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Droplets on rough surfaces can exhibit various stationary states that are crucial for designing
hydrophobic materials and enabling directional liquid transport. Here we introduce a phase-field
saddle dynamics method to construct the solution landscape of wetting transition and directional
transport on pillared substrates. By applying this method, we reveal the full range of Cassie-
Baxter and Wenzel states, along with the complete wetting transition paths. We further elucidate
the mechanisms of directional droplet transport on both hydrophobic and hydrophilic surfaces,
demonstrating how surface design can influence directional movement.

Droplets on rough surfaces exhibit a range of intrigu-
ing phenomena [1–3], including the lotus effect [4, 5]
and the rose petal effect [6]. In particular, various di-
rectional liquid transport behaviors have been observed
recently on textured surfaces such as spider silk [7], but-
terfly wings[8], Sarracenia trichomes [9], and Araucaria
leaves [10]. These phenomena are essential for numer-
ous practical applications, including self-cleaning mate-
rials [11–13], anti-icing surfaces [14], and water harvest-
ing devices [7, 15]. The wetting properties of droplet
on rough surfaces are typically described by the Cassie-
Baxter (CB) equation [16] or the Wenzel equation [17],
which correspond to the two most energetically stable
states in different scenarios—one with air trapped un-
derneath the droplet and the other without. However, in
reality, droplet on rough surfaces exhibit a multitude of
metastable states that cannot be fully captured by these
two equations [18]. The intricate transition paths be-
tween these states pose significant challenges for under-
standing the CB-Wenzel wetting transitions [19, 20] and
the associated directional liquid transport phenomena.

To understand wetting transition on rough surfaces,
there are two theoretical approaches: a force-based
approach [11, 21, 22] and an energy-based approach
[23, 24, 26, 27]. In the latter, a crucial aspect is esti-
mating the energy barrier between the Wenzel and CB
states. Quantitatively determining this energy barrier is
challenging, as it requires identifying the transition path
and the lowest energy barrier connecting two states. Nu-
merical methods, such as string techniques, have been
employed to calculate the minimum energy paths of wet-
ting transitions [28, 29]. However, the existing theoretical
and numerical studies cannot provide the complete struc-
ture of wetting transitions, primarily due to the presence
of numerous local minima and saddle points.

Regarding directional liquid transport on rough sur-
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faces, while the biomimetic experiments and develop-
ment of new materials have been conducted to achieve
this goal [7–10, 30–32], they have mainly concentrated
on the asymmetry of contact angle hysteresis [30, 33].
There are very limited theoretical and numerical research
examining these phenomena from an energy perspec-
tive, particularly concerning the computation of multi-
ple (meta)stable states and energy barriers involved in
the movement and transfer of droplet.
In this letter, we propose a phase-field saddle dynamics

method to construct the solution landscapes for wetting
transitions and droplet directional transport on rough
surfaces. The solution landscape serves as a pathway
map that includes all stationary states of the target prob-
lem and their connections [34, 35]. This method provides
an efficient approach to uncover all possible (meta)stable
states and the associated transition paths for wetting
transitions and directional transport.
We first employ a phase-field function ϕ to characterize

the liquid-vapor interface [36], situated within a domain
Ω that features a rough boundary Γ. In the dimension-
less terms, the energy E of the liquid-air system comprises
both the bulk energy Eb and the surface energy EΓ, de-
fined as follows (see, for example, [37, 38]):

