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1. Introduction

The aim of this paper is to analyze the finite element approximations of parabolic optimal control
problems with controls acting on a lower dimensional manifold. Let ΩT = Ω × I, ΓT = ∂Ω × I
with time interval I = [0, T ], Ω is an open bounded domain in Rn (n = 2 or 3) with boundary
Γ = ∂Ω. We consider the following parabolic optimal control problems

min
u∈Uad

J(y, u) = 1
2‖y − yd‖

2
L2(I;L2(Ω)) + α

2 ‖u‖
2
U(1.1)

subject to

(1.2)


∂ty −∆y = u(x, t)δγ(t)(x) in ΩT ,

y = 0 on ΓT ,

y(·, 0) = y0 in Ω,

where ∂ty = ∂y
∂t , y0 ∈ L2(Ω) and T > 0 are fixed. U is the control space which will be specified later.

α > 0 is a regularization parameter and yd ∈ L2(I;L2(Ω)) is the desired state. The admissible
control set Uad is of the following type:

Uad :=
{
u ∈ U : a 6 u(x, t) 6 b a.e. on γ(t), a.a. t ∈ I

}
,(1.3)

where a < b are constants or constant vectors depending on the dimension of the manifold γ(t).
Here we assume that γ(t) is a lower dimensional continuous manifold which is strictly contained

in Ω for all t ∈ [0, T ]. δγ(t) denotes the Dirac measure on γ(t). We stress that γ(t) can be a
point, a curve if n > 2 or even a surface if n = 3, it can be independent of time t or evolves in
the time horizon. To ensure the well-posedness of the above optimal control problem and for the
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convenience of error estimates and numerical computation, we assume the following hypotheses
throughout the paper for the lower dimensional manifold γ(t) according to [10]:

(A1) γ(t) is a Lipschitz-continuous k-dimensional manifold in Ω with 0 6 k 6 n−1 for all t ∈ [0, T ];
(A2) The distance between γ(t) and ∂Ω is positive for all t ∈ [0, T ];
(A3) The set {γ(t)}06t6T is a time-continuous family of manifolds in the sense of Castro and
Zuazua (see Definition 3.1 in [10]). Furthermore, we assume that γ(t) is of class C0 with respect
to the time variable;
(A4) The k-dimensional Hausdorff measure of γ(t) ⊂ Ω in Rn is finite for all t ∈ [0, T ], this means
the measure of γ(t) is uniformly bounded in t ∈ [0, T ] in view of Definition 3.1 in [10];
(A5) When k = 0, γ(t) will reduce to a single point or a finite number of points for each t ∈ [0, T ];
when k = 1, γ(t) is either a C2-curve s.t. γ(t) ⊂ ∂D for some n-dimensional C2-domain D ⊂⊂ Ω or
Lipschitz s.t. γ(t) ⊂ ∂D for some 2-dimensional Lipschitz domain D ⊂⊂ Ω in the case that n = 2
for each t ∈ [0, T ]; when k = 2, γ(t) is either a C2-surface s.t. γ(t) ⊂ ∂D for some 3-dimensional
C2-domain D ⊂⊂ Ω or Lipschitz s.t. γ(t) ⊂ ∂D for some 3-dimensional Lipschitz domain D ⊂⊂ Ω
for each t ∈ [0, T ].

The motivation to consider optimal control problems with controls acting on a lower dimensional
manifold comes from the fact that, the support of the controls needs to be very small compared to
the total size of the domain Ω if we are restricted by the cost of controls. So it would be a good
choice to consider the control to be located in such lower dimensional manifolds. There seems
to be only few contributions in the literature focusing on this subject, and most of results are
concentrated on the case that controls act on the whole domain Ω (see [40, 41]), or at least on a
subdomain ω ⊂ Ω ([35, 36]), or on the boundary of the domain Ω (see, e.g., [9, 20]). Only few
papers can be found to our knowledge, among them we should mention the work of Castro and
Zuazua who considered the approximate controllability of the heat equation with controls acting
on an oscillating lower dimensional manifold in [10], and the work [27] of Khapalov who considered
the controllability of the semilinear parabolic equation. Nguyen and Raymond also considered the
control localized on thin structures for semilinear parabolic and convection-diffusion equations in
[42] and [43].

In the past decades, numerical methods for optimal control problems attracted a lot of attentions
from the fields of both control theory and numerical analysis. Among these numerical methods
finite element plays an increasing role in the numerical analysis of optimal control problems gov-
erned by partial differential equations. The earliest work can be traced back to Falk in [16], since
then a lot of achievements have been made in the aspect of a priori and a posteriori error estimates
(see, e.g., [29, 35, 36, 37, 38, 39, 40, 41, 44, 48]). We refer to monographs [37] and [25] for recent
developments.

For optimal control problems with controls acting on the boundary of the domain, Dirichlet
and Neumann boundary control problems have been studied extensively, see for example [9], [22]
and [25] for elliptic case and [20] for parabolic case and the references therein. In [21] the authors
studied the finite element approximations to elliptic control problems with controls acting on a
lower dimensional manifold, here we would like to generalise the results to parabolic case where the
manifold may evolve in the time horizon. As a special case, Gong, Hinze and Zhou studied in [19]
the finite element approximations to pointwise control of parabolic equations with control acting
on finitely many spatial points which are independent of the time, the error estimates presented
there are subsequently improved by Leykekhman and Vexler in [30] for two dimensional case. For
optimal controls with compact support and sparsity we should mention the work of Kunisch and
coauthors, who studied in [7], [8] and [28] the elliptic and parabolic optimal control problems in
measure space.

In this paper we intend to consider the finite element approximations to parabolic optimal
control problems with controls acting on a lower dimensional manifold. The manifold can be
independent of time or evolve in the time horizon. The results of this paper cover the pointwise
control of parabolic equations as a special case, and thus form a general framework. The controls
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for traditional control problems studied in the literature act on a subdomain of Ω, thus the error
estimates involve only global errors. For the control problems acting on lower dimensional manifold,
one needs to rely on some local error estimates to derive improved error estimates compared to
traditional techniques (see [30]). As indicated in [21], when the dimension of manifold γ(t) is one
order lower than that of Ω, we are able to derive optimal a priori error estimates up to a logarithmic
factor. Otherwise, we derive a priori error estimates for the control with reasonable reduced order.
In this paper, we derive a priori error estimates for the optimal control problems in both two and
three dimensions, but only optimal error estimates are obtained in two dimension following the
idea of [30]. The main results of this paper are summarised as follows. In the case n = 2 and k = 0
or 1, the optimal error estimate

√
α‖u− uhτ‖U 6 C| log h| 72 (h2 + τ)(1.4)

holds for all 0 < h < h0 with some 0 < h0 < 1. Moreover, we have the suboptimal error estimates
√
α‖u− uhτ‖U + ‖y − yhτ‖L2(I;L2(Ω)) 6 Ch

1
2 , if k = 0, n = 3;(1.5)

√
α‖u− uhτ‖U + ‖y − yhτ‖L2(I;L2(Ω)) 6 Ch

5
2−

3
σ , σ ∈ (

3

2
, 2) if k = 1, n = 3;(1.6)

√
α‖u− uhτ‖U + ‖y − yhτ‖L2(I;L2(Ω)) 6 Ch

3
2 , if k = 2, n = 3(1.7)

under the coupling τ = O(h2). We also present some two and three dimensional numerical exper-
iments to support our theoretical results.

The structure of this paper is as follows. At first, in Section 2 we analyse the well-posedness of the
state equation in order to obtain the first order optimality conditions for the control problems and
the corresponding regularity results. Then, we consider in Section 3 the fully discrete finite element
approximations to the state equation based on dG(0) scheme for time discretization and piecewise
linear finite elements for space discretization. A priori error estimates for the state approximation
is also derived. For the fully discretised control problems we use variational discretization to the
control variable and finally derive a priori error estimates in Section 4. The last section is devoted
to numerical experiments.

2. Theoretical analysis for the optimal control problems

2.1. Notations. Assume that Ω ⊂ Rn, n = 2 or 3 is a convex polygonal or polyhedral domain,
or domain with a C1,1 boundary. We denote by Wm,p(Ω) the usual Sobolev space of order m > 0,
1 6 p <∞ with norm ‖ · ‖m,p,Ω and seminorm | · |m,p,Ω, and the standard modification for p =∞.
For p = 2 we denote Wm,p(Ω) by Hm(Ω) and ‖ · ‖m,Ω = ‖ · ‖m,2,Ω, which is a Hilbert space. Note
that H0(Ω) = L2(Ω) and H1

0 (Ω) = {v ∈ H1(Ω) : v = 0 on ∂Ω}.
For p ∈ [1,∞), the interval I ⊂ R and the Banach space A with norm ‖ · ‖A, we denote by

Lp(I;A) the set of measurable functions y : I → A such that
∫
I
‖y‖pAdt 6 ∞. The norm on

Lp(I;A) is defined by

‖y(t)‖Lp(I;A) =


(∫

I

‖y‖pAdt
) 1
p

1 6 p <∞,

ess sup
t∈I
‖y(t)‖A p =∞.

We denote the L2-inner products on L2(Ω) and L2(ΩT ) by

(v, w) =

∫
Ω

vwdx ∀ v, w ∈ L2(Ω)

and

(v, w)I =

∫
I

∫
Ω

vwdxdt ∀ v, w ∈ L2(I;L2(Ω)),

respectively. In addition, c and C denote generic positive constants.
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We next assume that the control u(x, t) (or u if k = 0) in (1.2) belongs to L2(I;L2(γ)) (resp.
L2(I;Rm)), i.e. ∫

I

∫
γ(t)

|u(x, t)|2dxdt <∞ (resp.

∫
I

‖u(t)‖2Rmdt <∞),

where ‖ · ‖Rm denotes the Euclidean norm in Rm. From now on, we denote the control space
U := L2(I;Rm) if k = 0 and U := L2(I;L2(γ)) if k > 1, with (·, ·)U the inner-product between U
and its dual space.

2.2. Analysis of the state equation. For f ∈ L2(I;L2(Ω)), we assume that ψ is the solution of
following backward in time parabolic problems:

(2.1)


−∂tψ −∆ψ = f in ΩT ,

ψ = 0 on ΓT ,

ψ(T ) = 0 in Ω.

Then the following standard stability estimates can be found in, e.g. [15, Ch.7, Theorem 5] and
[34, Ch.4, Sec.6].

Lemma 2.1. Let ψ denote the solution of problem (2.1). Then there holds ψ ∈ L2(I;H2(Ω) ∩
H1

0 (Ω)) ∩H1(I;L2(Ω)) ↪→ C(I;H1
0 (Ω)) and

(2.2) ‖ψ‖L2(I;H2(Ω)) + ‖∂tψ‖L2(I;L2(Ω)) 6 C‖f‖L2(I;L2(Ω))

and

(2.3) ‖ψ(·, 0)‖1,Ω 6 C‖f‖L2(I;L2(Ω)).

Now we will argue the existence and uniqueness of solution to the state equation (1.2). To begin
with, we introduce the notations given in [10], i.e.,

H0 =

{
H−1(Ω), if n− k = 1,

L2(Ω), if n− k > 1;
H2 =

{
H1

0 (Ω), if n− k = 1,

H2(Ω) ∩H1
0 (Ω), if n− k > 1

and H ′i, with i = 0, 2, stands for the dual space of Hi. We can verify that the righthand side of
(1.2) satisfies

u(x, t)δγ(t) ∈ L2(I;H ′2).(2.4)

In fact, we have for ψ ∈ L2(I;H2) that

〈u(x, t)δγ(t), ψ〉I =



∫
I

∫
γ(t)

u(x, t)ψ(x, t)dxdt, if k > 1,

m∑
j=1

∫
I

uj(t)ψ(γj(t), t)dt, if k = 0,

where 〈·, ·〉I denote the duality pairing between L2(I;H2) and its dual space. Note that

|
∫
I

∫
γ(t)

u(x, t)ψ(x, t)dxdt| 6 ‖u‖L2(I;L2(γ(t)))‖ψ‖L2(I;L2(γ(t))), if k > 1,

|
m∑
j=1

∫
I

uj(t)ψ(γj(t), t)dt| 6 ‖u‖L2(I;Rm)‖ψ‖L2(I;L∞(Ω)), if k = 0.

