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Abstract. This paper addresses the inverse scattering problem of a random potential associated
with the polyharmonic wave equation in two and three dimensions. The random potential is repre-
sented as a centered complex-valued generalized microlocally isotropic Gaussian random field, where
its covariance and relation operators are characterized as conventional pseudodifferential operators.
Regarding the direct scattering problem, the well-posedness is established in the distributional sense
for sufficiently large wavenumbers through analysis of the corresponding Lippmann--Schwinger in-
tegral equation. Furthermore, in the context of the inverse scattering problem, the uniqueness is
attained in recovering the microlocal strengths of both the covariance and relation operators of the
random potential. Notably, this is accomplished with only a single realization of the backscattering
far-field patterns averaged over the high-frequency band.
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1. Introduction. The polyharmonic wave equation is a higher order general-
ization of the classical second order wave equation. It involves the application of the
polyharmonic operator, which extends the Laplacian operator to higher orders. This
equation is significant in diverse areas of physics and engineering, such as in elasticity
theory, fluid dynamics, and quantum mechanics. For example, the biharmonic wave
equation is central to the theory of thin elastic plates, describing the deflection of a
plate under load [7]. Higher order polyharmonic equations are used in advanced mod-
els of beams and shells, where they help analyze bending and deformation of complex
structures [23]. We refer the reader to the monograph [11] for a comprehensive account
of boundary value problems involving polyharmonic operators. Stemming from the
electrical impedance tomography problem posed by Calder\'on in 1980, inverse bound-
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1238 JIANLIANG LI, PEIJUN LI, XU WANG, AND GUANLIN YANG

ary value problems for polyharmonic operators have recently received considerable
attention [2, 3, 4, 13, 14]. The focus is on examining the uniqueness of lower order
coefficients from boundary measurements given by the Dirichlet-to-Neumann map.
These problems are one of the active research directions in inverse problem theory
[25, 26, 27].

In practical applications, systems are often perturbed by uncertainties caused by
multiple factors, such as the unpredictability of the environment or incomplete knowl-
edge of the system. Consequently, it is necessary to introduce random parameters into
the mathematical modeling [10, 12]. Compared with their deterministic counterparts,
both direct and inverse problems become more complex in the presence of random-
ness. On the one hand, random parameters are sometimes too rough to be defined
pointwise, necessitating the establishment of well-posedness for direct problems with
low regularity parameters. On the other hand, the randomness of the parameters
makes it meaningless to reconstruct the unknown parameter pathwise; instead, it is
more reasonable to determine appropriate statistics of the parameter based on the
statistics of the measurements.

In this paper, we study the stochastic polyharmonic wave equation

( - \Delta )nu - k2u+ \rho u= 0 in\BbbR d,(1.1)

where d= 2 or 3, n\geq 2 is an integer, k > 0 is the wavenumber, and the potential \rho is
assumed to be a complex-valued generalized microlocally isotropic Gaussian (GMIG)
random field. The specific requirements for this assumption are detailed in subsec-
tion 2.2. The total wave field u in (1.1) comprises the superposition of the incident
wave field ui and the scattered wave field us. The incident wave field ui is assumed
to be generated by a plane wave

ui(x, \theta ,\kappa ) = ei\kappa x\cdot \theta ,(1.2)

where \theta \in \BbbS d - 1 := \{ x \in \BbbR d : | x| = 1\} is the incident direction and \kappa = k
1
n > 0 denotes

the modified wavenumber. It can be verified that the incident wave field satisfies
( - \Delta )nui  - \kappa 2nui = 0 in \BbbR d.

To ensure the well-posedness of the scattering problem in the whole space \BbbR d, the
scattered wave us is required to satisfy the radiation condition

lim
r\rightarrow \infty 

\int 
\partial Br

| \partial \nu us(x, \theta ,\kappa ) - i\kappa us(x, \theta ,\kappa )| 2 d\gamma (x) = 0,(1.3)

where Br denotes the ball centered at the origin with radius r, and \nu denotes the unit
normal vector of the sphere \partial Br. It is worth mentioning that only a single radiation
condition on us, as given in (1.3), is required, instead of n conditions on ( - \Delta )jus

with j = 0,1, . . . , n  - 1 for the 2nth order partial differential equation (1.1). This
requirement aligns with the radiation condition for the biharmonic wave equation in
the case of n= 2, as investigated in [5]. Further details about the radiation condition
are provided in subsection 2.3. The radiation condition (1.3) guarantees that the
scattered wave us exhibits the asymptotic behavior

us(x, \theta ,\kappa ) =
ei\kappa | x| 

| x| d - 1
2

\bigl[ 
u\infty (\^x, \theta ,\kappa ) +O(| x|  - 1)

\bigr] 
, | x| \rightarrow \infty ,

where u\infty is the far-field pattern of the scattered field us, and \^x := x/| x| \in \BbbS d - 1 is
referred to as the observation direction of the far-field pattern.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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INVERSE RANDOM POTENTIAL SCATTERING 1239

Based on the polyharmonic wave equation (1.1) and the radiation condition (1.3),
there are two types of scattering problems to be studied. The direct scattering problem
involves investigating the existence, uniqueness, and regularity of the solution u in
an appropriate sense, given the random potential \rho and the incident wave field ui.
In contrast, the inverse scattering problem aims to determine certain statistics of the
unknown random potential \rho from external measurements of the scattered field us.

The inverse random potential scattering problems for second order wave equations
were studied in [6, 15, 19, 16, 18] under the assumption that the potential is a real-
valued GMIG random field. More precisely, in the two-dimensional case, it was shown
that the microlocal strength of the covariance operator of the random potential can be
uniquely determined using a single realization of the near-field data associated with
point sources. This uniqueness was demonstrated for the Schr\"odinger equation in [15]
and for the elastic wave equation in [16]. In the three-dimensional case, the strength of
the covariance operator of the random potential was shown to be uniquely recovered
by a single realization of the far-field pattern associated with plane incident waves.
Studies of this uniqueness were conducted for the Schr\"odinger equation in [6, 19] and
for the elastic wave equation in [18]. However, there is a lack of results concerning
the inverse random potential problem based on the far-field pattern generated by
plane waves in two dimensions or on the near-field data associated with point sources
in three dimensions. The primary challenges are twofold: (i) in the two-dimensional
case, deriving an explicit form of the far-field pattern for the higher order terms in the
Born series is difficult due to the complex series representation of the Hankel function,
and (ii) in the three-dimensional case, the decay rate of the fundamental solution is
insufficient to guarantee the convergence of the Born series. For fourth order wave
equations, such as the biharmonic wave equation, the fundamental solution exhibits
a higher decay rate compared to second order wave equations, including acoustic and
elastic wave equations. This property facilitates a unified treatment of inverse random
potential problems in both two and three dimensions using near-field data associated
with point sources, provided certain regularity assumptions on the random potential
are satisfied [22]. For general higher order wave equations driven by complex-valued
random noises, no results on the inverse random potential problem currently exist,
to the best of our knowledge. The challenges lie in the complex structure of the
random potential and the fundamental solution, as well as in the absence of a unique
continuation principle.

This work addresses the inverse scattering problem for the stochastic polyhar-
monic wave equation, with the aim of determining appropriate statistics of the random
potential \rho under a relaxed regularity assumption. It contains three main contribu-
tions. First, the random potential is extended to a complex-valued GMIG random
field of order ( - m1, - m2) for the first time in inverse random potential problems.
Its distribution is determined not only by its mean value and covariance operator of
order  - m1, but also by its relation operator of order  - m2. Consequently, microlo-
cal strengths of both the covariance and relation operators need to be reconstructed
simultaneously. Second, the well-posedness of the direct scattering problem is estab-
lished for sufficiently large wavenumbers in the distributional sense under a relaxed
condition m=min\{ m1,m2\} \in (d - 2n+1, d] on the regularity of the random potential.
This condition accommodates the white noise, i.e., m= 0, for the case n= 2 and d= 2
or the case n\geq 3. Third, it establishes the uniqueness of determining the strengths for
covariance and relation operators of the random potential in the almost surely sense
within a unified framework for both the two- and three-dimensional cases, based on a
countable set of measurements. Specifically, to uniquely reconstruct the strengths, a
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1240 JIANLIANG LI, PEIJUN LI, XU WANG, AND GUANLIN YANG

single realization of the far-field patterns of the scattered field us generated by plane
waves observed at a sequence of points with an accumulation point is required.

We introduce some general notation used in this paper. The notation a\lesssim b means
a \leq Cb for some constant C > 0, which may change from line to line in the proofs.
Define a\vee b :=max\{ a, b\} and a\wedge b :=min\{ a, b\} . The notation ``\BbbP -a.s."" represents that
equations hold in the almost surely sense, i.e., with probability one. The notation \widehat \phi 
stands for the Fourier transform of a function \phi defined by \widehat \phi (\xi ) := \int \BbbR d \phi (x)e - ix\cdot \xi dx.

The structure of the paper is as follows. Section 2 introduces preliminaries on
real- and complex-valued GMIG random fields. Additionally, it discusses the radiation
condition of the polyharmonic wave equation. Section 3 examines the well-posedness
of the direct scattering problem (1.1)--(1.3). Section 4 focuses on the inverse scattering
problem, which is to determine the strengths of both the covariance and relation
operators for the random potential. The paper ends with final remarks in section 5.

2. Preliminaries. In this section, we briefly introduce real- and complex-valued
GMIG random fields. Furthermore, we justify that the radiation condition (1.3) is
sufficient for the scattering problem of the polyharmonic wave equation (1.1).

2.1. Real-valued GMIG random fields. Let \scrD (\BbbR d) represent the space of
test functions, defined as C\infty 

0 (\BbbR d) with a convex topology, let \scrD \prime (\BbbR d) denote the dual
space of \scrD (\BbbR d), and let \langle \cdot , \cdot \rangle denote the dual product between \scrD (\BbbR d) and \scrD \prime (\BbbR d).

Let (\Omega ,\scrF ,\BbbP ) be a complete probability space. A distribution \rho is a real-valued
generalized Gaussian random field if \rho (\omega ) \in \scrD \prime (\BbbR d) for each \omega \in \Omega and the mapping
\omega \mapsto \rightarrow \langle \rho (\omega ),\psi \rangle \in \BbbR defines a real-valued Gaussian random variable for any \psi \in \scrD (\BbbR d).

The covariance operator \scrC \rho :\scrD (\BbbR d)\rightarrow \scrD \prime (\BbbR d) of the generalized Gaussian random
field \rho is defined by

\langle \scrC \rho \varphi ,\psi \rangle :=\BbbE [(\langle \rho ,\varphi \rangle  - \BbbE \langle \rho ,\varphi \rangle ) (\langle \rho ,\psi \rangle  - \BbbE \langle \rho ,\psi \rangle )] \forall \varphi ,\psi \in \scrD (\BbbR d).

