. Gamma-Convergence of the discrete energy. We now show the con-
vergence of the discrete energy £ ]‘if to the continuous energy N under mild conditions.

LEMMA 6.3 (T-convergence of the energy). Suppose that & = o(1), and f in the
definition of £ is Lipschitz continuous, then we have 815\, I'-converges to € in L%(§2)
norm as N — oo.

Proof. We prove the results by the definition of I'-convergence [9, 16]. We need
prove the liminf inequality and limsup inequality, respectively.

i). Liminf inequality. For any v, € Vi s.t. vy, — v in L?(€), we need to prove

E(v) < liminf 3 (vp,).
N—o0
If imy o0 5]‘%(%) = 400, the above equality holds surely. Otherwise, we assume
that lim inf y €% (vn) < +00. There exists a Ng > 0 and C' > 0, such that 3 (vs) < C,
for all N > Ny. Notice that f(vs) > 0 and the regularized term is also positive, we
then have

SVl < & (o) < C.

Notice that v;, € Hg(£2), there exists a subsequence, still denoted as vy, and a function
o € HY(Q), such that v, — @ in H(Q) and v, — ¥ in L?. By the condition that

2
vp =5 v, we have v = 5 € H(Q).

13

This manuscript is for review purposes only.



114
415

416

418
419

420

439
440

441
442

Notice that § [, |Vo|?dz is convex with respect to Vv. f(v) is a Lipschitz con-
tinuous function with respect to v. We can derive that £(v) is lower semi-continuous
with respect to the weak H' norm. This leads to

E(v) < liminf £(vp,) < liminf Ejs\,(vh).
N—00 N—00

ii) Limsup inequality. For any v € L?(Q), we need to prove that there exists a

2
sequence vy, € Vi, such that vy, L—> v and
E(v) > limsup Sjsv(ﬁh).
N—oo

If v ¢ H}(Q), we have £(v) = oo. There is nothing to prove. Otherwise, we
can assume v € H}(Q) such that £(v) < oo. In this case, we can choose a fixed
triangulation 7 of € such that F(%) = %. Then by the assumption for W (Eq. (5.2)),
we know that the regularized term is zero in Ej‘i,. Let v, = mpv € Vh(7~') to be the
projection of v on such a mesh. By the density of the piecewise continuous functional
space in H3(€2), we have |[v—op,|| g1 — 0. Notice further that f is Lipschitz continuous.

This leads to £ (75) — E(v). d

6.4. Continuity of distances. In the discrete spaces, we have introduced a
distance which is different from that for continuous problems. We need the following
results on continuity of distances.

LEMMA 6.4 (Continuity of the distances). Suppose that § = o(N~1). Let u and
v be two functions in Hg (), and up, v, € Vi be two sequences of functions satisfying

2 2
up, L w and vp, L vas N = oo, then we have
dns(un,vn) = d(u,v) := |u —v||L2q), as N — oc.

Proof. We first assume u = v = 0. This implies that u; and v, converge to the
same zero function in L?(Q2) when N — co. We will show that dy s(upn,vs) — 0 in
this case. Actually, notice that

dn s (un, vn) < dys(un, 0(Tw)) +dn s (0(Tw), 0(Tn)) + dn.s(0(T5), vn)
1/2
=d(up,0)+ | § > [Fi(%) — Fa(@:)]? +d(0,v5) = 0,
%, EN
where Ty = By Tn and Ty = FyTwn (with F; € A,q) are respectively partitions of
with respect to uj, and v;, 0(7Tn) and 0(7n) are the corresponding zero functions in
Vi (Twv) and Vh(7'N). Here in the last limit, we have used the condition that uy, L—2> 0,
2

vp, L% 0 and limy_soo N6 = 0. ~
Then, we consider a (quasi-)uniform partition 7 and let 7,u be the projection

of uw on V,(T). Notice that both uj, and 7,u converges to u in L*(Q2). By similar
arguments as above, this leads to the fact that dy s(up, 7pu) — 0. Similarly, we also
have dy s(vn, Tv) — 0. Notice that

|dn,s(un, vn) — dns(mru, Tho)| < dns(up, Thu) + dn,s(TRY, v).
and dy s(mpu, mpv) = d(mpu, mpv). This gives
|dn,s(un, va) — d(mpu, TRv)| — 0,

This implies that d(mpu, 7,v) — d(u,v). This ends the proof of the lemma. d
14
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6.5. \-convexity. The following lemma states that A-convexity of the proximal

functional @f\}‘s and ®. The results are essential for the proof of the convergence
theorem.

