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Diffusion-Wave Equation\ast 
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Abstract. This paper concerns both the direct and inverse source problems for the stochastic multiterm time-
fractional diffusion-wave equation driven by a fractional Brownian motion. Regarding the direct
problem, the well-posedness is established and the regularity of the solution is characterized for the
equation. In the inverse problem, the uniqueness and instability are investigated on the determi-
nation of the diffusion coefficient in the random source. Furthermore, a reconstruction formula is
provided for the phaseless Fourier modes of the diffusion coefficient in the random source, based
on the variance of the boundary data. To reconstruct the time-dependent source function from its
phaseless Fourier modes, the PhaseLift algorithm, combined with a spectral cut-off regularization
technique, is employed to tackle the phase retrieval problem. The effectiveness of the proposed
method is demonstrated through numerical experiments.

Key words. inverse random source problem, multiterm time-fractional diffusion-wave equation, fractional
Brownian motion, mild solution, uniqueness, instability

MSC codes. 35R30, 35R11, 60H15

DOI. 10.1137/23M1628334

1. Introduction. Time-fractional differential equations (TFDEs) have a wide range of
applications across diverse fields, including mathematics, physics, engineering, biology, and
finance. They offer valuable tools for modeling complex phenomena characterized by memory
effects, nonlocal behaviors, and anomalous diffusion processes. A multitude of instances of
mathematical analyses, numerical studies, and practical applications of TFDEs can be found
in references such as [14, 28, 34, 36] and their associated citations. In certain applications, it
has been observed that the order of fractional derivatives in some models can vary within the
range of (0,2), as demonstrated in studies such as [5, 6]. To address these scenarios, researchers
have introduced the concept of distributed order TFDEs. A special case of the distributed
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AN INVERSE SOURCE PROBLEM 519

order TFDE is the multiterm TFDE. Multiterm TFDEs provide a versatile framework to
model systems exhibiting multiple relaxation or memory time scales, which are common in
various natural phenomena.

In this paper, we consider the following stochastic multiterm time-fractional diffusion-wave
equation driven by a fractional Brownian motion (fBm):\left\{               

n\sum 
k=1

\partial \alpha k

t u(x, t) - \partial xxu(x, t) = f(t) \.BH(x), (x, t)\in D\times \BbbR +,

u(x,0) = 0, x\in D,

\partial tu(x,0) = 0, x\in D, if \alpha n \in (1,2],

\partial xu(0, t) = 0, u(1, t) = 0, t\in \BbbR +,

(1.1)

where \partial \alpha k

t denotes the Caputo fractional derivative with order \alpha k \in (0,2] satisfying \alpha 1 <\alpha 2 <
\cdot \cdot \cdot < \alpha n and \alpha 1 < 2. The domain D := (0,1). The diffusion coefficient f , referred to as
the source function, is a deterministic function satisfying f(0) = 0. Here, BH represents the
spatial fBm with a Hurst index H \in (0,1), and \.BH represents the formal derivative of BH

with respect to the spatial variable x.
Extensive research has been undertaken on deterministic sources for multiterm TFDEs,

including both direct and inverse source problems. For instance, multivariate Mittag--Leffler
functions were utilized in [7] to represent solutions of the initial boundary value problem. In
[19], innovative techniques were introduced for deriving analytical solutions. The investigation
of well-posedness and long-term asymptotic behavior of the initial boundary value problem
was addressed in [24]. A strong maximum principle was established in [26], demonstrating
uniqueness in determining the temporal component of the source term. In [23], the authors
focused on the identification of time-dependent source terms using boundary data. In [20],
the spatially dependent sources were successfully recovered using final data.

Due to the inherent uncertainties in practical problems, researchers have directed con-
siderable attention to the investigation of stochastic models. In contrast to deterministic
inverse problems, stochastic inverse problems are confronted with additional challenges due
to the presence of randomness and uncertainty. Recently, significant progress has been made
in solving inverse random source problems related to TFDEs. Research efforts have mainly
focused on addressing two distinct categories of noise: time-dependent and spatial-dependent.
In the case of time-dependent noise, Niu, Helin, and Zhang [30] explored scenarios involving
a random source expressed as f(x)h(t) + g(x) \.B(t) by utilizing statistical information derived
from the final data. Expanding upon this line of research, Feng, Li, and Wang [11] broadened
the scope of their investigation to contain situations featuring a random source in the form
of f(x)h(t)+ g(x) \.BH(t). Additionally, in [12, 25], the specific case involving a random source
f(x)(g1(t)+g2(t) \.B(t)) was examined. Lassas, Li, and Zhang [22] studied the general case char-
acterized by a random source given by I\delta t (f1(x)g1(t) + f2(x)g2(t) \.B(t)), where I\delta t represents
the Riemann--Liouville fractional integral operator. In contrast, research on spatial-dependent
noise is relatively limited. An exception to this is the work of Gong et al. [16], where they
conducted a detailed analysis of a TFDE with \alpha \in (0,1), characterized by a random source
represented as f(t) \.B(x).
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520 XIAOLI FENG, QIANG YAO, PEIJUN LI, AND XU WANG

This paper is dedicated to solving the problem (1.1) involving the multiterm TFDE with
the random source f(t) \.BH(x). When the Hurst parameter H = 1

2 , the fBm BH(x) reduces

to the classical Brownian motion B(x), and the random source becomes f(t) \.B(x). The fBm
is utilized to describe complex systems with memory and long-range dependence, and it has
important applications in various fields, including hydrology and geophysics [21, 27], financial
mathematics [1, 13], biomedical applications [17], and material science [10, 33]. Furthermore,
the multiterm TFDE considered here can also be reduced to the single-term case, i.e., the
classical TFDE with the fractional derivative order 0 < \alpha < 2, which includes subdiffusion
(0 < \alpha < 1), superdiffusion (1 < \alpha < 2), and heat conduction (\alpha = 1). Therefore, our
research can be viewed as an extension of the prior work presented in [16]. The central
challenge of our study lies in dealing with the complexities introduced by fBm. To date, there
is limited research on the inverse random source problem with a source driven by fBm. In
[11], an inverse random source problem was examined for the TFDE with 0 < \alpha < 1, where
the random source was given as f(x)h(t) + g(x) \.BH(t). To handle stochastic integration,
the moving average representation of fBm was employed to convert the variance of random
integrals into deterministic integrals. However, the integrals transformed using this technique
were notably complex, requiring the resolution of numerous singular integrals.

In this study, we adopt the harmonizable representation, as described in [9], to address
our problem. The harmonizable representation enables us to express the variance of random
integrals in a more concise manner. Utilizing a crucial modified isometry formula, as presented
in Lemma 3.4, we establish the well-posedness of the solution for the direct problem, which
is summarized in the following theorem.

Theorem 1.1. Assuming that f \in H 2(\BbbR +), the direct source problem (1.1) has a unique
solution u\in L2(\Omega ;H 2(\BbbR +;L

2(D))), which satisfies

\BbbE 
\Bigl[ 
\| u\| 2H 2(\BbbR +;L2(D))

\Bigr] 
\leqslant C\| f\| 2H 2(\BbbR +),(1.2)

where C > 0 is a constant depending only on H.

For the inverse problem, the uniqueness can be established for determining the phaseless
Fourier modes of f :

| \^f(\omega )| =
\biggl( 
\BbbV [\^u(0, \omega )]

R(\omega )

\biggr) 1

2

, \omega \in \BbbR ,

where \BbbV [\cdot ] denotes the variance of a random variable and R(\omega ) is defined in (4.2). However,
the recovery of | \^f(\omega )| is unstable, as stated in the following theorem.

Theorem 1.2. For H \in [12 ,1) and | \omega | > 1, there exists a constant C > 0 independent of \omega 
and H such that

R(\omega )\leqslant 
C

sin(\pi \alpha \mathrm{m}\mathrm{a}\mathrm{x}

2 )

\biggl( 
c2H

1 - H
+ 2\pi c2H

\biggr) 
| \omega |  - \alpha \mathrm{m}\mathrm{a}\mathrm{x} ,

where \alpha \mathrm{m}\mathrm{a}\mathrm{x} := maxi=1,\cdot \cdot \cdot ,n\{ \alpha i : \alpha i \not = 2\} and cH := (H\Gamma (2H) \mathrm{s}\mathrm{i}\mathrm{n}(H\pi )
\pi )

1

2 . For H \in (0, 12), assuming
additionally that \alpha n < 2, it holds that

lim
| \omega | \rightarrow \infty 

R(\omega ) = 0.
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AN INVERSE SOURCE PROBLEM 521

To validate our theoretical findings, we conduct numerical experiments for (1.1) with two
time-fractional terms, addressing cases of both subdiffusion and superdiffusion simultaneously.
Given that the available data is the modulus in the frequency domain and the problem is
inherently ill-posed, it necessitates the resolution of a phase retrieval problem. To address this
challenge, we adopt the PhaseLift algorithm, in conjunction with a spectral cut-off technique,
to reconstruct the source function. Our numerical results demonstrate the effectiveness of the
proposed method in handling both smooth and nonsmooth source functions.