By the Schwartz kernel theorem, there exists a unique kernel Kc
\rho \in \scrD \prime (\BbbR d \times \BbbR d) such

that \langle \scrC \rho \varphi ,\psi \rangle = \langle Kc
\rho ,\psi \otimes \varphi \rangle for any \psi ,\varphi \in \scrD (\BbbR d). Thus, Kc

\rho and \scrC \rho can be expressed
informally as

Kc
\rho (x, y) =\BbbE [(\rho (x) - \BbbE [\rho (x)])(\rho (y) - \BbbE [\rho (y)])] , (\scrC \rho \varphi )(x) =

\int 
\BbbR d

Kc
\rho (x, y)\varphi (y)dy

such that

\langle \scrC \rho \varphi ,\psi \rangle =
\int 
\BbbR d

\int 
\BbbR d

Kc
\rho (x, y)\varphi (y)\psi (x)dydx.

A real-valued generalized Gaussian random field \rho is called a generalized microlo-
cally isotropic Gaussian (GMIG) of order  - m in D if, in addition, \scrC \rho is a classical
pseudodifferential operator whose symbol \sigma c

\rho \in \scrS  - m has the form

\sigma c
\rho (x, \xi ) = ac\rho (x)| \xi |  - m + bc\rho (x, \xi ),

where ac\rho \in C\infty 
0 (D) is referred to as the microlocal strength of \rho satisfying ac\rho \geq 0,

and bc\rho \in \scrS  - m - 1. Here, \scrS  - m denotes the space of symbols of order  - m on \BbbR d \times \BbbR d,
defined as

\scrS  - m = \scrS  - m(\BbbR d \times \BbbR d) :=
\Bigl\{ 
\sigma \in C\infty (\BbbR d \times \BbbR d) :

\bigm| \bigm| \partial \alpha \xi \partial \beta x\sigma (x, \xi )\bigm| \bigm| \leq C\alpha ,\beta (1 + | \xi | ) - m - | \alpha | 
\Bigr\} 
,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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INVERSE RANDOM POTENTIAL SCATTERING 1241

where C\alpha ,\beta > 0 is a constant, and \alpha and \beta are multi-indices with | \alpha | :=
\sum d

j=1\alpha j for
\alpha = (\alpha 1, . . . , \alpha d). It can be verified that the relationship between the covariance kernel
Kc

\rho and the symbol \sigma c
\rho of the GMIG random field \rho is given by

Kc
\rho (x, y) =

1

(2\pi )d

\int 
\BbbR d

ei(x - y)\cdot \xi \sigma c
\rho (x, \xi )d\xi ,

or equivalently,

\sigma c
\rho (x, \xi ) =

\int 
\BbbR d

Kc
\rho (x, y)e

 - i(x - y)\cdot \xi dy.

We refer the reader to [6, 15] for more details on real-valued GMIG random fields.

2.2. Complex-valued GMIG random fields. Next, we consider the complex-
valued random field \rho = \rho 1 + i\rho 2, where \rho j for j = 1,2 are independent real-valued
GMIG random fields of orders  - mj in a bounded domain D\subset \BbbR d. This random field
\rho is referred to as a complex-valued GMIG random field of order ( - m1, - m2) in D.

For simplicity, we assume that \rho j , j = 1,2, are centered random fields, satisfying
\BbbE \langle \rho j ,\varphi \rangle = 0 for any \varphi \in \scrD (\BbbR d). Therefore, \rho is also a centered Gaussian random field,
determined not only by its covariance operator \scrC \rho but also by its relation operator
\scrR \rho , defined as follows:

\langle \scrC \rho \varphi ,\psi \rangle :=\BbbE [\langle \rho ,\varphi \rangle \langle \rho ,\psi \rangle ] , \langle \scrR \rho \varphi ,\psi \rangle :=\BbbE [\langle \rho ,\varphi \rangle \langle \rho ,\psi \rangle ] \forall \varphi ,\psi \in \scrD (\BbbR d).

Similar to the case of real-valued GMIG random fields, there exist unique kernels
Kc

\rho and Kr
\rho in \scrD \prime (\BbbR d \times \BbbR d) such that \langle \scrC \rho \varphi ,\psi \rangle = \langle Kc

\rho ,\psi \otimes \varphi \rangle , \langle \scrR \rho \varphi ,\psi \rangle = \langle Kr
\rho ,\psi \otimes \varphi \rangle ,

and they can be expressed as Kc
\rho (x, y) =\BbbE 

\bigl[ 
\rho (x)\rho (y)

\bigr] 
and Kr

\rho (x, y) =\BbbE [\rho (x)\rho (y)].
Since \rho 1 and \rho 2 are independent, the covariance and relation operators of \rho are

still pseudodifferential operators satisfying \scrC \rho = \scrC \rho 1 + \scrC \rho 2 and \scrR \rho = \scrC \rho 1  - \scrC \rho 2 , where
their symbols and kernels are given by

\sigma c
\rho (x, \xi ) = \sigma c

\rho 1
(x, \xi ) + \sigma c

\rho 2
(x, \xi ), \sigma r

\rho (x, \xi ) = \sigma c
\rho 1
(x, \xi ) - \sigma c

\rho 2
(x, \xi )(2.1)

and

Kc
\rho (x, y) =Kc

\rho 1
(x, y) +Kc

\rho 2
(x, y), Kr

\rho (x, y) =Kc
\rho 1
(x, y) - Kc

\rho 2
(x, y),

respectively. As in subsection 2.1, the symbols \sigma \eta 
\rho and kernels K\eta 

\rho , where \eta \in \{ c, r\} ,
satisfy the following relation:

\sigma \eta 
\rho (x, \xi ) =

\int 
\BbbR d

K\eta 
\rho (x, y)e

 - i(x - y)\cdot \xi dy.(2.2)

The regularity of \rho depends on that of \rho j , j = 1,2, as specified in the subsequent
lemma (cf. [18, Lemma 2.1]).

Lemma 2.1. Let \rho be a centered complex-valued GMIG random field of order
( - m1, - m2) in a bounded domain D \subset \BbbR d, where m := min\{ m1,m2\} \leq d. Then

\rho \in W m - d
2  - \epsilon ,p(D) for any \epsilon > 0 and p > 1.

In this work, the random potential \rho satisfies the following assumption.

Assumption 2.2. We assume that the potential \rho = \rho 1+i\rho 2 is a centered complex-
valued GMIG random field of order ( - m1, - m2) within a bounded domain D \subset \BbbR d,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1242 JIANLIANG LI, PEIJUN LI, XU WANG, AND GUANLIN YANG

where m1,m2 \in (d - 2n+1, d], and \rho 1, \rho 2 denote the independent real and imaginary
parts of \rho , respectively.

As a result, the covariance operator \scrC \rho and the relation operator \scrR \rho are classical
pseudodifferential operators of order  - m, where m = min\{ m1,m2\} \in (d - 2n+ 1, d],
with symbols \sigma c

\rho and \sigma r
\rho \in \scrS  - m(\BbbR d \times \BbbR d) satisfying

\sigma \eta 
\rho (x, \xi ) = a\eta \rho (x)| \xi |  - m + b\eta \rho (x, \xi ),

where b\eta \rho \in \scrS  - m - 1(\BbbR d \times \BbbR d) and a\eta \rho , b
\eta 
\rho (\cdot , \xi ) \in C\infty 

0 (D) for \eta \in \{ c, r\} . Here ac\rho and ar\rho 
are called the strengths of the covariance operator \scrC \rho and the relation operator \scrR \rho 

associated with the random potential \rho , respectively.

Remark 2.3. An example of a real-valued GMIG is given by
\sqrt{} 
ac\rho ( - \Delta ) - 

m
4 \.W ,

as discussed in [21, section 2.2]. Building on this, a complex-valued GMIG of order
( - m1, - m2) can be constructed by defining two independent random fields:

\rho 1 =
\sqrt{} 
ac\rho 1

( - \Delta ) - 
m1
4 \.W1, \rho 2 =

\sqrt{} 
ac\rho 2

( - \Delta ) - 
m2
4 \.W2,

whereW1 andW2 are independent real-valued Wiener processes. Setting \rho = \rho 1+i\rho 2,
we obtain a complex-valued GMIG of the desired order. The characterization of
this GMIG is determined not only by its covariance operator but also by its relation
operator.

Remark 2.4. According to (2.1), we can observe that
(i) if m1 <m2 such that m=m1, then a

\eta 
\rho = ac\rho 1

for \eta \in \{ c, r\} , implying that the
real part \rho 1 of the random potential \rho has a stronger effect compared with
the imaginary part \rho 2.

(ii) if m1 >m2 such that m=m2, then a
c
\rho = ac\rho 2

and ar\rho = - ac\rho 2
, indicating that

the imaginary part \rho 2 of the random potential \rho has a stronger effect than
the real part \rho 1.

(iii) if m1 =m2 =m, then ac\rho = ac\rho 1
+ ac\rho 2

and ar\rho = ac\rho 1
 - ac\rho 2

.

For the inverse scattering problem, our goal is to determine the strengths ac\rho and
ar\rho of the covariance and relation operators for the random potential \rho .

2.3. The radiation condition. For the nth order polyharmonic wave equation,
it seems to be necessary to impose a total of n radiation conditions on the scattered
field and its derivatives, as follows:

lim
r\rightarrow \infty 

\int 
\partial Br

\bigm| \bigm| \partial \nu ( - \Delta )jus(x, \theta ,\kappa ) - i\kappa ( - \Delta )jus(x, \theta ,\kappa )
\bigm| \bigm| 2 d\gamma (x) = 0(2.3)

for j = 0,1, . . . , n - 1. Below, we deduce that the radiation conditions given in (2.3) are
equivalent to the radiation condition (1.3), which is imposed solely on the scattered
field us.