Eb(ϕ) =
∫
Ω

ε

2
|∇ϕ|2 + 1

ε
f(ϕ)dx,

EΓ(ϕ) =
∫
Γ

g(ϕ)ds,

(1)

where f(ϕ) =
(ϕ2 − 1)2

4
, g(ϕ) = −σ

4
cos θ(3ϕ− ϕ3) with

σ =
2
√
2

3
, θ representing Young’s angle, and ε being the

interface thickness parameter. As ε approaches 0, the
energy E converges to that of the sharp interface model,
which includes the energies of the liquid-air, solid-liquid,
and solid-air interfaces [38]. The stable state of a droplet
is determined by the following minimization problem:

min∫
Ω
ϕdx=c0

E(ϕ) := Eb(ϕ) + EΓ(ϕ), (2)
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where c0 is a constant that depends on the volume of the
liquid drop. In the context of wetting on rough surfaces,
there exist numerous (meta)stable states that correspond
to the local minima of the energy E .
To identify all possible stationary states, including

both local minima and saddle points, we propose a phase-
field saddle dynamics method to compute the index-k
saddle points as follows.

∂tϕ = −PδϕE(ϕ) + 2

k∑
i=1

(PδϕE , ui)ui,

∂tui = −Pδ2ϕE(ϕ)ui + (Pδ2ϕE(ϕ)ui, ui)ui

+ 2

i−1∑
j=1

(Pδ2ϕE(ϕ)ui, uj)uj , i = 1, · · · , k,

(3)

where (·, ·) is the L2-inner product and the projection
operator P is defined as

Pϕ = ϕ− 1

|Ω|

∫
Ω

ϕdx.

δϕE(ϕ) and δ2ϕE(ϕ) are the first and second-order deriva-

tive of E(ϕ) in the Frechét sense [39]. The (Morse) index
of a saddle point is defined by the maximal dimension
of a subspace on which its Hessian is negative definite
by Morse theory [40]. We solve this system with initial
conditions ϕ(x, 0) = ϕ0(x), ui(x, 0) = u0

i (x) such that
(u0

i , u
0
j ) = δij and (u0

i , 1) = 0 for i, j = 1, · · · , k.
In the above system, the state variable ϕ moves

in the ascent direction along the subspace U =
span{u1, u2, · · · , uk} and in the descent direction along
its orthogonal complement. The variables ui (i =
1, · · · , k) correspond to the first k smallest eigenvalues of
Pδ2ϕE(ϕ). It is easy to verify that the solution of (3) in-

herits the volume constraint of ϕ if initially
∫
Ω
ϕ0dx = c0.

Furthermore, when t becomes sufficiently large, the dy-
namics described by (3) will converge to a steady state
in which the time derivatives of ϕ and ui approach zero.
In this steady state, ϕ∗ corresponds to the index-k sad-
dle point of E , and u∗

i (i = 1, · · · , k) are the k unstable
eigen-directions of ϕ∗.
Using the weak form of (3), we develop a finite ele-

ment method for numerically computing the phase-field
saddle dynamics (see supplemental materials [39]). One
significant advantage of the phase-field saddle dynamics
method (3) is its ability to effectively manage topology
changes of droplet on textured surfaces. We can then
construct the solution landscape of the system via the
upward/downward search algorithm — first identifying
a potential highest index saddle point by using the up-
ward search, followed by computing all connected lower
index saddle points and minima via the downward search
[34, 41, 42]. This approach is able to provide a compre-
hensive structure for wetting transition and directional
transport of droplet on rough surfaces as shown below.

Wetting transition- In the inset of Figure 1A, we dis-
play the configuration of pillar structure. The inclination

angle of pillars is represented by α, the spacing between
pillars is denoted by w, and the height between the top
and bottom of pillars is indicated by h. To demonstrate
the functionality of the phase-field model, we examine a
small droplet in two dimensions.

We first show the solution landscape for the transition
of a droplet from the CB state to the Wenzel state, with
the microstructure parameters of α = 90◦, w = 0.06,
h = 0.15, and the Young’s angle θ = 102◦ (Figure 1A).
In this scenario, the index-3 saddle point, referred to as
3S, is the most unstable stationary state in the solution
landscape, which can be viewed as the intermediate state
between the CB state and the Wenzel state. By perturb-
ing the 3S, we obtain two index-2 saddle points (2S1 and
2S2), three index-1 saddle points (TS1, TS2, and TS3),
and four minima (CB3, CBW1, CBW2, W3). In the solu-
tion landscape, we can find a transition path from the CB
state to the Wenzel state: CB3-TS1-CBW1-TS2-CBW2-
TS3-W3. Compared to previous studies on wetting tran-
sition processes, our approach is able to determine the
full transition path with all transition states and exact
energy barriers.