LEMMA 6.5 (Uniform A-convexity). Suppose that f in the definition of £ is a
smooth function satisfying f”(-) > Ao for a constant Ao € R. Let

d*(u, v)
T

O(7,u;v) := +E£.

There exists a A € R and Ny € Nt such that the following conclusions hold. For any
vo,v1 € HE (), there exists a curve v(t), t € (0,1), such that v(0) = vg, v(1) = vy,
and for all0 < 7 < /\% with A~ = max(0, —\),

O(7,v0;0(s)) < (1 — 5)P(7,v0; v0) + sP(7,v0; 1)
(6.5) —%(/\4— %)3(1 — $)d2(vo, 11).

A similar inequality also holds for <I>§\’,S uniformly. For any v,(lo),v}(f) € Vi with N >

)

Ny, there exists a curve vy(s), s € (0,1), such that v, (0) = U}(LO ,op(l) = v,(ll) and for

all0 <1< )\%,
O (r 0 ron(9) < (1= )85 (70”1 0;”) + 595 (.0 s 0
1 1 0) (1
(6.6) —5 A+ sl = s)dis (0" up).
Proof. We first prove the inequality (6.5) for the continuous problem. For given

vo and vy, we simply set v(t) = (1 —1t)vg+tv;. Notice that the second order derivative
f(+) is bounded from below. We easily have the following inequality

A
o) < (1 —1t)f(vo) + tvy — 5%(1 — t)|vo — v1 |2
Then by the convexity of the first term in £, we have
A
(6.7) E(w(t)) < (1 —t)E(vg) + t&(v1) — ?Ot(l —t)||lvr — vol|3.

Notice again that

t(1—1t)
2T

vt—v02 t2v1—1)02 t
H ( ) HO _ || ||0 — 7””1 _UO||(2) _

o2
2T 27 27 llor = wollo-

This together with the equation (6.7) gives the inequality that

D(7,v0;v(t)) < (1 —)®(7, vo;v0) + tP(T, vo;v1) ! (Mo + %)t(l —t)d*(vo, v1).

S 2
This leads to (6.5) directly.

By the similar arguments, we can prove the inequality (6.6) with A < Ao when
both v,(LO),vg) are piecewise linear functions on the same partition 7. In this case,
both the penalty term in 5]5\, and the stabilized term in dy s are constant or even

zero on the curve linearly connecting v,(LO) and v}(ll). For general cases, the result (6.6)

can be proved by taking limit for N — oo and using the result (6.5) noticing that
§ =o(N~1') and § = o(1). The rigorous proof is given in the appendix. d
15
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The following lemma show the property of the strong upper gradient under the
condition of A-convexity.

LEMMA 6.6. If the \-convezity property holds as stated in the previous Lemma,
then the local slope can be represented as

B Ew)—=E(w) A +
o1 = sup (252 4 Seww))

If, in addition, & is d-lower semicontinuous, then |0€| is also a strong upper gradient
of £ and is d-lower semicontinuous.

REMARK 6.1. The proof of the lemma is given in Theorem 2.4.9 and Corollary
2.4.10 in [2]. The generalization of the lemma to the general p-curves can be found

in [34).
With the previous results, we can prove the following lemma easily.