Since the potential \rho is supported in D, it follows from (1.1) that the scattered
field us satisfies ( - \Delta )nus  - \kappa 2nus = 0 in \BbbR d\setminus BR, where BR \subset \BbbR d is the ball centered
at the origin with a sufficiently large radius R such that D \subset BR. It can be verified
that the following operator splitting holds:

( - \Delta )n  - \kappa 2n =

n - 1\prod 
j=0

( - \Delta  - \kappa 2j ),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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INVERSE RANDOM POTENTIAL SCATTERING 1243

where

\kappa j := \kappa ei
j\pi 
n(2.4)

for j = 0,1, . . . , n - 1 with the imaginary parts satisfying

\Im [\kappa 0] = 0, \Im [\kappa j ] = \kappa sin

\biggl( 
j\pi 

n

\biggr) 
> 0, j = 1, . . . , n - 1.(2.5)

Define the functions

vj :=
\kappa 2j
n\kappa 2n

\left(    \prod 
0\leq l\leq n - 1

l \not =j

\bigl( 
 - \Delta  - \kappa 2l

\bigr) \right)    us, j = 0,1, . . . , n - 1,

which satisfy (\Delta + \kappa 2j )vj = 0 in \BbbR d\setminus BR for j = 0,1, . . . , n - 1, and
\sum n - 1

j=0 vj = us.
For j = 0,1, . . . , n - 1, a straightforward calculation yields

n\kappa 2nvj = \kappa 2j
\prod 

0\leq l\leq n - 1
l \not =j

\bigl( 
 - \Delta  - \kappa 2l

\bigr) 
us

= \kappa 2j

\left[    ( - \Delta )n - 1us +

\left(    \sum 
0\leq l\leq n - 1

l \not =j

( - \kappa 2l )

\right)    ( - \Delta )n - 2us

+

\left(    \sum 
0\leq l1,l2\leq n - 1
l1,l2 \not =j,l1 \not =l2

\bigl( 
 - \kappa 2l1

\bigr) \bigl( 
 - \kappa 2l2

\bigr) \right)    ( - \Delta )n - 3us + \cdot \cdot \cdot +
\prod 

0\leq l\leq n - 1
l \not =j

\bigl( 
 - \kappa 2l

\bigr) 
us

\right]    

= \kappa 2j

\left[    ( - \Delta )n - 1us + \kappa 2j ( - \Delta )n - 2us + \kappa 4j
\sum 

0\leq l\leq n - 1
l \not =j

( - \Delta )n - 3us + \cdot \cdot \cdot + \kappa 2n

\kappa 2j
us

\right]    
= \kappa 2j ( - \Delta )n - 1us + \kappa 4j ( - \Delta )n - 2us + \kappa 6j ( - \Delta )n - 3us + \cdot \cdot \cdot + \kappa 2nus,(2.6)

where we used the identities

n - 1\sum 
l=0

( - \kappa 2l ) = 0,
\sum 

0\leq l1,l2\leq n - 1
l1 \not =l2

\bigl( 
 - \kappa 2l1

\bigr) \bigl( 
 - \kappa 2l2

\bigr) 
= 0, . . . ,

n - 1\prod 
l=0

( - \kappa 2l ) = - \kappa 2n = - \kappa 2nj ,

according to the expression of the nth order polynomial zn  - \kappa 2n =
\prod n - 1

l=0 (z  - \kappa 2l ).
Combining (2.6) for j = 0,1, . . . , n  - 1, we establish the equivalence between

the sets \{ vj\} j=0,...,n - 1 and \{ ( - \Delta )jus\} j=0,...,n - 1. This equivalence arises because the
distinct coefficients \{ \kappa 2j , \kappa 4j , . . . , \kappa 2nj \} form a Vandermonde matrix, which is invertible.
Hence, the radiation conditions (2.3) are equivalent to the following conditions:

lim
r\rightarrow \infty 

\int 
\partial Br

| \partial \nu vj(x) - i\kappa vj(x)| 2 d\gamma (x) = 0, j = 0,1, . . . , n - 1,

which are automatically satisfied for j \geq 1 due to the exponential decay of vj since
\Im [\kappa j ] > 0 for j \geq 1, as specified in (2.5). We then conclude that the condition (2.3)
is equivalent to the radiation condition on v0, and consequently, to the radiation
condition on us =

\sum n - 1
j=0 vj as imposed in (1.3).
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1244 JIANLIANG LI, PEIJUN LI, XU WANG, AND GUANLIN YANG

3. The direct scattering problem. This section examines the well-posedness
of the direct scattering problem (1.1)--(1.3), which is shown to have a unique solution
in the distributional sense for sufficiently large wavenumbers.

3.1. The integral operators. First, we introduce the Green function for the
two- and three-dimensional polyharmonic wave equation, upon which two integral
operators are defined.

The Green function G to the polyharmonic wave operator ( - \Delta )n  - \kappa 2n, defined
as the fundamental solution of (( - \Delta )n  - \kappa 2n)G(x, y,\kappa ) = - \delta (x - y), takes the form

G(x, y,\kappa ) = - 1

n\kappa 2n

n - 1\sum 
j=0

\kappa 2j\Phi (x, y,\kappa j),(3.1)

where

\Phi (x, y,\kappa j) :=

\left\{       
i

4
H

(1)
0 (\kappa j | x - y| ), d= 2,

1

4\pi 

ei\kappa j | x - y| 

| x - y| 
, d= 3,

(3.2)

is the fundamental solution of the Helmholtz equation and \kappa j is defined in (2.4). Here,

H
(1)
0 is the Hankel function of the first kind with order zero.
Define two integral operators

(\scrH \kappa \phi )(x) : =

\int 
\BbbR d

G(x, y,\kappa )\phi (y)dy,

(\scrK \kappa \phi )(x) : =

\int 
\BbbR d

G(x, y,\kappa )\rho (y)\phi (y)dy,(3.3)

where \rho is the random potential. The compactness and decay properties with respect
to the wavenumber \kappa of the operators \scrH \kappa and \scrK \kappa are given in the following lemmas,
and these properties are utilized in subsequent analysis.

Lemma 3.1. Let D and B be two bounded domains in \BbbR d, with B having a locally
Lipschitz boundary.

(i) For s := s1 + s2 \in (0,2n  - 1), where s1, s2 \geq 0, the operator \scrH \kappa is bounded
from H - s1(D) to Hs2(B) and satisfies

\| \scrH \kappa \| \scrL (H - s1 (D),Hs2 (B)) \lesssim \kappa s - 2n+1.

Furthermore, for any s \in (0,2n - 1) and \epsilon > 0, the operator \scrH \kappa is bounded
from H - s(D) to L\infty (B), satisfying

\| \scrH \kappa \| \scrL (H - s(D),L\infty (B)) \lesssim \kappa s - 2n+1+ d+\epsilon 
2 .

(ii) For any p, q > 1, where 1
p + 1

q = 1, and 0< \gamma <min\{ 2n - 1
2 , 2n - 1

2 + ( 1q  - 1
2 )d\} ,

the operator \scrH \kappa is compact from W - \gamma ,p(D) to W \gamma ,q(B).

The proof of Lemma 3.1(i) can be found in [20, Lemma 3.1]. The proof of
Lemma 3.1(ii) is a straightforward extension of the biharmonic case with n = 2 pro-
vided in [22, Lemma 2.2] and therefore, it is omitted here.
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INVERSE RANDOM POTENTIAL SCATTERING 1245

Lemma 3.2. Let B be a bounded domain in \BbbR d with a locally Lipschitz boundary.
(i) For any q \in (2,A) and \gamma \in (d - m

2 , n - 1
2  - d( 12  - 1

q )), where

A :=

\left\{   
2d

2d - m - 2n+ 1
, 2d - m - 2n+ 1> 0,

\infty , 2d - m - 2n+ 1\leq 0,

the operator \scrK \kappa is compact from W \gamma ,q(B) to itself and satisfies

\| \scrK \kappa \| \scrL (W\gamma ,q(B)) \lesssim \kappa 2\gamma  - 2n+1+d(1 - 2
q ).

(ii) For any s \in (d - m
2 , 2n - 1

2 ), the operator \scrK \kappa is bounded from Hs(B) to itself
and satisfies

\| \scrK \kappa \| \scrL (Hs(B)) \lesssim \kappa 2s - 2n+1.

Moreover, for any s \in (d - m
2 ,2n - 1) and \epsilon > 0, the operator \scrK \kappa is bounded

from Hs(B) to L\infty (B), satisfying

\| \scrK \kappa \| \scrL (Hs(B),L\infty (B)) \lesssim \kappa s - 2n+1+ d+\epsilon 
2 .

It is worth mentioning that the condition m > d  - 2n + 1 in Assumption 2.2
ensures that the intervals (2,A) and (d - m

2 , n - 1
2  - d( 12  - 1

q )) in Lemma 3.2 are not
empty. The proof of Lemma 3.2 extends the case of the biharmonic operator with
n= 2 as presented in [22, Lemma 2.3]. It utilizes the relation \scrK \kappa \phi =\scrH \kappa (\rho \phi ) alongside
the properties of \scrH \kappa outlined in Lemma 3.1. For brevity, the details of the proof are
omitted here.

3.2. Well-posedness of the direct problem. Based on the integral operator
\scrK \kappa , we can formally rewrite the scattering problem (1.1)--(1.3) as the Lippmann--
Schwinger integral equation

u - \scrK \kappa u= ui,(3.4)

where ui is the incident wave field defined in (1.2).

Lemma 3.3. For any bounded domain B \subset \BbbR d with a locally Lipschitz boundary,
the Lippmann--Schwinger equation (3.4) admits a unique solution u \in W \gamma ,q(B) for
sufficiently large \kappa , where \gamma and q satisfy the conditions specified in Lemma 3.2.

Proof. By Lemma 3.2, the operator \scrK \kappa : W \gamma ,q(B) \rightarrow W \gamma ,q(B) is compact.
Moreover, the incident wave field ui is smooth and bounded in B, which implies
ui \in W \gamma ,q(B).

It suffices to show that the homogeneous equation u - \scrK \kappa u= 0 has only the trivial
solution u\equiv 0 in W \gamma ,q(B). In fact, if u\ast \in W \gamma ,q(B) satisfies u\ast  - \scrK \kappa u\ast = 0, then

\| u\ast \| W\gamma ,q(B) \leq \| \scrK \kappa \| \scrL (W\gamma ,q(B))\| u\ast \| W\gamma ,q(B) \lesssim \kappa 2\gamma  - 2n+1+d(1 - 2
q )\| u\ast \| W\gamma ,q(B),

which implies u\ast \equiv 0 for sufficiently large wavenumbers due to the fact that 2\gamma  - 2n+
1+ d(1 - 2

q )< 0, thereby completing the proof.