It is noteworthy that the symmetry of the 3S results
in the perturbations applied at different positions leading
to distinct resolved landscapes and transition paths from
the CB3 state to the W3 state. Figure 1B illustrates
all possible wetting transitions extended by Figure 1A.
All these transition paths are equivalent with the same
energy barrier.

With the ability to quantitatively characterize wetting
transitions, we investigate how the energy barrier is in-
fluenced by the Young’s angle θ, the gap width w and the
height h in Figure 1C-E, motivated by the results from
molecular dynamics simulations [25]. Figure 1C demon-
strates that the energy barrier increases monotonically
with an increasing Young’s angle θ when h = 0.15 and
w = 0.06. Figure 1D illustrates that the energy barrier
decreases as the gap width w increases with θ = 102◦

and h = 0.15. Figure 1E shows a monotonous increase
in the energy barrier with an increasing height h with
θ = 102◦ and w = 0.06. Therefore, low hydrophobicity
of the surface material, and large gap width or low alti-
tude of the pillar structure can reduce the energy barriers
and drive wetting transition, which are consistent with
previous theoretical and experimental studies [26].

It is important to notice that there exist multiple
(meta)stable states in both the liquid-filling Wenzel case
and the air-trapping Cassie case. By utilizing the so-
lution landscape, we can obtain all minima and transi-
tion states for Cassie-Baxter states and Wenzel states,
respectively (Figure 2). We illustrate the transition path
between three CB states—CB1, CB2, and CB3 (Figure
2A), with θ = 102◦, w = 0.06 and h = 0.15. Among these
states, CB2 has the lowest energy, representing the de-
sired global minimum for the Cassie-Baxter states. Sim-
ilarly, we show the transition path for the Wenzel states
under the same substrate configuration, denoted as W2-
TS1’-CBW2-TS2’-W3, along with the global minimum
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FIG. 1. Wetting transition on pillared substrates (A) Solution landscape for the wetting transition with schematic
diagrams of the micro-structures, where CB3, CBW1, CBW2 and W3 are local minima; TS1, TS2 and TS3 are index-1 saddle
points; 2S1 and 2S2 are index-2 saddle points; 3S is index-3 saddle point. The inset displays the configuration of pillar substrate.
(B) All transition paths from the CB3 state to the W3 state. The solid line represents the same transition path in (A) and
the dash lines are equivalently alternative transition paths. (C) The energy barriers from the CB state to the Wenzel state
influenced by variations in the Young’s angle θ, with the gap w = 0.06 and the base structure height h = 0.15. (D) The energy
barriers from the CB state to the Wenzel state influenced by variations in the base structure spacing w, with the Young’s angle
θ = 102◦ and the base structure height h = 0.15. (E) The energy barriers from the CB state to the Wenzel state influenced by
variations in the bottom height h, with the Young’s angle θ = 102◦ and the base structure gap w = 0.06.

W3 for the Wenzel states (Figure 2B).

Droplet directional transport- We then utilize the
phase-field saddle dynamics method to study the direc-
tional fluid motion on hydrophobic and hydrophilic rough
surfaces, as observed in various experiments [8, 10, 30,
31]. We analyze two scenarios: the sliding of droplet on
rough surfaces in Cassie-Baxter states [30] and in Wenzel
states [31]. Our primary focus is on the influence of two
key parameters: the Young’s angle θ and the tilt angle
α of pillars on the substrates. For the numerical calcu-
lations that follow, we fix the gap between neighboring
pillars w = 0.08 and the height h = 0.15.

