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1. Introduction

Stochastic differential equations driven by fractional Brownian motions with Hurst parameter H € (0, 1) are basic
models to characterize the randomness phenomena and have various applications in the fields of hydrology (Mandelbrot
and Van Ness, 1968), porous media (Cao et al.,, 2017), oscillators (Hong et al., 2018), explorations (Feng et al., 2020),
finance (Hong et al., 2020) and so on. If H > % the fractional Brownian motion (fBm) exhibits a long-range dependence
property. If H = % the fBm is equivalent to the standard Brownian motion so that the increments are independent. If
H < % the fBm exhibits a short-range dependence property and the regularity of the sample paths is relatively low, in
which case we call it rough fractional noise.

In this article, we investigate the numerical approximation for the stochastic differential equation (SDE) driven by an
additive rough fractional noise

dX, = a(X;)dt + odB,, t € (0,T] (1)

starting from a deterministic initial value X, € R, where the drift coefficient a is unbounded and B = {B;}:¢[o,1] is the fBm
. ‘1 ‘l . I
with Hurst parameter H € (3, 5) defined on a probability space (£2, F, P).
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The main challenges in the convergence analysis on numerical schemes for SDEs in the rough case are twofold. First,
the unboundedness of the drift coefficient and the correlation of the increments of the fBm make the interaction of the
local errors between the numerical solution and the exact solution more complicated. Second, the covariance kernel of
the rough fractional noise can hardly be expressed explicitly due to the low regularity of the noise, which makes it more
difficult to obtain the optimal convergence rate of a numerical scheme. These difficulties result in that the numerical
analysis in this case is far from well-developed. To deal with the problems mentioned above, we apply the Malliavin
calculus, the rough path theory and the 2D Young integral to establish the strong convergence rate of the Euler scheme
for (1).

For n € N, denoting h = % and t, = kh, we focus on the following continuous interpolation of the Euler scheme

Ye =Yy +a(Y )t —te)+o (B —By), te€(ttiral, k=0,....,n—1. (2)

Our main result is stated in the following.

Theorem 1.1. LetH € (%, %). Assume that a : R — R has bounded derivatives up to order three. Then it holds that

NG
( sup E[X; — Y| > < Ch*H,
tef0,T]

where X solves (1) and Y is given by the Euler scheme (2).

As H tends to % the strong convergence rate of the Euler scheme above goes to 1, which is consistent with the classical
result on the Euler-Maruyama scheme for SDEs driven by additive standard Brownian motions (Milstein and Tretyakov,
2004, Chapter 1). Moreover, comparing with Bayer et al. (2016), Huang (2023) and Liu and Tindel (2019), Theorem 1.1
reveals that the strong convergence rate of the Euler scheme in the above additive noise case is half order higher than
those of the Euler-type schemes in the multiplicative noise case. In particular, if a is linear, the strong convergence rate of
the Euler scheme is improved to H+% as stated in Corollary 3.1. We would like to mention that the results of Theorem 1.1
and Corollary 3.1 can be extended directly to multi-dimensional cases. If the drift coefficient is bounded but less regular,
we refer to Butkovsky et al. (2021) for the optimal strong convergence rate of the Euler scheme in Holder spaces.

The rest of the article is arranged as follows. In Section 2, some preliminaries for the 2D Young integral and the
Malliavin calculus are introduced. In Section 3, the proof of our main result, i.e., Theorem 1.1, is established.

2. 2D Young integral and Malliavin calculus
2.1. 2D Young integral

Let U and W be Banach spaces with norms || - ||y and || - ||w, respectively. Denote by £(U, W) the set of linear operators
from U to W.

