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INVERSE SCATTERING FOR THE BIHARMONIC WAVE
EQUATION WITH A RANDOM POTENTIAL*
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Abstract. We consider the inverse random potential scattering problem for the two- and three-
dimensional biharmonic wave equation in lossy media. The potential is assumed to be a microlocally
isotropic Gaussian rough field. The main contributions of the work are twofold. First, the unique
continuation principle is proved for the fourth order biharmonic wave equation with rough potentials,
and the well-posedness of the direct scattering problem is established in the distribution sense.
Second, the correlation strength of the random potential is shown to be uniquely determined by the
high frequency limit of the second moment of the backscattering data averaged over the frequency
band. Moreover, we demonstrate that the expectation in the data can be removed and the data of
a single realization is sufficient for the uniqueness of the inverse problem with probability one when
the medium is lossless.
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1. Introduction. Scattering problems arise from the interaction between waves
and media. They play a fundamental role in many scientific areas, such as medical
imaging, exploration geophysics, and remote sensing. Driven by significant applica-
tions, scattering problems have been extensively studied by many researchers, espe-
cially for acoustic and electromagnetic waves [8, 24]. Recently, scattering problems
for biharmonic waves have attracted much attention due to their important applica-
tions in thin plate elasticity, which include offshore runway design [31], seismic cloaks
[9, 28], and platonic crystals [23]. Compared with the second order acoustic and
electromagnetic wave equations, many direct and inverse scattering problems remain
unsolved for the fourth order biharmonic wave equation [10, 27].

In this paper, we consider the biharmonic wave equation with a random potential,

(1.1) A%y — (K* +iok)u+ pu=—3, inR%

where d = 2 or 3, k > 0 is the wavenumber, ¢ > 0 is the damping coefficient, and
8y(z) := §(z — y) denotes the point source located at y € R? with & being the Dirac
delta distribution. The term pu describes physically an external linear load added to
the system and represents a multiplicative noise from the point of view of stochastic
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partial differential equations. Denote by xk = k(k) the complex-valued wavenumber,
which is given by

k=K% +ick.

Let sy := R(k) > 0 and &; := (k) > 0, where R(-) and (-) denote the real and
imaginary parts of a complex number, respectively. As an outgoing wave condition
for the fourth order equation, the Sommerfeld radiation condition is imposed to both
the wave field u and its Laplacian Au:
(1.2) lim 7z (Oru —iku) =0, lim re (0rAu —ikAu) =0, r=|z|.
T—>00 T—>00

We refer the reader to [30] for the radiation condition in the lossless case with o = 0.
In the case where o > 0, the radiation condition can be derived using the classical
procedure (cf. [7, Theorem 3.2]) by utilizing the exponential decay property of the
fundamental solution described in (2.2).

The potential p is assumed to be a Gaussian random field defined in a complete
probability space (2, F,P), where P is the probability measure. More precisely, p is
required to satisfy the following assumption (cf. [16]).

Assumption 1.1. Let the potential p be a real-valued centered microlocally iso-
tropic Gaussian random field of order m € (d — 1,d] in a bounded domain D C R,
i.e., the covariance operator @), of p is a classical pseudodifferential operator with the
principal symbol p(x)|€]~™, where p is the correlation strength of p and is a function
that is compactly supported in D satisfying p € C§°(D) and u > 0.

Apparently, the regularity of the microlocally isotropic Gaussian random potential
depends on the order m. It has been proved in [21, Lemma 2.6] that the potential
is relatively regular and satisfies p € C%*(D) with a € (0, 254) if m € (d,d + 2); the
potential is rough and satisfies p € WmT%_e’p(D) with € >0 and p > 1 if m <d. This
work focuses on the rough case, i.e., m <d.

Given the rough potential p, the direct scattering problem is to study the well-
posedness and examine the regularity of the solution to (1.1)—(1.2); the inverse scat-
tering problem is to determine the correlation strength p of the random potential p
from some statistics of the wave field u satisfying (1.1)—(1.2). Both the direct and
inverse scattering problems pose challenges due to the rough nature of the random
potential p. Specifically, (1.1) should be studied in the distribution sense, treating
p as a distribution. In this context, it is more reasonable to focus on the statis-
tics of p, such as its covariance or correlation strength, rather than attempting to
directly reconstruct p itself. The unique continuation principle is crucial for the well-
posedness of the direct scattering problem, which is nontrivial for the biharmonic
wave equation with a rough potential. Moreover, the inverse scattering problem is
nonlinear.

The inverse scattering problems for random potentials with potential p that sat-
isfy Assumption 1.1 were investigated in [5, 16, 17, 18, 19] for second order wave
equations. The approach for two-dimensional problems involves utilizing point source
illumination and near-field data, while the three-dimensional problems require plane
wave incidence and far-field pattern analysis due to the distinct configurations in each
dimension. For the Schrodinger equation, the unique continuation principle was ex-
tended in [16] from the integrable potential p € LP(D) with p € (1,00] (cf. [12, 13, 25])
to the rough potential p € W~<P(D), i.e., m = d. The uniqueness was also estab-
lished for the two-dimensional inverse problem with m € [d,d + 1). It was shown
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that the strength p of the random potential p can be uniquely determined by a single
realization of the near-field data almost surely. The corresponding three-dimensional
inverse problem with m = d was studied in [5] by using the far-field pattern of the
scattered field. In [19], the authors considered a generalized setting for the three-
dimensional Schrédinger equation, where both the potential and source are random.
The uniqueness was obtained to determine the strength of the potential and source
simultaneously based on far-field patterns. Recently, the unique continuation princi-
ple was proved in [20] for the second order elliptic operators with rougher potentials
or medium parameters of order m € (d — 1,d]. In [17], the rough model was taken
to study the inverse random potential problem for the two-dimensional elastic wave
equation. It was shown that the correlation strength of the random potential is
uniquely determined by the near-field data under the assumption m € (d — %, d]. For
the three-dimensional elastic wave equation, due to the lack of decay property of the
fundamental solution with respect to the frequency, the far-field data was utilized in
[18] to uniquely determine the strength of the random potential under the condition
me (d—3,d.

In the deterministic setting, the unique continuation principle was investigated in
[4] and [26] for the general higher order linear elliptic operators with a weak vanishing
assumption and for the biharmonic operator with a nonlinear coefficient satisfying a
Lipschitz-type condition, respectively. In [15], the authors studied the inverse bound-
ary value problem of determining a first order perturbation for the polyharmonic
operator (—A)™ n > 2, by using the Cauchy data. It was shown in [14] that the first
order perturbation of the biharmonic operator in a bounded domain can be uniquely
determined from knowledge of the Dirichlet-to-Neumann map given on a part of the
boundary. We refer the reader to [11, 29, 30, 32] and references therein for related
direct and inverse scattering problems of the biharmonic operators with regular poten-
tials. To the best of our knowledge, the unique continuation principle is not available
for the biharmonic wave equation with rough potentials.

This paper is concerned with the direct and inverse random potential scattering
problems for the two- and three-dimensional biharmonic wave equation. As previously
mentioned, the configurations for the inverse scattering problems involving second-
order wave equations differ in two and three dimensions. Nevertheless, due to the
high regularity of the fundamental solution, a unified approach can be employed to
tackle the inverse scattering problems associated with the biharmonic wave equation
in both two and three dimensions. This can be achieved by utilizing the point source
illumination and near-field data. The work contains two main contributions. First,
the unique continuation principle is proved for the biharmonic wave equation with
a rough potential, and the well-posedness is established in the distribution sense for
the direct scattering problem. Second, the uniqueness is established for the inverse
scattering problem. Denote by u(x,y,k) the solution of (1.1). The scattered wave,
denoted by u®, satisfies u®(z,y, k) = u(z,y, k) — ®(x,y, k), where ® is the fundamental
solution given in (2.2). We show that the correlation strength of the random potential
can be uniquely determined by the high frequency limit of the second moment of
the backscattering data, denoted by u®(x,k) := u®(z,z, k), which is averaged over
the frequency band (K,2K) as K — oo. It is noteworthy that the scattered wave
u®(x,y,k) does not exhibit any singularity when y = z, and the backscattering data
u®(x,x,k) holds significant importance in practical measurement scenarios. In the
case of a lossless medium, where the damping coefficient ¢ =0, we establish that the
expectation in the data can be eliminated. Moreover, we show that the uniqueness
of the inverse problem can be guaranteed with a probability of one by utilizing the
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data from a single realization. Our main result for the inverse scattering problem is
summarized as follows.

THEOREM 1.2. Let p be a random potential satisfying Assumption 1.1 and U C R?
be a bounded and convexr domain having a positive distance to the support D of the
strength . Assume in addition that m > gd— 14ifo>0. For any x € U, the scattered
field u® satisfies

K—o0

1 2K
(1.3) lim_ / K UA=20R 5 (0 1) 2, = Ta(x),
K

where

1 1
Ta(z) = QA7 4(d—2) /D lz — 2]2@D) p(z)dz

and E|u®(z,k)|? is known as the second moment of u®(z,k). In addition, in the case
of a lossless medium where o =0, it holds that
(1.4) fim L [ R s P = T) P

. Aim o - u’(z, =Ti(x -a.s.

Moreover, the strength p of the random potential p can be uniquely determined by
{Ta(x)}zev-

Hereafter, we use the notation “P-a.s.” to indicate that the formula holds with
probability one. The notation a < b stands for a < Cb, where C' is a positive constant
and may change from line to line in the proofs.

Note that the additional restrictions of m > g for d =2 and m > % for d =3
in the case of a lossless medium (i.e., o = 0), as stated in our previous works [17,
Theorem 1.2] and [18, Theorem 1.2], respectively, can be removed for the biharmonic
wave equation. It is important to mention that the range of the order m € (d — 1,d]
specified in our current result for the inverse scattering problem with ¢ =0 is optimal.
This means that it coincides with the range of m required in the unique continuation
principle to ensure the well-posedness of the direct scattering problem.