We can conclude that

‖ψ‖L2(I;L2(γ(t))) 6

{
C(γ)‖ψ‖L2(I;L∞(Ω)) 6 C(γ)‖ψ‖L2(I;H2∩H1

0 (Ω)), if n = 3; k = 1,

C(γ)‖ψ‖L2(I;H1
0 (Ω)), if n = 2, 3; n− k = 1

and

‖ψ‖L2(I;L∞(Ω)) 6 C(γ)‖ψ‖L2(I;H2∩H1
0 (Ω)), if n = 2, 3,
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where we used the well-known embedding theorem

H2(Ω) ∩H1
0 (Ω) ↪→ C(Ω̄), if n = 2, 3

and the trace theorem

‖ψ|γ(t)(·, t)‖L2(γ(t)) 6 C(γ(t))‖ψ(·, t)‖H1
0 (Ω) for n = 2, 3 and n− k = 1.

This implies that

〈u(x, t)δγ(t), ψ〉I 6

{
C‖u‖L2(I;L2(γ(t)))‖ψ‖L2(I;H2), if k > 1,

C‖u‖L2(I;Rm)‖ψ‖L2(I;H2), if k = 0,

this proves (2.4).
Then we are in the position to define the weak solution of problem (1.2), this is done by using

transposition technique (see [33, Ch.2, Sec.5.2] and [34, Ch.4, Sec.9]). We define the solution to
equation (1.2) with u ∈ Uad as follows: Say that y ∈ L2(I;H ′0) is a very weak solution to equation
(1.2) if

〈uδγ(t), ψ〉L2(I;H′2),L2(I;H2) + (y0, ψ(·, 0)) = 〈y, f〉L2(I;H′0),L2(I;H0) ∀ f ∈ L2(I;H0),(2.5)

where ψ ∈ L2(I;H2) is the unique solution of problem (2.1) with right hand side f ∈ L2(I;H0).
From (2.4) and the standard argument involving the Lax-Milgram theorem we can prove that
equation (1.2) has a unique solution y ∈ L2(I;H ′0) in the sense of (2.5).

Now we collect the regularity of solution to equation (1.2) under different cases in the following
theorem.

Theorem 2.2. Assume that y0 ∈ H1
0 (Ω) and y ∈ L2(I;L2(Ω)) is the very weak solution of the

state equation (1.2) defined by (2.5). Then it holds that

y ∈ L2(I;W 1,s
0 (Ω)) ∩H1(I;W−1,s(Ω)) s ∈ (1,

n

n− 1
) when k = 0, n = 2, 3;

y ∈ L2(I;W 1,σ
0 (Ω)) ∩H1(I;W−1,σ(Ω)) σ ∈ (1, 2) when k = 1, n = 3;

y ∈ L2(I;H
3−ε
2 (Ω) ∩H1

0 (Ω)) ∩H1(I;H−
1+ε
2 (Ω)) for all ε > 0, when k > 1, n− k = 1.

Proof. We show the regularity from several cases.
Case 1: k = 0 and n = 2, 3
For each s ∈ (1, n

n−1 ), we let s′ > n be its conjugate number, i.e., 1
s + 1

s′ = 1. By the embedding

theorem we have W 1,s′

0 (Ω) ↪→ C(Ω̄).
By this, we can use the same argument showing (2.4) to verify that u(x, t)δγ(t) can be identified as

an element of L2(I;W−1,s(Ω)). Since ∆ : W 1,s
0 (Ω)→W−1,s(Ω) is an isomorphism for s ∈ (s0,

n
n−1 )

for some s0 ∈ [1, n
n−1 ); see [26] for details on the choice of s0. By using the result on maximal

parabolic regularity (see [14] and [30]) equation (1.2) admits a unique solution y ∈ L2(I;W 1,s
0 (Ω))

and ∂ty ∈ L2(I;W−1,s(Ω)) for all s ∈ (s0,
n
n−1 ) in the sense that

〈∂ty, v〉I + (∇y,∇v)I =

m∑
j=1

∫
I

uj(t)v(γj(t), t)dt ∀ v ∈ L2(I;W 1,s′

0 (Ω)),(2.6)

where 〈·, ·〉I denotes the duality pairing between L2(I;W−1,s
0 (Ω)) and L2(I;W 1,s′

0 (Ω)). By slightly
abusing the notation, we do not distinguish 〈·, ·〉I in different duality pairings in this paper if no
confusion is involved.

Case 2: k = 1 and n = 3
By using the similar argument as in Case 1, we can prove that in this case y ∈ L2(I;W 1,s

0 (Ω))∩
H1(I;W−1,s(Ω)) for all s ∈ (1, 3

2 ). However, here we will derive higher regularity.

By the assumption (A5), γ(t) ⊂ ∂D for some 3-dimensional C2-domain D ⊂⊂ Ω for each
t ∈ [0, T ]. Then by Proposition 2.3 in [43] (see also Theorem 7.42 and Remark 7.45 in [1]), the
trace mapping Tγ is continuous from W r,p(D) into Lq(γ(t)) for each t ∈ [0, T ], when 0 6 r 6 2,
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0 < 3 − rp < k and p 6 q < kp
3−rp . Hence, it can be extended into a continuous mapping from

W r,p(Ω) into Lq(γ(t)). Thus, for each 3
2 < σ < 2, Tγ is continuous from W 1,σ′

0 (Ω) to Lq(γ(t)),

when 2 < σ′ 6 q < σ′

3−σ′ = σ
2σ−3 , where 2 < σ′ < 3 is the conjugate number of σ. Hence

|
∫
I

∫
γ(t)

u(x, t)v(x, t)dxdt| 6 C

∫
I

‖u‖Lq′ (γ(t))‖v‖Lq(γ(t))dt

6 C

∫
I

‖u‖Lq′ (γ(t))‖v‖W 1,σ′
0 (Ω)

dt

6 C‖u‖L2(I;L2(γ(t)))‖v‖L2(I;W 1,σ′
0 (Ω))

(2.7)

for each v ∈ L2(I;W 1,σ′

0 (Ω)), which leads to that u(x, t)δγ(t) ∈ L2(I;W−1,σ(Ω)) for all 3
2 <

σ < 2. From this, we can use the same way used in Case 1 to get that y ∈ L2(I;W 1,σ
0 (Ω)) ∩

H1(I;W−1,σ(Ω)) for all 3
2 < σ < 2. This, combining with y ∈ L2(I;W 1,s

0 (Ω)) ∩H1(I;W−1,s(Ω))

for all s ∈ (1, 3
2 ), implies y ∈ L2(I;W 1,σ

0 (Ω)) ∩H1(I;W−1,σ(Ω)) for all 1 < σ < 2.
Case 3: k > 1 and n− k = 1
Clearly, u(x, t)δγ(t) can be identified as an element of L2(I;H−1(Ω)), thus we conclude that

y ∈ L2(I;H1
0 (Ω)) and ∂ty ∈ L2(I;H−1(Ω)) in the sense that

(∂ty, v)I + (∇y,∇v)I =

∫
I

∫
γ(t)

u(x, t)v(x, t)dxdt ∀ v ∈ L2(I;H1
0 (Ω)).(2.8)

We aim to show that y ∈ L2(I;H
3−ε
2 (Ω) ∩ H1

0 (Ω)) ∩ H1(I;H−
1+ε
2 (Ω)) for each ε > 0. By the

assumption (A5), for each t ∈ [0, T ], γ(t) ⊂ γ̂(t) , ∂D(t) for some n-dimensional Lipschitz or C2

domain D(t) ⊂⊂ Ω. Arbitrarily fix an ε > 0. By the trace theorem (see [23, Thm.1.5.1.2] and [34,
Vol.I, Section 9.2]), one can observe that∫

I

∫
γ(t)

u(x, t)v(x, t)dxdt 6 C

∫
I

‖u‖L2(γ(t))‖v‖L2(γ(t))dt

6 C(ε)

∫
I

‖u‖L2(γ(t))‖v‖
H

1+ε
2 (D(t))

dt

6 C(ε)‖u‖L2(I;L2(γ(t)))‖v‖
L2(I;H

1+ε
2 (Ω))

(2.9)

for all v ∈ L2(I;H
1+ε
2 (Ω)), which implies that u(x, t)δγ(t) ∈ L2(I;H−

1+ε
2 (Ω)) defines a bounded

linear functional on L2(I;H
1+ε
2 (Ω)). By the result on maximal parabolic regularity theory (see

[14]) one can deduce that y ∈ L2(I;H
3−ε
2 (Ω) ∩H1

0 (Ω)) ∩H1(I;H−
1+ε
2 (Ω)) for each ε > 0. �

2.3. Analysis of the optimal control problems. We denote the control-to-state mapping of
the state equation by y := Su. Then problem (1.1) can be reduced to the optimization problem:

min
u∈Uad

J(u) = 1
2‖Su− yd‖

2
L2(I;L2(Ω)) + α

2 ‖u‖
2
U .(2.10)

Since Uad is bounded, convex and S is affine linear, by the standard argument ([33, Ch.2, Sec.1.2])
we can prove that the problem (2.10) admits a unique solution u ∈ Uad. Moreover, there exists an
adjoint state z ∈ L2(I;H1

0 (Ω)) such that the following first order optimality condition holds:

(2.11)


−∂tz −∆z = y − yd in ΩT ,

z = 0 on ΓT ,

z(T ) = 0 in Ω

and

J ′(u)(v − u) > 0 ∀ v ∈ Uad,
or more precisely,

(αu+ z|γ , v − u)U > 0 ∀ v ∈ Uad.(2.12)
6



Here z|γ denotes the restriction of z on the manifold γ. We say that (y, u, z) is the solution to the
problem (2.10) when (y, u) is the optimal pair and z is the corresponding adjoint state.

The precise regularity of the solutions to the problem (2.10) are collected in the following
theorem.

Theorem 2.3. Let (y, u, z) ∈ L2(I;L2(Ω)) × Uad × L2(I;H1
0 (Ω)) be the solution to the problem

(2.10). Assume that y0 ∈ H1
0 (Ω). Then the following regularity results hold:

y ∈ L2(I;W 1,s
0 (Ω)) ∩H1(I;W−1,s(Ω)), s ∈ (1,

n

n− 1
),

z ∈ L2(I;H2(Ω) ∩H1
0 (Ω)) ∩H1(I;L2(Ω)), u ∈ L2(I;Rm), if k = 0, n = 2, 3;

y ∈ L2(I;W 1,σ
0 (Ω)) ∩H1(I;W−1,σ(Ω)), σ ∈ (1, 2),

z ∈ L2(I;H2(Ω) ∩H1
0 (Ω)) ∩H1(I;L2(Ω)), u ∈ L2(I;H1(γ(t))), if k = 1, n = 3;

y ∈ L2(I;H
3−ε
2 (Ω) ∩H1

0 (Ω)) ∩H1(I;H−
1+ε
2 (Ω)), for any ε > 0,

z ∈ L2(I;H2(Ω) ∩H1
0 (Ω)) ∩H1(I;L2(Ω)), u ∈ L2(I;H1(γ(t))), if k > 1, n− k = 1.

Proof. The desired regularity for y has been proved in Theorem 2.2. Since Ω is convex and
y − yd ∈ L2(I;L2(Ω)) we have z ∈ L2(I;H2(Ω) ∩ H1

0 (Ω)) ∩ H1(I;L2(Ω)) for all the cases. By
the Sobolev imbedding H2(Ω) ∩H1

0 (Ω) ↪→ C(Ω̄), the restriction of z on the manifold γ(t) is well
defined. From this and (2.12), the control u can be represented via the adjoint state z by

u(t) = PUad

(
− 1

α
z(γi(t))(t)

)m
i=1

, when k = 0;(2.13)

u(x, t) = PUad(− 1

α
z(x, t)|γ), when k > 1,(2.14)

where PUad is the orthogonal projection onto Uad. Thus u ∈ L2(I;Rm) if k = 0. By the trace
theorem one derive that z|γ(t) ∈ L2(I;H1(γ(t))), this yields that u ∈ L2(I;H1(γ(t))) if k 6= 0. �

Note, that when k > 1 and n − k = 1 we have y ∈ L2(I;H
3−ε
2 (Ω) ∩ H1

0 (Ω)). Thus, we can
conclude from the embedding theorem that y ∈ L2(I;L∞(Ω)) when n = 2, and y ∈ L2(I;Lq(Ω))
for any q ∈ [1,∞) as ε→ 0 when n = 3.