Definition 2.1. For fixed p > 1 and T > 0, the p-variation of f : [0, T] — U on [s, t] C [0, T] is defined as
”f”p—var;[s.t] = SUF D(Z ||ftk+1 ftk || ) )
t
where P = {t, : k=0,...,N, s=ty <t; <--- <ty =t} denotes a partition of [s, t] and D([s, t]) is the set of all such
partitions. In addition, we define CP**(U; [0, T1) == {f : IIf llp-var;[0,11 < +00}.
Definition 2.2. Fixp>1and T > 0.For g : [0, T]*> — U, let
g([ui, uip1] x [v}, Uj+1]) = 8uipr.vip1r — Suipr.yy — Suivig + 8u;, v+
The p-variation of g on [s, t] x [u, v] € [0, T]? is defined as
1/p
s tlx ] = [ui, uip1] % [vj, vjt1]) ) ,
Igllve(s,1x ) ED([S t]><[u UD(Z Hg is Uit1 )iy Vjt1 H
where w = {(u;, v;)} is a partition of [s, t]x[u, v] and D([s, t]x [u, v]) denotes the set of grid-like partitions of [s, t]x [u, v].
Moreover, we define CP*¥(U; [0, T]?) :== {g : gllye.jo.r2 < o0}
Remark 2.1. For f : [0, T] — U, the -Holder semi-norm of f on [s, t] C [0, T] is denoted by

Ify — fullu
If lgsis.e) :=  sup -

s<u<v<t |v—u|ﬂ '

If IIfllg;jo,ry < -+oo, then we have f e CVAv(U; [0, T]). Moreover, if g also satisfies [|gl|g.jo,ry < oo, then the
1/B-variation of the function fg : (r1, r2) — f, &, defined on [0, T1? is finite.
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Definition 2.3. Assume f € CP¥ (U, [0,T]?) and g € C9¥(W, [0, T1?). If 117 + % > 1, then we say that f and g have
complementary regularity.

Lemma 2.1. (Friz and Victoir, 2011; Towghi, 2002) For f : [0, T]> — £(U, W) and g : [0, T]> — U, the 2D Young integral is
defined as

[O,szfrl,rzdgrl,rz = \7£1|13>10 izjfui,ng([uiv ui+1] X [U]‘, vj+1])

if the limit exists. If f and g have complementary regularity, then the integral exists and satisfies
‘ / fr1,r2dgr1.r2
[0.712 w

W lyr.o.172 := Wo.oll ccw.wy + Wo.-lp-var:fo.11 + IIf- 0 llp-var:fo.11 + If llve.[o. 172

< Gogllf |”VP;[0,T]2 ligll Va:[0,T]2 >

where

In particular, the result can also be restricted to [s, t] x [u, v] < [0, T]%
2.2. Malliavin calculus

Definition 2.4. The scalar-valued fractional Brownian motion B = {B;}¢[o,r] iS @ continuous centered Gaussian process
with By = 0 almost surely and the covariance

1
Ry = E[BB;] = 3 <tz” + 52"t — s|2”), s,t €[0,T].

Here, H € (0, 1) is called the Hurst parameter of B.

Based on Definition 2.4, the regularity of the fBm and its covariance can be obtained.

Lemma 2.2. (Nualart, 2006, Chapter 5) For H € (0, 1) and p > 1, there exists a constant C = C, such that
IBe — Bsllir(2) _
o<s<t<t |t —s/"

Meanwhile, for any B € (0, H), there exists a nonnegative random variable G = Ggr € [P(2) for all p > 1, such that
1Bl g;0,11 < G almost surely.

Lemma 2.3. (Friz and Victoir, 2011, Example 1) For H € (0, ], we have R € C'/2H*9"(R; [0, T]?). More precisely, it holds
that |[R||y12m.15 g2 < Cylt — s|*.

According to Lemmas 2.1-2.3, if a function f : [0, T]> — R has the same regularity as B, i.e., f € C/fV9(R; [0, T]?)
for any 8 € (0, H), then f[o.T]Z fri.r,dRy, 1, is well-defined as long as H (%, %). Based on the 2D Young integral, we next
introduce the Malliavin derivative and its adjoint associated to the fBm with Hurst parameter H € (%, %),

Define the inner product

{(Ljo,01, Ljo,s)) e == Rs ¢ = /

dRy, r, = / Lio,51(r1)L0,e1(r2)dRy, 1,
[0,5]1x[0,t] [0,T]2

with 1o ¢(-) being the indicator function. It defines a Hilbert space (7, (-, -) ), which is the closure of the space of all
step functions on [0, T] with respect to (-, -) s¢.