The rest of the paper is organized as follows. Section 2 introduces the fundamental
solution to the biharmonic wave equation. Section 3 presents the unique continuation
principle for the biharmonic wave equation with rough potentials. Based on the
Lippmann—Schwinger integral equation, the well-posedness for the direct scattering
problem is addressed in section 4. Section 5 is dedicated to the uniqueness of the
inverse scattering problem. The paper is concluded with some general remarks in
section 6.

2. Preliminaries. In this section, we introduce the fundamental solution to the
two- and three-dimensional biharmonic wave equation and examine some important
properties of the integral operators defined by the fundamental solution.

2.1. The fundamental solution. Recalling k* = k% + ick, we have from a
straightforward calculation that

oo\t (VR o a2\ ]

kr=RK)=||——) + )
16 8

Mo\t Vo a2\ }]?

o (52 (e .
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It is clear to note that

1 VEkr + o2k — k2

=

k2ki=
' 8(k4+azkz)i+8(\/m+k2)% ’
16k4 8k2

where
2

(\/ k* +o02k2 — k:2) = lim L -7
koo VE T+ 02k2 + k2 2

lim
k—o0
Hence we get

(2.1) lim ~5 =1, lim k?r; = %,

k—o0

which implies for sufficiently large k that the following quantities are equivalent:
|K| ~ Ky ~ k=
Let ®(z,y, k) be the fundamental solution to the biharmonic wave equation, i.e.,
it satisfies
A2D(z,y,k) — k1O (z,y,k) = —6(z — y).

It follows from the identity A% —k* = (A+k2)(A — k2) that @ is a linear combination
of the fundamental solutions to the Helmholtz operator A + k2 and the modified
Helmholtz operator A — k2 (cf. [29, 30)):

d—2
i KR = (1) 2i
bt =gz (greyi) (el o)+ 2 Kuaela =) )

where H,Sl) and K, are the Hankel function of the first kind and the Macdonald
function with order v € R, respectively. Noting

Kl,(z):gil’HH,gl)(iz), —7r<argz§g
and
2 1z

H?(Z): Tz i

we have
Lo (1) s

RN k-1 e e U
2.2 T,y k)= 1

(eiﬁ|7;—y\ _e—n\w—y|), d=3.

8wz —

The following lemma gives the regularity of ® and its dependence on the wavenum-
ber k.

LEMMA 2.1. Let G C R? be any bounded domain with a strong local Lipschitz
boundary. For any fived y € R?, it holds that ®(-,y,k) € WY4(G) for any v € [0,1]
and q € (1, %) In particular, for any fized y € D and G having a positive distance
from D, it holds for sufficiently large k that

d—7
19, y, k) lwra Sk T T

ol
2

for any vy€[0,1] and ¢ > 1.
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Proof. Let r* :=sup,cq |z — y| for any fixed y € R? and rq := inf,eq [z —y| > 0 if
y € D. We discuss the two- and three-dimensional problems separately.

First we consider the two-dimensional case, where the fundamental solution takes
the form ®(x,y, k) = —ﬁ(Hél)(/ﬂm —y|) + ZKo(k|z —y|)) for any fixed y € R?.

By [6, Lemmas 2.1 and 2.2], it holds for any z € C that

(23) ’Hl(/l)(z)| < e*%(z)<17%> 2 |Hl(/1)(@)|’
(2. K (2)) < 20050 o))

where v € R and © is any real number satisfying 0 < © < |z|. Choosing z = k|z — y|
and © = R(2) = K|z — y|, we get

[ 12aor de e [ HOGfe -y Pdo e [ |10 o) Prr
G G 0
K,:l r*
= 5;2”/ ‘Hél)(/@rr)’prdr + Hr_2p/ ) ‘Hél)(lir’l“)|p’l“d7“,
0 Kr

where the second term is bounded due to the regularity of Hél)(mrr) for r € (k1 r).

For the first term, according to the fact Hél)(nrr) ~ Zn(k,r) as 1 — 0 (cf. [2,
section 9.1.8]), it holds that

n:l 1
/ ‘H(()l)(/irrﬂprdr < K;Z/ |In(r)|Prdr <k;? Vp>1,e>0.
0 0
We then get
\\‘P(-,y,k)l\m(g) <o Vp>1l,e>0.

Moreover, noting

aw‘H(l) Klz —y :nH(l)’ ke —y xi—yiz_HH(1) Kz —y J:i—yi7

H3 ek = =13 (e~ ==tk D =
1 : : T — Yi
axiKo(fdx—y\):EaziH(gl)(mkc—yD:_mKl(,{‘x_yD|x_z|

for i =1,2 and using Hl(l)(/ﬁlﬂ“) ~ 3L a5 —0 (cf. [2, section 9.1.9]), following the

same procedure, we obtain for any p’ € (1,2) that

’ ’ P’ ’ T* P
[ ettt arg ol [ a0t o] desn [ |0 )| var
G G 0

< P /Kr #rdr 4+ kP /T* ’Hl(l)(/irr)‘p, rdr < 0o
SEE L G |
which shows
12C v Bl (o) <00 Vo' €(1,2)

and hence ®(-,y, k) € Wh*'(@Q).
The interpolation [LP(G), WP (G)], = W4(G) with v € [0,1] and ¢ satisfying
= 1777 + 2 (cf. [3, Theorem 6.4.5]) yields ®(-,y, k) € W7(G) for any v € [0,1] and

1

q
2

qc (17 ;)
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In particular, if y € D and k is sufficiently large, then rg :=inf,cq |z —y| > 0 and
the Hankel function has the following asymptotic expansion (cf. [2, section 9.2.3]):

2 2y Cyl—iym_1

H(l)(Hr|x_yDN el(rw\x y|—gvm—37)
v Thye|Z — Y|

for v € R. Following from the interpolation between L(G) and W14(G) provided

that G is bounded with a strong local Lipschitz boundary (cf. [1, section 7.69]), we

have

r* 1
[ 10y ktde i [ (O Gl - dy S0 [ prdr s
¢ G ro (KrT)2
r* 1 _
[ 10y 0l o S lel0 [ |HO ey de S0 [ —prdr e,
G G ro (Krr)2
which leads to
3y < -5+%
(2.5) [2Cy B)llwra) Sk 2 SET372
for any v €[0,1] and ¢ > 1.
Next we examine the three-dimensional problem, where
1 .
®(z,y,k :_7( inlz—y| _ —~\w—y|),
(k) 8wr2|x — Y ¢ ¢

The estimates are similar to the two-dimensional case.
For any y € R3, it holds that

* . 1
B T el _ kT (g a
12y, k)llaa) S K] 2(/ |71q|7“2d7"> <oo Vg>1
0

by utilizing the fact that |e*" —e~""| < kr for sufficiently small . The derivatives of
d satisfy

[ 10280, 0)1ds
G

q

o T —Yi iklz—y| (3 —k|z—
—/Gm[e l2=vl(ik|z —y| — 1) +e y‘(m|x—y|—|—l)} dx
r* kT (3 -1 —KT 1)|¢

< |n|2 | (ikr — 1) + e (kr 4 1)) 2dr <00 Vg1,

~ o ,r2q
which implies ®(-,y,k) € W4(G) for any v € [0,1] and ¢ > 1.

In particular, for y € D, a straightforward calculation gives
* . 1
3 T |emr _ 67/<r|q q
e
’l“(;* .
shl2( [ ) S el
ro
and
’l"* q 1
[ 1oty ke =ini 20 [ 2 g,
G 0 r=d
Hence, for sufficiently large k, it holds that
12y, ) lwaqay S 6727 SkTHF2

for any v € [0,1] and ¢ > 1. O
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2.2. Integral operators. Define the integral operators

M@= [ D20
Ki(6)(-) - = Ha(pd) () = / B2, k)p(2)b(2)dz,

Rd
where ® is the fundamental solution given in (2.2) and p is the random potential
satisfying Assumption 1.1.

LEMMA 2.2. Let B and G be two bounded domains in R%, and G has a strong
local Lipschitz boundary. Assume that the wavenumber k is sufficiently large.
(i) The operator Hy: H=**(B) — H*2(G) is bounded and satisfies

5=B=Xo)
Mkl o1 By, o2 () Sk

for s:=s1+ 82 € (0,3 — xo) with s1,s2 >0 and

o 0, o=0,
Xo =01, o>o0.
(ii) The operator Hy : H=*(B) — L*(G) is bounded and satisfies

254+d—2(83—x0)+e

IHellcca—<(B),L=@) Sk i

for any s € (0,3 — x,) and € > 0.
(iii) The operator Hy : W="P(B) — WT4(G) is compact for any 1 <p < 2 < q
C e i3 Xoe 3—Xo
satisfying % + % =1 and 0 <y <min{ 5%, >5*= + (% — 3)d}.

Proof. (i) Since the case o =0 is discussed in [22, Lemma 3.1], we only show the
proof for the case o > 0 where k; > 0. For any two smooth test functions ¢ € C§°(B)
and ¢ € C§°(G), we consider

#(0).9) = [ el

_ (1+]¢*)3 ST o AT
(2:6) -/, TEE T + e =) T (e,

where dg and 7,/; are the Fourier transform of ¢ and 1, respectively, and J ~° stands
for the Bessel potential of order —s and is defined by (cf. [20])

T f=F A+ )73

with F~! denoting the inverse Fourier transform.
The integral domain R? of (2.6) can be split into two parts,

Ql;:{fERdI||f‘—’€r|>%}’ Q2:={§€Rd:||§|_ﬁr|<%}v

such that (2.6) turns out to be
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_ (1+[¢2)3
<,Hk((p)7w>_/ﬂ1 (|§|2+52>(|£|+H)(|§|—H)
QD
+/92 T DGR IR L Ik
::A1+A2.