In the case when k = 0 and n = 2 or 3, the solution y of problem (1.2) belongs to L2(I;W 1,s
0 (Ω))

for all s ∈ [1, n
n−1 ), thus from the embedding theorem we have y ∈ L2(I;Lq(Ω)) for q = ns

n−s , which
means q < +∞ when n = 2 and q < 3 when n = 3.

In the case when k = 1 and n = 3, we have y ∈ L2(I;W 1,σ
0 (Ω)) for any σ ∈ [1, 2). Then it

follows by the well-known embedding theorem that y ∈ L2(I;Lq(Ω)) for q = 3σ
3−σ .

If we assume in addition that n = 2, yd ∈ L2(I;L∞(Ω)) (which is obviously not restrictive),
for any subdomain Ω0 ⊂⊂ Ω we can conclude from Lemma 2.2 in [30] that z ∈ L2(I;W 2,q(Ω0)) ∩
H1(I;Lq(Ω0)) and

‖z‖L2(I;W 2,q(Ω0)) + ‖∂tz‖L2(I;Lq(Ω0)) 6 Cq(‖y‖L2(I;Lq(Ω)) + ‖yd‖L2(I;L∞(Ω)))(2.15)

holds for any 2 6 q <∞.

3. Error estimates for fully discrete finite element approximations of the state
equation

3.1. Finite element spaces. Let us now consider the finite element approximations to the state
equation (1.2). To this aim, we consider a family of triangulation T h of Ω, such that Ω =

⋃
e∈T h e.

We suppose that Ω is the union of the elements of T h so that element edges lying on the boundary
may be curved if Ω has curved boundary. This triangulation is supposed to be shape regular in
the usual sense (see [12]). For each element e ∈ T h we associate two parameters ρ(e) and σ(e),
where ρ(e) denotes the diameter of the element e and σ(e) is the supremum of the diameters of all
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circles contained in e. Define the size of the mesh by h = max
e∈T h

ρ(e). We suppose that the following

regularity assumptions are satisfied: There exists a positive constant C such that

ρ(e)

σ(e)
6 C,

h

ρ(e)
6 C(3.1)

hold for all e ∈ T h and all h > 0.
Here we consider only n-simplex elements, as they are among the most widely used ones. As-

sociated with T h is a finite dimensional subspace V h of C(Ω), such that χ|e is linear for ∀ χ ∈ V h
and e ∈ T h. We also set V h0 = V h ∩H1

0 (Ω).
Note that the regular assumption (3.1) guarantees the following inverse properties for vh ∈ V h

(see [4, Sec.4.5] and [12, Sec.3.2]):

‖vh‖s,Ω 6 Chl−s‖vh‖l,Ω 0 6 l 6 s 6 1(3.2)

and

‖vh‖0,∞,Ω 6 Ch−
n
q ‖vh‖0,q,Ω, 1 6 q <∞,(3.3)

‖vh‖0,∞,Ω 6 Cρ(n, h)‖vh‖1,Ω,(3.4)

where

(3.5) ρ(n, h) =

{√
| log h|, n = 2;

h−
1
2 , n = 3.

Let πh : C(Ω) → V h denote the standard Lagrange interpolation operator, then interpolation
error estimate implies that for y ∈W 2,q(Ω), n2 < q <∞ there holds (see, e.g., [4, Sec.4.4] and [12,
Sec.3.1])

‖y − πhy‖0,q,Ω + h‖y − πhy‖1,q,Ω 6 Ch2‖y‖2,q,Ω(3.6)

and

‖y − πhy‖0,∞,Ω 6 Ch2−nq ‖y‖2,q,Ω.(3.7)

Let Ph be the L2(Ω)-projection operator defined from L2(Ω) to V h:

(Phy, vh) = (y, vh) ∀ vh ∈ V h(3.8)

and Rh : H1
0 (Ω)→ V h0 denote the Ritz projection operator defined as

(∇Rhy,∇vh) = (∇y,∇vh) ∀ vh ∈ V h0 .(3.9)

Then we have the following error estimates (see, e.g., [4, Sec.5.4, 5.8]):

‖y − Phy‖−1,Ω + h‖y − Phy‖0,Ω 6 Ch2‖y‖1,Ω,(3.10)

‖y −Rhy‖0,Ω + h‖y −Rhy‖1,Ω 6 Ch2‖y‖2,Ω.(3.11)

Moreover, we have (see [3], [12, p. 168] and the references cited therein)

‖y −Rhy‖0,∞,Ω 6 Ch2−n2 ‖y‖2,Ω.(3.12)

3.2. Fully discrete finite element approximations to parabolic equations. The semi-
discrete finite element approximation to the state equation (1.2) is to find yh ∈ L2(I;V h0 ) such
that

(∂tyh, vh)I + (∇yh,∇vh)I = 〈u(x, t)δγ(t), vh〉I ∀ vh ∈ V h0(3.13)

with yh(0) = Phy0 the L2-projection of y0.
We next consider the fully discrete approximations to the state equation (1.2) by using the

piecewise constant discontinuous Galerkin method (dG(0) for short, see [41] and [47]). We consider
a partitioning of the time interval I = [0, T ] as

I = I1 ∪ I2 ∪ · · · ∪ IN
8



with subintervals Ii = [ti−1, ti] of size τi and time points

0 = t0 < t1 < · · · < tN−1 < tN = T.

Let τ = max
16i6N

τi. We assume that the time partitioning is quasi-uniform, i.e., there exists positive

constant c such that τ 6 cτi holds for each i = 1, 2, · · · , N . For simplicity we consider the same
finite element space on each time step.

We set

Vh,τ :=
{
v : Ω̄× I → R, v(·, t)|Ω̄ ∈ V h0 , v(x, ·)|Ii ∈ P0 for i = 1, · · · , N

}
,

i.e., v ∈ Vh,τ is a piecewise constant polynomial with respect to time. To introduce the fully
discretization we define the bilinear form

A(y, w) :=

N∑
i=1

〈yt, w〉Ii + (∇y,∇w)I +

N∑
i=2

(yi − yi−1, wi) + (y0
+, w

0
+),

where 〈·, ·〉Ii denotes the duality pairing between L2(Ii;W
−1,s
0 (Ω)) and L2(Ii;W

1,s′

0 (Ω)), and wi :=
wi− = lim

r→0+
w(ti − r), wi+ = lim

r→0+
w(ti + r). Then for y, w ∈ Vh,τ we have

A(y, w) =

N∑
i=1

τi(∇yi,∇wi) +

N∑
i=2

(yi − yi−1, wi) + (y0
+, w

0
+).

We define πτ : L2(I) → P0(I) as the L2-projection operator on the variable t such that πτv|Ii
is pieceise constant on Ii for each v ∈ L2(I). Then there holds πτv|Ii = 1

τi

∫
Ii
vdt. Combining

with the spatial interpolation operator πh we can define the space-time projection operator πhτ :
L2(I; C(Ω))→ Vh,τ such that πhτ = πhπτ = πτπh.

At first, we consider the fully discrete finite element approximation of the backward parabolic
equation (2.1). The discrete approximation can be stated as: Find ψhτ ∈ Vh,τ such that

A(whτ , ψhτ ) =

N∑
i=1

∫
Ii

(f, whτ ), ∀ whτ ∈ Vh,τ .(3.14)

Since ψhτ is the standard fully discrete finite element approximation of ψ, the following a priori
error estimates can be found in the literature.

Lemma 3.1. Assume that ψ and ψhτ are the solutions of problems (2.1) and (3.14), respectively.
Then there holds

‖ψ − ψhτ‖L2(I;L2(Ω)) 6 C(h2 + τ)‖f‖L2(I;L2(Ω)).(3.15)

Moreover, the following global pointwise in space error estimate

sup
x∈Ω̄

∫
I

|(ψ − ψhτ )(x, t)|2dt 6 C| log h|2 inf
vhτ∈Vh,τ

(
‖ψ − vhτ‖2L2(I;L∞(Ω))

+h−
4
q ‖πτψ − vhτ‖2L2(I;Lq(Ω))

)
(3.16)

holds for n = 2 and ∀1 6 q 6∞.

Proof. The proof of (3.15) is quite standard and can be found in many papers, e.g., [17], the proof
of (3.16) in 2D is given in Theorem 3.1 of [30]. �

As a consequence, we can derive the corresponding error estimate on the manifold γ(t) from
Lemma 3.1 and the trace theorem.

Lemma 3.2. Assume that γ(t) is a k−dimensional manifold with k > 1 and n − k = 1. Let
ψ ∈ L2(I;H2(Ω) ∩ H1

0 (Ω)) be the solution of problem (2.1), and ψhτ ∈ Vh,τ be the solution of
problem (3.14)). Then we have

‖ψ − ψhτ‖L2(I;L2(γ(t))) 6 C(h
3
2 + hτ

1
4 + h

1
2 τ

1
2 + τ

3
4 )‖f‖L2(I;L2(Ω)).(3.17)
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Proof. It follows from [11, eq. (4.11), p.2851] that

‖ψ − ψhτ‖L2(I;H1(Ω)) 6 C(h+ τ
1
2 )‖f‖L2(I;L2(Ω)).(3.18)

This combining with (3.15) and the trace theorem ([4, Theorem 1.6.6]) gives

‖ψ − ψhτ‖L2(I;L2(γ(t))) 6 C‖ψ − ψhτ‖
1
2

L2(I;L2(Ω))‖ψ − ψhτ‖
1
2

L2(I;H1(Ω))

6 C(h
3
2 + hτ

1
4 + h

1
2 τ

1
2 + τ

3
4 )‖f‖L2(I;L2(Ω)),

which gives the result. �

Since the manifold γ(t) is strictly contained in Ω for all t ∈ [0, T ], there exists a subdomain
Ω0 ⊂⊂ Ω such that γ(t) ⊂ Ω0 for each t ∈ [0, T ]. Moreover, there exists another subdomain Ω1

such that Ω0 ⊂⊂ Ω1 ⊂⊂ Ω. For the following purpose we need to derive a local maximum norm
error estimate on subdomain Ω0.

Lemma 3.3. Let n = 2. Assume that ψ and ψhτ are the solutions of problems (2.1) and (3.14),
respectively. Then there holds

sup
x∈Ω̄0

∫
I

|(ψ − ψhτ )(x, t)|2dt 6 C| log h|3 inf
vhτ∈Vh,τ

(
‖ψ − vhτ‖2L2(I;L∞(Ω1))

+h−
4
q ‖πτψ − vhτ‖2L2(I;Lq(Ω1))

)
+ C| log h|‖ψ − ψhτ‖2L2(I;L2(Ω))(3.19)

for all 0 < h < h0 with some fixed 0 < h0 < 1.

Proof. The proof follows the approaches of [45] and [30]. Let x0 ∈ Ω̄0 and D0 ⊂⊂ Ω1 be a sphere
with center at x0 and diameter l, the diameter l is chosen as large as possible such that the sphere
D1 with center at x0 and diameter 2l satisfies D1 ⊂ Ω1. In the following we may not trace the
dependence of constant C on l. Let ω be a smooth cut-off function which is 1 in D0 and compactly
supported in Ω1 such that ‖ω‖W j,∞(Ω1) 6 Cl−j , 0 6 j 6 2. Such functions can be constructed by
the standard mollifier and are extensively used for local estimates (see [30, 45] and the references

cited therein). We set ψ̃ = ωψ and let ψ̃hτ ∈ Vh,τ satisfy

A(vhτ , ψ̃ − ψ̃hτ ) = 0 ∀vhτ ∈ Vh,τ ,

which means that ψ̃hτ is the fully discrete finite element approximation of ψ̃. Then we have

(ψ − ψhτ )(x0, t) = (ψ̃ − ψhτ )(x0, t) = (ψ̃ − ψ̃hτ )(x0, t) + (ψ̃hτ − ψhτ )(x0, t).