Definition 2.5. Let F = f(B,,..., By, ) with t1,...,ty € [0,T] and f : RN — R be a bounded smooth function with
derivatives bounded up to any order. The Malliavin derivative of F is defined by
N
of
DF = Z 87)<,-(Bt1’ ooy By po,6().

i=1

For p > 1, the space D'? is the closure of the set of random variables in terms of the norm
1
IFllor = (E[IFIP] + E[IDFI7,])"

Definition 2.6. Given an .#-valued random variable ¢ € [*(£2; /) satisfying

‘IE[((p, DF)%]} < ClIFlz), FeD™,
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the adjoint operator 8 of the derivative operator D acting on ¢ is §(¢) € L*(£2; R) such that
E[(¢, DF) ¢ ] = E[Fé(¢)]

for all F € D2, In this case, we say ¢ € Dom(8). Furthermore, the Skorohod integral of ¢ with respect to B is defined by
fOT ©:8B; := 8(¢). In particular, for t € [0, T], fot @udBy = 8(pL0,)-

The fBm with Hurst parameter H € (%, %) can be naturally lifted to the rough path almost surely such that the integral

fOT ¢rdB; can be interpreted as the rough integral (Friz and Hairer, 2014; Lyons, 1998). In the sequel, we introduce the
transformation formula for the Skorohod integral and the rough integral, which is essential for us in the numerical analysis.

Lemma 2.4. (Cass and Lim, 2019, Theorems 6.1 and 6.3),(Song and Tindel, 2022, Theorem 3.1) Let H € (%, %). Assume that

the stochastic processes @, ¥ € CP'™(R; [0, T]) for any p > % and ¢ satisfies dp; = ®,dB; + W,dt in the sense of rough
path. Then it holds almost surely that

T T T
/ (ptdBt = / wtaBt + H/ ¢552H71d5 + / IL[O,rzl(rl)I:Drl Qarz - d>r2:|dRr1,r2~
0 0 0 [0,T]2

3. Convergence analysis on the Euler scheme

In this section, we set h = % and ty = kh, k = 0,...,n. For t € (t, ty+1], define [t] := t; and [t] = ty4,. Before
proving the main results, we give some estimates for the solution of (1) and the covariance of the fBm.

Lemma 3.1. Assume that the derivative of the drift coefficient a is bounded. Then (1) admits a unique solution satisfying

D p
E[;}f}}] Xl } + 5[l on] C P21 f<H.

Proof. Since a has bounded derivative, the existence and uniqueness of the solution to (1) is deduced from a standard
argument by the contractive mapping principle. Moreover, based on

t
sup [X,| < |Xo|+/ sup la(X,)lds + o sup [B|
0 ]

7€[0,t] t€[0,s 7€[0,t]

)

t
< |X0|+C/ <1+ sup |XT|>ds+o sup |B;
0

7€[0,s] 7€[0,T]

we get
sup |X,| < C(l + sup ’Br’) (3)
€[0,t] €[0,T]

according to Gronwall’s inequality, which, together with Lemma 2.2, yields

IE[ sup IXII”} <C, p=1
7€[0,T]

Moreover, (3) also leads to
t
N

t
|xt—xs|s/ |a(X;)ldt + o |B: — By sC[ (1+ IX:|)dt +o[B: — Bl
N

< c<1 + sup |B,|>|t —s|+o|B. — By,
7€[0,T]

which implies ]EI:”X”I;B;[O,T]:I <Cforanyp>1land B <H. O

Lemma 3.2. Let R be the covariance of the fractional Brownian motion B with Hurst parameter H € (0, %). Then it holds

T T
2H+1
/0 fo IRl 172t. ¢ 115, s1dsde < Ch A (4)

T T
/ IRlly1/21 1) 2dE +/ IRyt g0, ¢ g pdE < Ch2H. (5)
0 0

4
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Proof. We decompose the double integral in (4) as

T T
/(;/(;||R||v1/2H;[LtJ,r]x[LsJ,s]det

T T T T
//||R||vl/ZH;m,t]xm,sjﬂnu,nn(s)def+[ / IRIv 1720, 61, e1xq1s). 51 Lo T reg(S)dsdE
0 0 0 0
:ZI1+12.