We first examine droplet motion on hydrophobic sur-
faces in Cassie-Baxter states (Figure 3). We depict

the transition path (CB2R-TS1-CB3-TS2-CB2L) for a
droplet moving to the left, along with the correspond-
ing energy barriers, with the parameters θ = 102◦ and
α = 70◦ (Figure 3A, B). It is evident that when the
droplet transitions from the left (CB2L state) to the right
(CB2R state), it needs to overcome a maximum energy
barrier of ∆f =2.621e-2. In contrast, moving in the op-
posite direction only requires overcoming an energy bar-
rier of ∆f =2.249e-2. This suggests that it is easier for
the droplet to move to the left rather than to the right.

We calculate the energy barriers that a droplet needs
to roll on a specific surface by varying the tilt angle
with fixed θ = 102◦ (Figure 3C). We find that, when
the tilt angle decreases, the energy barrier for droplet to
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FIG. 2. The transition paths between different Cassie-Baxter states and Wenzel states with θ = 102◦, w = 0.06
and h = 0.15 (A) Transition path between different CB states where CB1,CB2 and CB3 are local minima; TS1 and TS2 are
index-1 saddle points. (B) Transition path between different Wenzel states where W2, CBW2 and W3 are local minima; TS1’
and TS2’ are index-1 saddle points.

move to left decreases and becomes lower than that for
the right direction, indicating a stronger inclination to
move leftward. However, this inclination diminishes as
the Young’s angle rises (Figure 3D). Notably, when the
Young’s angle reaches 112◦, the droplet exhibits nearly
bidirectional mobility on the surface structure with al-
most identical energy barriers for left and right move-
ments.

This observation inspires us that we may change the
direction of droplet transport by altering the Young’s
angle. By increasing the Young’s angle θ = 114◦, the
droplet’s mobility tendency has changed oppositely, and
the droplet’s transition path becomes CB2L-TS1*-CB1-
TS2*-CB2R (Figure 3F and 3G). The energy barrier for
droplet to move to right is lower than that for the left
direction. This finding is consistent with previous exper-
imental observations that a water droplet with a contact
angle of θ = 120◦ tends to move in the direction of tilting
[30]. In Figure 3E, we provide a phase diagram that illus-
trates how the droplet’s mobility tendencies on a rough
surface depend on Young’s angle θ and tilt angle α. The
phase diagram shows the transition in the direction of
droplet motion for the Cassie-Baxter states, which has
not been reported in the previous literature.

We next examine the droplet movement on hydrophilic
surfaces, specifically for Wenzel states (Figure 4). We
show the transition path of a droplet moving to the
right, along with the corresponding energy barriers, when
θ = 80◦ and α = 40◦ (Figure 4A). It is clear that the
maximum energy barrier that the droplet moves to the
right is ∆f =1.215e-2, which is lower than the energy
barrier for movement to the left (∆f =1.341e-2). This
indicates that the droplet is more likely to move to the
right on this hydrophilic surface (Figure 4B).

We also calculate the energy barriers by changing the
tilt angle α (Figure 4C). It is evident that the decrease of
the tilt angle leads to the decrease of the energy barriers
for moving the right, which increases the tendency for the

droplet to move in the rightward direction. This result
agrees with the intuition that the droplet is more likely
to slide along the direction of tilt of the pillars, which
explains the experimental findings regarding directional
droplet motion on the surfaces of butterfly wings in [8].

We further investigate the hydrophilicity of the sub-
strate by adjusting the Young’s angle θ (Figure 4D). We
show that the droplet tends to move to the right when
the Young’s angle exceeds 65◦. Within this regime, as the
Young’s angle decreases, the energy barriers for droplet
movement in both directions increase. However, when
the Young’s angle falls below 65◦, the energy barrier for
leftward movement starts to decrease and is less than the
energy barrier for moving to the right at θ = 60◦. This
leads to a shift in the droplet’s motion tendency, which
is opposite to the tilting direction. These findings offer
a theoretical explanation for the experimental observa-
tions reported in [31], which describe a transition from
uni-directional spreading (along the tilting direction) to
bi-directional spreading within the Young’s angle range
of (55◦, 62◦) for a tilt angle of 80◦.