From the global maximum norm error estimate (3.16) we have∫
I

|(ψ̃ − ψ̃hτ )(x0, t)|2dt 6 C| log h|2
(
‖ψ̃‖2L2(I;L∞(Ω1)) + h−

4
q ‖πτ ψ̃‖2L2(I;Lq(Ω1))

)
6 C| log h|2

(
‖ψ‖2L2(I;L∞(Ω1)) + h−

4
q ‖πτψ‖2L2(I;Lq(Ω1))

)
.(3.20)

Note that ψ̃hτ − ψhτ satisfies the interior equation

A(vhτ , ψ̃hτ − ψhτ ) = 0 ∀vhτ ∈ Vh,τ (D0),(3.21)

where Vh,τ (D0) is the subspace of Vh,τ which contains functions vanishing outside of D0. It has
been proved in [30, P. 2813] that∫

I

|(ψ̃hτ − ψhτ )(x0, t)|2dt 6 C| log h|l−2‖ψ̃hτ − ψhτ‖2L2(I;L2(D0))(3.22)

provided that h < cl for 2D case. Applying the triangle inequality we can derive

‖ψ̃hτ − ψhτ‖L2(I;L2(D0)) 6 ‖ψ̃ − ψ̃hτ‖L2(I;L2(D0)) + ‖ψ − ψhτ‖L2(I;L2(D0)).(3.23)

Moreover, using |D0| 6 Cl2 one has

‖ψ̃ − ψ̃hτ‖L2(I;L2(D0)) 6 Cl‖ψ̃ − ψ̃hτ‖L2(I;L∞(D0)).(3.24)
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Combining above estimates and using (3.16) again we arrive at∫
I

|(ψ̃hτ − ψhτ )(x0, t)|2dt 6 C| log h|3(‖ψ‖2L2(I;L∞(Ω1)) + h−
4
q ‖πτψ‖2L2(I;Lq(Ω1)))

+Cl−2| log h|‖ψ − ψhτ‖2L2(I;L2(Ω)).(3.25)

Combining (3.20) and (3.25) we have∫
I

|(ψ − ψhτ )(x0, t)|2dt 6 C| log h|3(‖ψ‖2L2(I;L∞(Ω1)) + h−
4
q ‖πτψ‖2L2(I;Lq(Ω1)))

+C| log h|‖ψ − ψhτ‖2L2(I;L2(Ω))(3.26)

holds for all 0 < h < h0 with some fixed 0 < h0 < 1 depending on l. Let x0 ∈ Ω̄0 be such that

sup
x∈Ω̄0

∫
I

|(ψ − ψhτ )(x, t)|2dt =

∫
I

|(ψ − ψhτ )(x0, t)|2dt.

By replacing ψ and ψhτ in (3.26) by ψ − vhτ and ψhτ − vhτ for any vhτ ∈ Vh,τ , we complete the
proof. �

3.3. Fully discrete finite element approximations to the state equation. The fully dis-
crete finite element approximation based on dG(0) scheme for time discretisation and continuous,
piecewise linear finite element method for spatial discretisation to the state equation (1.2) reads:
Find yhτ ∈ Vh,τ such that

A(yhτ , whτ ) = 〈uδγ(t), whτ 〉I + (y0, w
0
hτ,+), ∀ whτ ∈ Vh,τ .(3.27)

Note that on each time interval Ii, the solution yihτ ∈ V h0 satisfies (
yihτ − y

i−1
hτ

τi
, wh) + (∇yihτ ,∇wh) = 〈uδγ(t), wh〉Ii ,∀ wh ∈ V h0 , i = 1, · · · , N,

y0
hτ (x) = yh0 (x) = Phy0 x ∈ Ω.

(3.28)

Here

〈uδγ(t), vh〉Ii :=


1

τi

∫
Ii

∫
γ(t)

u(x, t)vh(x)dxdt ∀ vh ∈ V h if k > 1,

1

τi

m∑
j=1

∫
Ii

uj(t)vh(γj(t))dt ∀ vh ∈ V h if k = 0.

If γ(t) is a k−dimensional moving manifold with n − k > 1, then we need to estimate the
error between continuous and discrete problem carefully. In [18] the author derived a priori error
estimate for parabolic equation with measure data in space where the measure data is independent
of the time, which covers the cases in this paper of n− k > 1 and γ(t) being independent of time.
Here we extend the results of [18] to problems with time-dependent space measures and derive a
priori error estimates with variable time steps and separated spatial and time discretisation errors
although the proof is very similar. We note that the error estimates for this kind of problems are of
independent interest for, e.g., the identification of moving pointwise source of parabolic equations
and other related topics (see [2] and [32]). We mention that the error estimates for the elliptic
equation with measure data were derived in [5].

Now we are in a position to estimate the error between the solutions of problem (1.2) and (3.28)
in the case n− k > 1. For compactness we will include the proof of this theorem in the Appendix.

Theorem 3.4. Assume that γ(t) is a k−dimensional manifold with n− k > 1. Assume that u ∈
L2(I;L2(γ(t))) when k > 1 and u ∈ L2(0, T ;Rm) when k = 0, y0 ∈ L2(Ω). Let y ∈ L2(I;L2(Ω))
be the solution of problem (1.2), and yhτ ∈ Vh,τ be the solution of problem (3.27)). Then it holds
that

‖y − yhτ‖L2(I;L2(Ω)) 6 C(h2−n2 + h−
n
2 τ)
(
‖u‖U + ‖y0‖0,Ω

)
(3.29)
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when k = 0 and n = 2 or 3. Furthermore, when n = 3 and k = 1, it holds that

‖y − yhτ‖L2(I;L2(Ω)) 6 C(h
5
2−

3
σ + h

1
2−

3
σ τ)
(
‖u‖U + ‖y0‖0,Ω

)
(3.30)

for each σ ∈ ( 3
2 , 2).

As indicated in [30], one can obtain improved error estimates for the optimal control in two
dimension by exploiting higher order convergence of the state under norm L2(I;L1(Ω)) instead of
the L2(I;L2(Ω))-norm used in [19]. For the purpose of deriving optimal a priori error estimate
we need to obtain a sharper error estimate for the state approximation under a weaker norm
L2(I;L1(Ω)) in two dimension, which goes back to the idea of [30].

Theorem 3.5. Assume that γ(t) consists of m points (k = 0) which are strictly contained in Ω
with n = 2. Let the assumptions in Theorem 3.4 be valid. Let y ∈ L2(I;L2(Ω)) be the solution of
problem (1.2), and yhτ be the solution of problem (3.27)). Then it holds that

‖y − yhτ‖L2(I;L1(Ω)) 6 C| log h| 52 (h2 + τ)‖u‖L2(I;Rm)(3.31)

for all 0 < h < h0 with some 0 < h0 < 1.

Proof. To begin with we use duality argument following [30]. Let ψ be the solution of the backward
parabolic equation (2.1) with right hand side f(x, t) = sign(e(x, t))‖e(·, t)‖L1(Ω), where e(x, t) =
y − yhτ . The corresponding fully discrete finite element approximation ψhτ ∈ Vh,τ of ψ is defined
by (3.14). Thus, we have the Galerkin orthogonality

A(whτ , ψ − ψhτ ) = 0, ∀ whτ ∈ Vh,τ .(3.32)

Using the Galerkin orthogonal properties of y − yhτ and ψ − ψhτ we can derive∫
I

‖e(·, t)‖2L1(Ω)dt =

∫
I

(sign(e(x, t))‖e(·, t)‖L1(Ω), e)dt = (f, e)

= A(y − yhτ , ψ) = A(y − yhτ , ψ − ψhτ )

= A(y, ψ − ψhτ ) = 〈u(x, t)δγ(t), ψ − ψhτ 〉I

=

m∑
j=1

∫
I

uj(γj(t), t)(ψ − ψhτ )(γj(t), t)dt

6 C‖u‖L2(I;Rm))

(
sup
x∈Ω̄0

∫
I

|(ψ − ψhτ )(x, t)|2dt
) 1

2 .(3.33)

From the local maximum norm error estimate (3.19) in Lemma 3.3 we are able to obtain(
sup
x∈Ω̄0

∫
I

|(ψ − ψhτ )(x, t)|2dt
) 1

2 6 C| log h| 32 inf
vhτ∈Vh,τ

(‖ψ − vhτ‖L2(I;L∞(Ω1))

+h−
2
q ‖πτψ − vhτ‖L2(I;Lq(Ω1))) + C| log h| 12 ‖ψ − ψhτ‖L2(I;L2(Ω))(3.34)

for all 0 < h < h0 with some 0 < h0 < 1. Note that f ∈ L2(I;L∞(Ω)), then we can conclude
from Lemma 2.2 in [30] that for any subdomain Ω1 ⊂⊂ Ω, ψ ∈ L2(I;W 2,q(Ω1)) ∩H1(I;Lq(Ω1)),
1 6 q <∞ and satisfies

‖ψ‖L2(I;W 2,q(Ω1)) + ‖ψt‖L2(I;Lq(Ω1)) 6 Cq‖f‖L2(I;L∞(Ω)).(3.35)

Taking vhτ = πhτψ in (3.34) we now estimate the right hand side terms one by one. From the
triangle inequality, the interpolation error estimate, the inverse inequality and proceed as in the
proof of (A.12) we have

‖ψ − πhπτψ‖L2(I;L∞(Ω1)) 6 ‖ψ − πhψ‖L2(I;L∞(Ω1)) + ‖πhψ − πhπτψ‖L2(I;L∞(Ω1))

6 Ch2− 2
q ‖ψ‖L2(I;W 2,q(Ω1)) + Ch−

2
q ‖πhψ − πhπτψ‖L2(I;Lq(Ω1))

6 Ch2− 2
q ‖ψ‖L2(I;W 2,q(Ω1)) + Ch−

2
q τ‖∂tψ‖L2(I;Lq(Ω1)).(3.36)
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For the second term we have

‖πτψ − πhπτψ‖L2(I;Lq(Ω1))

6 ‖πτψ − ψ‖L2(I;Lq(Ω1)) + ‖ψ − πhψ‖L2(I;Lq(Ω1)) + ‖πhψ − πhπτψ‖L2(I;Lq(Ω1))

6 Cτ‖∂tψ‖L2(I;Lq(Ω1)) + Ch2‖ψ‖L2(I;W 2,q(Ω1)).(3.37)

For the third term we conclude from (3.15) that

‖ψ − ψhτ‖L2(I;L2(Ω)) 6 C(h2 + τ)‖f‖L2(I;L2(Ω)).(3.38)

Collecting (3.34)-(3.38) we obtain(
sup
x∈Ω̄0

∫
I

|(ψ − ψhτ )(x, t)|2dt
) 1

2 6 C| log h| 32h−
2
q (h2 + τ)

(
‖ψ‖L2(I;W 2,q(Ω1)) + ‖∂tψ‖L2(I;Lq(Ω1))

)
6 C| log h| 32 qh−

2
q (h2 + τ)‖f‖L2(I;L∞(Ω))

6 C| log h| 32 qh−
2
q (h2 + τ)‖e‖L2(I;L1(Ω)).(3.39)

Setting q = | log h| we complete the proof. �

Note that if γ(t) is a k−dimensional moving manifold with k > 1 and n − k = 1, then we can

derive from Theorem 2.3 that y ∈ L2(I;H
3−ε
2 (Ω) ∩ H1

0 (Ω)) ∩ H1(I;H−
1+ε
2 (Ω)). Thus, we can

derive the following a priori error estimate.

Theorem 3.6. Assume that γ(t) is a k−dimensional manifold with n − k = 1. Let y0 ∈ H1
0 (Ω)

and y ∈ L2(I;H
3−ε
2 (Ω)∩H1

0 (Ω))∩H1(I;H−
1+ε
2 (Ω)) be the solution of problem (1.2) for any ε > 0,

and yhτ ∈ Vh,τ be the solution of problem (3.27). Then it holds that

‖y − yhτ‖L2(I;L2(Ω)) 6 C(h
3
2 + h

1
2 τ

1
2 + h−

1
2 τ)
(
‖u‖L2(I;L2(γ(t))) + ‖y0‖1,Ω

)
.(3.40)

Proof. To prove this theorem we use the similar approach as in the proof of Theorem 3.4. At first
we derive the stability estimate for numerical scheme (3.28) in case that n− k = 1.

Let yihτ ∈ V h0 , i = 1, 2, · · · , N be the solutions of fully discrete scheme (3.28). Then there exists
a constant C independent of h, τ and the data u such that

N∑
i=1

‖yihτ − yi−1
hτ ‖

2
0,Ω + τN‖yNhτ‖21,Ω 6 Cτ‖y0‖21,Ω + Cτh−1‖u(x, t)‖2L2(I;L2(γ(t))).(3.41)

The proof is a slight modification of the proof in [18], see also (A.1)-(A.2). In fact, let wh =
τi(y

i
hτ − y

i−1
hτ ) in (3.28) we get

(yihτ − yi−1
hτ , y

i
hτ − yi−1

hτ ) + τi(∇yihτ ,∇(yihτ − yi−1
hτ )) = τi〈uδγ(t), y

i
hτ − yi−1

hτ 〉Ii .