T—1(6) T —21p(€)de

The term Ay can be estimated following a procedure similar to that of [22, Lemma
3.1]. In fact, we get for s < 3 that

(1+]¢7)3
A —s3
' 1'§/Ql|s|2+m%—m?|<|e+m>|§|—mr| T )| de
2 (1+1¢?)2
<* —S1 —S2
ot TEF TR T T 09O 70400

1
S =l Wl

using the fact that ki € 1 < K, for sufficiently large k according to (2.1). For A,
since the term IE\“ — is not singular for x; > 0, one can easily get

(1+ ) 7
8IS | e e e |07 )] de

1
N o |l -1 (B 1Y 22 ()

r

As a result, using (2.1), we get

(M (0), V)| S 67726 Dl -ea () 190 2

with s < 2, which completes the proof by extending the above result to ¢ € H°(B)
and ¢ € H%2(G).

(ii) For any ¢ € C§°(B), we still denote by ¢ its zero extension outside of B. It
follows from the Plancherel theorem that

Hil@)(o) = [ B(azR)o(:)ds
_ /Rdu +ER)5 B2, &, k)T (€)de,

-~/ QI T (e (e 1+ )4 e,
zt [
where
R _ -z
B, &) = FIR( - O = fgr— s

is the Fourier transform of/<I>(\:1c7 y, k) with respect to y. Comparing the above integral
with (2.6) and replacing J —52¢)(£) by g(£) :=e 2 ¢(1 +|¢]?)~ “, we obtain

2S+d+€—(3—>(rr) 2s+d—2(3—xo)+e

[Hi(9) (@) Sk 10l -2 (B) Sk i 16l (B),

which can also be extended to ¢ € H~*(B). We mention that g € H*(R?) is utilized
in the above estimate, which is required in the estimate of (2.6) (see, e.g., [17, 20]).
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(iii) The compactness of Hj, can be obtained from the boundedness shown in (i)
and the Sobolev embedding theorem. In fact, according to the Kondrachov embedding
theorem, the embeddings

WP (B) — H™(B),
H™(G) = W9(G)

are continuous under conditions 1 <p<2<gq,

1 1 s51—7
<s1, T > ————,
T 2" p d

1 s9—7
<8y, —>=— ,
T2 q 2 d

and s1 + s2 € (0,3 — x,). It is easy to check that the above conditions are satisfied if

1 1 _
;—f—a—land
. S1+ 82 81+ 82 1 1
0 m ] -
<< 1n{ 5 7 + (q 2)},

which completes the proof of (iii) due to s1 + s2 <3 — Xo- |

The estimates for the operator K can be obtained from the estimates of Hj, given
in Lemma 2.2 and the relation Kx(¢) = H(pd).

LEMMA 2.3. Let G C R? be a bounded domain with a strong local Lipschitz bound-
ary, and let the random potential p satisfy Assumption 1.1. Assume that the wavenum-
ber k is sufficiently large.

(1) The operator Ky : WY U(G) — WT4(G) is compact for any q € (2,A4) and

ve (452, 3 + (1 — 4)d) with
L if 2d—m—(3—x,)<0,
. 2d7m3(f3fxo) Zf 2d —m — (3 - XU) >0

and satisfies

1_1\g_3=Xo
1Kkl cwraqey SETETD772% pPogs,

(ii) The following estimates hold:

—Xao

‘_3
Kl ay Sk~ 27 P-as.

for any s € (%, 3_%) and

25+d—2(3—xo)+e
4

Ik 2 (s (@), (@) Sk P-a.s.

for any s € (d_Tm,Sfxa) and € > 0.

Proof. (i) Under Assumption 1.1, it holds that p € WmT_d_G’p,(D) for any € >0
and p’ > 1 based on [22, Lemma 2.2]. Then for any m € (d — 1,d], g € (2, A) # 0, and
ye(Sm, X 4 (% — 1)d) # 0, there exists some p’ > 1 such that the embedding

Wt (D) < WP(D)
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INVERSE SCATTERING FOR BIHARMONIC WAVE EQUATION 1969

is continuous with p:= ﬁ > 1. Moreover, for any ¢ € W74(G), we have from [16,
Lemma 2] that pp € W~"P(D) with % + % =1 and

(2.7) lpollw—r Dy S lollw—50) |0l wra(a)-

Hence

1Kk () lwraay SN HRl cow e Dy, wra@nllp@llw—rpy P-as.,

which implies the compactness of K due to the compactness of Hj proved in
Lemma 2.2.

To estimate the operator norm, we choose s =~ + (% — %)d such that the embed-
dings

H*(G) = W(G),
(2.8) W=7P(D) — H=*(D)

hold with p <2 and ¢ > 2 satisfying % + = =1. The result is obtained by noting

1

q

1Kk (D) lwraay S NCk(D) s (@) S 1 Hill -+ 0y, z2 @) 1Pl -+ (D)
S Hell 22Dy, 5 (@) [Pl W2 (D)

< prH(g—g)d—5e

lBllwa(c)-

(ii) For any ¢ € H*(G) with s > 95 there exist v € (45™,s) and ¢ € (2, A)

satisfying % > 2 —*=2 such that the embeddings (2.8) hold. It follows from Lemma 2.2

and (2.7) that we have

k(D) ey S IHkl 20y 1@ 1Bl = (D)
S Hell o0y, 12 @) | lw—~» (D)

25— (3—xo) _3—Xo

(2.9) SE T ellw— sy léllwraey SE 2 9l P-as.

with s € (457, 22X2) and

25+d—2(3—xg)+e

1Kk ()| o @y S WHEN o+ (D), L= PPl -2 (D) Sk T ol sy P-as.

with s € (45,3 — x,) and € > 0. |

3. The unique continuation. This section is to investigate the unique continu-
ation principle, which is essential for the uniqueness of the solution to the biharmonic
wave scattering problem with a random potential. We refer the reader to [16, 20] for
the unique continuation of the solutions to the stochastic acoustic and elastic wave
equations.

THEOREM 3.1. Let p satisfy Assumption 1.1, q € (2, %), andy € (me7 %—1—

(% - 9. If u e WHYR?) is compactly supported in R? and is a distributional

solution to the homogeneous biharmonic wave equation
A%y — k' + pu=0,

then u=0 in R%,
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Proof. We consider an auxiliary function v(z) := e~ ""%u(z), where the complex
vector 7 is defined by

(wtvnd)—r7 d:27
(wt,0,na)",  d=3,

where t > 1,

w,_<\/m+k2>i
- ; :

and ng =ny; + inid with the real and imaginary parts being given by

D (VAP R W (1)) ®
Na = 2 )

_ (\/Oﬂ(tz_1)2+w4—/€2+w2(t2_1)>§

Na = 2

respectively. It is clear to note n-n = k? = w? +i(w* — kg)%. Moreover, a simple
calculation shows that

(3.1) lim n;=0, lim -%=w.

t—o0 t—oo t

Then v is also compactly supported in R? and satisfies
A2y 4 4in - VAv — 4n " (V?0)n — 2(n - n)Av — 4i(n - n)(n - Vo) = —po.
Taking the Fourier transform of the above equation yields
(3.2) v=—Gy(pv),
where G, is defined by
. [ f(©)
[E1*+ 4IE1P(n - &) +4(n - &)+ 2(n - n) €1 +4(n-n)(n - )

Using the Plancherel theorem, we have from a straightforward calculation that

Gn(f)(x):=F ().

L F(©)5E)
610 = @10~ [ FAEE(- €+ 407 )F + 2P +4m20n - 6)
_ / F©)7E) "
ra (€12 +2n-€+262)(|€]2 + 21 - €)
1 f©a© . £(©)3(§)
3.3) 2 [/R P2y e fuliran € o)

It suffices to show v =0 in order to show u=0. The proof consists of two steps.

The first step is to estimate the operator G, in Hilbert spaces. Let G C R? be
a bounded domain with a strong local Lipschitz boundary containing the compact
supports of both p and u. For s € (0, %), we have the following estimate:

1
(34) 1Goll 2= (@), 100 & 5=aap=as-
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INVERSE SCATTERING FOR BIHARMONIC WAVE EQUATION 1971

The proof of this inequality is postponed to the subsequent lemma for the sake of
brevity.

The second step is to estimate the operator G, in Sobolev spaces and show v =0
in R%. To extend the estimate of G, from Hilbert spaces to Sobolev spaces, we claim
that G, : L"(G) — L"' (@) is bounded and satisfies

(3.5) 19|l 2cr (@), (c)) ST

for some proper r and r’. In fact, it follows from the decomposition of the operator
G, given in (3.3) that we may rewrite it as

1
gn = ﬁ (gn,l - gn,2) 5

where

f ] 4 [ f
: =F
g Gl TR
Next we consider the cases d =3 and d = 2 separately.
For d =3, the claim (3.5) holds under the conditions

1 1 2 . 1 1 1 1 >1
T —=Z minl|--=|,|=== —
’ r |2 2d’

ror o d 2
since operators G, ;, i = 1,2, are both bounded from L"(G) to L" (G) according to [13,
Theorem 2.2 and [16, Proposition 2]. To deduce the estimate for G, between the dual
Sobolev spaces WP (G) and W 4(G) with % + % =1, we consider the interpolation
of (3.4) and (3.5). Noting

().

Gna(f)(x):= ]:—1{

[L7(G), H™>(G)]g =W P(G),
[L7(G), H*(G)]g = W (G)

and choosing 6 =1 + (% %)d €(0,1) and r = 2% such that vy =0s < 3 + (G- 22
11048 andi=15 , we obtain
p T q
< 1
(3.6) Gl cow v () wra(a)) S w(B—25)04(1—25)0 "

As proved in [16 Lemma 2} pv € W=7P(G) for any v € W9(G), where + is required
to satisfy v < 5 + (f — 5)7 Hence an additional restriction on ¢ is also required due

to v > —m, ie., g< m Consequently, (3.2) leads to

1
Ivllw~acy < NGallcow - @), wra@pllovllw-—re@) S WHU”WWI(G)

with s € (0, 3), which implies v =0 by choosing ¢ > 1.
For d = 2, it is shown in [16, Proposition 2] that (3.5) holds for any r > 1.