LEMMA 6.7 (liminf condition for the slope). For any vy, € Vy, such that v, — v
in L?(Q)) when N — oo, we have

10€](v) < liminf |03 |(vy).
N—o0

Proof. By the uniform A-convexity of Lemma 6.5, the I'-convergence of Lemma 6.3,
and the continuity of the distances of Lemma 6.4, the result in this lemma is a direct
conclusion of Proposition 13 in [34]. O

6.6. Compactness. The following lemma states some important compactness
results.

LEMMA 6.8. Suppose that limy_yoo At = 0, u) L—2> ug, EX (W) — E(ug), as
N — oo, ug € D(E). Let up(ty), k = 1,--- K be the solutions of the discrete
problem (5.7). Let @, and @y are the piecewisely constant approximation and the
De Giorgi interpolation defined in (5.8) and (6.3), respectively. Then there exists
a subsequence, still denoted as wj, and a curve u(t) belongs to ACE.([0,00),), a
non-increasing function ¢ : [0,00) — R and a function A € L2 _[0,00), such that

loc
an®) s ut), an) L ut),  asN — oo, Vi € [0,T],
o(t) == lim & (up) > E(u), vt € (0,7,
N—o0
E(u(0)) = E(uo),
luj,| = Ain L} ([0,00)), A(t) > [o/|(t), for L' —a.e. t € (0,00),
lin inf Gy (1) > 98] (u(1))

Proof. Notice that Elgv(u%) — E(up) as N — oo. Without loss of generality, we
can assume that £ (u)) < E(ug) + Cp for some Cy > 0. Therefore, we easily have

E3 (up) < EL (W) < E(ug) + Cp < 0.

By the definition of EISV and the positivity of the function f, we have $luf|i <
E)(u}) < E(ug) + Cp. By the Rellich compact embedding theorem, we know that

up(t) C K := {Eg(vh) < C}is compact in L?.
16
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520 By the energy estimate that,

- n d2 (ujl,ujfl) < 5/ m— =
521 S et S < () — E(upTh) < Ep(uf), Yn > 0.
522 This leads to fOT |uj,|2(t)dt < C. Then there exists a subsequence, still denoted
523 as |uj,|, which converges weakly in L?(0,T) to a function A as N — oo. This is
524 Juj| = Ain L2 (0, T).
525 For any fixed 0 < s < t, let us define s(n) = |s/At] and t(n) = [t/At]. Then by
526 limpy_00 At = 0, we have
527 s(n) <s<t<t(n), lim s(n)=s, lim t(n)="t.
N— 00 N—o0
528 By the inequality
t(n) ,
529 )~ Ol < dncslin(s) @) < [ o)
s(n
530  we have
t
531 limsup ||ap(s) — ap(t)]o < / A(r)dr.
N—00 s

532 Then we could apply the Ascoli-Arzela theorem(c.f. Proposition 3.3.1 in [2]) to obtain
2
533 ap(t) EaN u(t), Vt€[0,T], where u(t) € L?(f2) is continuous with respect to t. By the

2
estimate in Lemma 6.2, we also have @y (1) EaN u(t). Furthermore, the limit implies
that

ot Ot

w W
[GLEETN

536 u(s) — u(®)lo < / A(r)dr.

537 By the definition of the metric gradient, we have u(t) € AC([0,t], L*(Q)) and satisfies
538 |u|(t) < A(t), a.e.t € (0,T).

539 Notice that £% (@ (t)) is a non-increasing function for any given solution @y (¢) in
540 Vx. By Helly’s lemma (c.f. Lemma 3.3.3 in [2]) , there exists a subsequence of the
541  discrete solution, still denoted as @y, and a function ¢(t), such that for all T >0,

542 o(t) = lim & (un(t)),  Vte (0,7).

N—o0

543 By Lemma 6.3, we have ¢(t) = limpy_ 00 Ej‘i,(ﬂh(t)) > E(u(t)). In particular, by the
544  well-preparedness of the intial condition, we have p(0) = £(ug) = £(u(0)).

545 Finally, by the estimate \(’95§S~V|(ﬂh) < Gn(t), we have
546 liminf Gy (t) > lim inf |93 |(iin (£)).
N—o00 N—o0

Notice that by Lemma 6.7, we have

lim inf |93 (i (1)) > 9€](u(t)-

ot
iy
~

This end the proof of the lemma. ]
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563

6.7. Proof of the convergence theorem. We are ready to prove the main
convergence result as follows.
Proof of Theorem 5.2. By the compact results in Lemma 6.8, we have the follow-
ing relation up to a subsequence,

sumptions on ug,j.