Since yihτ − y
i−1
hτ is piecewise constant on each time interval Ii w.r.t time, thus it follows from the

trace theorem ([4, Theorem 1.6.6]) and the inverse estimate that

‖yihτ − yi−1
hτ ‖

2
0,Ω + τi‖yihτ‖21,Ω

6 τi(∇yihτ ,∇yi−1
hτ ) +

∫
Ii

∫
γ(t)

u(x, t)(yihτ − yi−1
hτ )dxdt

6
1

2
τi‖yihτ‖21,Ω +

1

2
τi‖yi−1

hτ ‖
2
1,Ω +

∫
Ii

‖yihτ − yi−1
hτ ‖L2(γ(t))‖u(x, t)‖L2(γ(t))dt

6
1

2
τi‖yihτ‖21,Ω +

1

2
τi‖yi−1

hτ ‖
2
1,Ω + C

∫
Ii

‖yihτ − yi−1
hτ ‖

1
2

L2(Ω)‖y
i
hτ − yi−1

hτ ‖
1
2

H1
0 (Ω)
‖u(x, t)‖L2(γ(t))dt

6
1

2
τi‖yihτ‖21,Ω +

1

2
τi‖yi−1

hτ ‖
2
1,Ω + Cτih

−1‖u(x, t)‖2L2(Ii;L2(γ(t))) +
1

2
‖yihτ − yi−1

hτ ‖
2
0,Ω.
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Summing the above equations over i from 1 to N we get

N∑
i=1

‖yihτ − yi−1
hτ ‖

2
0,Ω + τ‖yNhτ‖21,Ω 6 τ‖y0

hτ‖21,Ω + Cτh−1
N∑
i=1

‖u(x, t)‖2L2(Ii;L2(γ(t)))

6 Cτ‖y0‖21,Ω + Cτh−1‖u(x, t)‖2L2(I;L2(γ(t))).

This gives the results.
Let ψ be the solution of problem (2.1) with f ∈ L2(I;L2(Ω)). Note that ψ = 0 on ∂Ω,

ψN = ψ(T ) = 0, it follows from (2.8) and (A.8) that∫
ΩT

(y − yhτ )fdxdt = −
N∑
i=1

∫
Ii

τ−1
i (yihτ − yi−1

hτ , ψ
i−1 − πτRhψ)dt

+
(
〈uδγ(t), ψ〉I −

N∑
i=1

∫
Ii

〈uδγ(t), πτRhψ〉Ii
)

+ (y0 − y0
hτ , ψ(·, 0))

=: G̃1 + G̃2 + G̃3.(3.42)

From (3.10) it is obvious that

|G̃3| = |(y0 − y0
hτ , ψ(·, 0))| 6 Ch2‖y0‖1,Ω‖ψ(·, 0)‖1,Ω.(3.43)

Now it remains to estimate G̃1 and G̃2. We can deduce from the trace theorem ([4, Theorem 1.6.6])
that

|G̃2| =
∣∣∣〈uδγ(t), ψ〉I −

N∑
i=1

∫
Ii

〈uδγ(t), πτRhψ〉Ii
∣∣∣

=
∣∣∣ N∑
i=1

∫
Ii

∫
γ(t)

u(x, t)(ψ − πτRhψ)(x, t)dxdt
∣∣∣

6 C‖u‖U‖ψ − πτRhψ‖L2(I;L2(γ(t)))

6 C‖u‖U‖ψ − πτRhψ‖
1
2

L2(I;L2(Ω))‖ψ − πτRhψ‖
1
2

L2(I;H1
0 (Ω))

.(3.44)

Standard error estimates (3.11) yield

‖ψ −Rhψ‖L2(I;L2(Ω)) + h‖ψ −Rhψ‖L2(I;H1
0 (Ω)) 6 Ch

2‖ψ‖L2(I;H2(Ω)).(3.45)

Moreover, we can conclude from (A.12) that (see [8])

‖Rhψ − πτRhψ‖2L2(I;L2(Ω)) 6 Cτ−1
N∑
i=1

∫
Ii

∫
Ii

‖Rhψ(t)−Rhψ(s)‖2L2(Ω)dsdt

6 Ch4‖ψ‖2L2(I;H2(Ω)) + Cτ2‖∂tψ‖2L2(I;L2(Ω)).(3.46)

Similar to (A.12), by using the inverse estimate we can prove

‖Rhψ − πτRhψ‖2L2(I;H1
0 (Ω)) 6 Ch

2‖ψ‖2L2(I;H2(Ω)) + Ch−2τ2‖∂tψ‖2L2(I;L2(Ω)).(3.47)

The triangle inequality together with (3.44)-(3.47) implies

|G̃2| 6 C(h
3
2 + h

1
2 τ

1
2 + h−

1
2 τ)‖u‖U‖f‖L2(I;L2(Ω)).(3.48)

The Cauchy-Schwarz inequality, the stability (3.41) and the standard error estimate yield (see [18])

|G̃1| 6
( N∑
i=1

‖yihτ − yi−1
hτ ‖

2
0,Ω

) 1
2
( N∑
i=1

‖ψi−1 − πτRhψ‖20,Ω
) 1

2

6 C(h2τ−
1
2 + τ

1
2 )‖ψ‖L2(I;H2(Ω))∩H1(I;L2(Ω))h

− 1
2 τ

1
2 (‖y0‖1,Ω + ‖u‖U )

6 C(h
3
2 + h−

1
2 τ)‖f‖L2(I;L2(Ω))(‖y0‖1,Ω + ‖u‖U ).(3.49)
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Then from Lemma 2.1, (3.42), (3.43), (3.48) and (3.49) we have

‖y − yhτ‖L2(I;L2(Ω)) = sup
f∈L2(I;L2(Ω)),f 6=0

(f, y − yhτ )ΩT

‖f‖L2(I;L2(Ω))

6 C(h
3
2 + h

1
2 τ

1
2 + h−

1
2 τ)(‖y0‖1,Ω + ‖u‖U ),

which completes the proof of (3.40).
�

4. Error estimates for the optimal control problems

In this section we consider the fully discrete finite element approximations to the optimal control
problems. As presented in the above section, for the discretisation of the state equation we use
piecewise linear continuous finite elements for spatial discretisation and dG(0) scheme for time
discretisation. For the discretisation of the control variable we adopt the variational discretisation
approach proposed by Hinze in [24]. Due to the fact that γ(t) may evolve in the time horizon, we
do not require that T h restricted to γ(t) gives a triangulation of γ(t). We consider the “discrete-
then-optimize” approach to discretize the optimal control problems, which means the discretised
optimality conditions are derived from the finite dimensional optimisation problems.

In addition, we restrict our study to the case that γ(t) at each t is one of the following objects:
a combination of some points; an interval in case n = 3; a polygonal line in case n = 2; and a
polyhedral plane. The studies on the cases where γ(t) on some t is a curve or a surface will be
very similar to the above case with some technical modifications. Therefore, we omit the latter
case and refer the reader to paper [21] for the details of curved cases.

The discrete optimal control problems now reads

min
uhτ∈Uad

J(yhτ , uhτ ) = 1
2‖yhτ − yd‖

2
L2(I;L2(Ω)) + α

2 ‖uhτ‖
2
U(4.1)

subject to

A(yhτ , whτ ) = 〈uhτδγ(t), whτ 〉I + (y0, w
0
hτ,+), ∀ whτ ∈ Vh,τ .(4.2)

We can prove by standard arguments ([33, Ch.2, Sec.1.2]) that the above optimisation problems
admit a unique solution uhτ ∈ Uad. Moreover, (yhτ , uhτ ) ∈ Vh,τ × Uad is the solution of problem
(4.1)-(4.2) if and only if there exists an adjoint state zhτ ∈ Vh,τ such that the triplet (yhτ , uhτ , zhτ )
satisfies the following first order optimality conditions:

A(yhτ , whτ ) = 〈uhτδγ(t), whτ 〉I + (y0, w
0
hτ,+), ∀ whτ ∈ Vh,τ ,

A(whτ , zhτ ) =

N∑
i=1

∫
Ii

(yhτ − yd, whτ ), ∀ whτ ∈ Vh,τ ,

(αuhτ + zhτ |γ(t), v − uhτ )U > 0 ∀ v ∈ Uad.

(4.3)

We say that (yhτ , uhτ , zhτ ) is the solution to the problem (4.1)-(4.2) if (yhτ , uhτ ) is the optimal
pair to this problem and zhτ is the adjoint state corresponding to this pair. Furthermore, analogue
to (2.13)-(2.14) the control uhτ can be represented by the discrete adjoint state zhτ on each time
interval Ii as

uhτ |Ii = PUad

(
− 1

α
zihτ (γj(t|Ii))

)m
j=1

, when k = 0;

uhτ |Ii = PUad

(
− 1

α
zihτ |γ(t|Ii )

)
, when k > 1.

Now we are in the position to derive a priori error estimates for the fully discrete finite element
approximation to the optimal control problems. At first, we consider the case k > 1 and n−k = 1.

Theorem 4.1. Assume that γ(t) is a k-dimensional manifold strictly contained in Ω with n−k = 1
and U = L2(I;L2(γ(t))). Let (y, u, z) ∈ L2(I;H1

0 (Ω)) × Uad × L2(I;H1
0 (Ω)) and (yhτ , uhτ , zhτ ) ∈
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Vh,τ × Uad × Vh,τ be the solutions of the continuous and discrete optimal control problems (2.10)-
(2.12) and (4.3), respectively. Assume that τ = O(h2). Then it holds that

√
α‖u− uhτ‖L2(I;L2(γ(t))) + ‖y − yhτ‖L2(I;L2(Ω)) 6 Ch

3
2 .(4.4)

Moreover, if yd ∈ L2(I;L∞(Ω)), k = 1 and n = 2, the optimal error estimate
√
α‖u− uhτ‖L2(I;L2(γ(t))) 6 C| log h| 72 (h2 + τ)(4.5)

holds for all 0 < h < h0 with some 0 < h0 < 1.

Proof. It follows from the continuous and discrete optimality conditions that∫
I

(αu+ z|γ)(v − u)dt > 0 ∀ v ∈ Uad(4.6)

and ∫
I

(αuhτ + zhτ |γ)(v − uhτ )dt > 0 ∀ v ∈ Uad.(4.7)

Choosing v = uhτ in (4.6) and v = u in (4.7), and adding the two inequalities yields

α‖u− uhτ‖2L2(I;L2(γ(t)))

6
∫
I

∫
γ(t)

(zhτ − z)(u− uhτ )dxdt

6
∫
I

∫
γ(t)

(zhτ − zhτ (y))(u− uhτ )dxdt+

∫
I

∫
γ(t)

(zhτ (y)− z)(u− uhτ )dxdt,(4.8)

where zhτ (y) ∈ Vh,τ solves the following auxiliary problem

A(whτ , zhτ (y)) =

N∑
i=1

∫
Ii

(y − yd, whτ ), ∀ whτ ∈ Vh,τ .(4.9)

Note that∫
I

∫
γ(t)

(zhτ − zhτ (y))(u− uhτ )dxdt =

∫
I

(zhτ − zhτ (y), (u− uhτ )δγ(t))dt

= A(yhτ (u)− yhτ , zhτ − zhτ (y))

=

∫
I

(yhτ (u)− yhτ , yhτ − y)

= −‖y − yhτ‖2L2(I;L2(Ω)) +

∫
I

(yhτ (u)− y, yhτ − y),(4.10)

where yhτ (u) ∈ Vh,τ is the solution of the following problem:

A(yhτ (u), whτ ) = 〈u(x, t)δγ(t), whτ 〉I + (y0, w
0
hτ,+), ∀ whτ ∈ Vh,τ .(4.11)

Making use of the Young’s inequality in (4.8) and (4.10) we obtain

α‖u− uhτ‖2L2(I;L2(γ(t))) + ‖y − yhτ‖2L2(I;L2(Ω))

6 C(‖y − yhτ (u)‖2L2(I;L2(Ω)) + ‖z − zhτ (y)‖2L2(I;L2(γ(t)))).(4.12)

From Theorem 3.6 we have

‖y − yhτ (u)‖L2(I;L2(Ω)) 6 C(h
3
2 + h

1
2 τ

1
2 + h−

1
2 τ).(4.13)