Theorem 3.4. For any bounded domain B \subset \BbbR d with a locally Lipschitz bound-
ary, the scattering problem (1.1)--(1.3) admits a unique solution u \in W \gamma ,q(B) in the
distributional sense for sufficiently large \kappa , where \gamma and q satisfy the conditions stated
in Lemma 3.2.
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1246 JIANLIANG LI, PEIJUN LI, XU WANG, AND GUANLIN YANG

Proof. To establish the existence of the solution, we demonstrate that the solution
u \in W \gamma ,q(B) of (3.4) is also a distributional solution of (1.1)--(1.3). In fact, since u
satisfies

u(x, \theta ,\kappa ) =

\int 
\BbbR d

G(x, y,\kappa )\rho (y)u(y, \theta ,\kappa )dy+ ui(x, \theta ,\kappa ),

we obtain for any \phi \in \scrD (B) that\bigl\langle \bigl( 
( - \Delta )n  - \kappa 2n

\bigr) 
u+ \rho u,\phi 

\bigr\rangle 
=

\biggl\langle \bigl( 
( - \Delta )n  - \kappa 2n

\bigr) \biggl( \int 
\BbbR d

G(\cdot , y, \kappa )\rho (y)u(y, \theta ,\kappa )dy+ ui(\cdot , \theta , \kappa )
\biggr) 
+ \rho u,\phi 

\biggr\rangle 
=

\int 
\BbbR d

\bigl\langle \bigl( 
( - \Delta )n  - \kappa 2n

\bigr) 
G(\cdot , y, \kappa ), \phi 

\bigr\rangle 
\rho (y)u(y, \theta ,\kappa )dy+ \langle \rho u,\phi \rangle 

+
\bigl\langle \bigl( 
( - \Delta )n  - \kappa 2n

\bigr) 
ui, \phi 

\bigr\rangle 
= - \langle \rho u,\phi \rangle + \langle \rho u,\phi \rangle = 0

based on an extension argument (cf. [24, section 2.4.2, Theorem 2]), where we used
the fact that (( - \Delta )n  - \kappa 2n)ui = 0.

To show the uniqueness of the solution, we split the total field u into the scattered
field us and the incident field ui, i.e., u= us + ui, rewriting (1.1) as\bigl( 

( - \Delta )n  - \kappa 2n
\bigr) 
us + \rho us = - \rho ui in \BbbR d,

where the scattered wave us satisfies the radiation condition (1.3). It suffices to show
that the homogeneous equation\bigl( 

( - \Delta )n  - \kappa 2n
\bigr) 
us\ast + \rho us\ast = 0 in \BbbR d(3.5)

with the radiation condition (1.3) has only the trivial solution us\ast \equiv 0 in W \gamma ,q(B).
We claim that any solution of (3.5) is also a solution of the homogeneous

Lippmann--Schwinger integral equation us\ast  - \scrK \kappa u
s
\ast = 0. Denote by Br an open ball

with radius r\gg 1. For any fixed x\in \BbbR d, the solution us\ast of (3.5) satisfies

 - 
\int 
Br

G(x, y,\kappa )\rho (y)us\ast (y, \theta ,\kappa )dy+ us\ast (x, \theta ,\kappa )

(3.6)

=

\int 
Br

G(x, y,\kappa )
\bigl( 
( - \Delta )n  - \kappa 2n

\bigr) 
us\ast (y, \theta ,\kappa )dy

 - 
\int 
Br

us\ast (y, \theta ,\kappa )
\bigl( 
( - \Delta )n  - \kappa 2n

\bigr) 
G(x, y,\kappa )dy

=

\int 
Br

G(x, y,\kappa )( - \Delta )nus\ast (y, \theta ,\kappa )dy - 
\int 
Br

us\ast (y, \theta ,\kappa )( - \Delta )nG(x, y,\kappa )dy

=

n - 1\sum 
j=0

\int 
\partial Br

\Bigl[ \bigl( 
\partial \nu ( - \Delta )jG(x, y,\kappa )

\bigr) 
( - \Delta )n - 1 - jus\ast (y, \theta ,\kappa )

 - ( - \Delta )jG(x, y,\kappa )
\bigl( 
\partial \nu ( - \Delta )n - 1 - jus\ast (y, \theta ,\kappa )

\bigr) \Bigr] 
d\gamma (y)

=

n - 1\sum 
j=0

\int 
\partial Br

\Bigl[ \bigl( 
\partial \nu ( - \Delta )jG(x, y,\kappa ) - i\kappa ( - \Delta )jG(x, y,\kappa )

\bigr) 
( - \Delta )n - 1 - jus\ast (y, \theta ,\kappa )

 - ( - \Delta )jG(x, y,\kappa )
\bigl( 
\partial \nu ( - \Delta )n - 1 - jus\ast (y, \theta ,\kappa ) - i\kappa ( - \Delta )n - 1 - jus\ast (y, \theta ,\kappa )

\bigr) \Bigr] 
d\gamma (y).
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INVERSE RANDOM POTENTIAL SCATTERING 1247

Noting that both G and us\ast satisfy the radiation condition (1.3), or equivalently (2.3),
we can follow the same procedure as provided in [8, Theorem 3.3] to obtain

lim
r\rightarrow \infty 

\int 
\partial Br

| ( - \Delta )jf(y)| 2d\gamma (y)\lesssim 1, j = 0,1, . . . , n - 1,

for f =G(x, \cdot , \kappa ) or f = us\ast (\cdot , \theta , \kappa ). Letting r\rightarrow \infty in (3.6), we get

 - 
\int 
\BbbR d

G(x, y,\kappa )\rho (y)us\ast (y, \theta ,\kappa )dy+ us\ast (x, \theta ,\kappa ) = 0,

which verifies the claim.
It follows from Lemma 3.3 that the homogeneous Lippmann--Schwinger integral

equation has only the trivial solution us\ast \equiv 0, thereby completing the proof.

4. The inverse scattering problem. This section is dedicated to discussing
the uniqueness of the inverse scattering problem. We begin by introducing the Born
sequence, which is defined through the equivalent Lippmann--Schwinger integral equa-
tion (3.4), ensuring that the Born series converges to the exact solution. Subsequently,
detailed estimates for the Born series are provided to establish the uniqueness of the
inverse scattering problem by utilizing far-field patterns of the scattered wave.

4.1. The Born sequence. It is shown in Theorem 3.4 that the scattering
problem (1.1)--(1.3) admits a unique solution u, which satisfies the equivalent
Lippmann--Schwinger integral equation (3.4). Define u0(x, \theta ,\kappa ) := ui(x, \theta ,\kappa ) and the
Born sequence based on (3.4) as follows:

uj(x, \theta ,\kappa ) := (\scrK \kappa uj - 1(\cdot , \theta , \kappa )) (x), j \geq 1.(4.1)

Let B \subset \BbbR d be any bounded domain with a locally Lipschitz boundary, and let \gamma 
and q satisfy the conditions specified in Lemma 3.2. We claim that the Born series
defined in (4.1) converges to the solution of (3.4) in W \gamma ,q(B):

u(x, \theta ,\kappa ) =

\infty \sum 
j=0

uj(x, \theta ,\kappa )

for a sufficiently large wavenumber \kappa . By Lemma 3.2, the convergence of the Born
series follows directly from\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

N2\sum 
j=N1

uj(\cdot , \theta , \kappa )

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
W\gamma ,q(B)

\leq 
N2\sum 

j=N1

\| \scrK j
\kappa u0(\cdot , \theta , \kappa )\| W\gamma ,q(B)

\lesssim 
N2\sum 

j=N1

\kappa (2\gamma  - 2n+1+d(1 - 2
q ))j\| ui(\cdot , \theta , \kappa )\| W\gamma ,q(B) \rightarrow 0

as N1,N2 \rightarrow \infty since \gamma < n  - 1
2  - d( 12  - 1

q ). We denote the limit of the series by

u\ast (x, \theta ,\kappa ) :=
\sum \infty 

j=0 uj(x, \theta ,\kappa ), which satisfies (3.4) due to

\scrK \kappa u
\ast =

\infty \sum 
j=0

\scrK \kappa uj =

\infty \sum 
j=1

uj = u\ast  - u0,
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1248 JIANLIANG LI, PEIJUN LI, XU WANG, AND GUANLIN YANG

thus verifying the claim. The scattered wave us = u - ui can be expressed as

us(x, \theta ,\kappa ) =

\infty \sum 
j=1

uj(x, \theta ,\kappa ).

The far-field pattern of the scattered field us can be decomposed into the sum of
the leading term u\infty 1 and the residual term b\infty :

u\infty (\^x, \theta ,\kappa ) = u\infty 1 (\^x, \theta ,\kappa ) + b\infty (\^x, \theta ,\kappa ),

where the residual term b\infty takes the form

b\infty (\^x, \theta ,\kappa ) =

\infty \sum 
j=2

u\infty j (\^x, \theta ,\kappa ),(4.2)

with u\infty j (\^x, \theta ,\kappa ) representing the far-field pattern of uj(x, \theta ,\kappa ) for j \geq 1.

4.2. Analysis of the leading term. Referring to (3.3) and (4.1), we derive the
explicit expression of u1 as follows:

u1(x, \theta ,\kappa ) =

\int 
\BbbR d

G(x, y,\kappa )\rho (y)u0(y, \theta ,\kappa )dy.(4.3)

Considering that ei\kappa j | x| decays exponentially to zero as | x| \rightarrow \infty if j > 0 according to
(2.5), and combining it with the asymptotic behavior for large arguments of \Phi given
in (3.2) as described in [9, eqs. (2.15), (3.105)], we obtain the asymptotic behavior of
the fundamental solution G:

G(x, y,\kappa ) =
ei\kappa | x| 

| x| d - 1
2

\biggl[ 
Cd

n
\kappa  - (2n - d+1

2 )e - i\kappa \^x\cdot y +O

\biggl( 
1

| x| 

\biggr) \biggr] 
, | x| \rightarrow \infty ,(4.4)

where

Cd :=

\left\{       
ei

\pi 
4

\surd 
8\pi 
, d= 2,

1

4\pi 
, d= 3.

(4.5)

Combining (4.3) with (4.4) and choosing \theta = - \^x, we get

u1(\^x, - \^x,\kappa ) =

\int 
\BbbR d

G(x, y,\kappa )\rho (y)ei\kappa y\cdot ( - \^x)dy

=
ei\kappa | x| 

| x| d - 1
2

\biggl[ 
Cd

n
\kappa  - (2n - d+1

2 )

\int 
\BbbR d

e - 2i\kappa \^x\cdot y\rho (y)dy+O

\biggl( 
1

| x| 

\biggr) \biggr] 
,

which yields the corresponding backscattering far-field pattern of u1:

u\infty 1 (\^x, - \^x,\kappa ) =
Cd

n
\kappa  - (2n - d+1

2 )

\int 
\BbbR d

e - 2i\kappa \^x\cdot y\rho (y)dy.(4.6)

The following result illustrates the contribution of the leading term u\infty 1 in deter-
mining the strengths ac\rho and ar\rho .