Similarly, (3.6) can be deduced from the interpolation between (3.4) and (3.5) by
2(1+€)—2eq

choosing r = 1 + € with an arbitrary small parameter € > 0 and 6 = B such
that v = f0s < (1&16)_;)6 2. Following the same procedure as the three dimensional case
and letting € — 0, we get v = 0 under the restrictions v < = = 3 + (f - %)7 and

<gio =2 0
q = 3d—2m—2"
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LEMMA 3.2. Let the assumptions given in Theorem 3.1 hold, and let G C R?
be a bounded domain with a strong local Lipschitz boundary containing the compact
supports of both p and w. Then for s € (0, %), the operator G, defined in Theorem 3.1
satisfies

1
Hgn”E(H*S(G),HS(G)) S W3 2s41—2s"

Proof. We denote (3.3) by

1

<gnfag> = 27,{2[“4_8]

For any f,g € C5°(G), we denote their zero extensions outside of G still by f,g for

simplicity. Denote ¢~ := (£1,...,6-1)" € R¥™Land €77 := (&,...,641)" € RI~2
with £~ =0 if d=2. Then A can be rewritten as
A [(©3(€)
Rre [§]? + 2wt&s + 2n4€a A
-/ F(©)5(E "
ra (&1 +wt)? + |§77|27— w?t? + (& +ny)? — ()2 + 2in4a

-/ Fe5® "
ke |7 = w2 — () + 2iny(€a — )
where in the last step we used the transformation of variables (&£ + wt,&a,...,&q +

n;)T = (51a'~'7§d)—r and f(é-hagj - a?"'7£d) = e—iafjf(g). USil’lg K‘Q =n-n=
w?t? + 7% and the transformation (& +wt, &2,...,&a+15) "+ (€1,...,€4) T, we have

5 F(©)a(€) . | gt
Re (§1 4 wt)? + €772 4 (€a + np)? + w?t? + (n3)? — 2(ny)* + 2iny(Sa + 25)
-/ fOFE .
re [§]7 + w2 + (5)? — 2(ny)? + 2iny (S + 13)
It is easy to see that the function
1
67— B = G2 + 2 Ea — )
1
O ET2 = w2 (€ — ) (Ea ) + 20 (Ea — )
involved in A is singular on the manifold {¢ € R? : |¢7| = wt, & = n}}, and the
function
1
€2 + w22 + ()2 — 2(n}y)? + 2 (Ea + 1))
1

T e w1 2(05)2 — 200 + (Ea— m) (Ea + ) + 2 (Ea+ 1Y)

involved in B is singular on the manifold

{g S Rd : ‘§_| = \/2(771d)2 - 2(772)2 - w2t27 gd = —772} ’

where 2(n}})? — 2(n5)? — w?t? is equivalent to wt as ¢ > 1 according to (3.1).
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The estimates for A and B follow a similar procedure, requiring the decomposition
of the integral domain R? into several subdomains based on the singularity of the
integrands. In the following, we present a detailed analysis of the estimate for A. The
analysis of B can be carried out in a similar manner and is omitted here for brevity.

To estimate A, we define two domains:

i={eslie -t > 5 = {e1e1> 2 u{eei< S,
B wt .wt _ 3wt
QQ::{§:||£|—wt|<2}={§'2<|§|<2}'

Based on ; and 5, A can be split into the following two terms:

(1+€%)® T
A= : s s d
o, JE2 — w22 — (772)2+2i7721(§d—772)j (T *g(8)d¢
(1+1¢*)° i PR
. s s d
+ /Q2 |§|2 — w22 — (712)2 + 21772[(£d _ ,’72)\7 f(f)j 9(5) f

— T +1I,

where s € (0, %) Next is to estimate I and II, respectively.
Term I satisfies

2\s .
|I|§/ (1+1¢%) . | TS| T s glde
. [(612 — w22 — (15)%)? + 400})* (Ea — )]
-/ (L+ |¢[2)*1T 71T ] s
(61612 [(J€[?2 — w2t — (05)2)2 + A(n})2 (6 — n)?]?

o f (L+ 1€ T F1IT gl
(ele <l [(1€]2 — w22 — (5)%)% + 402 (&a — m)?]*

(1+ (€251 T FIlT 9]

dg

+/ : —d&
(&g < lea—nyl<5} [(|€]2 — w2t — (5)2)2 + 4(n})2(Ea — n5)2] 2
= Il -|— 12 -|— 13.
By (3.1), we may choose a sufficiently large t* such that n} < ‘*’Tt for all ¢t > t*, which
leads to
3wt / wt "
7_ w2t2+(772)2>z, t>t".
We then get
14+ 52 s o
he | e A [T
{elel>25ty (1] — Vw2t + (my)?) (€] + /w2 + (1))
1 1
57/ T | T S fIT 2 gld€
wt Jiejel> 2ty €]
1
S W”JCHH*S(G)”.‘]”H*S(G)-

Note also that n}, is equivalent to wt as t — oo, which yields
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I g/ w
(e 1<t Jea—my>5t  20gla — g

/ (W) + €0 — nhl** + ()**

(&6 <t Jea—nsl> %) 2n41€q — 0y

1 1 —_—
</ ( n ) T T glde
(ele- <t Jea—my> 2ty \(W)2725 0 wit|€q — |13

1
S WHJCHH*S(G)HQHH*S(Gy

T fI|T~>gldé

<

~

T F1|T ~>gld¢

Moreover, for any £ € {€: |67 <4, [€q —nj| < %}, it holds that

wt) 2 wt 2 W22
P =le Pl < (%) + (5 o) =5 i (o
Hence, for t > t*,
. w?t? L wit?
Wt 4 (n)* — [¢]* > 5 wtng > 1

which gives

2\s o
Iy < /{ Q) 7577 glae

cleml<igt lea—myl<gty 17 — w82 — (n3)?|

1
< pgrm Ml @loll--o

We then conclude

1
3.7 1<
(37) 155

WH]CHH*S(G)HQHH’S(G)'

To estimate II, we divide it into two parts:

(1+1¢?)® e
1= : s sg(€)d
/sz{g;|gdn;|>w;} €2 — w?t? — ()% + 2iny(§a — ﬁé)j fOTa(e)de
(14 |¢7)® e TP
. s sg(€)d
+/Qm§:g“,;<g} P = (2 + 2wy T ()

= IIl + IIQ,

where II; can be estimated similarly as I by utilizing the boundedness of |~ |:

1
\Hl| S WHJCHH*S(G)HQHH*S(G)-

It suffices to estimate Il where the integrand is singular. To deal with the
singularity, we denote

1
€2 — w2t — ()2 + 2ink(Ea — nh)

and define the transformation

Tig &= (¢, gt 2ny), E€Q,

ni(§) :
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2wt
n= (251 e
< <|£— )f

A simple calculation yields that |¢'| = 2wt—|{~ | and the Jacobian of the transformation
o¢*

1S
2wt d-2
o —(m”) |

Moreover, it can be verified that the transformation maps the subdomain

where

Ja,t(§) = |det

wt _ o wt
921 :{§2<|§ |<wt7§d_77d|<2}

to the subdomain

_ Bwt b wt
Qg 1= {§¢Wt<|§ |<27|£d77d<2}a

and vice versa.
Based on Q97 and 99, II5 can be subdivided into several parts:

(1+1¢?)® e
I, — : s sg(€)d
’ /nzn{s:md—n;k‘;t} |f|2*w2t2*(772)2+2iﬁ31(€d*772)“7 JQT 90t

- /Q (O TTOT e

-/ [m(@(l +1eP) T F©T 9()
€))L+ I TTENTale) e
-/ | (©) + () JaclO] 1+ [€)"TFOT g(e)de
i /Q n(€)Tae(€) [(1+[€712)° = (L+1€P)"] T F(€) T g(€)de

———

+ / n(€)an 1+ 1€ [ T7HE) = T 1) Tg(e)de
Qa2

P—

[ €0+ €T [Tater) - Ta()] de
=:1Ip1 + Iy + Ilp3 + 1oy,

where we used the fact

/ n(€)(1+ €2 T1(6) T g(€)de

21

- / ne(€) (14 1€ ) T F (€9 T—g(€)de*

Qo1

- / (€)1 + €52 T F(€) T~ g(67) Juy (€)de.

Qoo
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Noting
1
Yo 5* = T S | * T
) = lep e e 2 —m)
1
G = w2 4 (& — ) (& ) + 21} (€5 — 1)
1

g = w2 4 (€0 — ) (€ — 3mp) — 2iny(6a — )
we get for d =2 that

ha(€) = e (€) + ne(€) Tt (€)]
1
T IET P = w2 + (&g — mh) (Ea+ my) + 210k (Ea — 1Y)
1
T IO = w2 1 (€a — ) (€a — 3 — 2 (Ea — 1)
) 26| — wt)? + 2(éa — 1)

(€] = wt)(I&~ |+ wt) + (&a — n3)(Ea +n3))? + 4(n}) (€ — n3)?]
1

(€] = wt) (€7 | = 3wit) + (Ea — ny) (€a — 313))% + 4(n}) (€ — n3)?]
which is bounded

SIS

X

[N

as t > 1 according to the boundedness of ¢ € {295. Similarly, it holds for d = 3 and
t> 1 that

hs(§) : = [n4(§) +ne(€7) J3,4(€)]

1
a ‘ €712 — w22 + (€a — my) (Ea + my) + 2iny(Ea — )
2wt
N €] .
1€]? — w?t2 + (§a — ) (Ea — 3ny) — 2iny(Ea — n)
< 1 .
~ w2t

The above estimates lead to

1 SIS e e 1
IIzﬂSW/QM(HISIQ) T f(IIT g(§)|d§§Wllfllz{—s@ﬂlgllms(c)-

For IIy9, we apply the mean value theorem and get for some 6 € (0,1) that
[ne(€)Jae(€) [(1+ 167 17)° — (L + 1€1%)°] |
= [ne(€)Tar(©)s (1HOE° 2+ (1 0)|eP) " (&7 — |eP)|
S (&) Jan(©) (€72 = 1] (14016 + (1 = 0)[¢f?)

s— 1
S (1401 + (1 - 0)|¢[?) SW
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where in the third step we used the following estimate similar to ha(€):

(3:8) |ne(€)Jae(©)(€7 ~ I¢)]
d—2
(22 -1)" i —1ep)
€72 — w282 + (€a — ) (Ea — 3nty) — 2in)y(€a — 1))

) (22— 1) Jaot(lem| —wt) + dms(ea — )
(6] =) — 8e) + (€0 — 15) (Ea — 3020)? + Al (& — m2)?]