By means of Lemma 2.3, we get

T T
I < / / hZHﬂ[L[J,m](S)det < Ch2H+1,
0 0

For I, notice that if s ¢ [|t], [t]], then the sets [|t], [t]] and [[s], [s]] are essentially disjoint. We claim that for any two
essentially disjoint sets [a, b] and [c, d] with a < b < ¢ < d, the covariance of the increments of the fBm is negative.
Indeed, due to H < 1/2, it holds

IE[(Bb — Bd)(Ba— Bc)] = %[(d —a —(d=b +(c— b —(c — a)ZH]

= 2H—1<[ [ u)?t- 2dvdu><0.

> R(ui, il X [y, v411)

ij

It then leads to
1/2H

1/2H 1/2H
IR 26 ererisns) = sng IR, 411 [ vy < sup
—

1/2H

[ (B, — Bu) (B — Bu) |

with m = {(u;, vj)} being a partition of [|t], t] x [|s], s], which yields

t S
< E[(Bs — Bisy) (B: —Bm)] =H(1 —2H)( f v —u|2”*2dudu).
Le] sl
Then we obtain

T T t s
L < Cf / / v — u|2H—2dvdu1[0,T]\[LtJYm](s)dsdt
[t] J1s)

fit1

/ (/ / )/ — uP"2dvdudsdt

tit1 G Jls]

tiy1 plivt

/ / < [ / ) / — u|#2dudsdtdu

liy1 Ls]
tit1
=C Z/ (tiyq —u (/ / ) lv — ul?~2dvdsdu
—0 fit1 Ls]

T i ti [v]
Z/ (tist —u)(/ +/ )/ lv — u/*2dsdvdu
i—o Yt 0 ti1 v
1ty ti T
< ChZZ/ (/ +/ )|v—u|2”—2dvdu
i 5 0 tiy1

— 1 T I:(Z 2h2H> _ ZTZH} < ChZH+l7

which completes the proof of (4). Similarly, the second integral in (5) satisfies

T T
/ IR /28,0, 16 11,6198 2/ ‘E (B: — Biey) (B —Bo)]
0

fit1
/ / / uP"2dvdudt

IRl 172t ¢ e1x1150.5)

dt
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1
Z/fm /‘t1+1/ 2H 2dvdedu
i=0

n—1

tit1 5}
< ChZ/ (u — v)*"~2dvdu < ch?,

which, together with fOT IRlly1/2t. 1) 2dt < Ch*" due to Lemma 2.3, completes the proof. O
Now we are in position to prove Theorem 1.1.

Proof of Theorem 1.1. By (1)-(2), we get

EX, — Y| <Cf Ela(X;s)) — a(Y(s))] ds+CE‘/ 5) — a(X(s)))ds

Taking the supremum with respect to t and using the Lipschitz continuity of a, we get

/ (a(Xs) — a(X\s)))ds
0

Based on Gronwall’s inequality, to prove the result in Theorem 1.1, it suffices to show

/ (a(Xs) — a(Xs)))ds
0

Based on the definition of the solution to a rough differential equation (Friz and Victoir, 2010, Definition 10.17) and
properties of Gaussian processes (Friz and Victoir, 2010, Theorem 15.33), the solution X of (1) is the limit of solutions
to ordinary differential equations driven by piecewise linear approximations of B. Since the chain rule holds for ordinary
differential equations (Friz and Victoir, 2010, Exercise 3.17), taking the limit produces that a(X), a'(X) solve the rough
differential equations

2

t
sup E[X; — Yr|2 < C/ sup E[X; — Yr|zds+ C sup E
rel0,t] 0 rel0.s] tel0,T]

2
sup E < ch*. (6)
te[0,T]

da(X,) = d'(X;)a(X,)dr + od' (X, )dB;,
dd'(X,) = a’(X;)a(X;)dr + oa’(X,)dB,,

respectively. Applying Lemma 2.4 with ¢, = a'(X;), & = o0d”(X;) and ¥; = a"(X;)a(X;), we get