Theorem 4.1. Let the random potential \rho satisfy Assumption 2.2. For any fixed
\tau \geq 0 and all \^x\in \BbbS d - 1, it holds that
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INVERSE RANDOM POTENTIAL SCATTERING 1249

lim
Q\rightarrow \infty 

1

Q

\int 2Q

Q

\kappa m+4n - d - 1u\infty 1 (\^x, - \^x,\kappa + \tau )u\infty 1 (\^x, - \^x,\kappa )d\kappa =
| Cd| 2

n22m
\widehat ac\rho (2\tau \^x) \BbbP -a.s.,

lim
Q\rightarrow \infty 

1

Q

\int 2Q

Q

\kappa m+4n - d - 1u\infty 1 (\^x, - \^x,\kappa + \tau )u\infty 1 ( - \^x, \^x,\kappa )d\kappa =
C2

d

n22m
\widehat ar\rho (2\tau \^x) \BbbP -a.s.,

(4.7)

where the constant Cd is given in (4.5).

Proof. For simplicity of notation, we define U+(\kappa ) := u\infty 1 (\^x, - \^x,\kappa ), U - (\kappa ) :=
u\infty 1 ( - \^x, \^x,\kappa ), and U\pm (\kappa ) = p\pm (\kappa )+iq\pm (\kappa ), where p\pm and q\pm are the real and imaginary
parts of U\pm , respectively.

It follows from (2.2) and (4.6) that we have

\BbbE 
\Bigl[ 
U+(\kappa + \tau )U+(\kappa )

\Bigr] 
=

| Cd| 2

n2
(\kappa + \tau )

d+1
2  - 2n\kappa 

d+1
2  - 2n

\int 
\BbbR d

\int 
\BbbR d

e - 2i(\kappa +\tau )\^x\cdot ye2i\kappa \^x\cdot z\BbbE 
\Bigl[ 
\rho (y)\rho (z)

\Bigr] 
dydz

=
| Cd| 2

n2
(\kappa + \tau )

d+1
2  - 2n\kappa 

d+1
2  - 2n

\int 
\BbbR d

\biggl[ \int 
\BbbR d

Kc
\rho (y, z)e

 - i2\kappa \^x\cdot (y - z)dz

\biggr] 
e - i2\tau \^x\cdot ydy

=
| Cd| 2

n2
(\kappa + \tau )

d+1
2  - 2n\kappa 

d+1
2  - 2n

\int 
\BbbR d

\sigma c
\rho (y,2\kappa \^x)e

 - i2\tau \^x\cdot ydy

=
| Cd| 2

n2
(\kappa +\tau )

d+1
2  - 2n\kappa 

d+1
2  - 2n

\biggl[ \int 
\BbbR d

ac\rho (y)e
 - i2\tau \^x\cdot ydy| 2\kappa \^x|  - m+

\int 
\BbbR d

bc\rho (y,2\kappa \^x)e
 - i2\tau \^x\cdot ydy

\biggr] 
=

| Cd| 2

n22m

\biggl( 
\kappa 

\kappa + \tau 

\biggr) 2n - d+1
2

\kappa  - (m+4n - d - 1) \widehat ac\rho (2\tau \^x) +O
\Bigl( 
\kappa  - (m+4n - d)

\Bigr) 
,

and similarly

\BbbE [U+(\kappa + \tau )U - (\kappa )]

=
C2

d

n2
(\kappa + \tau )

d+1
2  - 2n\kappa 

d+1
2  - 2n

\int 
\BbbR d

\int 
\BbbR d

e - 2i(\kappa +\tau )\^x\cdot ye2i\kappa \^x\cdot z\BbbE [\rho (y)\rho (z)]dydz

=
C2

d

n2
(\kappa + \tau )

d+1
2  - 2n\kappa 

d+1
2  - 2n

\int 
\BbbR d

\biggl[ \int 
\BbbR d

Kr
\rho (y, z)e

 - i2\kappa \^x\cdot (y - z)dz

\biggr] 
e - i2\tau \^x\cdot ydy

=
C2

d

n2
(\kappa + \tau )

d+1
2  - 2n\kappa 

d+1
2  - 2n

\int 
\BbbR d

\sigma r
\rho (y,2\kappa \^x)e

 - i2\tau \^x\cdot ydy

=
C2

d

n22m

\biggl( 
\kappa 

\kappa + \tau 

\biggr) 2n - d+1
2

\kappa  - (m+4n - d - 1) \widehat ar\rho (2\tau \^x) +O
\Bigl( 
\kappa  - (m+4n - d)

\Bigr) 
,

where m>d - 2n+ 1 such that m+ 4n - d - 1> 0. Noting that

lim
Q\rightarrow \infty 

1

Q

\int 2Q

Q

\biggl( 
\kappa 

\kappa + \tau 

\biggr) 2n - d+1
2

d\kappa = 1,

we obtain

lim
Q\rightarrow \infty 

1

Q

\int 2Q

Q

\kappa m+4n - d - 1\BbbE 
\Bigl[ 
U+(\kappa + \tau )U+(\kappa )

\Bigr] 
d\kappa =

| Cd| 2

n22m
\widehat ac\rho (2\tau \^x),

lim
Q\rightarrow \infty 

1

Q

\int 2Q

Q

\kappa m+4n - d - 1\BbbE [U+(\kappa + \tau )U - (\kappa )]d\kappa =
C2

d

n22m
\widehat ar\rho (2\tau \^x).(4.8)
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1250 JIANLIANG LI, PEIJUN LI, XU WANG, AND GUANLIN YANG

To prove (4.7), together with (4.8), it suffices to show that

lim
Q\rightarrow \infty 

1

Q

\int 2Q

Q

Y c(\^x,\kappa )d\kappa = 0, lim
Q\rightarrow \infty 

1

Q

\int 2Q

Q

Y r(\^x,\kappa )d\kappa = 0 \BbbP -a.s.,(4.9)

where

Y c(\^x,\kappa ) := \kappa m+4n - d - 1
\Bigl( 
U+(\kappa + \tau )U+(\kappa ) - \BbbE 

\Bigl[ 
U+(\kappa + \tau )U+(\kappa )

\Bigr] \Bigr) 
,

Y r(\^x,\kappa ) := \kappa m+4n - d - 1
\Bigl( 
U+(\kappa + \tau )U - (\kappa ) - \BbbE 

\bigl[ 
U+(\kappa + \tau )U - (\kappa )

\bigr] \Bigr) 
.

We obtain from a straightforward calculation that

U+(\kappa + \tau )U+(\kappa ) =
1+ i

2

\bigl[ 
p2+(\kappa ) + p2+(\kappa + \tau ) + q2+(\kappa ) + q2+(\kappa + \tau )

\bigr] 
 - 1

2

\Bigl[ 
(p+(\kappa + \tau ) - p+(\kappa ))

2
+ (q+(\kappa + \tau ) - q+(\kappa ))

2
\Bigr] 

 - i

2

\Bigl[ 
(p+(\kappa + \tau ) + q+(\kappa ))

2
+ (q+(\kappa + \tau ) - p+(\kappa ))

2
\Bigr] 

(4.10)

and

U+(\kappa + \tau )U - (\kappa ) =
1+ i

2

\bigl[ 
p2 - (\kappa ) + p2+(\kappa + \tau ) + q2 - (\kappa ) + q2+(\kappa + \tau )

\bigr] 
 - 1

2

\Bigl[ 
(p+(\kappa + \tau ) - p - (\kappa ))

2
+ (q+(\kappa + \tau ) + q - (\kappa ))

2
\Bigr] 

 - i

2

\Bigl[ 
(p+(\kappa + \tau ) - q - (\kappa ))

2
+ (q+(\kappa + \tau ) - p - (\kappa ))

2
\Bigr] 
.(4.11)

Denote the set \Theta =\Theta 1 \cup \Theta 2, where

\Theta 1 := \{ p+(\kappa + \tau ), p+(\kappa ), p - (\kappa ), q+(\kappa + \tau ), q+(\kappa ), q - (\kappa )\} ,
\Theta 2 := \{ p+(\kappa + \tau ) - p+(\kappa ), p+(\kappa + \tau ) - p - (\kappa ), q+(\kappa + \tau ) - q+(\kappa ),

q+(\kappa + \tau ) + q - (\kappa ), p+(\kappa + \tau ) + q+(\kappa ), p+(\kappa + \tau ) - q - (\kappa ),

q+(\kappa + \tau ) - p+(\kappa ), q+(\kappa + \tau ) - p - (\kappa )\} .

By (4.10) and (4.11), it is evident that both Y c(\^x,\kappa ) and Y r(\^x,\kappa ) are linear combi-
nations of random fields in the set\bigl\{ 

X\kappa := \kappa m+4n - d - 1
\bigl( 
W 2

\kappa  - \BbbE W 2
\kappa 

\bigr) \bigm| \bigm| W\kappa \in \Theta 
\bigr\} 
.

Therefore, to prove (4.9), it is sufficient to show for any W\kappa \in \Theta that

lim
Q\rightarrow \infty 

1

Q

\int 2Q

Q

X\kappa d\kappa = 0 \BbbP -a.s.(4.12)

To show (4.12), according to Lemma 4.2 provided after this theorem, it suffices
to show that there exist some constants \mu ,\alpha \geq 0, \beta > 0, and \kappa \ast > 1 such that for any
\kappa > \kappa \ast , the following inequality holds:

| \BbbE [X\kappa X\kappa +t]| \lesssim 
\biggl( 
1 +

t

\kappa 

\biggr) \alpha 

(1 + | t - \mu | ) - \beta \forall t\geq 0.
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INVERSE RANDOM POTENTIAL SCATTERING 1251

Note that

| \BbbE [X\kappa X\kappa +t]| =
\bigm| \bigm| \BbbE \bigl[ \kappa m+4n - d - 1(\kappa + t)m+4n - d - 1

\bigl( 
W 2

\kappa  - \BbbE W 2
\kappa 

\bigr) \bigl( 
W 2

\kappa +t  - \BbbE W 2
\kappa +t

\bigr) \bigr] \bigm| \bigm| 
= 2

\Bigl[ 
\BbbE 
\Bigl( 
\kappa 

m+4n - d - 1
2 (\kappa + t)

m+4n - d - 1
2 W\kappa W\kappa +t

\Bigr) \Bigr] 2
,

where in the last step we used the result given in [18, Lemma 3.4] for W\kappa \in \Theta being
centered real-valued Gaussian random fields. Hence, we conclude that, to show (4.12),
it suffices to show that there exist constants \mu ,\alpha \geq 0, \beta > 0, and \kappa \ast > 1 such that

\Bigl[ 
\BbbE 
\Bigl( 
\kappa 

m+4n - d - 1
2 (\kappa + t)

m+4n - d - 1
2 W\kappa W\kappa +t

\Bigr) \Bigr] 
\lesssim 

\biggl( 
1 +

t

\kappa 

\biggr) \alpha 

(1 + | t - \mu | ) - \beta \forall t\geq 0

(4.13)

for any \kappa > \kappa \ast and W\kappa \in \Theta .
First, we consider the case W\kappa \in \Theta 1. It follows from the definitions of p\pm (\kappa ) and

q\pm (\kappa ) that we have

p+(\kappa 1)p+(\kappa 2) =
1

4

\Bigl[ 
U+(\kappa 1) +U+(\kappa 1)

\Bigr] \Bigl[ 
U+(\kappa 2) +U+(\kappa 2)

\Bigr] 
,

q+(\kappa 1)q+(\kappa 2) = - 1

4

\Bigl[ 
U+(\kappa 1) - U+(\kappa 1)

\Bigr] \Bigl[ 
U+(\kappa 2) - U+(\kappa 2)

\Bigr] 
.