This paper is structured as follows. Section 2 provides some necessary background infor-
mation to facilitate the main results. The well-posedness of the direct problem is demonstrated
in section 3. Section 4 provides a proof of uniqueness and a characterization of the ill-posed
nature of the inverse problem. In section 5, we introduce the PhaseLift method for solving the
inverse problem, supported by numerical examples to confirm the theoretical results. Finally,
in section 6, we conclude with a summary of our study and offer suggestions for future research
directions.

2. Preliminaries. In this section, we provide a brief introduction to fBm and the Caputo
fractional derivative.

2.1. Fractional Brownian motion. A centered Gaussian process BH = \{ BH(x) : x \in 
\BbbR \} , defined on a probability space that comprises a complete triple (\Omega ,\scrF ,\BbbP ), is an fBm
characterized by a Hurst indexH \in (0,1) when it exhibits the covariance function, as presented
in [31] or [35]:

\scrR H(x, y) :=\BbbE 
\bigl[ 
BH(x)BH(y)

\bigr] 
=

1

2

\bigl( 
| x| 2H + | y| 2H  - | x - y| 2H

\bigr) 
, x, y \in \BbbR .

In order to streamline the formulation of moments for the stochastic integral, we introduce
a specific integral representation of BH in relation to a complex Gaussian measure defined
over the entire real line \BbbR .

Lemma 2.1 (cf. [35]). The fBm BH with H \in (0,1) has the integral representation given
by

BH(x) = cH

\int \infty 

 - \infty 

e\mathrm{i}\lambda x  - 1

i\lambda | \lambda | H - 1

2

d\widetilde W (\lambda ), x\in \BbbR ,(2.1)

where the constant cH is given in Theorem 1.2 and \widetilde W =W1+iW2 represents a complex Gauss-
ian measure. Here, W1 and W2 are independent Gaussian measures that are independently
scattered over \BbbR +, and they satisfy the properties W1(A) =W1( - A) and W2(A) = - W2( - A)
for any Borel set A of finite Lebesgue measure.

The expression presented in (2.1) is commonly referred to as the harmonizable represen-
tation, also known as the spectral representation (cf. [31]).

2.2. Caputo fractional derivative. For \nu \in \BbbR +\setminus \BbbN , the \nu th order Caputo fractional deriv-
ative of a function v is denoted as

\partial \nu 
t v(t) =

1

\Gamma (n - \nu )

\int t

0
(t - \xi )n - \nu  - 1v(n)(\xi )d\xi ,

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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522 XIAOLI FENG, QIANG YAO, PEIJUN LI, AND XU WANG

where the Gamma function \Gamma (\alpha ) =
\int \infty 
0 e - ss\alpha ds, and n = \lceil \nu \rceil with \lceil \cdot \rceil denoting the smallest

positive integer that is larger than or equal to \nu . If \nu \in \BbbN , \partial \nu 
t v(t) denotes the classical \nu th

order derivative, also denoted by v(\nu )(t) = \partial \nu 
t v(t).

Next, we examine the Fourier transform of the Caputo fractional derivative.

Lemma 2.2 (cf. [8]). Let \nu \in \BbbR +, and consider a causal function v(t), where v(t) = 0 for
t \leq 0, and

\sum n - 1
k=0 | v(k)(0)| = 0 with n = \lceil \nu \rceil . Additionally, assume that v(k)(t) has compact

support for all k = 0, . . . , n. Under these conditions, the fractional derivative \partial \nu 
t v of v is

well-defined in L2(\BbbR ), and its Fourier transform satisfies

F [\partial \nu 
t v(\cdot )](\omega ) = (i\omega )\nu \^v(\omega ),

where \^v(\omega ) :=F [v(\cdot )](\omega ) denotes the Fourier transform of v.

Note that the complex number (i\omega )\nu may be multivalued when \nu is a fractional number.
Throughout, we always adopt its principal value and represent it as

(i\omega )\nu = | \omega | \nu e\mathrm{i}
\pi \nu 

2
\mathrm{s}\mathrm{g}\mathrm{n}(\omega ) = | \omega | \nu 

\Bigl( 
cos
\Bigl( \pi \nu 

2

\Bigr) 
+ sgn(\omega )i sin

\Bigl( \pi \nu 
2

\Bigr) \Bigr) 
,

where sgn(\cdot ) denotes the sign function.

3. The direct problem. This section establishes the well-posedness of the direct source
problem. First, we convert it into an equivalent problem in the frequency domain, where the
existence, uniqueness, and regularity of the mild solution are investigated. We then attain the
well-posedness of the time-domain problem (1.1).

3.1. The problem in the frequency domain. For a function v \in L2(\BbbR +), we consider
its zero extension outside of \BbbR +, still denoted by v, such that its Fourier transform \^v is
well-defined. Taking the Fourier transform of (1.1) and applying Lemma 2.2, we obtain the
following stochastic differential equation in the frequency domain, where x\in D and \omega \in \BbbR :\left\{   \partial xx\^u(x,\omega ) - 

n\sum 
k=1

(i\omega )\alpha k \^u(x,\omega ) = - \^f(\omega ) \.BH(x),

\partial x\^u(0, \omega ) = 0, \^u(1, \omega ) = 0,
(3.1)

where \^u and \^f are the Fourier transforms of u and f with respect to t, respectively.
For simplicity, we denote

s :=

n\sum 
k=1

(i\omega )\alpha k =

n\sum 
k=1

| \omega | \alpha ke\mathrm{i}
\pi \alpha k
2

\mathrm{s}\mathrm{g}\mathrm{n}(\omega ) =

n\sum 
k=1

| \omega | \alpha k

\Bigl( 
cos
\Bigl( \pi \alpha k

2

\Bigr) 
+ sgn(\omega )i sin

\Bigl( \pi \alpha k

2

\Bigr) \Bigr) 
,(3.2)

which has the following properties.

Lemma 3.1. For the parameter s as defined in (3.2), it holds that s= 0 if and only if \omega = 0.
Furthermore,

| s| \geqslant sin
\Bigl( \pi \alpha \mathrm{m}\mathrm{a}\mathrm{x}

2

\Bigr) 
| \omega | \alpha \mathrm{m}\mathrm{a}\mathrm{x} ,

where \alpha \mathrm{m}\mathrm{a}\mathrm{x} is defined in Theorem 1.2.

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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AN INVERSE SOURCE PROBLEM 523

Proof. If \omega = 0, it is evident that s = 0. It is adequate to demonstrate that \omega = 0 when
s= 0.

Assuming, by contradiction, that \omega \not = 0, it is important to note that \pi \alpha k

2 \in (0, \pi ] and,
therefore, sin(\pi \alpha k

2 )\geqslant 0 for any \alpha k \in (0,2] and k= 1, . . . , n. If

s=

n\sum 
k=1

| \omega | \alpha k

\Bigl( 
cos
\Bigl( \pi \alpha k

2

\Bigr) 
+ sgn(\omega )i sin

\Bigl( \pi \alpha k

2

\Bigr) \Bigr) 
= 0,

then its imaginary part \Im [s] must also be zero, i.e., \Im [s] = sgn(\omega )i
\sum n

k=1 | \omega | \alpha k sin(\pi \alpha k

2 ) = 0,
which implies that \alpha k = 2 for all k = 1, . . . , n. Substituting \alpha k = 2 into the expression for s,
we obtain

s=

n\sum 
k=1

| \omega | 2 cos (\pi ) = - n\omega 2 = 0,

which leads to a contradiction to the assumption \omega \not = 0. We then establish the equivalence
between s= 0 and \omega = 0.

Next, we proceed to estimate the lower bound of | s| . Given that 0<\alpha 1 <\alpha 2 < \cdot \cdot \cdot <\alpha n \leqslant 2,
we have sin(\pi \alpha k

2 )> 0, k= 1, . . . , n - 1, and sin(\pi \alpha n

2 )\geqslant 0. Consequently, we can deduce

| s| \geqslant | \Im [s]| =
n\sum 

k=1

| \omega | \alpha k sin
\Bigl( \pi \alpha k

2

\Bigr) 
\geqslant sin

\Bigl( \pi \alpha \mathrm{m}\mathrm{a}\mathrm{x}

2

\Bigr) 
| \omega | \alpha \mathrm{m}\mathrm{a}\mathrm{x} ,

which completes the proof.

3.2. The Green function. Let G\omega (x, y) be the Green function of (3.1) for any fixed \omega \in \BbbR .
It solves the following problem (cf. [16]):\Biggl\{ 

\partial xxG\omega (x, y) - sG\omega (x, y) = \delta (x - y),

\partial xG\omega (0, y) = 0, G\omega (1, y) = 0,

where x, y \in D and the frequency s is given in (3.2). It is shown in [16] that the Green function
G\omega (x, y) admits the following expression:

G\omega (x, y) =

\left\{     
max\{ x, y\}  - 1, \omega = 0,

e
\surd 
s(x+y) + e

\surd 
s| x - y|  - e

\surd 
s(2 - x - y)  - e

\surd 
s(2 - | x - y| )

2
\surd 
s
\bigl( 
1 + e2

\surd 
s
\bigr) , \omega \not = 0,

(3.3)

where we choose the principal value for
\surd 
s= | s| 

1

2 e\mathrm{i}
\mathrm{a}\mathrm{r}\mathrm{g}(s)

2 with arg(\cdot ) representing the argument
with a radiant principal value in ( - \pi ,\pi ] to ensure that its real part \Re [

\surd 
s]> 0 for \omega \in \BbbR \setminus \{ 0\} .