Therefore

N

1 — 1
|1122|N()225/922|~7_Sf(5)||«7_89( )\df<()ﬁ||f“H s@lgll -+ )

Terms I3 and Ilpy4 can be estimated similarly by following the procedure used in [20,
Theorem 3.2]. In fact, it can be shown that the Bessel potential satisfies

T=1€) = T S I = el [MATT ) + MITT =TI,
where M is the Hardy—Littlewood maximal function defined by
M) =swp [ )y

r>0 |B(@,7)] B2,

with B(z,r) being the ball of center x and radius r, and satisfies (cf. [20, Theorem
3.2])

1MV T )l 2y S Nl -s

The above estimates, together with (3.8), yield

* *|2 2

€1+ [¢]
M(VT = f)E) + M(VT == f)E)|T ~*9()ld¢
1

S W“f”H*S(G)HQHH*S(G)

and

(€0 (€7 =Py, ooy
<
e e (R

1
S oz M@ llglln—@)-
Hen(:e’ 11 Satisﬁes

1
(3.9) LRpS ()ﬁHfHH s@ 9l -+(c)-
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Combining (3.7) and (3.9), we obtain the estimate of A and get

1
G S 9)| S m”fHH*S(G)”g”H*S(G)
for any f,g € C5°(G). Since C§°(G) is dense in L*(G) and H *(G) ¢ H™Y(G) =
LQ(G)H'HHA(G) (cf. [1, sections 2.30, 3.13]), the above result can be extended to f,g €
H~*(G) with s € (0, §), which completes the proof. |

Remark 3.3. The unique continuation principle established in Theorem 3.1 holds
for any damping coefficient ¢ > 0. If the medium is lossless with o =0, the proof can
be simplified by letting w = k2 and

1 1 T
(kft,ikix/ﬁ—l) , d=2,
T
(k%t,o,ik% Ve 1) . d=3.
We refer the reader to [25] for the unique continuation principle of the Schrédinger

equation without damping. The unique continuation principle will be utilized to show
the uniqueness of the solution to the direct scattering problem when o =0.

’r}:

4. The Lippmann—Schwinger equation. In this section, we examine the well-
posedness of the scattering problem (1.1)—(1.2) by studying the equivalent Lippmann—
Schwinger integral equation.

4.1. Well-posedness. Based on the integral operators, the scattering problem
(1.1)—(1.2) can be written formally as the Lippmann—-Schwinger equation

(4.1) u:leu—i—Hkéy:ICku—i—(I),

where the fundamental solution ® is given in (2.2).

THEOREM 4.1. Let p satisfy Assumption 1.1. The Lippmann—Schwinger equation
(4.1) has a unique solution in W, (RY) with q € (2, 3:1%%—2) and v € (452, 1 +(
2)%)-

Proof. According to the compactness of the operator Ky, proved in Lemma 2.3 and
the Fredholm alternative theorem, it suffices to show that the homogeneous equation

1_
q

(4.2) u=~Kru

has only the trivial solution u = 0.
Assume that u* is a solution to the homogeneous equation (4.2). Then it satisfies
the following equation in the distribution sense:

(4.3) A% — kYt 4 put =0 inRY

Let us consider two auxiliary functions:

1
(4.4) up = ———= (Au* — K2, up =

5,2 Au* + k*u®).

1
prel

K
It is clear to note that u* = ug +uy and Au* = k2 (upr — ugr).

Since p is compactly supported in D, there exists a constant R > 0 such that
D C By with Bg being the open ball of radius R centered at zero. It can be verified
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that uy and uyy satisfy the homogeneous Helmholtz and modified Helmholtz equation
with the wavenumber &, respectively, in R?\ Bg:

Aug + k2ug =0, Aup — k2up =0.

Hence, uy and ups admit the following Fourier series expansions for any r = |z| > R:

s (1)
Hy /7 (kr) (n in
ug (r,0)= Z 7(1)( )ug{)(R)e o
n=-—oo Hn (KR) .
(4.5) = o) if d=2,
qwmm:§:§%aﬁymww

where
1 27 )
w%ngé wy(R.0)e"0d0, e {H, M),
are the Fourier coefficients, and
o0 n hn
un(r,0,0)=> Y O
(4.6) s n (k)
n(KT") (m,n m
upr(r,0,0) =Y > " (R0, )

where hg) and k,, are the spherical and modified spherical Hankel functions, respec-
tively, satisfying

m s
MO =5 H (2, ka(2) =[5 Kuia(2), 2€C,

Y™ are the spherical harmonics of order n, and the Fourier coefficients ﬁ((]m’”)(R) are
given by

W) = [ (R0 TR

If ¢ > 0, then we have k, = R(k) > 0,K; = S(k) > 0. It follows from (2.3)-
(2.4) and (4.5)—(4.6) that ug,up and thus u*, Au* decay exponentially as r — oo.
Multiplying (4.3) by the complex conjugate of u*, integrating over B,., and applying
Green’s formula, we obtain

/ (JAu*? = &*u* [ + plu*|?) dx z/ (Au*0,u* — u 0, Au*)ds,
B, OB,

where v is the unit outward normal vector to 0B,.. Taking the imaginary part of the
above equation yields

_%(’94”‘“*”%2(&) =3 {/@B (Au*d,u* — w8, Au*)ds| =0

as r — oo and hence u* =0 in R%.
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If 0 =0, then x = k2 is real. By (4.5)—(4.6), only ups|op, and dyupr|op, decay

exponentially as r — oo. It is easy to verify from (4.3) that uy and ups satisfy the
following equations in R%:

L, L
AuH—i—kuH—%pu =0, AuM—kuM—i—ﬁpu =0.

Indeed, based on the definition of uy given in (4.4) with k? = k and (4.3), we have
the following relationship:

T, 1 . R S
AuH—i-kuH—%pu ——ﬁ(A—i-k)(Au — ku*) T
1

2k

(A%u* — k*u* + pu*) = 0.

Similarly, the equation for up; can be obtained. Using the integration by parts and
the fact u* =ug + ups, we have from Green’s formula that

_ 1 1
/ uMal,qudS:/ (|VUM|2+,Z<:|UM|2——p|uM|2——puMﬁ)dx,
9B, B, 2k

2k
5 2 2, 1 2, L
ugO,ugds = (|VuH| —klug|® + —plug] +—puMuH)dx,
OB, B, 2k 2k

which are well-defined since VAu* € L2 (R%) due to A%u* = k?u* — pu* with u* €

loc

W 9(R?) and pu* € W=7P(D) (cf. (2.7)). Taking the imaginary parts of the above

loc
two equations yields

& [/ uM&,uMds} =g [/ uH&,qus] ,
9B, B,

which leads to

/ (|8VUH|2+k|uH|2)ds:/
9B, 0B,

By the Sommerfeld radiation condition (1.2), the first integral on the right-hand side
of the above equation tends to zero as r — co. The second integral also tends to zero
due to the exponential decay of up;. Therefore,

2
8VUH 71]{%’&]{‘ ds — Qk%% |:/ uM@yuMds} .
5]

B,

lim (|8VUH\2—|—k|uH|2)ds: lim / (|c’9,,uM\2—|—k|uM|2)d3:O.
r—00 aB, r—00 oB,

It f@ws from Rellich’s lemma that ug = uy; = 0 in Rd\FR and thus v* = 0 in

RN\ Bg. The proof is completed by applying the unique continuation in Theorem

3.1. d

The well-posedness of the scattering problem (1.1)—(1.2) can be obtained by show-
ing the equivalence to the Lippmann—Schwinger equation. The proof is similar to that
of [20, Theorem 3.5] and is omitted here for brevity.

COROLLARY 4.2. Under Assumption 1.1, the scattering problem (1.1)—(1.2) is
well-posed in the distribution sense and has a unique solution u € WZZ’Cq(Rd), where q
and vy are given in Theorem 4.1.
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4.2. Born series. Based on the Lippmann-Schwinger equation (4.1), we for-
mally define the Born series

Zun(x7ya k)v
n=0

where
(4.7) up(x,y, k) :=Kg (un-1(-,y,k)) (z) = /Rd O(z,2,k)p(2)tun-1(2,9,k)dz, n>1,

and Uo(lL’, Y, k) = Hk(éy)(x) = (I)('Z', Y, k)

The Born series is crucial in our arguments for the inverse scattering problem. It
helps to establish the recovery formula for the strength p of the random potential p.
Before addressing the inverse problem, we study the convergence of the Born series.

LEMMA 4.3. There exists kg > 0 such that for any wavenumber k > ko and any
fized x,y € U with U having a positive distance to the support D, the Born series
converges to the solution of (1.1)—(1.2), i.e.,

u(@,y, k)= un(z,y,k).
n=0

Proof. The convergence of the Born series to the solution of (1.1)—(1.2) can be
obtained by employing the same procedure as that in [17, section 4.2] and the estimate
of ug(z,y, k) = ®(x,y, k) given in Lemma 2.1.