Evidently, to show (4.13) for W\kappa \in \Theta 1, we require the following estimates:\bigm| \bigm| \bigm| \BbbE \Bigl[ U+(\kappa 1)U+(\kappa 2)
\Bigr] \bigm| \bigm| \bigm| \lesssim \kappa 

d+1
2  - 2n

1 \kappa 
d+1
2  - 2n - m

2 (1 + | \kappa 1  - \kappa 2| ) - N
,

| \BbbE [U+(\kappa 1)U - (\kappa 2)]| \lesssim \kappa 
d+1
2  - 2n

1 \kappa 
d+1
2  - 2n - m

2 (1 + | \kappa 1  - \kappa 2| ) - N
,

| \BbbE [U+(\kappa 1)U+(\kappa 2)]| \lesssim \kappa 
d+1
2  - 2n

1 \kappa 
d+1
2  - 2n - m

2 (1 + \kappa 1 + \kappa 2)
 - N

,\bigm| \bigm| \bigm| \BbbE \Bigl[ U+(\kappa 1)U - (\kappa 2)
\Bigr] \bigm| \bigm| \bigm| \lesssim \kappa 

d+1
2  - 2n

1 \kappa 
d+1
2  - 2n - m

2 (1 + \kappa 1 + \kappa 2)
 - N

(4.14)

for any \^x \in \BbbS d - 1, \kappa 1, \kappa 2 \geq 1, and any fixed N \in \BbbN . The proof of these estimates is
similar to that of [17, Lemma 3.4] and is omitted here.

The above estimates in (4.14), along with the fact that

(1 + \kappa 1 + \kappa 2)
 - N \leq (1 + | \kappa 1  - \kappa 2| ) - N \forall \kappa 1, \kappa 2 \geq 1

for any N \in \BbbN , yield that\bigm| \bigm| \bigm| \BbbE \Bigl[ \kappa m+4n - d - 1
2 (\kappa + t)

m+4n - d - 1
2 p+(\kappa )p+(\kappa + t)

\Bigr] \bigm| \bigm| \bigm| 
\lesssim \kappa 

m+4n - d - 1
2 (\kappa + t)

m+4n - d - 1
2 \kappa 

d+1
2  - 2n(\kappa + t)

d+1
2  - 2n - m(1 + t) - N

\leq 
\biggl( 
1 +

t

\kappa 

\biggr) | m| 
2

(1 + t) - N(4.15)

and similarly

\bigm| \bigm| \bigm| \BbbE \Bigl[ \kappa m+4n - d - 1
2 (\kappa + t)

m+4n - d - 1
2 q+(\kappa )q+(\kappa + t)

\Bigr] \bigm| \bigm| \bigm| \lesssim \biggl( 1 + t

\kappa 

\biggr) | m| 
2

(1 + t) - N ,(4.16)

which indicate that (4.13) holds for W\kappa = p+(\kappa ) and W\kappa = q+(\kappa ).
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1252 JIANLIANG LI, PEIJUN LI, XU WANG, AND GUANLIN YANG

Since (4.15) and (4.16) hold for any \^x \in \BbbS d - 1, replacing \^x with  - \^x in (4.15) and
(4.16), we conclude that (4.13) also holds for W\kappa = p - (\kappa ) and W\kappa = q - (\kappa ).

Moreover, replacing \kappa with \kappa + \tau in (4.15) and (4.16) indicates that (4.13) holds
for W\kappa = p+(\kappa + \tau ) and W\kappa = q+(\kappa + \tau ), which completes the proof of (4.13) for all
W\kappa \in \Theta 1.

Next, we consider the case whereW\kappa \in \Theta 2. Let us takeW\kappa = p+(\kappa +\tau ) - q - (\kappa ) as
an example, as the estimates for the others can be derived using a similar argument.
Note that

p+(\kappa + \tau )q - (\kappa + t)

=
1

4i

\Bigl[ 
U+(\kappa + \tau ) +U+(\kappa + \tau )

\Bigr] \Bigl[ 
U - (\kappa + t) - U - (\kappa + t)

\Bigr] 
=

1

4i

\Bigl[ 
U+(\kappa + \tau )U - (\kappa + t) - U+(\kappa + \tau )U - (\kappa + t)

+U+(\kappa + \tau )U - (\kappa + t) - U+(\kappa + \tau )U - (\kappa + t)
\Bigr] 
,

which, along with (4.14), implies that

| \BbbE [p+(\kappa + \tau )q - (\kappa + t)]| \lesssim (\kappa + \tau )
d+1
2  - 2n(\kappa + t)

d+1
2  - 2n - m(1 + | t - \tau | ) - N .

Similarly, we can obtain that

| \BbbE [p+(\kappa + \tau )p+(\kappa + t+ \tau )]| \lesssim (\kappa + \tau )
d+1
2  - 2n(\kappa + t+ \tau )

d+1
2  - 2n - m(1 + t) - N ,

| \BbbE [p+(\kappa + t+ \tau )q - (\kappa )]| \lesssim (\kappa + t+ \tau )
d+1
2  - 2n\kappa 

d+1
2  - 2n - m(1 + t+ \tau ) - N ,

| \BbbE [q - (\kappa + t)q - (\kappa )]| \lesssim (\kappa + t)
d+1
2  - 2n\kappa 

d+1
2  - 2n - m(1 + t) - N .

Consequently, for W\kappa = p+(\kappa + \tau ) - q - (\kappa ), it holds that

W\kappa W\kappa +t = p+(\kappa + \tau )p+(\kappa + t+ \tau ) - p+(\kappa + \tau )q - (\kappa + t)

 - p+(\kappa + t+ \tau )q - (\kappa ) + q - (\kappa + t)q - (\kappa )

such that\bigm| \bigm| \bigm| \BbbE \Bigl[ \kappa m+4n - d - 1
2 (\kappa + t)

m+4n - d - 1
2 W\kappa W\kappa +t

\Bigr] \bigm| \bigm| \bigm| 
\lesssim \kappa 

m+4n - d - 1
2 (\kappa + t)

m+4n - d - 1
2

\Bigl[ 
(\kappa + \tau )

d+1
2  - 2n(\kappa + t+ \tau )

d+1
2  - 2n - m(1 + t) - N

+ (\kappa + \tau )
d+1
2  - 2n(\kappa + t)

d+1
2  - 2n - m(1 + | t - \tau | ) - N

+ (\kappa +t+\tau )
d+1
2  - 2n\kappa 

d+1
2  - 2n - m(1 + t+ \tau ) - N + (\kappa + t)

d+1
2  - 2n\kappa 

d+1
2  - 2n - m(1 + t) - N

\Bigr] 
= \kappa 

m
2 (\kappa + t) - 

m
2

\biggl( 
\kappa 

\kappa + \tau 

\biggr) 2n - d+1
2
\biggl( 

\kappa + t

\kappa + t+ \tau 

\biggr) m+2n - d+1
2

(1 + t) - N

+ \kappa 
m
2 (\kappa + t) - 

m
2

\biggl( 
\kappa 

\kappa + \tau 

\biggr) 2n - d+1
2

(1 + | t - \tau | ) - N

+ \kappa  - 
m
2 (\kappa + t)

m
2

\biggl( 
\kappa + t

\kappa + t+ \tau 

\biggr) 2n - d+1
2

(1 + t+ \tau ) - N + \kappa  - 
m
2 (\kappa + t)

m
2 (1 + t) - N

\lesssim \kappa 
m
2 (\kappa + t) - 

m
2

\bigl[ 
(1 + t) - N + (1+ | t - \tau | ) - N

\bigr] 
+ \kappa  - 

m
2 (\kappa + t)

m
2 (1 + t) - N

\lesssim 

\biggl( 
1 +

t

\kappa 

\biggr) | m| 
2 \bigl[ 

(1 + t) - N + (1+ | t - \tau | ) - N
\bigr] 
,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/1

1/
25

 to
 1

24
.1

6.
14

8.
23

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



INVERSE RANDOM POTENTIAL SCATTERING 1253

where we utilized the facts that 2n - d+1
2 \geq 0 for any n\geq 2, and m+2n - d+1

2 > 0 for
m\in (d - 2n+ 1, d] as stated in Assumption 2.2, and that

max

\Biggl\{ \biggl( 
\kappa 

\kappa + t

\biggr) m
2

,

\biggl( 
\kappa + t

\kappa 

\biggr) m
2

\Biggr\} 
=

\biggl( 
1 +

t

\kappa 

\biggr) | m| 
2

\forall \kappa > 1, t\geq 0.

This completes the proof of (4.13) for W\kappa \in \Theta 2.
Combining the above estimates, we conclude that (4.13) holds for all W\kappa \in \Theta ,

thus completing the proof.

Lemma 4.2. Consider \{ Xt\} t\geq 0 as a real-valued and centered stochastic process
with continuous paths. Assume that there exist constants \mu ,\alpha \geq 0, \beta > 0, and \kappa \ast > 1
such that

| \BbbE [X\kappa X\kappa +t]| \lesssim 
\biggl( 
1 +

t

\kappa 

\biggr) \alpha 

(1 + | t - \mu | ) - \beta \forall t\geq 0, \kappa > \kappa \ast .(4.17)

Then, it holds that

lim
Q\rightarrow \infty 

1

Q

\int 2Q

Q

X\kappa d\kappa = 0 \BbbP -a.s.(4.18)

Proof. Without loss of generality, we assume that \beta \in (0,1); otherwise, if \beta > 1,
one can always find \beta \prime \in (0,1) such that

| \BbbE [X\kappa X\kappa +t]| \lesssim (1 + | t - \mu | ) - \beta \leq (1 + | t - \mu | ) - \beta \prime 
.