If we estimate ‖z−zhτ (y)‖L2(I;L2(γ(t))) by (3.17) we can obtain (4.4) under the coupling τ = O(h2).
Now we prove (4.5) in the case k = 1 and n = 2. To begin with, we introduce the following

auxiliary problems: Find zhτ (u) ∈ Vh,τ such that

A(whτ , zhτ (u)) =

N∑
i=1

∫
Ii

(yhτ (u)− yd, whτ ), ∀ whτ ∈ Vh,τ .(4.14)
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From (4.3), (4.11) and (4.14) we can conclude that∫
I

∫
γ(t)

(zhτ − zhτ (u))(u− uhτ )dsdt = ((zhτ − zhτ (u))|γ , u− uhτ )U

= 〈(u− uhτ )δγ , zhτ − zhτ (u)〉I
= A(yhτ (u)− yhτ , zhτ − zhτ (u))

= (yhτ (u)− yhτ , yhτ − yhτ (u))I

= −‖yhτ (u)− yhτ‖2L2(I;L2(Ω)).(4.15)

It follows from (4.8) that

α‖u− uhτ‖2L2(I;L2(γ(t)))

6
∫
I

∫
γ(t)

(zhτ − z)(u− uhτ )dxdt

6
∫
I

∫
γ(t)

(zhτ − zhτ (u))(u− uhτ )dxdt+

∫
I

∫
γ(t)

(zhτ (u)− zhτ (y))(u− uhτ )dxdt

+

∫
I

∫
γ(t)

(zhτ (y)− z)(u− uhτ )dxdt,(4.16)

Then by (4.16), (4.15) and the Young’s inequality, we see that

α‖u− uhτ‖2L2(I;L2(γ(t))) + ‖yhτ (u)− yhτ‖2L2(I;L2(Ω))

6
∫
I

∫
γ(t)

(zhτ − zhτ (u))(u− uhτ )dxdt+

∫
I

∫
γ(t)

(zhτ (u)− zhτ (y))(u− uhτ )dxdt

6 εα‖u− uhτ‖2L2(I;L2(γ(t))) + C(ε, α)‖zhτ (u)− zhτ (y)‖2L2(I;L2(γ(t)))

+C(ε, α)‖zhτ (y)− z‖2L2(I;L2(γ(t))).(4.17)

Moreover, from the embedding theorem we have y ∈ L2(I;L∞(Ω)) when n = 2. If we assume in
addition that yd ∈ L2(I;L∞(Ω)), then for any subdomain Ω0 ⊂⊂ Ω we can conclude from Lemma
2.2 in [30] that z ∈ L2(I;W 2,q(Ω0)) ∩H1(I;Lq(Ω0)) for any 2 6 q < ∞. Then from Lemma 3.3
and proceeding as in the estimate of (3.34) we can derive

‖z − zhτ (y)‖2L2(I;L2(γ(t))) 6 C sup
x∈Ω̄0

∫
I

|(z − zhτ (y))(x, t)|2dt

6 C| log h|5(h4 + τ2).(4.18)

Now we estimate ‖zhτ (u)− zhτ (y)‖L2(I;L2(γ(t))). Let φ be the solution of the following problem

(4.19)


∂tφ−∆φ = (zhτ (u)− zhτ (y))δγ(t)(x) in ΩT ,

φ = 0 on ΓT ,

φ(·, 0) = 0 in Ω.

Then it follows from Theorem 2.2 that φ ∈ L2(I;H
3−ε
2 (Ω) ∩ H1

0 (Ω)) ∩ H1(I;H−
1+ε
2 (Ω)) for any

ε > 0 and there holds

‖φ‖
L2(I;H

3−ε
2 (Ω)∩H1

0 (Ω))
+ ‖∂tφ‖

L2(I;H−
1+ε
2 (Ω))

6 C‖zhτ (u)− zhτ (y)‖L2(I;L2(γ(t))).(4.20)

Note that zhτ (u)− zhτ (y) ∈ Vh,τ satisfies the following equation

A(whτ , zhτ (u)− zhτ (y)) =

N∑
i=1

∫
Ii

(yhτ (u)− y, whτ )dt, ∀ whτ ∈ Vh,τ .(4.21)
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Let φhτ ∈ Vh,τ be the fully discrete finite element approximation of φ. Then we can derive from
the orthogonality and (4.21) that

‖zhτ (u)− zhτ (y)‖2L2(I;L2(γ(t))) = 〈(zhτ (u)− zhτ (y))δγ , zhτ (u)− zhτ (y)〉I
= A(φ, zhτ (u)− zhτ (y))

= A(φhτ , zhτ (u)− zhτ (y))

= (yhτ (u)− y, φhτ )I

= (yhτ (u)− y, φhτ − φ)I + (yhτ (u)− y, φ)I .(4.22)

It follows from Theorem 3.6 that

(yhτ (u)− y, φhτ − φ)I 6 C‖yhτ (u)− y‖L2(I;L2(Ω))‖φhτ − φ‖L2(I;L2(Ω))

6 C(h3 + hτ + h−1τ2)‖u‖U‖zhτ (u)− zhτ (y)‖L2(I;L2(γ(t))).(4.23)

Now it remains to estimate (yhτ (u)− y, φ)I . Let ψ ∈ L2(I;H2(Ω)∩H1
0 (Ω))∩H1(I;L2(Ω)) be the

solution of problem (2.1) with right hand side φ. Note that from the embedding theorem we have
φ ∈ L2(I;L∞(Ω)). For any subdomain Ω0 ⊂⊂ Ω we can conclude from Lemma 2.2 in [30] that
ψ ∈ L2(I;W 2,q(Ω0)) ∩H1(I;Lq(Ω0)) for any 2 6 q <∞ with the estimate

‖ψ‖L2(I;W 2,q(Ω0)) + ‖∂tψ‖L2(I;Lq(Ω0)) 6 Cq‖φ‖L2(I;Lq(Ω))

6 Cq2‖zhτ (u)− zhτ (y)‖L2(I;L2(γ(t))).(4.24)

Let ψhτ ∈ Vh,τ be the finite element approximation of ψ. Then from orthogonality of A we have

(yhτ (u)− y, φ)I = A(yhτ (u)− y, ψ) = A(yhτ (u)− y, ψ − ψhτ )

= A(y, ψhτ − ψ) = 〈uδγ , ψhτ − ψ〉I

6 C‖u‖U
(

sup
x∈Ω̄0

∫
I

|(ψhτ − ψ)(x, t)|2dt
) 1

2 .(4.25)

Similar to the proof of Lemma 3.3 and Theorem 3.5, we are led to

(yhτ (u)− y, φ)I 6 C| log h| 72 (h2 + τ)‖u‖U‖zhτ (u)− zhτ (y)‖L2(I;L2(γ(t)))(4.26)

by setting q = | log h|. Combining (4.23) and (4.26) one can deduce that

‖zhτ (u)− zhτ (y)‖L2(I;L2(γ(t))) 6 C| log h| 72 (h2 + τ)‖u‖U .(4.27)

Collecting (4.17), (4.18) and (4.27) we can prove

α‖u− uhτ‖2L2(I;L2(γ(t))) 6 C| log h|7(h4 + τ2),(4.28)

which completes the proof. �

Then, we consider the case n− k > 1. To derive an optimal error estimate in two dimension we
follow the idea of [30].

Theorem 4.2. Assume that γ(t) is a k-dimensional manifold strictly contained in Ω with n−k >
1. Let (y, u, z) ∈ L2(I;W 1,s

0 (Ω)) × Uad × L2(I;H1
0 (Ω)) and (yhτ , uhτ , zhτ ) × Vh,τ × Uad × Vh,τ

be the solutions of the continuous and discrete optimal control problems (2.10)-(2.12) and (4.3),
respectively. Assume that τ = O(h2). Then the following statements stand:
(i) When k = 0, the suboptimal error estimate

√
α‖u− uhτ‖U + ‖y − yhτ‖L2(I;L2(Ω)) 6 Ch

2−n2(4.29)

holds. If it is further assumed that yd ∈ L2(I;L∞(Ω)) and n = 2, the optimal error estimate
√
α‖u− uhτ‖U 6 C| log h| 72 (h2 + τ)(4.30)

holds for all 0 < h < h0 with some 0 < h0 < 1.
(ii) When k = 1 and n = 3, the suboptimal error estimate

√
α‖u− uhτ‖U + ‖y − yhτ‖L2(I;L2(Ω)) 6 Ch

5
2−

3
σ , σ ∈ (3/2, 2)(4.31)
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holds.

Proof. The estimates of (4.29) and (4.31) follow the similar idea of [19] by using L2(I;L2(Ω))-error
of the state y and the L2(I;L∞(Ω))-error of the adjoint state z. Now we prove (4.30). Similar to
the proof of (4.8) we get

α‖u− uhτ‖2U 6 (u− uhτ , (zhτ − z)|γ(t))U

= (u− uhτ , (zhτ − zhτ (u))|γ(t))U + (u− uhτ , (zhτ (u)− zhτ (y))|γ(t))U

+(u− uhτ , (zhτ (y)− z)|γ(t))U .(4.32)

Then from (4.15) and the Young’s inequality we arrive at

α‖u− uhτ‖2U + ‖yhτ (u)− yhτ‖2L2(I;L2(Ω))

6 (u− uhτ , (zhτ (u)− zhτ (y))|γ(t))U + (u− uhτ , (zhτ (y)− z)|γ(t))U

6 εα‖u− uhτ‖2U + C(ε, α)(‖zhτ (u)− zhτ (y)‖2L2(I;L∞(Ω)) + sup
x∈Ω̄0

∫
I

|(z − zhτ (y))(x, t)|2dt).(4.33)

Using the coercivity property of A(·, ·) and the inverse estimate we are led to

c‖zhτ (u)− zhτ (y)‖2L2(I;H1(Ω))

6 A(zhτ (u)− zhτ (y), zhτ (u)− zhτ (y))

=

N∑
i=1

∫
Ii

(yhτ (u)− y, zhτ (u)− zhτ (y))dt

6 ‖yhτ (u)− y‖L2(I;L1(Ω))‖zhτ (u)− zhτ (y)‖L2(I;L∞(Ω))

6 Cρ(2, h)‖yhτ (u)− y‖L2(I;L1(Ω))‖zhτ (u)− zhτ (y)‖L2(I;H1(Ω)),

which yields

c‖zhτ (u)− zhτ (y)‖L2(I;H1(Ω)) 6 Cρ(2, h)‖yhτ (u)− y‖L2(I;L1(Ω)).(4.34)

From the inverse estimate again we can obtain

‖zhτ (u)− zhτ (y)‖L2(I;L∞(Ω)) 6 Cρ(2, h)‖zhτ (u)− zhτ (y)‖L2(I;H1(Ω))

6 Cρ2(2, h)‖yhτ (u)− y‖L2(I;L1(Ω)).(4.35)

From (4.33) and (4.35) we have

α‖u− uhτ‖2L2(I;L2(γ(t))) + ‖yhτ (u)− yhτ‖2L2(I;L2(Ω))

6 C(ε, α)(‖zhτ (u)− zhτ (y)‖2L2(I;L∞(Ω)) + sup
x∈Ω̄0

∫
I

|(z − zhτ (y))(x, t)|2dt)

6 C(ε, α)ρ4(2, h)‖yhτ (u)− y‖2L2(I;L1(Ω)) + sup
x∈Ω̄0

∫
I

|(z − zhτ (y))(x, t)|2dt.(4.36)

As indicated in Section 2 we have z ∈ L2(I;W 2,q(Ω0)) ∩ H1(I;Lq(Ω0)) for any q 6 n
n−s . Then

applying the local maximum norm error estimate (3.19) and proceeding as in the estimate of (3.34)
we obtain

sup
x∈Ω̄0

∫
I

|(z − zhτ (y))(x, t)|2dt 6 C| log h|3q4h−
4
q (h4 + τ2).(4.37)

Specifically, we can set q = | log h| in (4.37). Then we are able to derive

sup
x∈Ω̄0

∫
I

|(z − zhτ (y))(x, t)|2dt 6 C| log h|7(h4 + τ2).(4.38)
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Combining (4.36)-(4.37) and Theorem 3.5 and considering (3.5) we arrive at

α‖u− uhτ‖2L2(I;L2(γ(t))) + ‖yhτ (u)− yhτ‖2L2(I;L2(Ω))

6 Cρ4(2, h)| log h|5(h4 + τ2) + C| log h|7(h4 + τ2)

6 C| log h|7(h4 + τ2).(4.39)

This completes the proof. �

Remark 4.3. A number of remarks for the error estimates derived in Theorems 4.1 and 4.2 are
in order. Firstly, compared to [19] we are able to derive an optimal error estimate for the optimal
control in two dimension, but the estimate for the state in (4.4), (4.29) and (4.31) are sharp due
to the limited regularity of the state. Secondly, in present paper we only derived optimal error
estimates for the optimal control in two dimension following the idea of [30], although in [21] we
studied the finite element approximations of elliptic optimal control problems with controls acting
on a lower dimensional manifold and derived optimal error estimates for the optimal control in
both two- and three dimensions. This is caused by the lack of a maximum norm error estimates
for parabolic equation in three dimension (see Lemma 3.3) as proved in [30] for two dimensional

case. Thirdly, we expect the optimal orders of convergence O(h+ τ
1
2 ) when k = 0 and n = 3, and

O(h2 + τ) when k = 1 and n = 3 hold for three dimensional problems but it still needs a rigorous
proof. Due to this reason the improved error estimates for the optimal control in three dimension
may be postponed to a future work.