Moreover, the Born series admits the pointwise convergence. Using the estimates
of Hy, and K, given in Lemmas 2.2 and 2.3, we get for any s € (d_Tm, 37;‘”) that

(4.8)
N 0
uloy k) = YB3 R (ol k) oo
n=0 Lo (U) n=N+1
o0
S Y IRkl eqrs @y, poe @p KN E s oy Hil a2 0y, 10 @) 102 ¢y, K- ()
n=N+1
D N S mt e (s e [ YOV Y S
n=N+1
< PR (e )N T s
as N — oo for any k > ko and € > 0, where we used (2.9) and Lemma 2.1. O

5. The inverse scattering problem. This section is devoted to the inverse
scattering problem, which is to determine the strength p of the random potential p.
More specifically, the point source is assumed to be located at y = x, where z € U is
the observation point and U is the measurement domain having a positive distance
to the support D of the random potential. Therefore, only the backscattering data
is used for the inverse problem, as also discussed in [16, 17] for the cases of the
Schrédinger equation and elastic wave equation. For simplicity, we use the notation
Up (2, k) :=uy(x,x,k) for n > 1. Then the scattered field u*® has the form

u’(z, k) = Z Un (2, k)
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for k > ko with kg being given in Lemma 4.3.

Next we analyze the contribution of each term in the Born series in order to
deduce the reconstruction formula and achieve the uniqueness of the inverse problem.

5.1. The analysis of u;. Based on the definitions of the Born sequence (4.7)
and the incident field ug, the leading term w; can be expressed as

(5.1) e k) = Ko ) (@) = [ 02 b2p(2)a

Since the fundamental solutions take different forms, the contribution of w; is dis-
cussed for the three- and two-dimensional cases, separately.

5.1.1. The three-dimensional case. By Assumption 1.1, we have m € (2, 3]
for d =3. Substituting the fundamental solution

1

k2| — 2|

O(x,2,k)=— (emu_z\ B e_ﬁlw_z‘)

into (5.1) gives

2
eirlz—z| _ o—rlz—2| 2 eiklz—2'| _ g—k|z—2']
Elua (o, k) 5 ,
87T|H| r3 JRs |z — | |x — 2|

x Elp(z)p(=")|dzd?

1 2i(k|lx—z|—F|x z|)E N
_W/R/R 72— o CPR)e(@)]dzdz
2m|x z|—(i+1)R|z—= |E Nods
87r|fi| /R /R et p)e(@)]dzdz
21n|1 z|—2R|x— Z‘E ) o )
i W/}R% /]R3 |z — z|?|x — 2'|? [p(2)p(2")]dzdz
11/<;|J: z|—2ik|z— z\E o
SMM .4&@3 2Pl z p@e)dzdz
eli—Dr|z—z|—(i+1)K|z— Z/lE o
11/<;|J: z|— 211\1 z|IE e
87T|"<0| 4/]1{3 /R3 |z — z|2|z — 2|2 [p(2)p(2")]dzdz
_2K\L z|—2ik|x— z|E ) o )
i W/ﬂw /]Rs |z — z|?|z — 2|2 [p(2)p(2)]dzdz
2 672#;\:6 z|—(i+1)R|z—= \E N
- W/Ra /Rz 2 — 22|z — 2|2 [p(2)p(2)]dzdz
_2/@\1 z|—2RK|x— z|]E ) ; d/
87T|’<3| (8[w[?)* /Rs» /]Rs |z — z|2|z — 2|2 [p(2)p(2)]dzdz
21(11\:6 z|—FK|z z|)IE , o )
‘W/RS/W o el e
2m|z—z\—(i+1)ﬁlw—z/'E Ndzdz'
87r|/<;| /]1@3 /Rs |z — 22z — 2/ [p(2)p(2")]dzdz

2m|a: 2| —2R|z—2'|
E Ndzdz
L [ e e
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(i—-1)k|lz—z|—(i+1)R|z—= |IE ) o /
87T|/<;| /]Rg /R3 |z — 22|z — 2/ [p(2)p(2")]dzdz

6(1 Dk|lz—z|—-2K|z—=z |E Ndod
87T|’f| /]R3 /Rs |z — z|?|x — 2|2 [p(2)p(2")]dzdz

*2#&\172|72n|93 2|
(87lk[2)4 E Ndzdz'
+ G o oo o o PN
=T + 1o+ 13+ 1y + I5.

For I, following the procedure used in [21, Theorem 4.5], we get

1 € 4K1‘L Zl m —m—1
1= Gyt UD P QLR
Kr—m 6—414,;\36 z| o
‘<8w|n|2>4/D e MO ().

The other terms can be estimated by utilizing the exponential decay of the inte-
grands with respect to k,. Since the estimates are analogous, we only show the detail
for Iy. Note that |« — z| is bounded below and above for any z € U and z € D. A
simple calculation yields

(26 |z — 2|+ (Ki—Ky)|z—2 \)672n]|:1: z|—(Ket+ri)|z—2|
I
* 87rIfil // |z — 2|2z — 22

x E[p(2)p(2")]dzdz’,

where

672m|a:7z|7(nr+ni)\wfz'\ f, H;M
for any M >0 as k; — 0co. Choosing M =m + 1 gives
o] < k| Bk ™ 1//HE Ndzdz' <ky™ 0 Yael,

where we used the equivalence between |x| and x, as K, — oo and the following
expression (up to a constant) of the leading term for the kernel E[p(2)p(2)] (cf. [22
Lemma 2.4]) with d =2, 3:

w(z)In|z — 2’|, m=d,

(5.2) Elp(z)p(z")] ~ {,u(z)|z — | m e (d—1,d).

Terms I3,14, and I5 can be estimated similarly. Hence we obtain
—m 674n;\zfz|

(8:|rff| 2) /D |z — 2[4 pE)dz+0 (5 ™) Vel

(5.3) Elus (z, k)* =

5.1.2. The two-dimensional case. Now let us consider the two-dimensional
problem where d =2 and m € (1,2]. The fundamental solution ® has the asymptotic
expansion (cf. [2, 22])

b(z,2,k)=— /
; 8rk2(

iklz—z| _ lfj+%e—n|w—z\)’

ie
K|z — z])it2 (
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2877 i
zq/ETH(%—l)Qe_T? j>1.
T=1

Let the truncations of ® and u; be defined as follows:

N
Oj iklz—z| _ :—j+3 —klz—2|
Bz b)i=o 08ﬁ2(n|x—z\)j+1 (ie Loore );

where Cp =1 and

Jj=

ugN)(x,k) : :/ Oy (z,2, k) p(2)dz,
R2

where

|D(z,2,k)| S 6|73 |z — 272, [On(z,2,k)| S |k 73w — 272,
and
(5.4) O(x,2,k) — On(2,2,k) = O(|r| N3z — 2| ~N—3)

for any N € N as |s||x — z| = co. The following lemma gives the truncation error of
the fundamental solution.

LEMMA 5.1. For any fized x €U, N €N, yv€10,1], and ¢ > 1, it holds that

(5.5) 1B (@, k) = (@, B lwa(py S V72
In particular, for N =0 and G € (1, %), 1t holds that
(56) ”(I)(v K k) - CDO('? E k)HW’Yﬁ(DxD) 5 |K|_§+ﬂ/

Proof. Using (5.4) and
V. (@, k) = (e 2 )] =O (1|~ Fo = =3),
we get
@G, k) = (-, ) ooy S 16172,
[®(, -, k) = P (2,5 k) lwrap) S |/<;|*N*%.

Then (5.5) follows from the space interpolation [L4(D), W4(D)], = W"4(D).
Similarly, (5.6) can be obtained by noting that

(- k) — CDO(','ak)HLﬁ(DXD) <kl 2 </ / |z — 2 | 2qdzdz> < |/<;\
and
(s, k) = Bo (s, k) [wra(pxpy S ]2
for any g € (1, 3). O
Choosing N =1 and using (2.5), (5.2), and (5.4), we get for any x € U that

2
E‘ul(aﬁ k) —ugl)(cc k)‘

/ / (2, 2,k)(®2 — ®2)(x, 2/, k)E[p(2)p(2")|dzd2’
S, SEBXD[|(¢+<I>1)(JJ 2 B)2](® — B1) (2, 2, k)| //UE N]|dzd’
I
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The second moment of ugl) satisfies

1 202 ikle—z| _ i—jt+i —k|lz—z]|
) 1 C5C; ie itae
Elu; (z, k)‘ (8]r[2)" Z K2R 21-1—1/ / ( 1 >

|z — z|7+2

iein|m—z/| l+2€ Kklx—z'|
|x_zl|l+§

) Elp(2)p(2)]dzd?’

ko™ —4ki|lz—z|

_ T € —m—11
_84|/£|10/D [z — 2)2 (= )dz+O( . )

for any x € U and k, — oc.
Combining the above estimates leads to

E|uy (x, k)|? E|u11)(x k)2 —&—QWE[UI (x,k)(ur(z, k) —ul (x,k))]
+ El|uy (2, k) —ug )(Jc,kz)|

Hr—m —4ki|lz—2z| 11
:84f<;|10/ |z — 2|2 pu(2)dz + O (k; )

+O(( —m|H‘ 10)7 _7>+O( —14)

K;m 674n,|x z| o
(5.7) _84li|10/ P w(z)dz+O(k;™ 1) Vael.

The following theorem is concerned with the contribution of u; to the reconstruc-
tion formula for both the two- and three-dimensional problems.

THEOREM 5.2. Let the random potential p satisfy Assumption 1.1, and let U C R?
be a bounded domain having a positive distance to the support D of the strength p.
For any x €U, it holds that

1 2K
(5.8) lim ?/ RMFM2AR ) (2, ) P diy = Ty (),
K

K—o0

where Ty(x) is given in Theorem 1.2. Moreover, if o =0, then it holds that

1 (2K
(5.9) lim E/ kMU (2, K) Pde = Ty(z)  P-a.s.
K

K—oo

Proof. To prove (5.8), we consider the imaginary part of x as a function of &,
i.e., ki = ki(Kr), which satisfies lim,, o %i(k;) =0. From (5.3) and (5.7), we get

(5.10) lim ™ HA729R g, (2, k)2 = Ty(z).