N s s
/ a'(X)dB, = / a'(X,)8B, + oH / a’(X)r*"~1dr
ls] s Is)

+ / . ]l[sz,s](TZ)ﬂ[O,rz](rl)I:Drl [d(X,,)] — od" (X, ):IdRr1,r2-
[0,T]
Then we obtain

) - ) = [ axaoeidr +o [ doea,
Ls] sl

N N N
= / d(X)aX,)dr + o / d(X,)8B; + o%H / a’' (X )r?H-1dr
|

s) Ls] Ls]

S s

+o f L)L, ()] Dn [0(6,)] — 00 (X,,) R,
[0.T]

=1 Ji(8) + Jo(s) + J3(s) + Ja(s).

< S (e[ ]) ([ [a0m) ])

2
It then remains to estimate E[(fouji(t)dt> } for eachi € {1, 2, 3, 4}.

It follows that

E / (a(Xs)—a(Xm))d
0

6
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E[/ / a' (X )a(X, drdt/ / X,)a(X, )dvds]
0 t N
L#ﬂ [v]
E[ / / X, )dedr / / dsdv]
0

Ls]
n? / / E ]a’(Xr)a(Xr)a/(Xv)a(Xu)]]dvdr <
0 0

according to the facts |a'(X;)| < C and |a(X;)| < C(l + SUPg;<7 |Xt|> since a has a bounded derivative, as well as the

boundedness of the solution proved in Lemma 3.1.
For J,, based on the formula (1.54) in Nualart (2006, Section 1.3.2), we get

u 2

E[(/ ]z(f)dt> ]: ZJE[/ / a(X; (SBrdt/ / )8B ds]
0 Lt] Ls]
= / f |:/ a'(X, 83/ (,,)SBU:|dtds
Lt] Ls]
02/ f E[/ H[Ltj,t](rl)]l[[sj,s](rZ)a/(Xrl)a,(xrz)der,r2i|dtd5
o Jo [0,T]?
u u

+ Uz[ / IE|:/‘ / o), e (ro)sy,s) (T2 jo,r (U110, (U2)

o Jo 0,712 J[0,T]2

x Dy, [a'(Xr,)]Dr, [@'(Xu,)]dRuy i, ARy, i, } dtds

For J;, it holds

o[ ([ o)

IA

o2A; + o?A,.
Denote
FI0, TP = R, (r1,12) > frn o= d(X)d (Xsy)-
Due to the fact H > 1/3, inspiring by Remark 2.1, we get for any 8 < H that

B
I My /6. 10,112 sup (Z |f([ui» Uit1] X [vj, Uj+1])‘]/ﬂ)

meD([0.T12) \";

1/8\#
sub <Z ‘(a/(Xum ) — ' (X)) (@' (Xy,,) — d(Xyy)) )
7eD([0,T]2) -

B
1/p
<C sup <§ HIX 113 0.7 111 — il [vj4 — v1?| )

7eD([0,T]?)

< CIIXII3: 10117

Together with |[R|[y121. o7z < C by Lemma 2.3 and E ”X”I/_‘JS;[O,T]] < C by Lemma 3.1 for any p > 1, we obtain that f

and R have complementary regularity almost surely, which is defined in Definition 2.3. Then Lemma 2.1 and Lemma 3.2
produce

u u
1A < C/ / ]E[”lf|||v1/ﬁ;[LtJ,t]x[sz,s]]
o Jo

u pu
< C/o /0 (IR 1/20, 6] 1115 51d8AE < Ch?H+1,
Meanwhile, the Malliavin derivative satisfies
Dy, [d'(Xr,)] = a" (X, Du,Xe, = 0 g, 7 d"(Xa,),
where # and _# ! solve the linear system (Cass and Lim, 2019)

IRl 1728112 01115, s1d5dE

¢
Je=1 +/ a'(Xs) 7sds,
0

=14 / 77 (X)ds.
0
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Denote
f:00,TP - R,

(rl’ Tz) = frl,rz = /[O e ]l[o,rl](Ll] )]l[rz’T](uZ )Du1 [(l/(xr1 )]Drz [a/(Xuz )]dRu1.u2