Lemma 3.2. For any x\in D, the Green function G\omega provided in (3.3) satisfies

sup
\omega \in \BbbR 

\| G\omega (x, \cdot )\| L2(D) \leqslant C, sup
\omega \in \BbbR 

\| G\omega \| L2(D\times D) \leqslant C.

Additionally, as | s| \rightarrow \infty , the following inequalities hold:

\| G\omega (x, \cdot )\| L2(D) \leqslant C| s|  - 
1

2 , \| G\omega \| L2(D\times D) \leqslant C| s|  - 
1

2 ,

where C denotes positive constants that are independent of \omega and x.
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Proof. It is only necessary to demonstrate that the above results apply to \| G\omega (x, \cdot )\| L2(D),
as the results for \| G\omega \| L2(D\times D) follow directly.

If \omega = 0, it is evident that for any x\in D

\| G0(x, \cdot )\| 2L2(D) =

\int x

0
(x - 1)2dy+

\int 1

x
(y - 1)2dy=

(x - 1)2(2x+ 1)

3
\leqslant 

1

3
.

If \omega \not = 0, using (3.3) and noting the inequality for x, y \in (0,1) (cf. [16, (3.4)]),

| G\omega (x, y)| 2 \leq 
e2\Re [

\surd 
s](x+y) + e2\Re [

\surd 
s]| x - y| + e2\Re [

\surd 
s](2 - x - y) + e2\Re [

\surd 
s](2 - | x - y| )

| 
\surd 
s
\bigl( 
1 + e2

\surd 
s
\bigr) 
| 2

,(3.4)

where \Re [\cdot ] denotes the real part of a complex number, we deduce from a simple calculation
that

\| G\omega (x, \cdot )\| 2L2(D) =

\int 1

0
| G\omega (x, y)| 2 dy\leqslant | s|  - 1 1

| 1 + e2
\surd 
s| 2

e4\Re [
\surd 
s]  - 1

\Re [
\surd 
s]

= | s|  - 1 1

1 + e4\Re [
\surd 
s] + 2e2\Re [

\surd 
s] cos

\Bigl( 
2\Re [

\surd 
s] tan

\Bigl( 
\mathrm{a}\mathrm{r}\mathrm{g}(s)

2

\Bigr) \Bigr) e4\Re [
\surd 
s]  - 1

\Re [
\surd 
s]

=: | s|  - 1h
\bigl( 
\Re [
\surd 
s]
\bigr) 
,(3.5)

where h is a positive function for any \Re [
\surd 
s]> 0. Note that

\bigm| \bigm| h \bigl( \Re [\surd s]
\bigr) \bigm| \bigm| =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 1

\Re [
\surd 
s]

e4\Re [
\surd 
s]  - 1

1 + e4\Re [
\surd 
s] + 2e2\Re [

\surd 
s] cos

\Bigl( 
2\Re [

\surd 
s] tan

\Bigl( 
\mathrm{a}\mathrm{r}\mathrm{g}(s)

2

\Bigr) \Bigr) 
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

\leqslant 

\bigm| \bigm| \bigm| \bigm| \bigm| 1

\Re [
\surd 
s]

e4\Re [
\surd 
s]  - 1

1 + e4\Re [
\surd 
s]  - 2e2\Re [

\surd 
s]

\bigm| \bigm| \bigm| \bigm| \bigm| 
=

\bigm| \bigm| \bigm| \bigm| \bigm| 1

\Re [
\surd 
s]

e2\Re [
\surd 
s] + 1

e2\Re [
\surd 
s]  - 1

\bigm| \bigm| \bigm| \bigm| \bigm| \leqslant 2

\Re [
\surd 
s]

\rightarrow 0, \Re [
\surd 
s]\rightarrow \infty ,

(3.6)

and lim\Re [
\surd 
s]\rightarrow 0 h (\Re [

\surd 
s]) = 1. Following the same procedure as in [16, Lemma 3.1], we can

obtain the uniform boundedness of the function h over [0,\infty ). Hence,

\| G\omega (x, \cdot )\| L2(D) \leqslant C| s|  - 
1

2 , \omega \in \BbbR .(3.7)

On the other hand, for any fixed x \not = y, when considering G\omega (x, y) as a function of s, it is
analytic with respect to s and is continuous at s= \omega = 0, implying that

lim
\omega \rightarrow 0

G\omega (x, y) =G0(x, y).

As a consequence,

\| G\omega (x, \cdot )\| L2(D) \leqslant C, | s| \ll 1,

which, together with (3.7), finishes the proof.
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AN INVERSE SOURCE PROBLEM 525

For the sake of convenience in notation, we introduce a function T G\omega defined in \BbbR \times \BbbR 
as follows:

T G\omega (x, y) :=

\Biggl\{ 
\partial yG\omega (x, y), x\in D, y \in [0, x)\cup (x,1],

0 otherwise.

Lemma 3.3. The function T G\omega \in L2(\BbbR \times \BbbR ) is uniformly bounded with respect to \omega \in \BbbR ,
satisfying

sup
\omega \in \BbbR 

\| T G\omega \| L2(\BbbR \times \BbbR ) \leqslant C.

Moreover, for any fixed x\in D, it holds that

sup
\omega \in \BbbR 

\| T G\omega (x, \cdot )\| L2(\BbbR ) \leqslant C.

In the above expressions, the positive constants denoted by C are independent of both \omega and
x.

Proof. It suffices to consider x, y \in D. If \omega = 0, then

T G0(x, y) =

\Biggl\{ 
0, y \in [0, x],

1, y \in (x,1].

A simple calculation yields

\| T G0(x, \cdot )\| 2L2(\BbbR ) =

\int 1

x
1dy= 1 - x\leqslant 1

and

\| T G0\| 2L2(\BbbR \times \BbbR ) = \| T G0\| 2L2(D\times D) =

\int 1

0

\int 1

x
12dydx=

1

2
.

If \omega \not = 0, then for x\in D, y \in [0, x)\cup (x,1], it holds that

T G\omega (x, y) =
e
\surd 
s(x+y)  - sgn(x - y)e

\surd 
s| x - y| + e

\surd 
s(2 - x - y)  - sgn(x - y)e

\surd 
s(2 - | x - y| )

2
\bigl( 
1 + e2

\surd 
s
\bigr) .

Similarly, we may obtain from (3.4)--(3.5) that

\| T G\omega (x, \cdot )\| 2L2(\BbbR ) \leqslant 
1\bigm| \bigm| 1 + e2

\surd 
s
\bigm| \bigm| 2 e4\Re [

\surd 
s]  - 1

\Re [
\surd 
s]

=
1

1 + e4\Re [
\surd 
s] + 2e2\Re [

\surd 
s] cos

\Bigl( 
2\Re [

\surd 
s] tan

\Bigl( 
\mathrm{a}\mathrm{r}\mathrm{g}(s)

2

\Bigr) \Bigr) e4\Re [
\surd 
s]  - 1

\Re [
\surd 
s]

= h
\bigl( 
\Re [
\surd 
s]
\bigr) 

(3.8)
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526 XIAOLI FENG, QIANG YAO, PEIJUN LI, AND XU WANG

and

\| T G\omega \| 2L2(\BbbR \times \BbbR ) =

\int 
D
\| T G\omega (x, \cdot )\| 2L2(\BbbR )dx\leqslant 

\int 
D

1\bigm| \bigm| 1 + e2
\surd 
s
\bigm| \bigm| 2 e4\Re [

\surd 
s]  - 1

\Re [
\surd 
s]

dx= h
\bigl( 
\Re [

\surd 
s]
\bigr) 
,

where h is defined in (3.5) and is uniformly bounded. Hence, there exists a constant C > 0
independent of \omega and x such that

\| T G\omega (x, \cdot )\| 2L2(\BbbR ) \leqslant h(\Re [
\surd 
s])\leqslant C, \| T G\omega \| 2L2(\BbbR \times \BbbR ) \leqslant h(\Re [

\surd 
s])\leqslant C,

which completes the proof.

For any fixed x \in D, we denote by \~G\omega (x, \cdot ) the zero extension of G\omega (x, \cdot ) outside of D.

Similarly, we denote \^\~G\omega (x, \cdot ) as the Fourier transform of \~G\omega (x, \cdot ) with respect to the second

variable and apply the same notation to \widehat T G\omega (x, \cdot ). Recall the definition of the fractional
Sobolev space H \gamma (\BbbR ) with \gamma \in \BbbR (cf. [29]),

H \gamma (\BbbR ) :=
\biggl\{ 
u\in L2 (\BbbR ) :

\int 
\BbbR 

\bigl( 
1 + | \zeta | 2

\bigr) \gamma | \^u(\zeta )| 2d\zeta <\infty 
\biggr\} 
,

which is equipped with the norm

\| u\| H \gamma (\BbbR ) :=

\biggl( \int 
\BbbR 

\bigl( 
1 + | \zeta | 2

\bigr) \gamma | \^u(\zeta )| 2d\zeta \biggr) 1

2

.