Ky—00

Based on the mean value theorem, (5.8) follows from the identity

2K
lim "M 729E )y (2, k) > = lim —/ KM=y, (2 k)| dE, .
Ky —00 K—oo K

It then suffices to show (5.9) for the case ¢ =0, i.c., k =k, = k2 € R;. Noting

lim e~ 4milr—2l = 1,
k—o0
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and combining (2.1) and (5.8), we have

lim ™ 729E (2, k)2 = Ty(x).
k—o0

To replace the expectation in the above formula by the frequency average, an
asymptotic version of the law of large numbers is required. Such a replacement is an
analogue of ergodicity in the frequency domain and has been adopted in the analysis
of stochastic inverse problems (cf. [16, 17, 22]).

For d = 3, consider the correlations E[uy (x, k1)u1 (2, k2)] and Elu; (z, k1 )u1 (2, k2))
with k; = k2,i=1,2 at different wavenumbers x; and k3. Following the same proce-
dure as that used in [22, Lemma 4.1], we may show that

Efus (2, ky)ur (2, ko)) | S riy teg [(fﬂ +h2) (L4 Ry — o) M 4R 4 HEMQ] :
[Efus (@, b (k)] S w747 [ (1 + 12) ™0 (L [ir = mal) ™ w72 g 2]

where M, My > 0 are arbitrary integers. The above estimates indicate the asymptotic
independence of wj(x, k1) and wuy(z,k2) for |k1 — k2| > 1. Then, according to [22,
Theorem 4.2], the expectation in (5.8) can be replaced by the frequency average with
respect to k:

1 2K
lim E/ KT8 uy (2, k)|?dk = Ts(z) P-as.
K

K—o0

For d = 2, we need to consider ugs)’ which is the truncated u; with N = 3. TIts
correlations at different wavenumbers can be carried out similarly as those for the
three-dimensional case (cf. [22, Lemma 4.4]). Hence

K—oco

1 2K
(5.11) lim ?/ K0P (2, k) 2dk = To(z)  P-as.
K

The residual u; — uf) satisfies

Jus (k) — uf¥ (2, k)|
[ @2 - a2z
D

S (- k) = D3 (2, k) [wra oyl pllw 10 ()
S ||(I)($, 'ak) =+ @3(%, 'ak)HWl*QQ(D)”(P(xv ’7k) - (I)3(xv '7k)||W1=2‘7(D)”p”W*l*T’(D)

_3 _n _
<k ik 2 <k 7 P-as.

for any p > 1 and ¢ satisfying % + % =1, where we used Lemmas 2.1 and 5.1, and

m—2

pe W™= ~P(D)C W~1P(D) for m € (1,2] and any sufficiently small € € (0, 2). We
have from a simple calculation that

lim 1/2K K0y (2, k) — ul? (z,k)|?dx < lim 1/2K K" 4dk =0 P-as
K—oo K K 1 1 ’ ~M Koo K K -
Combining the above estimate with (5.11) leads to

2K
lim —/ K™y (2, k) Pdr = To(z)  P-as.,
K—oo K

which completes the proof of (5.9). d
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5.2. The analysis of ug. It follows from (4.7) and (5.1) that
ug(z, k) = /]Rd O(x,z,k)p(z)ur(z,x,k)dz
:/]Rd /Rd<I>(x,z,k)p(z)q)(z;z’,k)p(z')@(z',x,k)dzdz’,

which does not contribute to the inversion formula as stated in the following theorem.

THEOREM 5.3. Let the random potential p satisfy Assumption 1.1, and let U C R?
be a bounded and convexr domain having a positive distance to the support D of the
strength . For any x € U, it holds that

K—oo

1 2K
lim E/ RMTA=2d)0 (2 k) PdR, =0 P-a.s.
K

Proof. The proof is motivated by [16], where the inverse random potential scat-
tering problem is studied for the two-dimensional Schrodinger equation with m > d.
In what follows, we provide some details to demonstrate the differences for the bihar-
monic wave equation of rougher potentials with m € (d — 1,d].

(i) First we consider the case d=3. As a function of = and k., uz(z, k) satisfies

1 2K 2K
& | Rt bPdn < [ R ()P,

< / min {2, ﬁ} K g (z, k)| 2dk,  P-as.
1 K
Then the required result is obtained by taking K — oo if the following estimate holds:

(5.12) / KT TR lug (2, k)| 2dr, <00 VaeU.
1

To deal with the product of the rough potentials in E|us(x,k)|?, we consider the
smooth modification p. := p x . with ¢.(z) =& 2p(x/e) for £ >0 and p € C§°(R3).
Define

U (z, k) / / (2,2,k)pe(2)®(2,2' k) pe(2")®(2, 2, k)dzd2'
R4 JRE

m\;c—z| _ e—r@|x—z|)eim|z—z'\(eim\x—z'\ _ e—n\x—z'\)
B 877/12 // |z — z||z — 2'||x — 2|
X pe(z ) "dzd2'

m|z—z\ _ e—ﬁ\z—z|)e—n|z—z’|(eirz\z—z/| _ e—rz\m—z’|)
87r/<;2 // |z — z||z — 2'||x — 2/|
X pe(2)pe(2')dzdz’

Iy (z, k,e) + Iy (z, k,€).

1 1
(8wk2)3 (87k2)3

Note that

(oo} 2 (oo}
/ KT Rlug o (o, k) | dry S Z/ k| T2 RMTTRIIL (2, k, &) [Py
i=171

1
2 00
SZ/ ]E|IIi(xaka5)‘2d’€rv
i=171
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where in the last inequality we used
k| 72T < KM <1 Yme (2,3].

Based on the Fubini theorem and Fatou’s lemma, to show (5.12), it suffices to prove

sup/ EL(z, k&) ?dk, <o VaxeU, i=1,2.
e€(0,1)J1

The estimates for II; and IIs are parallel, and they are similar to the procedure
used in [16, 17] for the inverse potential scattering problems of the two-dimensional
acoustic and elastic wave equations without attenuation. The basic idea is to rewrite
each term II;, i = 1,2, as the Fourier or inverse Fourier transform of some well-defined
function. In the following, we only give the estimate for II; to show the differences in
handling the attenuation.

Denote

(ein|m—z| _ e—fc|x—z\)e—ifcr|r—z|e—/—ci|z—z’|€—inr\z/—z|(eim\z—z/\ _ e—ﬁ\m—z/\)

K(z,z,2'):=

|z — z||z — 2'||x — 2|

Then II; can be rewritten as
1Ly (z, k. €) 2/ / (=2l == 1t =D K (1 2 2" po(2) pe(2))dzdz
pJD
Define a phase function
L(z2) = o — 2| + |2 — /| + | — a,

which is uniformly bounded below and above for any (z,2') € Dx D and « € U. Hence
the set

{(z,2)eDx D:L(z,2')=t}, t>0,
is nonempty only for ¢ lying in a finite interval [Ty, T1] with 0 < Ty < T3.
For any fixed ¢ € [Tp, T1], there exist n = n(f) and an open cone K = K (t) C RS
such that
Dx D n{(z,7):to<L(z,2') <t1} CK N{(z,2") 1 to < L(2,2') < t1} =:T,

where tg =t —n and t; =t + 7. Letting Ty :=T N {(z,2'): L(2,2") =}, we have
[ K w2, )
r
tl )
:/ et [ K(z,2,2")|VL(z,2")| " pe(2)pe (2 )dH? (2,2') | dt
t T,
ot1 |
_. / RS ()t = FIS.] (— k),
to
where H® is the Hausdorff measure on I'; and S. is compactly supported in [T, T}].

Applying Parseval’s identity yields

/1 BTy (2, b, €) Pdiy S EIS-2 1.1,
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Using Isserlis’s theorem, we obtain

EIS. (1) = / K(z, 21, 2Kz, 22, )|V L (21, 2)| " |V L(z2 )71
'y JTy
X E [pe(21)pe(21) pe (22) pe (25)] M (21, 21 ) dH (22, 2))
- / K(z, 21, 2} K(@ 22, 23)| VL (21, 2)| "LV L (22, 24)|
r, Jr,

X (E[pe(zl)ps(ZE)]E[pE(ZQ)pE(ZQ)} + Elpe (21) pe (22)E[pe (21) pe (23)]

+ Elpe (21)pe (4)|Elpe (21)pe (22)] ) dH® (21, 20)dHO (22, 25),

where K and VL satisfy [K(z,2,2")| < |z — 2|71 and 0 < Cy < |VL(2,2")| < Cy,
respectively, for any (z,2') € D x D with z # 2’ (cf. [16]), and |E[p.(2)p:(2")]| <
|z — 2/|™737¢ for any € > 0 and m € (2,3] according to (5.2). It follows from the
Holder inequality and the symmetry of the integral that

E[S.(H)]? < / / o — 2| Yz — 2] —
I'; JI'y
X |29 — Zé|m_3_6d7{5(217Zi)d%s(ZQ,Zé)

N A (e P e PP
ry JIy

X |2y — 25| T3 AN (21, 2, ) dHO (29, 25)

L B A (e P e P
r. Jr,

X |Z£ - 22|m737€d7{5(zlv le)dHS (227 Z;)

2
- ( |21 — z’1|m46d7{5(zl,zi)> + 2/ |21 — 21|72 — 25|71
Iy Iy JIy

X |21 — 29|37 2y — 23T AHO (21, 21 AHO (22, 25)

2
< ( o1 — z1|m“dH5<zl,za>)
Iy

3

n [ [ [ 1a=2trte - z;|3dH5<zhz1>dH5<zQ,zg>}
'y JI'y

2

3

. U |21 — 22| 373792 — Z;W3€>dﬂ5<zl,z1>dﬁ5<@,zg>}
'y JI'y

2 4
g( / zlzum“dHS(zl,za)) +( / |z1z1|3dﬂ5<zl,z1>)
Iy Iy

4
3

+ </ |21 — z2|3(m_3_6)d7-l5(21,zi)d’l—[5(zg,z§)> ,
r, Jr,

where the boundedness of the last three integrals can be obtained similarly to the
two-dimensional problem shown in [16, Lemma 6.