<
m EN () + 5 2

<l

/|u £)dt += /Ot88|2(u(t))dt

1

1m1nf< /GN 2dt+- /\u§1|2(t)
N—o00

< E(u(0)).

In the last inequality, we have used the equation (6.4) in Lemma 6.2 and the as-

Lemma 6.6), we have

&(uo) ge(u(t))+/0 |0€|(u(s))[w|(s) ds

Therefore, we have

W|(8) = 0] (u(s))  a.et € (0,00),
£ (up) = / | (£)|OE | (u(t)) dt

t
/A( )zdt+;/ hmmfGN() dt

)

This implies the energy identity in Theorem 5.2 and also the relation

d /
ZE(ult) = —|og @) |(0),

On the other hand, since |0€] is a strong upper gradient (i.e.

i.e. u(t) is a curve of maximal slope for £ with respect to |0€|. This ends the proof.

7. Numerical experiments.

7.1. Implementations The JKO scheme (5.7) gives a fully implicit scheme.
Notice that <I>

to up.

(At Up; Uy
To solve the optimization problem (5.7) is usually very difficult.

consider some simplified schemes below.

Firstly, we will do quadralization and compute the distance d Nﬁg(uzfl

)

~1) is a nonlinear and nonconvex functional with respect

We will

vp) ap-

proximately. Let v, x and y be the coordinates with respect to v,. Suppose also that

u® b x(=1 and y(»=1 are coordinates with respect to uj. Then we set
_ v—um-D\T v — u®-D
dXs(up o) = | x—x0D ) gs(up™) [ x—xtT
y -y Y y -y
In each step, we minimize the following functional
d2 un—l’ v ~
(7.1) inf (I> (v X y) M +gjiv(vh)-

vV.X,y 2At
18
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584

590

This is still a nonlinear optimization problem. We can further simplify it by doing
&4 (vp,) and let

i i £ v —u-b
Exlon) = Ex(u™ ) {7 XD
g1 y -y

5 5 5
where fl(z_l) = %(uén—l))’ 2(2_1) = %STJX(“EL"_D) and féz_l) = %(uﬁl"_l)). Then

the solution of (7.1) can be approximated by

a™ _ g1 gn=1)
(72) glg(uzfl) X(") _ X(n—l) — _At f2(n71)
y(") — y("—l) fén—l)

This is an forward Euler scheme for (5.5) used in the standard MFEM [32, 42]. It is
known that very small time step must be chosen for the forward Euler scheme since
the corresponding ODE system (5.5) is very stiff in general cases.

In our numerical experiments, we use a different scheme. We do Taylor expansions

to EJSV (vn) up to a second order term and set

) ) fl(nfl) v —ub
Evln) ~ (g )+ | g ) x—x(D
fén—l) y — y(n—l)

WAL a1\ " v —ul»b

+- [ x—x=1 H(uglnfl)) x —x(=1)

2\ y -y y -y Y

(n—1)

where H(u, ) is the Hessian matrix of Ej‘i,(vh) with respect to (v,x,y) at ugnfl).

If we use this approximation to replace EJSV in (7.1), we get a new explicit scheme

a™ — -1 gD
(T3)  (gslup )+ AtH(uy V) [ x™) —x=D ) = —Ar (g

It turns out the scheme is much more stable than the explicit scheme (7.2). We can
choose relatively large time step At in numerical simulations.

7.2. Numerical examples. We first test the accuracy of the numerical scheme
(7.3) by solving a model problem in one dimension. We consider a linear equation as
in [42].

(7.4) O = Oyput, x € (-3,3).

The boundary condition is u(—3) = w(3) = 0. The initial condition is given by
1

22
4me_'47 with € = 0.001. The corresponding energy is

ug =

E(u) = % /_ (0.2,
19

This manuscript is for review purposes only.



22
597 The analytic solution of the equation is approximately given by u(z) = ﬁe_ 4<6+f>l
T(E

598  when time t is small.