Based on the above notation, we establish the following It\^o isometry type equality for the
stochastic integral of G\omega with respect to the fBm. This result is derived using a procedure
similar to the one employed in [9, Chapter 2.2].

Lemma 3.4. For any fixed x\in D and H \in (0,1), the stochastic integral
\int 
DG\omega (x, y)dB

H(y)
is well-defined and satisfies

\BbbE 

\Biggl[ \bigm| \bigm| \bigm| \bigm| \int 
D
G\omega (x, y)dB

H(y)

\bigm| \bigm| \bigm| \bigm| 2
\Biggr] 
= c2H

\int 
\BbbR 

| \^\~G\omega (x, \zeta )| 2

| \zeta | 2H - 1
d\zeta ,(3.9)

where cH is defined in Lemma 2.1.

Proof. For the case where H = 1
2 and c2H = 1

2\pi , the result in (3.9) follows from the classical
It\^o isometry and Parseval's theorem, which states that

\BbbE 

\Biggl[ \bigm| \bigm| \bigm| \bigm| \int 
D
G\omega (x, y)dB

1

2 (y)

\bigm| \bigm| \bigm| \bigm| 2
\Biggr] 
=

\int 
\BbbR 
| \~G\omega (x, y)| 2dy=

1

2\pi 

\int 
\BbbR 
| \^\~G\omega (x, \zeta )| 2d\zeta .

For H \in (12 ,1), it is shown in [9, section 2.2, Case 1] that (3.9) holds if \~G\omega (x, \cdot )\in L1(\BbbR )\cap 
L2(\BbbR ) for any x\in D. Given that \~G\omega (x, \cdot ) is supported in D and L2(D)\subset L1(D), it is sufficient
to show that G\omega (x, \cdot )\in L2(D), which has already been demonstrated in Lemma 3.2.

For H \in (0, 12), we cannot directly apply the conclusion from [9, section 2.2, Case 2]

because \~G\omega (x, \cdot ) /\in H 1(\BbbR ). In the following, we demonstrate that (3.9) still holds even under
a weaker regularity condition for \~G\omega (x, \cdot ).
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AN INVERSE SOURCE PROBLEM 527

First, we assert that \~G\omega (x, \cdot ) \in H
1

2
 - H(\BbbR ) for any H \in (0, 12). In fact, for any fixed \epsilon > 0,

it follows from Plancherel's theorem that\bigm\| \bigm\| \bigm\| \~G\omega (x, \cdot )
\bigm\| \bigm\| \bigm\| 2

H
1
2
 - H(\BbbR )

=

\int 
\BbbR 

\bigl( 
1 + | \zeta | 2

\bigr) 1

2
 - H | \^\~G\omega (x, \zeta )| 2d\zeta 

=

\int 
( - \epsilon ,\epsilon )

\bigl( 
1 + | \zeta | 2

\bigr) 1

2
 - H | \^\~G\omega (x, \zeta )| 2d\zeta +

\int 
\BbbR \setminus ( - \epsilon ,\epsilon )

\bigl( 
1 + | \zeta | 2

\bigr) 1

2
 - H | \^\~G\omega (x, \zeta )| 2d\zeta 

\leqslant 
\bigl( 
1 + \epsilon 2

\bigr) 1

2
 - H \| \^\~G\omega (x, \cdot )\| 2L2(\BbbR ) +

\int 
\BbbR \setminus ( - \epsilon ,\epsilon )

\biggl( 
1

| \zeta | 2
+ 1

\biggr) 1

2
 - H

| \zeta | 1 - 2H | \^\~G\omega (x, \zeta )| 2d\zeta 

\leqslant 2\pi 
\bigl( 
1 + \epsilon 2

\bigr) 1

2
 - H \| G\omega (x, \cdot )\| 2L2(D) +

\biggl( 
1

\epsilon 2
+ 1

\biggr) 1

2
 - H \int 

\BbbR \setminus ( - \epsilon ,\epsilon )
| \zeta |  - 2H - 1| \zeta \^\~G\omega (x, \zeta )| 2d\zeta ,

where \| G\omega (x, \cdot )\| L2(D) <\infty , as shown in Lemma 3.2, and\int 
\BbbR \setminus ( - \epsilon ,\epsilon )

| \zeta |  - 2H - 1 | \zeta \^\~G\omega (x, \zeta )| 2d\zeta (3.10)

=

\int 
\BbbR \setminus ( - \epsilon ,\epsilon )

| \zeta |  - 2H - 1

\bigm| \bigm| \bigm| \bigm| \zeta \int x

0
G\omega (x, y)e

 - \mathrm{i}\zeta ydy+ \zeta 

\int 1

x
G\omega (x, y)e

 - \mathrm{i}\zeta ydy

\bigm| \bigm| \bigm| \bigm| 2 d\zeta 
=

\int 
\BbbR \setminus ( - \epsilon ,\epsilon )

| \zeta |  - 2H - 1

\bigm| \bigm| \bigm| \bigm| \Bigl( G\omega (x, y)e
 - \mathrm{i}\zeta y

\Bigr) \bigm| \bigm| \bigm| x
y=0

 - 
\int x

0
\partial yG\omega (x, y)e

 - \mathrm{i}\zeta ydy

+
\Bigl( 
G\omega (x, y)e

 - \mathrm{i}\zeta y
\Bigr) \bigm| \bigm| \bigm| 1

y=x
 - 
\int 1

x
\partial yG\omega (x, y)e

 - \mathrm{i}\zeta ydy

\bigm| \bigm| \bigm| \bigm| 2d\zeta 
=

\int 
\BbbR \setminus ( - \epsilon ,\epsilon )

| \zeta |  - 2H - 1

\bigm| \bigm| \bigm| \bigm| G\omega (x,0) +

\int x

0
e - \mathrm{i}\zeta y\partial yG\omega (x, y)dy+

\int 1

x
e - \mathrm{i}\zeta y\partial yG\omega (x, y)dy

\bigm| \bigm| \bigm| \bigm| 2 d\zeta 
=

\int 
\BbbR \setminus ( - \epsilon ,\epsilon )

| \zeta |  - 2H - 1
\bigm| \bigm| \bigm| G\omega (x,0) + \widehat T G\omega (x, \zeta )

\bigm| \bigm| \bigm| 2 d\zeta 
\leqslant 

2

H
\epsilon  - 2H | G\omega (x,0)| 2 + 2\epsilon  - 2H - 1\| T G\omega (x, \cdot )\| 2L2(\BbbR ) <\infty 

based on Lemma 3.3.
Note that C\infty 

0 (\BbbR ) is dense in H
1

2
 - H(\BbbR ) (cf. [2, Theorem 7.38]). Therefore, for the

previously claimed \~G\omega (x, \cdot ) \in H
1

2
 - H(\BbbR ), there exists a sequence \{ \phi n := \phi x,\omega 

n \} n\in \BbbN \subset C\infty 
0 (\BbbR )

converging to \~G\omega (x, \cdot ) in the norm \| \cdot \| 
H

1
2
 - H(\BbbR ). Moreover, according to [9, (2.8)], (3.9) holds

for the sequence \{ 
\int 
\BbbR \phi n(y)dB

H(y)\} n\in \BbbN . Hence, we obtain

\BbbE 

\Biggl[ \bigm| \bigm| \bigm| \bigm| \int 
\BbbR 
\phi n(y)dB

H(y) - 
\int 
\BbbR 
\phi m(y)dBH(y)

\bigm| \bigm| \bigm| \bigm| 2
\Biggr] 
= c2H

\int 
\BbbR 

\bigm| \bigm| \bigm| \^\phi n(\zeta ) - \^\phi m(\zeta )
\bigm| \bigm| \bigm| 2

| \zeta | 2H - 1
d\zeta 

\leqslant c2H

\int 
\BbbR 

\bigm| \bigm| \bigm| \^\phi n(\zeta ) - \^\phi m(\zeta )
\bigm| \bigm| \bigm| 2 (1 + | \zeta | 1 - 2H)d\zeta 

= c2H\| \phi n  - \phi m\| 2
H

1
2
 - H(\BbbR )

.
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528 XIAOLI FENG, QIANG YAO, PEIJUN LI, AND XU WANG

As a result, the sequence \{ 
\int 
\BbbR \phi n(y)dB

H(y)\} n\in \BbbN converges in the mean square sense, and we

define the stochastic integral
\int 
\BbbR 
\~G\omega (x, y)dB

H(y) as the mean square limit of
\int 
\BbbR \phi n(y)dB

H(y).
Finally, we obtain

\BbbE 

\Biggl[ \bigm| \bigm| \bigm| \bigm| \int 
D
G\omega (x, y)dB

H(y)

\bigm| \bigm| \bigm| \bigm| 2
\Biggr] 
=\BbbE 

\Biggl[ \bigm| \bigm| \bigm| \bigm| \int 
\BbbR 
\~G\omega (x, y)dB

H(y)

\bigm| \bigm| \bigm| \bigm| 2
\Biggr] 
= lim

n\rightarrow \infty 
\BbbE 

\Biggl[ \bigm| \bigm| \bigm| \bigm| \int 
\BbbR 
\phi n(y)dB

H(y)

\bigm| \bigm| \bigm| \bigm| 2
\Biggr] 

= lim
n\rightarrow \infty 

c2H

\int 
\BbbR 

| \^\phi n(\zeta )| 2

| \zeta | 2H - 1
d\zeta = c2H

\int 
\BbbR 

| \^\~G\omega (x, \zeta )| 2

| \zeta | 2H - 1
d\zeta ,

where the last equality follows from\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\BbbR 

| \^\phi n(\zeta )| 2

| \zeta | 2H - 1
d\zeta  - 

\int 
\BbbR 

| \^\~G\omega (x, \zeta )| 2

| \zeta | 2H - 1
d\zeta 

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leqslant 
\int 
\BbbR 
| \^\phi n(\zeta ) - \^\~G\omega (x, \zeta )| 

\Bigl( 
| \^\phi n(\zeta )| + | \^\~G\omega (x, \zeta )| 

\Bigr) 
| \zeta | 1 - 2Hd\zeta 

\leqslant \| \phi n  - \~G\omega (x, \cdot )\| H
1
2
 - H(\BbbR )

\Bigl( 
\| \phi n\| H

1
2
 - H(\BbbR ) + \| \~G\omega (x, \cdot )\| H

1
2
 - H(\BbbR )

\Bigr) 
\rightarrow 0

as n\rightarrow \infty due to the convergence of \{ \phi n\} n\in \BbbN to \~G\omega (x, \cdot ) in H
1

2
 - H(\BbbR ).