For Q being sufficiently large such that Q>\kappa \ast \vee (2\mu ), it follows from the condition
(4.17) that

\BbbE 

\bigm| \bigm| \bigm| \bigm| \bigm| 1Q
\int 2Q

Q

X\kappa d\kappa 

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

=
1

Q2

\int 2Q

Q

\int 2Q

Q

\BbbE [XsX\kappa ]dsd\kappa 

\lesssim 
1

Q2

\int 2Q

Q

\int 2Q

Q

\biggl( 
1 +

| \kappa  - s| 
\kappa 

\biggr) \alpha 

(1 + | | \kappa  - s|  - \mu | ) - \beta dsd\kappa ,

where it holds for \kappa , s\in [Q,2Q] that

\biggl( 
1 +

| \kappa  - s| 
\kappa 

\biggr) \alpha 

=

\left\{     
\Bigl( 
2 - s

\kappa 

\Bigr) \alpha 
\leq 
\biggl( 
3

2

\biggr) \alpha 

< 2\alpha , \kappa \geq s,\Bigl( s
\kappa 

\Bigr) \alpha 
\leq 2\alpha , \kappa < s.

Hence, we obtain

\BbbE 

\bigm| \bigm| \bigm| \bigm| \bigm| 1Q
\int 2Q

Q

X\kappa d\kappa 

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

\lesssim 
1

Q2

\int 2Q

Q

\int 2Q

Q

(1 + | | \kappa  - s|  - \mu | ) - \beta dsd\kappa 

=
1

Q2

\int 2Q

Q

\biggl[ \biggl( \int (\kappa  - \mu )\vee Q

Q

+

\int \kappa 

(\kappa  - \mu )\vee Q

+

\int (\kappa +\mu )\wedge 2Q

\kappa 
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1254 JIANLIANG LI, PEIJUN LI, XU WANG, AND GUANLIN YANG

+

\int 2Q

(\kappa +\mu )\wedge 2Q

\biggr) 
(1 + | | \kappa  - s|  - \mu | ) - \beta ds

\biggr] 
d\kappa 

=
1

(1 - \beta )Q2

\Biggl( \int Q+\mu 

Q

+

\int 2Q - \mu 

Q+\mu 

+

\int 2Q

2Q - \mu 

\Biggr) \biggl[ 
(1 + \kappa  - \mu  - Q)1 - \beta 

 - (1 + \kappa  - \mu  - (\kappa  - \mu )\vee Q)1 - \beta + 2(1 + \mu )1 - \beta 

 - (1 - \kappa + \mu + (\kappa  - \mu )\vee Q)1 - \beta  - (1 + \kappa + \mu  - (\kappa + \mu )\wedge 2Q)1 - \beta 

+ (1 - \kappa  - \mu + 2Q)1 - \beta  - (1 - \kappa  - \mu + (\kappa + \mu )\wedge 2Q)1 - \beta 

\biggr] 
d\kappa 

=
2

(1 - \beta )Q2

\biggl[ 
Q(1 + \mu )1 - \beta  - 2Q+ 2\mu +

(1+Q - \mu )2 - \beta  - (1 + \mu )2 - \beta 

2 - \beta 

\biggr] 
\lesssim 

1

Q\beta 
.

First, we show the convergence of the result (4.18) at discrete points \{ Qn\} n\in \BbbN .

Define Qn := (n+ 1)k and \xi n := 1
Qn

\int 2Qn

Qn
X\kappa d\kappa for any n \in \BbbN + with the constant k

being large enough such that k > 1
\beta and Qn > \kappa \ast \vee (2\mu ) for any n \in \BbbN +. It can be

verified that

\infty \sum 
n=1

\BbbE | \xi n| 2 =
\infty \sum 

n=1

\BbbE 

\bigm| \bigm| \bigm| \bigm| \bigm| 1

Qn

\int 2Qn

Qn

X\kappa d\kappa 

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

\lesssim 
\infty \sum 

n=1

1

(n+ 1)\beta k
<\infty ,

which, together with the Borel--Cantelli lemma, implies

lim
n\rightarrow \infty 

\xi n = 0 \BbbP -a.s.(4.19)

Next, we show the convergence of (4.18) for arbitrary Q\rightarrow \infty . Define an auxiliary
random variable

Yn := sup
Qn\leq Q<Qn+1

\bigm| \bigm| \bigm| \bigm| \bigm| 1Q
\int 2Q

Q

X\kappa d\kappa  - \xi n

\bigm| \bigm| \bigm| \bigm| \bigm| ,
which satisfies

\BbbE | Yn| 2 =\BbbE 

\left[  sup
Qn\leq Q<Qn+1

\bigm| \bigm| \bigm| \bigm| \bigm| 1Q
\int 2Q

Q

X\kappa d\kappa  - 
1

Qn

\int 2Qn

Qn

X\kappa d\kappa 

\bigm| \bigm| \bigm| \bigm| \bigm| 
2
\right]  

=\BbbE 

\left[  sup
Qn\leq Q<Qn+1

\bigm| \bigm| \bigm| \bigm| \bigm| 1Q
\Biggl( \int 2Qn

Qn

 - 
\int Q

Qn

+

\int 2Q

2Qn

\Biggr) 
X\kappa d\kappa  - 

1

Qn

\int 2Qn

Qn

X\kappa d\kappa 

\bigm| \bigm| \bigm| \bigm| \bigm| 
2
\right]  

\leq 2\BbbE 

\Biggl[ 
sup

Qn\leq Q<Qn+1

\biggl( 
1

Q
 - 1

Qn

\biggr) 2
\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 2Qn

Qn

X\kappa d\kappa 

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

+ sup
Qn\leq Q<Qn+1

\bigm| \bigm| \bigm| \bigm| \bigm| 1Q
\int Q

Qn

X\kappa d\kappa 

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

+ sup
Qn\leq Q<Qn+1

\bigm| \bigm| \bigm| \bigm| \bigm| 1Q
\int 2Q

2Qn

X\kappa d\kappa 

\bigm| \bigm| \bigm| \bigm| \bigm| 
2 \Biggr] 
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INVERSE RANDOM POTENTIAL SCATTERING 1255

\lesssim 

\biggl( 
Qn+1  - Qn

Q2
n

\biggr) 2 \int 2Qn

Qn

\int 2Qn

Qn

\BbbE [XsX\kappa ]dsd\kappa +
1

Q2
n

\int Qn+1

Qn

\int Qn+1

Qn

\BbbE | XsX\kappa | dsd\kappa 

+
1

Q2
n

\int 2Qn+1

2Qn

\int 2Qn+1

2Qn

\BbbE | XsX\kappa | dsd\kappa 

\lesssim 

\biggl( 
Qn+1  - Qn

Q2
n

\biggr) 2

=

\biggl( 
(n+ 2)k  - (n+ 1)k

(n+ 1)k

\biggr) 2

\lesssim 
1

n2
,

where we used the fact that \BbbE | XsX\kappa | \leq 
\bigl( 
\BbbE | Xs| 2

\bigr) 1
2
\bigl( 
\BbbE | X\kappa | 2

\bigr) 1
2 \lesssim 1 for s,\kappa \geq Qn > \kappa \ast 

based on the condition (4.17) with t= 0. Hence, we get

\infty \sum 
n=1

\BbbE | Yn| 2 \lesssim 
\infty \sum 

n=1

1

n2
<\infty ,

which indicates limn\rightarrow \infty Yn = 0 almost surely according to the Borel--Cantelli lemma
again. The proof is completed by combining the convergence of \{ \xi n\} n\in \BbbN +

given in
(4.19).

4.3. Analysis of the residual term. This subsection demonstrates that the
contribution of the residual term b\infty , defined in (4.2), is negligible to the inverse
scattering problem by utilizing the decay property of the integral operator \scrK \kappa .

Theorem 4.3. Let the random potential \rho satisfy Assumption 2.2 with the addi-
tional condition m> 4d - 4n+2

3 ; then it holds for all \^x, \theta \in \BbbS 2 that

lim
Q\rightarrow \infty 

1

Q

\int 2Q

Q

\kappa m+4n - d - 1 | b\infty (\^x, \theta ,\kappa )| 2 d\kappa = 0 \BbbP -a.s.

Proof. From the definition of the residual in (4.2) and the asymptotic expansion
of the fundamental solution given in (4.4), we obtain

b\infty (\^x, \theta ,\kappa ) =
Cd

n
\kappa  - (2n - d+1

2 )
\infty \sum 
j=2

\int 
\BbbR d

e - i\kappa \^x\cdot y\rho (y)uj - 1(y, \theta ,\kappa )dy.

Let \chi \in C\infty 
0 (\BbbR d) be a cutoff function with support in a bounded domain U such that

D \subset U and \chi (y) = 1 if y \in D. For any s \in 
\bigl( 
d - m
2 , 2n - 1

2

\bigr) 
, p \geq d

s \vee 1, and p\prime satisfying
1/p+ 1/p\prime = 1, it follows from Lemma 2.1 that \rho \in W - s,p(\BbbR d). We deduce that

| b\infty (\^x, \theta ,\kappa )| =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 1nCd\kappa 
d+1
2  - 2n

\infty \sum 
j=2

\int 
\BbbR d

\chi (y)e - i\kappa \^x\cdot y\rho (y)uj - 1(y, \theta ,\kappa )\chi (y)dy

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\lesssim \kappa 

d+1
2  - 2n\| \rho \| W - s,p(\BbbR d)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \chi u0( - \^x, \cdot , \kappa )
\infty \sum 
j=2

uj - 1(\cdot , \theta , \kappa )

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
W s,p\prime (\BbbR d)

\lesssim \kappa 
d+1
2  - 2n\| \chi u0( - \^x, \cdot , \kappa )\| Hs(\BbbR d)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \chi 
\infty \sum 
j=2

uj - 1(\cdot , \theta , \kappa )

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
Hs(\BbbR d)
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1256 JIANLIANG LI, PEIJUN LI, XU WANG, AND GUANLIN YANG

\lesssim \kappa 
d+1
2  - 2n\kappa s

\infty \sum 
j=2

\| \scrK j - 1
\kappa u0(\cdot , \theta , \kappa )\| Hs(U)

\lesssim \kappa 
d+1
2  - 2n+s

\infty \sum 
j=2

\| \scrK \kappa \| j - 1
\scrL (Hs(U))\| u0(\cdot , \theta , \kappa )\| Hs(U)

\lesssim \kappa 4s - 4n+ d+3
2 ,

where we used the product rule [6, Lemma 3.6], the decay property

\| \scrK \kappa \| \scrL (Hs(U)) \lesssim \kappa 2s - 2n+1 \BbbP -a.s.

for s \in (d - m
2 , 2n - 1

2 ) provided in Lemma 3.2, and the fact that \| u0(\cdot , \theta , \kappa )\| Hs(U) \lesssim \kappa s

(cf. [6, 18]). A straightforward calculation yields

1

Q

\int 2Q

Q

\kappa m+4n - d - 1 | b\infty (\^x, \theta ,\kappa )| 2 d\kappa \lesssim 1

Q

\int 2Q

Q

\kappa m - 4n+8s+2d\kappa \lesssim Qm - 4n+8s+2,

which converges to zero as Q \rightarrow \infty if there exists some s \in (d - m
2 , 2n - 1

2 ) such that
m - 4n+ 8s+ 2< 0, i.e., s < 4n - m - 2

8 . Indeed, such a constant s exists since

d - m

2
<

4n - m - 2

8

provided that m> 4d - 4n+2
3 , which completes the proof.