= 02 / /”1 /u?la”(xm )/uz frzla”(xfz )dRﬂl»UZ'
[0,r1]1x[r2,T]
Consider the decomposition
Flui, uisal X [y, i)

= 02— ) (A0 ) = ) [ Sy ') SR

[0,uj]x[vj+1.T]

= 0 ( Sy — Su) Sy 0 (Xyy) / i@ Xy) Sy QRu

[0,ui]x[v},v541]

+ 02/%41 (/u}_+11 a//(XUjJr] ) - L/vala”(xvj )> / /u_lla//(xlh )/uz dRu1 »Up

[uj, ujp11x[v;,T]

- Gz/”i+1 /v;1a,/(xvj) / /u:1a,/(xu1 )fuz dRul»uz N

[uj, ujy11x[v),vj41]

Since JE[H/”1 o ﬂ] <C IE[H/ ., n] < E[nxng;wﬂ] < Cand |Rllyyanorp < Cforany < Handp > 1,
together with the fact that a has bounded derivatives up to order three, the functions f and R have complementary

regularity almost surely, and ]E[”lﬂ”\,l/ﬁ 0,172 < C. Then we deduce from Lemma 2.1 and Lemma 3.2 that

u u
|Az| < C/o /0 ]EI:”lfl“VUﬁ;[L[J,t]x[[sj,s]]”R”V1/2H;[LtJ,t]><[sz,s]det

u u
< C/ / RNy /28,1 115,57 d5dE < CR#HHT
o Jo

The above estimates for A; and A, yield

u 2
E[(/ jz(t)dt> ] < Ch#H+1,
0

For J3, due to H > 1/3 and Lemma 3.1, it holds

[(/ J5(t dt) ]—04H2E[/ / r2H- 1drdr/ / a’ (X, - 1dvds:|
Lt] 0 Jls]
[r] [v]
—a“HzE[/ / r2A=1dtdr / v2H- 1dsdv}
0

< / / IE ‘a”(X,)a”(XU)]]rz””v”'"dvdr <.
0 0

For J4, recall that

u 2
E[(/ ]4(t)dt)]
0
=02E[< / / n[m,r](rz)n[o,rzl(n)[Dﬁ[a/(xm)]—aa//(xrz)]dRﬁ.rzdr)
0 J[0,1]2
X( / / ImsJ,sl(m)ﬂ[o,m](ra)[Drs[a/(Xu)]—Oa”(Xu)]deds)}
0 J[0,7]2

Define
g : [07 T]Z i R’ (rlv r2) i gr1,r2 = ]l[O,rz](r1)|:DT1 [a/(XTZ )] - Ga//(sz):I.

Due to the boundedness of the third order derivative of q, it follows from Cass and Lim (2019, Section 6) and Lemma 2.3

that g and R have complementary regularity almost surely, and E[|||g||| ] < C. Using Lemmas 2.1 and 3.2, as well

v1/B;[0,T)2
8
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as the formulation

u
/ / L) o) Dy [aX,)] = 0a'(X;)|aR, e
(0,712

/ /{; - Lyie),e0(r2) 110, (611(F1)&ry, rp ARy, dE +/ / Lye),e1(r2 ) e),6(T1)8ry ARy 1y AE,

we get

u 2
IE[(/O ]4(t)dt> ] < Ch*,

which completes the proof. O

Corollary 3.1. LetH € (% 2) Assume that a(x) = Ax with a constant A. Then it holds
( sup E|X, — < chi+s,
t€l0,T]

where X solves (1) and Y is given by the Euler scheme (2).

Proof. Since a(x) = Ax, the second derivative of a vanishes. Repeating the proof of Theorem 1.1, we have

u 2 u 5
EI:(/(; ]1(t)dt> ] +E|:</(; fz(t)dt) :| < cp2A+

and J3 = J4, = 0. Then the result is obtained. O

Remark 3.1. In the case of H > % the framework for Malliavin calculus holds with R being more regular and we refer
to Dai and Xiao (2021), Hong et al. (2020, 2021), Hu et al. (2016), Kloeden et al. (2011) and references therein for the
analysis on numerical schemes.
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