Corollary 3.5. For a given H \in (0,1), the following inequality holds:

sup
\omega \in \BbbR 

\int 
D
\BbbE 

\Biggl[ \bigm| \bigm| \bigm| \bigm| \int 
D
G\omega (x, y)dB

H(y)

\bigm| \bigm| \bigm| \bigm| 2
\Biggr] 
dx\leqslant C,

where C is a positive constant depending only on H.

Proof. The result for H = 1
2 follows from Lemmas 3.2 and 3.4.

For H \in (12 ,1), utilizing Lemma 3.4, Plancherel's theorem, and the observation

| \^\~G\omega (x, \zeta )| =
\bigm| \bigm| \bigm| \bigm| \int 

\BbbR 
\~G\omega (x, y)e

 - \mathrm{i}y\zeta dy

\bigm| \bigm| \bigm| \bigm| \leqslant \int 
D
| G\omega (x, y)| dy\leqslant \| G\omega (x, \cdot )\| L2(D) \forall \zeta \in \BbbR ,

we have

\BbbE 

\Biggl[ \bigm| \bigm| \bigm| \bigm| \int 
D
G\omega (x, y)dB

H(y)

\bigm| \bigm| \bigm| \bigm| 2
\Biggr] 
= c2H

\int 
( - 1,1)

| \^\~G\omega (x, \zeta )| 2

| \zeta | 2H - 1
d\zeta + c2H

\int 
\BbbR \setminus ( - 1,1)

| \^\~G\omega (x, \zeta )| 2

| \zeta | 2H - 1
d\zeta 

\leqslant c2H\| G\omega (x, \cdot )\| 2L2(D)

\int 
( - 1,1)

1

| \zeta | 2H - 1
d\zeta + c2H\| \^\~G\omega (x, \cdot )\| 2L2(\BbbR )

=

\biggl( 
c2H

1 - H
+ 2\pi c2H

\biggr) 
\| G\omega (x, \cdot )\| 2L2(D),(3.11)

which, together with Lemma 3.2, implies that

sup
\omega \in \BbbR 

\int 
D
\BbbE 

\Biggl[ \bigm| \bigm| \bigm| \bigm| \int 
D
G\omega (x, y)dB

H(y)

\bigm| \bigm| \bigm| \bigm| 2
\Biggr] 
dx\leqslant C sup

\omega \in \BbbR 
\| G\omega \| 2L2(D\times D) \leqslant C.
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AN INVERSE SOURCE PROBLEM 529

For H \in (0, 12), it follows from Lemma 3.4 and (3.10) that

\BbbE 

\Biggl[ \bigm| \bigm| \bigm| \bigm| \int 
D
G\omega (x, y)dB

H(y)

\bigm| \bigm| \bigm| \bigm| 2
\Biggr] 
= c2H

\int 
( - 1,1)

| \zeta | 1 - 2H | \^\~G\omega (x, \zeta )| 2d\zeta 

+ c2H

\int 
\BbbR \setminus ( - 1,1)

| \zeta |  - 2H - 1| \zeta \^\~G\omega (x, \zeta )| 2d\zeta 

\leqslant c2H

\biggl( 
\| G\omega (x, \cdot )\| 2L2(D) +

2

H
| G\omega (x,0)| 2 + 2\| T G\omega (x, \cdot )\| 2L2(\BbbR )

\biggr) 
.(3.12)

Hence, Lemmas 3.2 and 3.3, in conjunction with the definition of G\omega (\cdot ,0), lead to

sup
\omega \in \BbbR 

\int 
D
\BbbE 

\Biggl[ \bigm| \bigm| \bigm| \bigm| \int 
D
G\omega (x, y)dB

H(y)

\bigm| \bigm| \bigm| \bigm| 2
\Biggr] 
dx

\leqslant C sup
\omega \in \BbbR 

\Bigl( 
\| G\omega \| 2L2(D\times D) + \| G\omega (\cdot ,0)\| 2L2(D) + \| T G\omega \| 2L2(D\times D)

\Bigr) 
\leqslant C,

which concludes the proof.

3.3. The well-posedness. Utilizing the Green function G\omega (x, y), the boundary value
problem (3.1) has a unique mild solution in the form

\^u(x,\omega ) = - \^f(\omega )

\int 
D
G\omega (x, y)dB

H(y), \omega \in \BbbR ,(3.13)

which satisfies the following regularity estimate.

Lemma 3.6. Let p\geqslant 0 and f \in H p(\BbbR +). The solution (3.13) of the stochastic differential
equation (3.1) satisfies

\BbbE 
\biggl[ \int 

\BbbR 
\| (i\omega )p\^u(\cdot , \omega )\| 2L2(D)d\omega 

\biggr] 
\leqslant C\| f\| 2H p(\BbbR +),

where C > 0 is a constant depending only on H.

Proof. By Corollary 3.5, we have

\BbbE 
\biggl[ \int 

\BbbR 
\| (i\omega )p\^u(\cdot , \omega )\| 2L2(D)d\omega 

\biggr] 
=

\int 
\BbbR 
| (i\omega )p \^f(\omega )| 2

\int 
D
\BbbE 

\Biggl[ \bigm| \bigm| \bigm| \bigm| \int 
D
G\omega (x, y)dB

H(y)

\bigm| \bigm| \bigm| \bigm| 2
\Biggr] 
dxd\omega 

\leqslant C

\int 
\BbbR 
| (i\omega )p \^f(\omega )| 2d\omega \leqslant C

\int 
\BbbR 
(1 + | \omega | 2)p| \^f(\omega )| 2d\omega =C\| f\| 2H p(\BbbR +),

which completes the proof.

Now, we are in a position to obtain the well-posedness of the original problem (1.1) based
on the equivalent problem (3.1) obtained through the Fourier transform.
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530 XIAOLI FENG, QIANG YAO, PEIJUN LI, AND XU WANG

Proof of Theorem 1.1. The proof draws inspiration from [16]. Let \{ f(t)\} t\in \BbbR be the zero
extension of \{ f(t)\} t\in \BbbR +

, as initially explained in section 3.1. For any x \in D and t \in \BbbR , with
\^u(x,\omega ) considered as the mild solution of (3.1), we define the inverse Fourier transform of
\^u(x,\omega ) as follows:

\u u(x, t) := - 
\int t

 - \infty 
f(\tau )F - 1

\biggl[ \int 
D
G\omega (x, y)dB

H(y)

\biggr] 
(t - \tau )d\tau .

By Plancherel's theorem and Lemma 3.6, we obtain \partial t\u u,\partial 
2
t \u u\in L2(\Omega ;L2(D\times \BbbR )) and

\BbbE 
\Bigl[ 
\| \u u\| 2H 2(\BbbR ;L2(D))

\Bigr] 
=\BbbE 

\biggl[ \int 
\BbbR 
(1 + | \omega | 2)2\| \^u(\cdot , \omega )\| 2L2(D)d\omega 

\biggr] 
\leqslant \BbbE 

\biggl[ \int 
\BbbR 
\| \^u(\cdot , \omega )\| 2L2(D)d\omega 

\biggr] 
+ 2\BbbE 

\biggl[ \int 
\BbbR 
\| (i\omega )\^u(\cdot , \omega )\| 2L2(D)d\omega 

\biggr] 
+\BbbE 

\biggl[ \int 
\BbbR 
\| (i\omega )2\^u(\cdot , \omega )\| 2L2(D)d\omega 

\biggr] 
\leqslant C\| f\| 2H 2(\BbbR +),

which also implies that the Caputo fractional derivative of \u u with respect to the time t is
properly defined.

Let u(x, t) be the restriction of \u u(x, t) to t belonging to the set of nonnegative real numbers,
i.e.,

u(x, t) := \u u(x, t)| t\in \BbbR +
.

It can be readily verified that, in a mean square sense, the function u defined as described
above is the unique mild solution of (1.1). It is clear to note that

u(x,0) = \u u(x,0) = 0, \partial tu(x,0) = \partial t\u u(x,0) = 0.