5. Numerical Examples

In this section we will carry out some numerical experiments to support our theoretical find-
ings. For the computation the software package AFEPack ([31]) has been used. To validate the
estimates developed in the previous section, we may show the convergence order by separating the
discretization errors in space and time.

Pointwise control problems for parabolic equations can be viewed as a special case of controls
acting on a lower dimensional manifold. In [19] the authors presented some numerical examples for
pointwise control problems where the spatial point is independent of time. In the following we will
consider the case that the lower dimensional manifold may move around in the space domain as
time evolves. In the numerical experiments we may illustrate the convergence orders with respect
to the spatial and time discretizations separately by setting h and τ small enough respectively,
although some a priori error estimates are derived with coupling τ = O(h2). The numerical tests
indicate that such a coupling of τ and h seems not to be needed. We expect that an according
analysis is possible with adapting the techniques of [40] and [41] to the present setting.

Example 5.1. In the first example we consider the case n = 2 and k = 0 with γ a moving point con-
tained in Ω. Let ΩT = B(0, 1)× [0, 1]. We set α = 1, γ(t) = (γ1(t), γ2(t)) = (1

2 cos(2πt), 1
2 sin(2πt))

and Uad := {u ∈ L2[0, T ] : 0.5 6 u(t) 6 1 a.e. t ∈ [0, T ]}. We take the exact solutions as

y(x, t) = − 1

2π
log |x− γ(t)| · (e− et), u(x, t) = PUad(e− et),

z(x, t) = − cos(
π

2
|x− γ(t)|2) sin(2π|x|2)(e− et),

with corresponding f and yd.

We show in Table 1 the convergence oder for the L2-norms of the control, state and adjoint state.
The time step is set to be O(h2). We can observe second order convergence for the optimal control
which confirms our theoretical results. However, only first order convergence can be observed for
the L2-norm of the state, which is caused by the low regularity of the state equation due to the
Dirac measure. In Figure 1 we present the computed state yhτ at different times on fine mesh with
66049 Dofs and 256 time steps for Example 5.1. We can see that the Dirac measure can be exactly
captured by the profiles of the state.
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Figure 1. The computed state yhτ on fine mesh with 66049 Dofs and 256 time
steps for Example 5.1. The subplots show the solutions of the state at different
time t = 1

8 , 1
4 , 3

8 , 1
2 , 5

8 , 3
4 , 7

8 , 1 (from top left to bottom right).
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Table 1. Errors of control u, state y and adjoint state z for Example 5.1 with
respect to space and time.

Dof N ‖u− uhτ‖L2(0,T ) Rate ‖y − yhτ‖L2(ΩT ) Rate ‖z − zhτ‖L2(ΩT ) Rate
25 8 0.266876039146 \ 0.048518775420 \ 0.963378762924 \
81 32 0.038745367936 2.7841 0.027784961679 0.8042 0.643763751918 0.5816
289 128 0.008367663349 2.2111 0.011153618365 1.3168 0.165069654498 1.9635
1089 512 0.001862279212 2.1678 0.005219041154 1.0957 0.043065698090 1.9385
4225 2048 0.000437728257 2.0890 0.002572033248 1.0209 0.010929899309 1.9783
16641 8192 0.000106024846 2.0456 0.001281382684 1.0052 0.002743510676 1.9942

Table 2. Errors of control u, state y and adjoint state z for Example 5.2 with
respect to time with fixed space triangulation.

Dof N ‖u− uhτ‖L2(I;L2(γ)) Rate ‖y − yhτ‖L2(ΩT ) Rate ‖z − zhτ‖L2(ΩT ) Rate
263169 4 0.002909173531 \ 0.008003724330 \ 0.013997680754 \
263169 8 0.001711455367 0.7654 0.005023153257 0.6721 0.008462220210 0.7261
263169 16 0.000927892146 0.8832 0.002737692566 0.8756 0.004745487754 0.8345
263169 32 0.000469988319 0.9813 0.001379795139 0.9885 0.002470170020 0.9419
263169 64 0.000219877153 1.0959 0.000632363584 1.1256 0.001180761839 1.0649
263169 128 0.000087233130 1.3337 0.000240513292 1.3946 0.000479449034 1.3003

Table 3. Errors of control u, state y and adjoint state z for Example 5.2 with
respect to space with fixed time step.

Dof N ‖u− uhτ‖L2(I;L2(γ)) Rate ‖y − yhτ‖L2(ΩT ) Rate ‖z − zhτ‖L2(ΩT ) Rate
81 256 1.797384265e-3 \ 1.1884261247e-2 \ 1.0371803861e-2 \
289 256 4.450005900e-4 2.0140 3.3545615070e-3 1.8249 2.8060229020e-3 1.8861
1089 256 1.108811560e-4 2.0048 9.7769836600e-4 1.7787 7.1713594300e-4 1.9682
4225 256 2.749660800e-5 2.0117 2.9367647900e-4 1.7352 1.7872158100e-4 2.0045
16641 256 6.707969000e-6 2.0353 9.0345879000e-5 1.7007 4.2876307000e-5 2.0595
66049 256 1.527385000e-6 2.1348 2.7487056000e-5 1.7167 8.8247380000e-6 2.2806

Example 5.2. In the second example we consider the case n = 2 and k = 1 with γ a moving
interval strictly contained in Ω. Let Ω = (−1, 1)2, T = 0.5, γ = {2t− 0.5} × [−0.25, 0.25]. We set
yd = π sin(πt) sin(0.5πx1) sin(0.5πx2), a = −1, b = 1 and α = 0.01.

In the second example we have no explicit solutions for the optimal control, state and adjoint
state. We compute the solutions on fine mesh with 263169 Dofs and 256 time steps as referee
solutions to calculate the convergence order. At first we consider the behavior of the errors for
a sequence of discretizations with different mesh sizes and fixed 256 time steps. Then we show
the behavior of the errors for different time steps but a fixed spatial triangulation with 263169
Dofs. From Table 2 and 3 we can observe second order convergence of the optimal control for
the spatial discretisation and first order convergence of both the optimal control and state for
the temporal discretisation, which are the optimal convergence rates for the linear finite element
spatial discretizations and dG(0) time discretisation scheme. However, the convergence order of
the state y for spatial discretisation is nearly only 1.7, which is reasonable because of the limited
regularity due to the linear measure. In Figure 2 we present the computed state yhτ at different
times on fine mesh with 263169 Dofs and 64 time steps for Example 5.2 and we can observe the
solution changes as the line measure evolves.

Example 5.3. In the third example we consider the case n = 3 and k = 0 with γ a fixed stationary
point strictly contained in Ω. Let Ω = (0, 1)3, T = 1, γ = x0 = (0.5, 0.5, 0.5). We set y =
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Figure 2. The computed state yhτ on fine mesh with 263169 Dofs and 64 time
steps for Example 5.2. The subplots show the solutions of the state at different
time t = 1
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Table 4. Errors of control u, state y and adjoint state z for Example 5.3 with
respect to space and time.

Dof N ‖u− uhτ‖L2(0,T ) Rate ‖y − yhτ‖L2(ΩT ) Rate ‖z − zhτ‖L2(ΩT ) Rate
175 8 0.281920287108 \ 0.112081236271 \ 0.247646970005 \
1085 32 0.143024589103 0.9790 0.083390837752 0.4266 0.065471735028 1.9193
7577 128 0.055364072472 1.3692 0.059371782409 0.4901 0.016788036277 1.9634
56497 512 0.018597982354 1.5738 0.042058290409 0.4974 0.004240873359 1.9850

1
2π

1
|x−x0| (e

t − e), p = −2 sin(πx1) sin(πx2) sin(πx3)(et − e), u = 2(et − e), a = −∞, b = +∞ and

α = 1.

Similar to Example 5.1 we show in Table 4 the convergence orders for the L2-norms of the
control, state and adjoint state. The time step is set to be O(h2). We can observe nearly O(h

3
2 )

order of convergence for the optimal control which implies that our error estimates in 3D can be
improved. However, only O(h

1
2 ) order of convergence can be observed for the L2-norm of the

state, which is caused by the low regularity of the state equation due to the Dirac measure and is
in agreement with our theoretical results. We note that the convergence order for the control is
higher than the one O(h) we expect, see Remark 4.3. We think the exact solution is too regular
so that the superconvergence phenomena may happen.

Appendix A. Proof of Theorem 3.4

Proof of Theorem 3.4. We use duality argument to prove this theorem. The proof of this
theorem follows the idea of [18], see also [8].

At first we derive the following stability estimates for numerical scheme (3.28). Let yihτ ∈
V h0 , i = 1, 2, · · · , N be the solutions of fully discrete scheme (3.28). Then there exists a constant
C independent of h, τ and the data u such that

N∑
i=1

‖yihτ − yi−1
hτ ‖

2
0,Ω + τN‖yNhτ‖21,Ω 6 Cτh−n(‖u‖2U + ‖y0‖20,Ω)(A.1)

for k = 0 and n = 2 or 3, and

N∑
i=1

‖yihτ − yi−1
hτ ‖

2
0,Ω + τN‖yNhτ‖21,Ω 6 Cτh1− 6

σ (‖u‖2U + ‖y0‖20,Ω)(A.2)

for k = 1 and n = 3. The proof is a slight modification of the proof in [18], here we include the
proof for completeness.

Let wh = τi(y
i
hτ − y

i−1
hτ ) in (3.28) we get

(yihτ − yi−1
hτ , y

i
hτ − yi−1

hτ ) + τi(∇yihτ ,∇(yihτ − yi−1
hτ )) = τi〈uδγ(t), y

i
hτ − yi−1

hτ 〉Ii .
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Since yihτ − y
i−1
hτ is piecewise constant on each time interval Ii w.r.t time, thus we have for k = 0

and n = 2 or 3 that

‖yihτ − yi−1
hτ ‖

2
0,Ω + τi‖yihτ‖21,Ω

6 τi(∇yihτ ,∇yi−1
hτ ) +

∫
Ii

m∑
j=1

uj(t)(y
i
hτ − yi−1

hτ )(γj(t))dt

6
1

2
τi‖yihτ‖21,Ω +

1

2
τi‖yi−1

hτ ‖
2
1,Ω +

∫
Ii

‖yihτ − yi−1
hτ ‖L∞(Ω)

m∑
j=1

|uj(t)|dt

6
1

2
τi‖yihτ‖21,Ω +

1

2
τi‖yi−1

hτ ‖
2
1,Ω + Chn‖yihτ − yi−1

hτ ‖
2
0,∞,Ω + Cτih

−n‖u‖2L2(Ii;Rm)

6
1

2
τi‖yihτ‖21,Ω +

1

2
τi‖yi−1

hτ ‖
2
1,Ω + Cτih

−n‖u‖2L2(Ii;Rm) +
1

2
‖yihτ − yi−1

hτ ‖
2
0,Ω,(A.3)

and for k = 1 and n = 3 that

‖yihτ − yi−1
hτ ‖

2
0,Ω + τi‖yihτ‖21,Ω

6 τi(∇yihτ ,∇yi−1
hτ ) +

∫
Ii

(

∫
γ(t)

u(x, t)(yihτ − yi−1
hτ )dx)dt

6
1

2
τi‖yihτ‖21,Ω +

1

2
τi‖yi−1

hτ ‖
2
1,Ω +

∫
Ii

‖yihτ − yi−1
hτ ‖L2(γ(t))‖u(x, t)‖L2(γ(t))dt

6
1

2
τi‖yihτ‖21,Ω +

1

2
τi‖yi−1

hτ ‖
2
1,Ω + C

∫
Ii

‖yihτ − yi−1
hτ ‖W 1,σ′

0 (Ω)
‖u(x, t)‖L2(γ(t))dt

6
1

2
τi‖yihτ‖21,Ω +

1

2
τi‖yi−1

hτ ‖
2
1,Ω + Ch

6
σ−1‖yihτ − yi−1

hτ ‖
2

W 1,σ′
0 (Ω)

+ Cτih
1− 6

σ ‖u(x, t)‖2L2(Ii;L2(γ(t)))

6
1

2
τi‖yihτ‖21,Ω +

1

2
τi‖yi−1

hτ ‖
2
1,Ω + Cτih

1− 6
σ ‖u(x, t)‖2L2(Ii;L2(γ(t))) +

1

2
‖yihτ − yi−1

hτ ‖
2
0,Ω.(A.4)

In the above estimates we have used the following inverse estimates

‖yihτ − yi−1
hτ ‖0,∞,Ω 6 Ch−

n
2 ‖yihτ − yi−1

hτ ‖0,Ω

and

‖yihτ − yi−1
hτ ‖W 1,σ′

0 (Ω)
6 Ch

1
2−

3
σ ‖yihτ − yi−1

hτ ‖0,Ω.