In conclusion, we introduced a phase-field saddle dy-
namics method to study droplet motion on rough sur-
faces. This approach allows us to obtain a comprehensive
solution landscape of wetting transitions and directional
droplet transport on textured surfaces, encompassing all
significant local minima and saddle points. By analyzing
the landscape, we revealed the full range of Cassie-Baxter
and Wenzel states, along with the complete wetting tran-
sition paths. We also quantitatively evaluated the effect
of different surface design parameters on wetting tran-
sition. Furthermore, we elucidated the mechanisms of
directional droplet transport on both hydrophobic and
hydrophilic surfaces, demonstrating how surface design
can influence these behaviors.

From the theoretical and computational perspective,
the proposed approach provides an efficient computa-
tional tool and a unifying view of wetting transition and
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FIG. 3. Droplet directional transport on hydrophobic surfaces (A) Transition path for the CB state droplet transport
with tilt angle α = 70◦, bottom surface structure spacing w = 0.08 and surface Young’s angle θ = 102◦. Wherein three
(meta)stable states are CB2L, CB3 and CB2R, and two transition states are TS1 and TS2. (B) Schematic diagram illustrating
the shape changes of (A), wherein the green profile represents the stable state and the red profile denotes the transition state.
(C) The energy barrier variation in different directions with respect to the tilt angles from 50◦ to 90◦ for fixed pillar gap
w = 0.08 and Young’s angle θ = 102◦. (D) The energy barrier variation in different directions with respect to the Young’s
angles from 102◦ to 112◦ for fixed pillar gap w = 0.08 and title angle θ = 80◦. (E) The phase diagram of droplet mobility
tendencies with respect to the Young’s angle θ and the tilt angle α. (F) The transition path for a CB state droplet transport
with tilt angle α = 80◦, a gap w = 0.08 and the Young’s angle θ = 114◦. (G) Schematic diagram illustrating the shape changes
of (F).

directional transport. Our methodology can be readily
generalized to three-dimensional scenarios. Additionally,
the phase-field model can easily incorporate the effects
of vapor dissolution in the liquid, allowing us to quantify
the wetting transition under high liquid pressure [43, 44].
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FIG. 4. Droplet directional transport on hydrophilic surfaces (A) Transition path for the Wenzel state droplet
transport with tilt angle α = 70◦, bottom surface structure spacing w = 0.08 and surface Young’s angle θ = 80◦. Wherein three
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(C) The energy barrier variation in different directions with respect to the tilt angles from 50◦ to 90◦, with fixed pillar gap
w = 0.08 and Young’s angle θ = 80◦. (D)The energy barrier variation in different directions with respect to the Young’s angles
from 60◦ to 80◦, with fixed pillar gap w = 0.08 and title angle α = 80◦.
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drops. Europhysics Letters, 2007, 81(2): 26006.

[23] Patankar N A. Transition between superhydrophobic
states on rough surfaces. Langmuir, 2004, 20(17): 7097-
7102.

[24] Whyman G, Bormashenko E. Wetting transitions on
rough substrates: General considerations. Journal of Ad-

hesion Science and Technology, 2012, 26(1-3): 207-220.
[25] Koishi, T., Yasuoka, K., Fujikawa, S., Ebisuzaki, T.,

Zeng, X.C. Coexistence and transition between Cassie
and Wenzel state on pillared hydrophobic surface. Pro-
ceedings of the National Academy of Sciences, 2009,
106(21): 8435-8440.

[26] Bormashenko E. Progress in understanding wetting tran-
sitions on rough surfaces. Advances in Colloid and Inter-
face Science, 2015, 222: 92-103.

[27] Ishino C, Okumura K, Quéré D. Wetting transitions on
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