In addition, it also satisfies (1.2).

4. The inverse problem. In this section, our primary focus is on addressing the uniqueness
and instability in the reconstruction of the phaseless Fourier mode | \^f(\omega )| of the source function
f from the measured data \{ u(0, t)\} t\geq 0 at the observation point x= 0. To subsequently recover
| f(t)| from | \^f(\omega )| , commonly referred to as the phase retrieval problem, we introduce and
employ the PhaseLift technique.

Evaluating (3.13) at x= 0 and then taking the expected value and variance on both sides,
we deduce

\BbbE [\^u(0, \omega )] = 0, \BbbV [\^u(0, \omega )] =R(\omega )| \^f(\omega )| 2,(4.1)

where R(\omega ) is a critical constant depending on \omega and is given by

R(\omega ) :=\BbbE 

\Biggl[ \bigm| \bigm| \bigm| \bigm| \int 
D
G\omega (0, y)dB

H(y)

\bigm| \bigm| \bigm| \bigm| 2
\Biggr] 
.(4.2)

Here, for any y \in D, we have

G\omega (0, y) =

\left\{     
y - 1, \omega = 0,

e
\surd 
sy  - e

\surd 
s(2 - y)

\surd 
s
\bigl( 
1 + e2

\surd 
s
\bigr) , \omega \not = 0.
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AN INVERSE SOURCE PROBLEM 531

4.1. Uniqueness. It is clear to note from (4.1) that | \^f(\omega )| can be uniquely determined by

| \^f(\omega )| =
\biggl( 
\BbbV [\^u(0, \omega )]

R(\omega )

\biggr) 1

2

, \omega \in \BbbR ,(4.3)

if R(\omega ) > 0. In fact, as stated in the following lemma, the uniqueness mentioned here is
established.

Lemma 4.1. For H \in (0,1), it holds for any \omega \in \BbbR that R(\omega )> 0.

Proof. We have from Lemma 3.4 that

R(\omega ) = c2H

\int 
\BbbR 

| \^\~G\omega (0, \zeta )| 2

| \zeta | 2H - 1
d\zeta \geqslant c2H

\int 1

0

| \^\~G\omega (0, \zeta )| 2

\zeta 2H - 1
d\zeta ,

where \^\~G\omega (0, \zeta ) with \zeta \in (0,1) can be calculated as follows.
If \omega = 0, it holds that\bigm| \bigm| \bigm| \^\~G0(0, \zeta )

\bigm| \bigm| \bigm| 2 = \bigm| \bigm| \bigm| \bigm| \int 
D
G0(0, y)e

 - \mathrm{i}\zeta ydy

\bigm| \bigm| \bigm| \bigm| 2 = \bigm| \bigm| \bigm| \bigm| \int 1

0
(y - 1)e - \mathrm{i}\zeta ydy

\bigm| \bigm| \bigm| \bigm| 2
=

\bigm| \bigm| \bigm| \bigm| e - \mathrm{i}\zeta  - 1 + i\zeta 

\zeta 2

\bigm| \bigm| \bigm| \bigm| 2 = (cos(\zeta ) - 1)2 + (sin(\zeta ) - \zeta )2

\zeta 4
,

which, together with (\mathrm{c}\mathrm{o}\mathrm{s}(\zeta ) - 1)2+(\mathrm{s}\mathrm{i}\mathrm{n}(\zeta ) - \zeta )2

\zeta 2H+3 > 0 for any \zeta \in (0,1), implies that

R(0)\geqslant c2H

\int 1

0

(cos(\zeta ) - 1)2 + (sin(\zeta ) - \zeta )2

\zeta 2H+3
d\zeta > 0.

If \omega \not = 0, it follows from a straightforward calculation that

\^\~G\omega (0, \zeta ) =

\int 
D
G\omega (0, y)e

 - \mathrm{i}\zeta ydy

=
1

\surd 
s
\bigl( 
1 + e2

\surd 
s
\bigr) \Biggl( e

\surd 
s - \mathrm{i}\zeta  - 1\surd 
s - i\zeta 

+
e
\surd 
s - \mathrm{i}\zeta  - e2

\surd 
s

\surd 
s+ i\zeta 

\Biggr) 

=
2
\surd 
se

\surd 
s - \mathrm{i}\zeta  - 

\surd 
s(e2

\surd 
s + 1) + i\zeta (e2

\surd 
s  - 1)

\surd 
s(1 + e2

\surd 
s)(s+ \zeta 2)

.

For \omega \not = 0, i.e., s \not = 0, we assert that | \^\~G\omega (0, \zeta )| \not \equiv 0 for \zeta \in [0,1]. In fact, if
\surd 
s \not = 2n\pi i with

n\in \BbbZ \setminus \{ 0\} , then

| \^\~G\omega (0,0)| =

\bigm| \bigm| \bigm| \bigm| \bigm| 2e
\surd 
s  - e2

\surd 
s  - 1

s
\bigl( 
1 + e2

\surd 
s
\bigr) \bigm| \bigm| \bigm| \bigm| \bigm| =

\bigm| \bigm| \bigm| \bigm| \bigm| (e
\surd 
s  - 1)2

s
\bigl( 
1 + e2

\surd 
s
\bigr) \bigm| \bigm| \bigm| \bigm| \bigm| > 0.

If
\surd 
s= 2n\pi i with n \in \BbbZ \setminus \{ 0\} , then e

\surd 
s = 1 and | \^\~G\omega (0,1)| = | e - \mathrm{i} - 1

1 - 4n2\pi 2 | > 0, which finishes the
assertion. As a result,

R(\omega )\geqslant c2H

\int 1

0

| \^\~G\omega (0, \zeta )| 2

\zeta 2H - 1
d\zeta > 0

due to the continuity of \^\~G\omega (0, \cdot ) in [0,1] for \omega \not = 0.
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532 XIAOLI FENG, QIANG YAO, PEIJUN LI, AND XU WANG

4.2. Instability. While the uniqueness of the reconstruction for | \^f(\omega )| is confirmed by
(4.3) and Lemma 4.1, the recovery process is unstable, as demonstrated in Theorem 1.2. In
this subsection, we always assume that | \omega | > 1.

Proof of Theorem 1.2. The proof is split into three cases: H = 1
2 , H \in (12 ,1), andH \in (0, 12),

separately.
For H = 1

2 , it holds that R(\omega ) = \| G\omega (0, \cdot )\| 2L2(D) \leqslant C| s|  - 1 from Lemma 3.2.

For H \in (12 ,1), by utilizing (3.11) and Lemma 3.2, we obtain

R(\omega )\leqslant 

\biggl( 
c2H

1 - H
+ 2\pi c2H

\biggr) 
\| G\omega (0, \cdot )\| 2L2(D) \leqslant C

\biggl( 
c2H

1 - H
+ 2\pi c2H

\biggr) 
| s|  - 1.(4.4)

Then, the result for the case H \in [12 ,1) follows directly from the fact | s| \geqslant sin(\pi \alpha \mathrm{m}\mathrm{a}\mathrm{x}

2 )| \omega | \alpha \mathrm{m}\mathrm{a}\mathrm{x} as
given in Lemma 3.1.

For H \in (0, 12), the estimate (3.12) gives

R(\omega )\leqslant c2H

\biggl( 
\| G\omega (0, \cdot )\| 2L2(D) +

2

H
| G\omega (0,0)| 2 + 2\| T G\omega (0, \cdot )\| 2L2(\BbbR )

\biggr) 
,

where \| G\omega (0, \cdot )\| 2L2(D) \leqslant C| s|  - 1, | G\omega (0,0)| 2 = | 1 - e2
\surd 

s
\surd 
s(1+e2

\surd 
s)
| 2 \leqslant | s|  - 1, and

\| T G\omega (0, \cdot )\| 2L2(\BbbR ) \leqslant h
\bigl( 
\Re [

\surd 
s]
\bigr) 
\leqslant 2

\bigm| \bigm| \Re [\surd s]
\bigm| \bigm|  - 1

, \Re [
\surd 
s]\rightarrow \infty ,

according to (3.6) and (3.8). It then suffices to estimate | \Re [
\surd 
s]|  - 1. Note that\bigm| \bigm| \Re [\surd s]

\bigm| \bigm|  - 1
= | s|  - 

1

2

\bigm| \bigm| \bigm| \bigm| cos\biggl( arg(s)

2

\biggr) \bigm| \bigm| \bigm| \bigm|  - 1

,

\bigm| \bigm| \bigm| \bigm| cos\biggl( arg(s)

2

\biggr) \bigm| \bigm| \bigm| \bigm| =
\sqrt{} 

cos (arg(s)) + 1

2
,

where

cos(arg(s)) =
\Re [s]
| s| 

=

n\sum 
k=1

| \omega | \alpha k cos
\bigl( 
\pi \alpha k

2

\bigr) 
\sqrt{} 

n\sum 
k=1

| \omega | 2\alpha k + 2
\sum 

1\leqslant i<j\leqslant n
| \omega | \alpha i+\alpha j cos

\Bigl( 
\pi \alpha i - \pi \alpha j

2

\Bigr) \rightarrow cos
\pi \alpha n

2

as | \omega | \rightarrow \infty . We then get

R(\omega )\leqslant c2H

\Biggl( 
C

\biggl( 
1 +

1

H

\biggr) 
| s|  - 1 +C| s|  - 

1

2

\biggl( 
cos (arg(s)) + 1

2

\biggr)  - 1

2

\Biggr) 
\rightarrow 0, | \omega | \rightarrow \infty ,(4.5)

which completes the proof.