Summing the above equations over i from 1 to N and using the inverse estimate we get

N∑
i=1

‖yihτ − yi−1
hτ ‖

2
0,Ω + τ‖yNhτ‖21,Ω 6 τ‖y0

hτ‖21,Ω + Cτh−n
N∑
i=1

‖u(x, t)‖2L2(Ii;Rm)

6 Cτh−2‖Phy0‖20,Ω + Cτh−n‖u(x, t)‖2L2(I;Rm)

6 Cτh−n(‖u(x, t)‖2L2(I;Rm) + ‖y0‖20,Ω)(A.5)

for k = 0 and n = 2 or 3, and

N∑
i=1

‖yihτ − yi−1
hτ ‖

2
0,Ω + τ‖yNhτ‖21,Ω 6 τ‖y0

hτ‖21,Ω + Cτh1− 6
σ

N∑
i=1

‖u(x, t)‖2L2(Ii;L2(γ(t)))

6 Cτh−2‖Phy0‖20,Ω + Cτh1− 6
σ ‖u(x, t)‖2L2(I;L2(γ(t)))

6 Cτh1− 6
σ (‖y0‖20,Ω + ‖u(x, t)‖2L2(I;L2(γ(t))))(A.6)

for k = 1 and n = 3. This gives the results.
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Let ψ be the solution of problem (2.1) with f ∈ L2(I;L2(Ω)). Note that ψ = 0 on ∂Ω,
ψN = ψ(T ) = 0, it follows from (2.6) that∫

ΩT

(y − yhτ )fdxdt =

∫
I

∫
Ω

(y − yhτ )(−∂tψ +A∗ψ)dxdt

= 〈∂ty, ψ〉I + (∇y,∇ψ)I + (y0, ψ(·, 0)) +

N∑
i=1

∫
Ii

((yihτ , ∂tψ)− (∇yihτ ,∇ψ))dt

= 〈uδγ(t), ψ〉I + (y0, ψ(·, 0)) +

N∑
i=1

∫
Ii

(τ−1
i (yihτ , ψ

i − ψi−1)− (∇yihτ ,∇ψ))dt

= −
N∑
i=1

∫
Ii

(τ−1
i (yihτ − yi−1

hτ , ψ
i−1) + (∇yihτ ,∇ψ))dt+ 〈uδγ(t), ψ〉I + (y0 − y0

hτ , ψ(·, 0)).

Note that from (3.28) we have

N∑
i=1

(τ−1
i (yihτ − yi−1

hτ , πτRhψ) + (∇yihτ ,∇πτRhψ)) =

N∑
i=1

〈uδγ(t), πτRhψ〉Ii ,

where Rh is the Ritz-projection operator. Furthermore,∫
Ii

(∇yihτ ,∇(πτψ − πτRhψ))dt = 0.(A.7)

Thus,∫
ΩT

(y − yhτ )fdxdt = 〈uδγ(t), ψ〉I −
N∑
i=1

∫
Ii

〈u, πτRhψ〉Ii

+

N∑
i=1

∫
Ii

(τ−1
i (yihτ − yi−1

hτ , πτRhψ) + (∇yihτ ,∇πτRhψ))dt

−
N∑
i=1

∫
Ii

(τ−1
i (yihτ − yi−1

hτ , ψ
i−1) + (∇yihτ ,∇πτψ))dt+ (y0 − y0

hτ , ψ(·, 0))

= −
N∑
i=1

∫
Ii

τ−1
i (yihτ − yi−1

hτ , ψ
i−1 − πτRhψ)dt

+
(
〈uδγ(t), ψ〉I −

N∑
i=1

∫
Ii

〈uδγ(t), πτRhψ〉Ii
)

+ (y0 − y0
hτ , ψ(·, 0))

=: Ẽ1 + Ẽ2 + Ẽ3.(A.8)

From (3.10) it is obvious that

|Ẽ3| = |(y0 − y0
hτ , ψ(·, 0))| 6 Ch‖y0‖0,Ω‖ψ(·, 0)‖1,Ω.(A.9)

Now it remains to estimate Ẽ1 and Ẽ2. At first we consider the case k = 0 and n = 2 or 3. We
can deduce that

|Ẽ2| =
∣∣∣〈uδγ(t), ψ〉I −

N∑
i=1

∫
Ii

〈uδγ(t), πτRhψ〉Ii
∣∣∣

=
∣∣∣ N∑
i=1

∫
Ii

( m∑
j=1

u(γj(t), t)(ψ − πτRhψ)(γj(t), t)
)
dt
∣∣∣

6 C‖u‖U‖ψ − πτRhψ‖L2(I;L∞(Ω)).(A.10)
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Standard error estimates (3.12) yield

‖ψ −Rhψ‖L2(I;L∞(Ω)) 6 Ch
2−n2 ‖ψ‖L2(I;H2(Ω)).(A.11)

Moreover, from the inverse inequality we have (see [8])

‖Rhψ − πτRhψ‖2L2(I;L∞(Ω)) 6
N∑
i=1

1

τi

∫
Ii

∫
Ii

‖Rhψ(t)−Rhψ(s)‖2L∞(Ω)dsdt

6 Ch−nτ−1
N∑
i=1

∫
Ii

∫
Ii

‖Rhψ(t)−Rhψ(s)‖2L2(Ω)dsdt

6 Ch−nτ−1
N∑
i=1

(
τi

∫
Ii

‖Rhψ(t)− ψ(t)‖2L2(Ω)dt+ τi

∫
Ii

‖ψ(s)−Rhψ(s)‖2L2(Ω)ds

+

∫
Ii

∫
Ii

‖ψ(t)− ψ(s)‖2L2(Ω)dsdt
)

6 Ch−nh4‖ψ‖2L2(I;H2(Ω)) + Ch−nτ−1
( N∑
i=1

∫
Ii

∫
Ii

‖
∫
Ii

∂tψ(r)dr‖2L2(Ω)dsdt
)

6 Ch−nh4‖ψ‖2L2(I;H2(Ω)) + Ch−nτ2‖∂tψ‖2L2(I;L2(Ω)).(A.12)

The triangle inequality together with Lemma 2.1 implies

|Ẽ2| 6 C(h−
n
2 τ + h2−n2 )‖u‖U‖f‖L2(I;L2(Ω)).(A.13)

The Cauchy-Schwarz inequality, the stability (A.1) and the standard error estimate yield (see [18])

|Ẽ1| 6
( N∑
i=1

‖yihτ − yi−1
hτ ‖

2
0,Ω

) 1
2
( N∑
i=1

‖ψi−1 − πτRhψ‖20,Ω
) 1

2

6 C(h2τ−
1
2 + τ

1
2 )‖ψ‖L2(I;H2(Ω))∩H1(I;L2(Ω))h

−n2 τ
1
2 (‖y0‖0,Ω + ‖u‖U )

6 C(h2−n2 + h−
n
2 τ)‖f‖L2(I;L2(Ω))(‖y0‖0,Ω + ‖u‖U ).(A.14)

Then from Lemma 2.1, (A.8), (A.9), (A.13) and (A.14) we have

‖y − yhτ‖L2(I;L2(Ω)) = sup
f∈L2(I;L2(Ω)),f 6=0

(f, y − yhτ )ΩT

‖f‖L2(I;L2(Ω))

6 C(h2−n2 + h−
n
2 τ)(‖y0‖0,Ω + ‖u‖U ),

which completes the proof of (3.29).
Then we consider the case when k = 1 and n = 3. We can deduce from the trace inequality

(2.7) that

|Ẽ2| =
∣∣∣〈uδγ(t), ψ〉I −

N∑
i=1

∫
Ii

〈uδγ(t), πτRhψ〉Ii
∣∣∣

=
∣∣∣ N∑
i=1

∫
Ii

(∫
γ(t)

u(x, t)(ψ − πτRhψ)(x, t)dx
)
dt
∣∣∣

6 C‖u‖L2(I;L2(γ(t)))‖ψ − πτRhψ‖L2(I;L2(γ(t)))

6 C‖u‖L2(I;L2(γ(t)))‖ψ − πτRhψ‖L2(I;W 1,σ′
0 (Ω))

.(A.15)

Standard error estimates ([4, Sec.8.5]) yield

‖ψ −Rhψ‖L2(I;W 1,σ′
0 (Ω))

6 Ch
5
2−

3
σ ‖ψ‖L2(I;H2(Ω)).(A.16)
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Moreover, from the inverse inequality we have

‖Rhψ − πτRhψ‖2
L2(I;W 1,σ′

0 (Ω))
6

N∑
i=1

1

τi

∫
Ii

∫
Ii

‖Rhψ(t)−Rhψ(s)‖2
W 1,σ′

0 (Ω)
dsdt

6 Ch1− 6
σ τ−1

N∑
i=1

∫
Ii

∫
Ii

‖Rhψ(t)−Rhψ(s)‖2L2(Ω)dsdt

6 Ch1− 6
σ τ−1

N∑
i=1

(
τi

∫
Ii

‖Rhψ(t)− ψ(t)‖2L2(Ω)dt+ τi

∫
Ii

‖ψ(s)−Rhψ(s)‖2L2(Ω)ds

+

∫
Ii

∫
Ii

‖ψ(t)− ψ(s)‖2L2(Ω)dsdt
)

6 Ch1− 6
σ h4‖ψ‖2L2(I;H2(Ω)) + Ch1− 6

σ τ−1
( N∑
i=1

∫
Ii

∫
Ii

‖
∫
Ii

∂tψ(r)dr‖2L2(Ω)dsdt
)

6 Ch1− 6
σ h4‖ψ‖2L2(I;H2(Ω)) + Ch1− 6

σ τ2‖∂tψ‖2L2(I;L2(Ω)).(A.17)

The triangle inequality together with Lemma 2.1 gives

|Ẽ2| 6 C(h
1
2−

3
σ τ + h

5
2−

3
σ )‖u‖U‖f‖L2(I;L2(Ω)).(A.18)

The Cauchy-Schwarz inequality, the stability (A.2) and the standard error estimate yield (see [18])

|Ẽ1| 6
( N∑
i=1

‖yihτ − yi−1
hτ ‖

2
0,Ω

) 1
2
( N∑
i=1

‖ψi−1 − πτRhψ‖20,Ω
) 1

2

6 C(h2τ−
1
2 + τ

1
2 )‖ψ‖L2(I;H2(Ω))∩H1(I;L2(Ω))h

1
2−

3
σ τ

1
2 (‖y0‖0,Ω + ‖u‖L2(I;L2(γ(t))))

6 C(h
5
2−

3
σ + h

1
2−

3
σ τ)‖f‖L2(I;L2(Ω))(‖y0‖0,Ω + ‖u‖U ).(A.19)

Then from Lemma 2.1, (A.8), (A.9), (A.18)and (A.19) we have

‖y − yhτ‖L2(I;L2(Ω)) = sup
f∈L2(I;L2(Ω)),f 6=0

(f, y − yhτ )ΩT

‖f‖L2(I;L2(Ω))

6 C(h
5
2−

3
σ + h

1
2−

3
σ τ)(‖y0‖0,Ω + ‖u‖U ),

this completes the proof of (3.30).
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