4.4. Uniqueness of the inverse problem. With the analysis of each terms
involved in the far-field pattern u\infty , we are now in a position to present the main result
of the paper. This result enables the unique recovery of the microlocal strengths ac\rho 
and ar\rho of the covariance and relation operators of the random potential, respectively,
from a single realization of the backscattering far-field data and by calculating the
Fourier transforms of ac\rho and ar\rho .

Theorem 4.4. Let n \geq 2, d = 2,3, and \rho be a random potential satisfying As-
sumption 2.2 with

m\in 

\Biggl( 
4d - 4n+ 2

3
, d

\Biggr] 
.(4.20)

For any fixed \tau \geq 0 and all \^x\in \BbbS d - 1, it holds that

lim
Q\rightarrow \infty 

1

Q

\int 2Q

Q

\kappa m+4n - d - 1u\infty (\^x, - \^x,\kappa + \tau )u\infty (\^x, - \^x,\kappa )d\kappa =
| Cd| 2

n22m
\widehat ac\rho (2\tau \^x) \BbbP -a.s.,

(4.21)

lim
Q\rightarrow \infty 

1

Q

\int 2Q

Q

\kappa m+4n - d - 1u\infty (\^x, - \^x,\kappa + \tau )u\infty ( - \^x, \^x,\kappa )d\kappa =
C2

d

n22m
\widehat ar\rho (2\tau \^x) \BbbP -a.s.,

(4.22)

where Cd is defined in (4.5). Moreover, ac\rho and ar\rho can be uniquely determined by
(4.21) and (4.22), respectively, with some fixed \tau 0 > 0 and an infinite number of
distinct directions \{ \^xj\} j\in \BbbN \subset \BbbS d - 1, or with some fixed \^x0 \in \BbbS d - 1 and an infinite
number of distinct increments \{ \tau j\} j\in \BbbN \subset [\tau min, \tau max] with 0< \tau min < \tau max.
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INVERSE RANDOM POTENTIAL SCATTERING 1257

Proof. For simplicity, we use the notation v1 = u\infty 1 and v2 = b\infty . The far-field
pattern u\infty (\^x, \theta ,\kappa ) can be written as

u\infty (\^x, \theta ,\kappa ) = v1(\^x, \theta ,\kappa ) + v2(\^x, \theta ,\kappa ),

which leads to

1

Q

\int 2Q

Q

\kappa m+4n - d - 1u\infty (\^x, - \^x,\kappa + \tau )u\infty (\^x, - \^x,\kappa )d\kappa 

=

2\sum 
i,j=1

1

Q

\int 2Q

Q

\kappa m+4n - d - 1vi(\^x, - \^x,\kappa + \tau )vj(\^x, - \^x,\kappa )d\kappa =:

2\sum 
i,j=1

Ii,j

and

1

Q

\int 2Q

Q

\kappa m+4n - d - 1u\infty (\^x, - \^x,\kappa + \tau )u\infty ( - \^x, \^x,\kappa )d\kappa 

=

2\sum 
i,j=1

1

Q

\int 2Q

Q

\kappa m+4n - d - 1vi(\^x, - \^x,\kappa + \tau )vj( - \^x, \^x,\kappa )d\kappa =:

2\sum 
i,j=1

Ji,j .

It follows from Theorem 4.1 that

lim
Q\rightarrow \infty 

I1,1 =
| Cd| 2

n22m
\widehat ac\rho (2\tau \^x), lim

Q\rightarrow \infty 
J1,1 =

C2
d

n22m
\widehat ar\rho (2\tau \^x) \BbbP -a.s.

For the other terms Ii,j and Ji,j with (i, j) \in \{ (i, j) : i \not = 1or j \not = 1\} , we have from
Theorem 4.3 that

lim
Q\rightarrow \infty 

Ii,j \leq lim
Q\rightarrow \infty 

\Biggl\{ \Biggl[ 
1

Q

\int 2Q

Q

\kappa m+4n - d - 1 | vi(\^x, - \^x,\kappa + \tau )| 2 d\kappa 

\Biggr] 1
2

\times 

\Biggl[ 
1

Q

\int 2Q

Q

\kappa m+4n - d - 1 | vj(\^x, - \^x,\kappa )| 2 d\kappa 

\Biggr] 1
2
\Biggr\} 

= 0,

lim
Q\rightarrow \infty 

Ji,j \leq lim
Q\rightarrow \infty 

\Biggl\{ \Biggl[ 
1

Q

\int 2Q

Q

\kappa m+4n - d - 1 | vi(\^x, - \^x,\kappa + \tau )| 2 d\kappa 

\Biggr] 1
2

\times 

\Biggl[ 
1

Q

\int 2Q

Q

\kappa m+4n - d - 1 | vj( - \^x, \^x,\kappa )| 2 d\kappa 

\Biggr] 1
2
\Biggr\} 

= 0.

We then conclude that

lim
Q\rightarrow \infty 

1

Q

\int 2Q

Q

\kappa m+4n - d - 1u\infty (\^x, - \^x,\kappa + \tau )u\infty 1 (\^x, - \^x,\kappa )d\kappa =
| Cd| 2

n22m
\widehat ac\rho (2\tau \^x) \BbbP -a.s.,

lim
Q\rightarrow \infty 

1

Q

\int 2Q

Q

\kappa m+4n - d - 1u\infty (\^x, - \^x,\kappa + \tau )u\infty 1 ( - \^x, \^x,\kappa )d\kappa =
C2

d

n22m
\widehat ar\rho (2\tau \^x) \BbbP -a.s.

Since ac\rho , a
r
\rho \in C\infty 

0 (D), their Fourier transforms \widehat ac\rho and \widehat ar\rho are analytic and can
thus be uniquely determined by their values at a countable sequence \{ \xi j\} j\in \BbbN with an
accumulation point (cf. [1, Chapter 4, section 3.2]). Moreover, due to the compactness
of the finite-dimensional unit sphere \BbbS d - 1 and the closed interval [\tau min, \tau max], the
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1258 JIANLIANG LI, PEIJUN LI, XU WANG, AND GUANLIN YANG

sequence \{ 2\tau \^x\} has an accumulation point for some fixed \tau 0 > 0 and an infinite
number of distinct directions \{ \^xj\} j\in \BbbN \subset \BbbS d - 1, or for some fixed \^x0 \in \BbbS d - 1 and an
infinite number of increments \{ \tau j\} j\in \BbbN \subset [\tau min, \tau max]. This completes the proof of the
uniqueness for determining the strengths ac\rho and ar\rho .

Remark 4.5. It is worth noting that for n = 1, the condition (4.20) turns out to
be m\in \emptyset for d= 2,3. It coincides with the acoustic wave equation (cf. [6, 15]) and the
elastic wave equation (cf. [16, 18]) that (i) for the two-dimensional case, the near-field
data observed in an open domain will be used instead of the far-field data to uniquely
determine the strength of the random potential; (ii) for the three-dimensional case,
the second term u\infty 2 defined in the Born sequence needs to be estimated separately
from the residual (4.2) to get a sharper condition on m.

Remark 4.6. If, in particular, m1 = m2 = m, the strengths ac\rho 1
and ac\rho 2

can be
reconstructed for the real and imaginary parts of the random potential, respectively,
as indicated in Remark 2.4.

5. Conclusion. In this paper, we have studied the well-posedness of the direct
scattering problem and the uniqueness of the inverse random potential scattering
problem for the stochastic polyharmonic wave equation in both two and three dimen-
sions. Here, the random potential is assumed to be a centered and complex-valued
GMIG random field. We have demonstrated that the direct scattering problem admits
a unique solution in the distributional sense for sufficiently large wavenumbers. Ad-
ditionally, we have shown that a single realization of the far-field patterns is sufficient
to uniquely determine the microlocal strengths of both the covariance and relation
operators of the random potential.

The present paper addresses the two- and three-dimensional polyharmonic wave
equations within a unified framework. This is facilitated by two key observations: (i)
the far-field pattern of the first term u1 in the Born series can be uniformly treated, as
the fundamental solutions for both cases exhibit a unified asymptotic expansion, and
(ii) the far-field patterns of the other terms uj , j \geq 2, can be considered as higher order
terms whose contribution to the reconstruction is negligible under a more demanding
condition (4.20) on the parameter m than the one in the direct scattering problem.

To demonstrate the well-posedness of the direct scattering problem, the wavenum-
ber is assumed to be sufficiently large to ensure that the operator \scrK \kappa is a contraction
map as it appears in the Lippmann--Schwinger equation. It is interesting to prove
that the direct scattering problem admits a unique solution for any wavenumber.
This requires new techniques to demonstrate that unique continuation holds for any
wavenumber. In addition, it is unclear whether the condition (4.20) for the inverse
random potential scattering problem is optimal. As mentioned in Remark 4.5, the
condition on m could potentially be further weakened if more refined estimates were
available for the other terms uj , j \geq 2, instead of treating them uniformly as a resid-
ual. However, obtaining refined estimates for these terms is intricate, as the random
potential \rho becomes much less regular if m is smaller than assumed in Theorem 4.4.

A potential approach to obtaining a sharper condition on m is to utilize other
types of measurements, such as the near-field data excited by point sources. In this
scenario, the two- and three-dimensional wave equations are typically treated sep-
arately due to the distinct expressions of the fundamental solution. Moreover, the
singularity of the fundamental solution present in the near-field data, as well as the
incident wave, will make both the direct and inverse scattering problems more com-
plex. Progress on these aspects will be reported elsewhere in the future.
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