Theorem 1.2 implies that the reconstruction for | \^f(\omega )| using (4.3) is unstable. More
precisely, any small perturbation in the data \BbbV [\^u(0, \omega )] will be significantly amplified in the
reconstruction when | \omega | is sufficiently large. The degree of ill-posedness follows a polynomial
form of | \omega |  - \gamma , where

\gamma =

\left\{     
\alpha \mathrm{m}\mathrm{a}\mathrm{x}, H \in 

\Bigl[ 1
2
,1
\Bigr) 
,

\alpha \mathrm{m}\mathrm{a}\mathrm{x}

2
, H \in 

\Bigl( 
0,

1

2

\Bigr) 
.

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/1

5/
25

 to
 1

24
.1

6.
14

8.
14

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



AN INVERSE SOURCE PROBLEM 533

Based on the dependence of the estimates (4.4)--(4.5) on H, it indicates that, for both H \in 
(0, 12) and H \in [12 ,1), the problem becomes increasingly unstable as H decreases. Furthermore,
for H \in (0, 12), if \alpha n = 2, which is not covered by Theorem 1.2, the limit behavior of R(\omega )
remains uncertain due to the fact that lim| \omega | \rightarrow \infty cos(arg(s)) = - 1 and thus

lim
| \omega | \rightarrow \infty 

cos

\biggl( 
arg(s)

2

\biggr) 
= 0,

which makes the limit behavior of | \Re [
\surd 
s]|  - 1 = | s|  - 

1

2 | cos(\mathrm{a}\mathrm{r}\mathrm{g}(s)2 )|  - 1 unclear as | \omega | \rightarrow \infty .
The following remarks provide some straightforward extensions of the present results.

Remark 4.2.
(i) It is notable that the recovery formula (4.3) remains independent of the observation

point. Specifically, the measured data \{ u(x0, t)\} t\geq 0 can be selected at any observation
point x0 \in [0,1), leading to

| \^f(\omega )| =
\biggl( 
\BbbV [\^u(x0, \omega )]
R(x0, \omega )

\biggr) 1

2

,

where R(x0, \omega ) := \BbbE [| 
\int 
DG\omega (x0, y)dB

H(y)| 2]. The instability estimate provided in
Theorem 1.2 remains valid for R(x0, \omega ) under the same reasoning.

(ii) The framework can be extended to problems involving Robin or other boundary con-
ditions. In such cases, establishing estimates for the corresponding Green function and
adjusting the measured data accordingly are necessary.

5. Numerical experiments. As a representative example, we consider the two-term time-
fractional stochastic diffusion-wave equation\left\{       

\partial \alpha 1

t u(x, t) + \partial \alpha 2

t u(x, t) - \partial xxu(x, t) = f(t) \.BH(x), (x, t)\in D\times (0, T ],
u(x,0) = 0, x\in D,
\partial tu(x,0) = 0, x\in D, if \alpha 2 \in (1,2),
\partial xu(0, t) = 0, u(1, t) = 0, t\in [0, T ],

(5.1)

where D= (0,1), T > 0, and \alpha i \in (0,2) for i= 1,2 with \alpha 1 <\alpha 2. To simplify notation, we use
the vector \bfitalpha := [\alpha 1, \alpha 2].

To generate synthetic data, we employ the finite difference method presented in [37] to
discretize (5.1). The numerical solution, denoted as un0 , serves as an approximation of the exact
solution u(0, tn). Recognizing that observed data in practical scenarios are often subject to
contamination from various sources, we introduce the following noisy data model:

un,\epsilon 0 = un0 (1 + \epsilon \eta n) , n= 0, . . . ,N,(5.2)

where \epsilon > 0 represents the noise level, and \{ \eta n\} n=0,...,N is a sequence of independent random
variables uniformly distributed in [ - 1,1]. The required data, denoted as \^un\omega ,\epsilon 

0 , n\omega = 1, . . . ,N\omega ,
is generated by performing a discrete Fourier transform on the noisy data \{ un,\epsilon 0 \} n=0,...,N at
specific discrete frequencies \{ \omega n\omega 

\} N\omega 

n\omega =1. The details of the frequency selection process will be
presented in the numerical examples.
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Figure 1. The values of R(\omega ) for (top) H = 0.3, (middle) H = 0.5, and (bottom) H = 0.7 with different \bfitalpha .

We propose a two-step method. First, the phaseless Fourier modes \{ | \^f \epsilon (\omega n\omega 
)| \} N\omega 

n\omega =1 are ob-

tained from the noisy data \{ \^un\omega ,\epsilon 
0 \} N\omega 

n\omega =1 using (4.3), combined with a regularization technique.

Second, the numerical approximation of | f(tn)| Nn=0 is reconstructed from \{ | \^f \epsilon (\omega n\omega 
)| \} N\omega 

n\omega =1 using
the PhaseLift algorithm.

5.1. Spectral cut-off regularization. It is shown in section 4.1 that | \^f(\omega )| can be uniquely
determined through (4.3). Nevertheless, the reconstruction is characterized as unstable, as
elaborated in section 4.2. Consequently, a spectral cut-off regularization is employed when
computing \{ | \^f \epsilon (\omega n\omega 

)| \} N\omega 

n\omega =1 from the noisy data \{ \^un\omega ,\epsilon 
0 \} N\omega 

n\omega =1 using the formula

| \^f \epsilon (\omega n\omega 
)| =

\biggl( 
\BbbV [\^un\omega ,\epsilon 

0 ]

R(\omega n\omega 
)

\biggr) 1

2

, n\omega = 1, . . . ,N\omega .(5.3)

To address this ill-posed problem more effectively, we define \omega n\omega 
= linspace(0,W,n\omega ), whereW

serves as a regularization parameter. This choice removes high-frequency modes with \omega >W
from the noisy data.

Note that the second moment of the stochastic integral R(\omega ) involved in (4.3) is indepen-
dent of the data and can be computed in advance. Figure 1 presents its values concerning \omega 
for different values of H = 0.3,0.5,0.7. The graph illustrates that for a fixed H (resp., \bfitalpha ),
the value of R(\omega ) decreases more rapidly when \alpha i (resp., H) is larger. It is evident that the
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AN INVERSE SOURCE PROBLEM 535

choice of the regularization parameter W plays an essential role in the reconstruction, and its
selection will be detailed in the subsequent numerical examples.

5.2. PhaseLift algorithm. Based on the phaseless Fourier modes \{ | \^f \epsilon (\omega n\omega 
)| \} N\omega 

n\omega =1 ob-
tained earlier, our next objective is to obtain the approximation \{ | f \epsilon (tn)| \} Nn=0 of \{ | f(tn)| \} Nn=0

from \{ | \^f \epsilon (\omega n\omega 
)| \} N\omega 

n\omega =1. This problem, which involves reconstructing the signal at discrete
points from the magnitude of its discrete Fourier transform, is known as the discrete phase
retrieval problem [18, 32].

The phase retrieval problem is evidently ill-posed and notoriously challenging to solve. In
recent years, many researchers have demonstrated that it can be reformulated as an optimiza-
tion problem. Consequently, several algorithms have been proposed to address this problem,
including PhaseLift [3], PhaseCut [38], and PhaseMax [15].

The PhaseLift algorithm is employed to address our discrete phase retrieval problem, which
comprises two primary components: multiple structured illumination and lifting. Multiple
structured illumination is designed to obtain additional measurements by utilizing masks,
optical gratings, or oblique illuminations artificially. Lifting is intended to reformulate the
problem as a semidefinite programming problem.

We employ masks \{ Mi\} i=1,...,Nm
to implement the multiple structured illumination. Each

mask, denoted as Mi \in \BbbR N\times N for i = 1, . . . ,Nm, is a diagonal matrix. Specifically, the first
mask, M1 = I, is chosen as the identity matrix. The diagonal entries of the other masks are
randomly set to 0 or 1 to create random diffraction patterns. By substituting the discrete
source function

\bfitf := (f(t0), . . . , f(tN ))\top 

with sources using the masks, i.e.,

i\bfitf :=Mi\bfitf , i= 1, . . . ,Nm,

we obtain additional discrete solutions \{ iun0\} 
i=1,...,Nm

n=0,...,N and the noisy data \{ i\^un\omega ,\epsilon 
0 \} i=1,...,Nm

n\omega =1,...,N\omega 

in the frequency domain. These can be utilized to derive more phaseless Fourier modes
\{ | i \^f \epsilon (\omega n\omega 

)| \} i=1,...,Nm

n\omega =1,...,N\omega 
. This procedure can be summarized as follows:

i\bfitf 
(5.1) -  -  -  -  - \rightarrow 
\mathrm{F}\mathrm{D}\mathrm{M}

iun0
(5.2) -  -  -  -  -  - \rightarrow 

\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y} \mathrm{d}\mathrm{a}\mathrm{t}\mathrm{a}

iun,\epsilon 0  -  -  -  - \rightarrow 
\mathrm{D}\mathrm{F}\mathrm{T}

i\^un\omega ,\epsilon 
0

(5.3) -  -  -  -  -  -  -  -  - \rightarrow 
\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{l} \mathrm{c}\mathrm{u}\mathrm{t}\mathrm{o}ff

| i \^f \epsilon (\omega n\omega )| .