599 Since the initial value of the solution is a Gauss function concentrated in a narrow
600 interval centered at x = 0. We choose the initial partition of I as follows. We separate
601 the interval [—3, 3] into three parts, [—-3,0.2)U[—0.2,0.2]U (0.2, 3]. We choose uniform
602 meshes in the three intervals, respectively, while we put 2/3 of the total number of the
603  vertexes in the middle interval [—0.2,0.2] and put 1/6 vertexes to each of the other
604 two intervals. In numerical experiments, we take § = 6 = 0.001 and the regularized
605 term W = N%c Y oKeT, ln(%), where | K| is the length of a cell K of the partition,
606 and Ny is the total number of cells. We solve the problem (7.4) until 7' = 0.05.

607 The error between the discrete solution uy and the analytic solution u at T' in
608 energy norm is computed by

1/2
609 errg1 = (/(8xu(x,T) — (%uh(%T))de) ,
I

1/2
610 errrz 1= </(u(m,T) fuh(x,T))zdx) / .
611 I

612 The numerical errors are shown in Table 1 for various choice of N and At. We first
613  test the convergence with respect to the spacial partitions. The convergence order
614 is computed by s; := In(err;/err;+1)/In(N;+1/N;), which implies that the errors
615 decrease with order O(N~%). We can see that the H!-error is of optimal convergence
616 order O(N~1) and the L2-error is of optimal order O(N~2). We also compute similarly
617 the convergence order with respect to time At. Both the H!'-error and L2-error are
618 of optimal order O(At).

619 In Figure 1, we show the numerical solution of the equation when N = 30 and
620 At = 107°. We could see that the numerical solution agrees with the analytical
621 solution very well. The grid redistributes automatically when time increases. An
622 interesting observation is that the grid seems to concentrate where the second order
623 derivative of the solution is large.

Table 1: The H'-norm and L?-norm of the error in Experiment 1.

At=10"C% [ erry:  order | errj order
N =16 0.1837 - 0.0127 -

N =30 0.1136  0.76 | 0.0038 1.92
N =60 0.0362 1.81 | 0.000741 2.36
N =120 0.0194 0.99 | 0.000148  2.32
N =120 errg1  order | errpe order
At =0.01 0.6013 - 0.0970 -

At = 0.005 0.2513 1.26 | 0.0430 1.17
At = 0.0025 0.1088 1.21 | 0.0181 1.25
At =0.00125 | 0.0531 1.03 | 0.0092 0.98

624 In the second example, we show some numerical results for the two dimensional
625 Allen-Cahn equation. We consider the equation

1
626 (7.5) O = eAu + gf(u), in Q,

20
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Figure 1: Numerical results of 1D heat equation. The solution and grid of u; changes
with time.

with Q = (0,1) x (0,1) and f(u) = u® — u. Notice that f(u) = E’'(u) with E(u) =
(1—u?)? Th . .
. The corresponding energy is

E(u) = / E\Vu\z + 1E(u)dx
Q 2 3

0.25—+/(2—0.5)24(y—0.5)2
0.1v2
the domain and set u(x) = —1 for the boundary condition.

In our simulations, we set ¢ = 0.005, § = § = 0.001 and At = 0.0001. The
regularized term is given by W(VF) = [; £|V&F|*d%. The initial mesh is uniform
with mesh size h = 0.025. The numerical results are shown in Figure 2. Then the
solution evolves and the mesh changes accordingly. The mesh concentrates near the
sharp inner layer of the solution. Across the inner layer, the solution of u; changes
dramatically from 1 to —1. The inner layer has a circular shape and the radius
decreases gradually with time. This is consistent with the asymptotic analysis result
that the solution of the Allen-Cahn equation approximates to a mean curvature flow.
We can also see that the meshes also change with time and capture well the evolution
of the inner layers. This implies that the MFEM method works quite well for the
Allen-Cahn equation.

For the initial condition, we set ug = (1 + tanh( )) — 1 inside
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Figure 2: Numerical results of 2D Allen-Cahn equation. The solution and meshes of
up, changes with time.