(ii) Next we consider the case d = 2. Define the following auxiliary functions
(cf. [17, section 5.2]) via the truncated fundamental solution ®g:
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ug(z, k) : /d d<1>0 T, 2, k)p(2)®(z, 2" k)p(z )P (2, x, k)dzd2,
ug,r(z, k) : :/Rd /Rd Og(x,2,k)p(2)P (2,2, k) p(2 )Po (2, 2, k)dzd2’,
v(x, k) : :/]Rd /Rd Do (z,2,k)p(2)Po(2, 2, k)p(2)Po (2, x, k)dzdz'.

By Lemmas 2.1, 2.3, and 5.1, we have

lug(z, k) —ug(z, k)|
5 HpHW 7P (D) ||[(I)(x7 7k) - (I)O(x’ ’k)] Ickq)('vmvk)”W%q(D)
S 1@z, k) — Po(@, - k) lw2a (o) | Kkl cowza (o)) |2 (5 2, k) w20 (D)
5 |E|_%+Vk7—g—§+7k—%+% 55_7_%4_474_%’ P-as.,
lug,i(z, k) — us r(z, k)|

5 ||p||W*'V’P(D) ||(I)0(‘T7 ’k)’Ck [CI)(-,;I;, k) - (I)O('axakﬂHW%q(D)

S 1®o(@, 5 k) [wo2a () | Kkl w2 (o)) | 2, B) — Po (-, 2, k) |[wo2a ()
< _7_*+4'Y+X<1
< Kr P-a.s.,

|z, (z, k) —v(z, k)|
5 H(I)("'vk) _(I)O('7"k)HW%‘?(DXD)ll(p@p)(q)O®(I)0(x7'7k))”W—2%5(D><D)
_7
S k| 2+7\|P||€v—mo(p)”q)0($vwk)®‘I’0(‘7$ak)||w2%m(p><p)

< n;%#w P-a.s.,
where (p,q) and (ﬁ, q) are conJugate pairs with ¢ > 1, v € (—, 5+ ) and g € (1, )
Choosing ¢ = 1= and v = =5™ + € with a sufficiently small e > 0 in the above

estimates, we get

1 2K
lim ?/ K0y (2, k) — v(x, k)2 dk,
K

K—oo

K
17 —T—2+4y+x, | —L44
< lim — nm“‘)(m e + Ky W) dr,
K

r
~ K—oco

K

S B , -

< lim — (kpPmAl2etxe 4l =3m486) g, =0 P-as.
K—oo K

Hence, to show the result in the theorem, it suffices to prove that the contribution of
v is zero. Similar to the three-dimensional case, we consider the smooth modification

vg(a:,k)::/ / Oo(x,2,k)p(2)Po(2, 2, k) pe (2P0 (2, 2, k)dzdz’
Re JRd

ik|le—z| _ ;3 —klz—z|\sik|z—2 | (; oik|2 —x| _ ;% —k|z —z]
// ie ize Je (ie ize )

w2}z — #[3 [ —af3

37
( Vpe(2')dzdz'

% / / lem|x z| _ 126 ﬁ\zfz|)efn|zfz’|(iein|z’7r| _ i%efn\zlfm\)
83/<a2 |z — 2|2 |z — 2/|2]2 — |2
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X pe(2)pe(2')dzd?’

N[=

- iz
::783ﬁ§111($,k,€)+WIIQ(SE,]C,S).

Following the same procedure as used in the three-dimensional case, we may show
(oo} 2 (oo} -
/ KPR g (@, k) Pk < Z/ E|;(x, k,€)|?dr, <00 Yz €U,
1 =1

which completes the proof. ]

5.3. The analysis of residual. Taking out u; and us, we define the residual
in the Born series

b(x, k) = Z un(x, k),
n=3

which has no contribution to the reconstruction formula as shown in the following
theorem.

THEOREM 5.4. Let assumptions in Theorem 5.3 hold and in addition m > gd -1
if 0 >0. Then for any x € U, it holds that

klirn KM B)2 =0 P-a.s.
— 00

Proof. Following the similar estimate in (4.8) with N =2, we have

= d_25—-6x5 | e
16 )| e ) < D IKRuo (s k)| oo oy SR C
n=3

65+d_m+5
< Ky 2 2 P-a.s.

~

for any s € (452, 372"")7 Ky > Chy, and € > 0, where Cy, = R[k(ko)] is a constant

depending on k( given in Lemma 4.3. Hence, we obtain by choosing s = me + ¢ that
(5.13) rMAA=2d (g |)|2 < gOATIMTIITOXaFI3E () Pg s,

as k — oo under the condition m € (d — 1,d] for 6 =0 or m € (£d — 1,d] for o > 0,
which completes the proof. 0

5.4. The proof of Theorem 1.2. Considering the Born series of the scattered
field

u® (‘Ta k) =u (I‘, k) + UQ(xv k) + b(.%, k)
for k> ko with ko being given in Lemma 4.3, we obtain

1 2K
?/ /i;”+14_2dE|us(x, k>|2d,‘ir
K

1 2K 1 2K
- ?/ kMTU=2dE ) (2, k)| dk, + }/ KMTYM=2R 0 (2, ) P ds,
K K

+ E/ KMTM=2R b (2 k)| dk,
K
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1 2K S
+ 2R —/ K2R [y (2, k) ue (2, k)| disy
K Jk

[ 1 2K
+2R | = / n?“‘l_wE[ul(:c,k)b(m,k)]dnr]
K

i 1 2K
+2R | — / kAR [uy (2, k)b(z, k)]dmrl
K Jk
::11 +IQ +I;3 +I4 +I5 +I(3,

11 11 11
where 7y SI72737, Is SIPZ3, and I ST 73 .
According to Theorems 5.2, 5.3, and 5.4, it is clear to note that

lim 7, =Ty(z), lim Z; =0, j=2,3,

K—oo K—oo

which leads to
K—o00

1 2K
lim ?/ KIMTAZ2AE 18 (1 k) [Py = Ty(2)
K

and completes the proof of (1.3).
1
If 0 =0, then Kk = kK, = k2. The expectation in the above estimates can be
removed due to Theorem 5.2. We then get

1 2K
Ty(z) = lim ?/K kM2 (0 k)| dk

K—oo
~ lim 4K2k7’"“§‘“ (k)2 EhEdk
= Jim & [ (B
1 4K2 m—+13 d 2
= lim — k7= ~Yu’(x,k)|°dk  P-as.,

which completes the proof of (1.4).
The uniqueness for the recovery of the strength p from {Ty(x)}zer can be proved
by following the same argument as in [16, Theorem 1] or [21, Theorem 4.4].

COROLLARY 5.5. The expression in (1.3) can be interchangeably substituted with

LS
(5.14) lim ?/ kMPMU=2dE s (¢ k)2 dk, = Ty(z), xz€U.
1

In particular, for the lossless case where o =0, (1.4) can also be replaced by

1 K2 m—+413
(5.15) Jim ﬁ/ s (o B 2dk = Tu(z)  P-a.s.
o0 1

Proof. Based on the notation u® = u; + us + b, we only need to study the limits
for w1, us, and b, respectively.
For uy, we denote f(z, k) := k147 24E|u; (z, k)|? for simplicity. To demonstrate

K—oo

K
(5.16) lim %/1 flx, kr)di, = Ty(z),
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we equivalently need to prove that for any x € U and € > 0, there exists some
K, = K,(z,e) >0 such that for any K > K, it holds that

K
%/1 fz,kr)dry — Ta(x)| <e.

Indeed, according to (5.10), there exists Ko = Ko(z,€) > 1 such that for any &, > Ko,
it holds that

|f(z, k) = Ty(x)| < %

Moreover, for any fixed z, f(z,%,) is uniformly bounded for &, € [1, K] according to
(5.3) and (5.7). Hence, denoting C' = C(x, Ko) := sup,, e, k,) f (2 fix) + Ta(x) such
that

|f(z,kx) = Ta(z)| <C Vi €[1,Ko]

and choosing K, = C(Ko — 1)2 > 0, we deduce that for any K > max{K Ko},

€

K
%/1 f(z, ky)dky — Ty(x)

K

1 Ko 1

< ) — Tl e + / (@, e) — Ta(a) | dre
K 1 K Ko
(Ko—1)C K-Kpe € €

< — — - =

ST K K 2°32737¢%

which completes the proof of (5.16).
For us, it is true that

K—oo

1 K
lim —/ w20 (2, K) |dky =0 P-ass.,
K Ji
and its proof is identical to that of Theorem 5.3. This can be seen by observing that
1 m+14—2d 2 < Frl  m+14—24 2
— Ky |ua(z, k)|*dk, < min {1, —} Ky lug(z, k)|*dr, P-a.s.
K J; 1 K
For term b, its estimate (5.13) implies that

1 K

lim —/ kMTU=2d) (0 k)| 2dR, =0 P-as.
K—oo K 1

We can then deduce (5.14). If, in particular, o =0, (5.15) can be obtained using

the procedure employed in Theorem 5.2, along with the result (5.14). 0

6. Conclusion. In this paper, we have studied the random potential scattering
for biharmonic waves in lossy media. The unique continuation principle is proved
for the biharmonic wave equation with rough potentials. Based on the equivalent
Lippmann—Schwinger integral equation, the well-posedness is established for the direct
scattering problem in the distribution sense. The uniqueness is attained for the inverse
scattering problem. Particularly, we show that the correlation strength of the random
potential is uniquely determined by the high frequency limit of the second moment of
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the scattered wave field averaged over the frequency band. Moreover, we demonstrate
that the expectation can be removed and the data of only a single realization is needed
almost surely to ensure the uniqueness of the inverse problem when the medium is
lossless.

Finally, we point out some important future directions along this line of research.
In this work, the convergence of the Born series is crucial for the inverse problem.
However, this approach is not applicable to the inverse random medium scattering
problems, since the Born series for the medium scattering problem does not converge
anymore in the high frequency regime. It is unclear whether the correlation strength
of the random medium can be uniquely determined by some statistics of the wave field.
Other interesting problems include the inverse random source or potential problems
for the wave equations with higher order differential operators, such as the stochastic
polyharmonic wave equation.
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