We refer to [3, 16] for further details on the implementation of the PhaseLift method.
Additionally, we suggest consulting [4] for access to the specific code used in the PhaseLift
algorithm.

5.3. Numerical examples. In this subsection, we present two illustrative examples to
demonstrate the effectiveness of the numerical approach. In these numerical examples, the
values for the final time T , as well as the numbers of subintervals in time N and space M , are
set as follows: T = 4\pi ,N = 100,M = 128. Furthermore, to approximate the variance of the
solution in (5.3), we take a total of P sample paths. The specific choice for the parameter P
will be detailed in each individual numerical example.

Example 1. Consider a smooth function f(t) = sin(t) exp( - t/6).
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Figure 2. Example 1: Reconstruction of | f(t)| with varying values of W = 0.5\pi , \pi , 2\pi , 3\pi , 5\pi , 10\pi , while
keeping other parameters fixed (H = 0.5, \bfitalpha = [0.3,1.5], P = 1000, Nm = 60, \epsilon = 5\%).

In Example 1, multiple tests are conducted to illustrate the impact of various parameters
on the numerical implementation. These parameters include the regularization parameter W ,
the quantity of masks Nm, the number of sample paths P , the Hurst parameter H, the order
\bfitalpha of the fractional derivative, and the noise level \epsilon .

Figure 2 presents the numerical results for the reconstruction of | f(t)| in Example 1 with
different spectral cut-off regularization parameters, specifically W = 0.5\pi ,\pi ,2\pi ,3\pi ,5\pi ,10\pi .
The remaining parameters are held constant: H = 0.5, \bfitalpha = [0.3,1.5], P = 1000, Nm = 60, and
\epsilon = 5\%. The results demonstrate that the reconstruction quality undergoes deterioration when
W is excessively small, indicating insufficient information acquisition in the frequency domain,
or when it is excessively large, leading to instability in the inverse problem. Therefore, it is
crucial to select appropriate regularization parameters, tailored to the specific case at hand.
To guide this selection process, we refer to the values of R(\omega ) plotted in Figure 1 in relation to
\omega . For \bfitalpha = [0.2,0.3], Figure 1 shows that R(\omega ) decays slowly as \omega increases, suggesting that
a relatively larger regularization parameter W should be chosen to ensure that the truncation
error remains sufficiently small. Conversely, for cases \bfitalpha = [0.3,1.5] and \bfitalpha = [1.1,1.5], R(\omega )
decays much faster, indicating that a smaller W would be adequate. In forthcoming numerical
tests, we adopt W = 10\pi for cases with \bfitalpha = [0.2,0.3] and select W = 3\pi for those with
\bfitalpha = [0.3,1.5] or [1.1,1.5].

In Figure 3, we investigate the impact of varying the number of masks, denoted as Nm, in
Example 1, while maintaining constant values for W = 3\pi , H = 0.5, \bfitalpha = [0.3,1.5], P = 1000,
and \epsilon = 5\%. The findings illustrate the necessity of employing a sufficient number of masks
to ensure the acquisition of an adequate quantity of diffraction patterns, thereby enabling an
accurate reconstruction. Based on the numerical results depicted in Figure 3, for subsequent
numerical tests, we always choose Nm = 60.
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Figure 3. Example 1: Reconstruction of | f(t)| with varying values of Nm = 10 : 10 : 60, while keeping other
parameters fixed (H = 0.5, \bfitalpha = [0.3,1.5], P = 1000, W = 3\pi , \epsilon = 5\%).
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Figure 4. Example 1: Reconstruction of | f(t)| with varying values of P = 10,100,1000, while keeping other
parameters fixed (H = 0.5, \bfitalpha = [0.3,1.5], W = 3\pi , Nm = 60, \epsilon = 5\%).

Figure 4 displays the numerical results of the reconstruction of | f(t)| in Example 1 under
different sample path quantities, denoted as P = 10,100,1000, while maintaining fixed values
for H = 0.5, \bfitalpha = [0.3,1.5], W = 3\pi , Nm = 60, and \epsilon = 5\%. The observations indicate that
the quality of reconstruction improves as more sample paths are employed to approximate
the solution's variance, aligning with the principles of the law of large numbers. Notably, the
numerical results suggest that a satisfactory level of reconstruction is already achieved with
the choice of P = 1000. Consequently, we use P = 1000 as the fixed sample path quantity in
subsequent experiments.

Figures 5--7 depict the influence of parameters H = 0.3,0.5,0.7, \bfitalpha = [0.2,0.3], [0.3,1.5],
[1.1,1.5], and \epsilon = 1\%,5\%,10\%, while keeping W , Nm, and P fixed, as previously specified.
Upon examination of the subfigures within each row, it becomes evident that, for fixed values
of H and \bfitalpha , the results exhibit relatively higher quality when the noise level, \epsilon , is reduced.
Likewise, within each column of these figures, when both H and \epsilon are held constants, decreas-
ing the value of \bfitalpha leads to improved results. These trends align with the prior theoretical
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Figure 5. Example 1: Reconstruction of | f(t)| with different levels of noise: (left) \epsilon = 1\%, (middle) \epsilon = 5\%,
and (right) \epsilon = 10\%, while varying the values of \bfitalpha under the constant Hurst parameter H = 0.3.

analysis. Furthermore, through a comparative assessment of the results at corresponding po-
sitions in Figures 5--7, it appears that the outcomes are less sensitive to variations in the Hurst
index H when compared to alterations in other parameters.

Example 2. Consider a discontinuous function

f(t) =

\left\{               

0, t\in [0,4\pi /5),

2, t\in [4\pi /5,8\pi /5),

0.5, t\in [8\pi /5,12\pi /5),

1.5, t\in [12\pi /5,16\pi /5),

0, t\in [16\pi /5,4\pi ).

This example was also examined in [16], and it is challenging to reconstruct due to the
presence of infinitely many Fourier modes, with the corresponding Fourier coefficients decay-
ing slowly. In this example, we will not provide a detailed investigation of the impact of
various parameters on the reconstruction, as the findings are similar to those in Example 1.
Instead, we present the results using carefully chosen representative parameter values. In
Figure 8, numerical results showing the reconstruction of | f(t)| in Example 2 are presented.
The parameters used for this representation include H = 0.7, \bfitalpha = [1.1,1.5], W = 3\pi , Nm = 60,
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Figure 6. Example 1: Reconstruction of | f(t)| with different levels of noise: (left) \epsilon = 1\%, (middle) \epsilon = 5\%,
and (right) \epsilon = 10\%, while varying the values \bfitalpha under the constant Hurst parameter H = 0.5.

P = 1000, and varying noise levels \epsilon = 1\%,5\%,10\%. Despite the emergence of the Gibbs
phenomenon, a common occurrence when recovering discontinuous functions through Fourier
transform based methods, the proposed algorithm demonstrates strong performance in han-
dling the discontinuous case.

6. Conclusion. This paper addresses both the direct and inverse source problems asso-
ciated with the stochastic multiterm time-fractional diffusion-wave equation. Regarding the
direct random source problem, the well-posedness is obtained by demonstrating the well-
posedness of its counterpart in the frequency domain. Furthermore, an analysis is conducted
concerning the uniqueness and instability of the inverse random source problem in the fre-
quency domain. To reconstruct the source function in the time domain, the PhaseLift method,
combined with the spectral cut-off regularization technique, is utilized for numerical imple-
mentation. The numerical results validate the effectiveness of the proposed method.

This work expands upon existing results related to inverse random source problems for
stochastic time-fractional differential equations, addressing more general cases. Specifically, it
contains (1) subdiffusion cases with \alpha i \in (0,1), superdiffusion cases with \alpha i \in (1,2), and the
classical diffusion case \alpha i = 1, and (2) spatial random noise, which can be represented by fBm
noise with H \in (0,1) as opposed to the traditional Gaussian white noise with H = 1

2 . Several
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Figure 7. Example 1: Reconstruction of | f(t)| with different levels of noise: (left) \epsilon = 1\%, (middle) \epsilon = 5\%,
and (right) \epsilon = 10\%, while varying the values \bfitalpha under the constant Hurst parameter H = 0.7.
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Figure 8. Example 2: Reconstruction of | f(t)| with different combinations: (left) \epsilon = 1\%, (middle) \epsilon = 5\%,
and (right) \epsilon = 10\%, under the constant Hurst parameter H = 0.7 and \bfitalpha = [1.1,1.5].

challenges remain unresolved, including inverse random source problems in higher dimensions,
and inverse random potential problems for time-dependent stochastic partial differential equa-
tions, among others. In higher-dimensional cases, establishing a modified isometry formula
similar to the one in Lemma 3.4 becomes significantly more challenging. For inverse problems
involving random potentials, additional linearization techniques will need to be applied to
address these nonlinear inverse problems effectively. We anticipate providing updates on our
progress in addressing these challenges in future publications.
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