8. Conclusions. In conclusion, we present a novel mathematical framework and
new numerical schemes for the moving finite element method. A key contribution is
the introduction of a regularized metric that enables the formation of a non-degenerate
Riemann manifold and a discrete metric space for the finite element space with free
knots. To demonstrate the main idea of our approach, we consider a nonlinear re-
action diffusion equation as a model problem, which can be interpreted as a curve
of maximal slope in the L?-space. By employing the moving finite element method
for numerical discretization, we show that the resulting approximation also follows a
curve of maximal slope within the discrete metric space. Importantly, we are able to
derive some new numerical schemes, such as the JKO scheme and an explicit stabilized
numerical scheme. We establish the existence and convergence of the JKO scheme
by utilizing the theory for gradient flows in metric spaces, under mild assumptions.
Numerical experiments show that the method works well in both one dimensional and
two dimensional problems.

There are some other work need to be done in the future. Firstly, we prove
the convergence JKO scheme which is a fully implicit scheme. It is also interesting
to further study the convergence of the explicit stabilized scheme, which is much
simpler than the JKO scheme and can be used in applications. Secondly, numerical
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results show that the moving finite element method has optimal convergence rate
with respect to space grids and time step size. It is very interesting to establish
a priori error estimates for convergence order of the method. Finally, it is worth
noting that the framework may be used for understanding other methods that involve
moving meshes. Examples include the moving mesh methods [10], the Lagrangian
type methods [28, 27, 14], and the arbitrary Lagrangian Eulerian method.

Appendix: Details of the proof for the \-convexity of the discrete prox-
imal functional. We prove the inequality (6.6) for general cases by contradiction.

If the inequality does not hold, we can find a series of functions vék), 17,(? € Vn, with
N — +00, and an increasing series of numbers ¢; — oo and 7, > 0, such that the

following inequality holds for any curve U](zk)(t) connecting v}(ﬁ) and 17}(;@) in Vi,

B (7, 0f 750 (1)) >(1 = )@ (s 03 0f) + 060, (7, 0y 91)

1 -
(8.1) +gentr(l— te)d s (vf”, 55,

for some t € (0,1). Clearly 0 or 1 can not be an accumulation point of t5. Otherwise,
the above inequality will be an equality. Also 0 can not be an accumulation point
of 7. Otherwise, both sides of the inequality will go to infinity. Without loss of
generality, we can assume that ¢, — £ and 7, — 7 as k — co. Then we have £ € (0, 1)
and 7 € (0, co].

Then we can see that both @?(,i (T, v,(Lk); v,(lk)) and @?{,i (7, v,(f); 6;Lk)) are bounded

from above. This leads to the fact that E]‘i,(v,(lk)) and 515\, (ﬁék)) are bounded. By the

Sobolev compact embedding theorem, there exist subsequences of fu,(lk) and f),(lk), still
denoted as the same notation, such that

vgﬁ) — ¥ in L2, v,(f) — P in H?
and

~(k - ~(k U

v}(L)—>v11nL2, v,(l)—\vllnHl.

We choose the curve connecting v,(f) and ﬁ,(f) as follows. Let Ty, be the reference

triangulation of  such that F(#) = &. Let 7}y and F9; be the projection of ¥
and 77 on Ty, . By the Lemma 6.4, we have d(()k) =dn, (v}(f),ﬂ,'jﬁo) — 0 and dgk) =

dn, (f}flk), ﬂ'ﬁle) — 0. We choose a curve which includes three parts, the geodesic curve

v (s) with s € (O,d(()k)) between v}(Lk) and 7} such that dy, (’yg(s),v,(lk)) = s (the
existence of such a curve can be seen in Lemma 1.1.4 in [2]), the linear combination
between 7i0y and 7591, and the geodesic curve v¥(s) with s € (1 — dgk), 1) between

5’(;“) and 7F%; such that dy, (7{“(5)765}9)) = (1 — s). Defined as follows,

YE(t) if0<t<d
k~ (k) K~ (k)
oty = Teliml—gtmaleh ) i gt <t <1 - df?
2 1
~E(t) if1—d" <t<1.

Then by taking limit of the equation (8.1) when k — oo, (noticing that cx — oo,
§ =o(N"1) and 0 = o(1)), we have
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This contradicts with the inequality (6.5).
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