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An Inverse Random Source Problem for the Biharmonic Wave Equation∗
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Abstract. This paper is concerned with an inverse source problem for the stochastic biharmonic wave equation.
The driven source is assumed to be a microlocally isotropic Gaussian random field with its covariance
operator being a classical pseudo-differential operator. The well-posedness of the direct problem is
examined in the distribution sense, and the regularity of the solution is discussed for the given
rough source. For the inverse problem, the strength of the random source, involved in the principal
symbol of its covariance operator, is shown to be uniquely determined by a single realization of
the magnitude of the wave field averaged over the frequency band with probability one. Numerical
experiments are presented to illustrate the validity and effectiveness of the proposed method for the
case that the random source is white noise.
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1. Introduction. As one of the important research subjects in inverse scattering theory,
inverse source problems for wave propagation have diverse scientific and industrial applica-
tions such as antenna design and synthesis and medical imaging [11]. They have continuously
attracted much attention of many researchers. We refer the reader to [4] and the references
cited therein for some recent advances on this topic. Meanwhile, the study on boundary value
problems for higher-order elliptic operators has generated sustained interest in the mathe-
matics community [7]. The biharmonic operator, which arises from the modeling of elasticity,
appears to be a natural candidate for such a study [23, 24]. Recently, scattering problems
for biharmonic waves have attracted great attention due to important applications in thin
plate elasticity. For instance, they are fundamental to an understanding of wave propagation
through very large floating structures, which can be used as artificial breakwaters to control
destructive surface waves [26]. The design of platonic diffraction gratings and arrays can be
utilized to steer and disperse flexural waves [22]. Ultrabroadband elastic cloaking in thin
plates can be achieved by constructing a multilayered concentric coating filled with piece-
wise constant isotropic elastic material [6]. Compared with inverse problems involving second
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950 PEIJUN LI AND XU WANG

order differential operators, inverse problems for the biharmonic operator are much less stud-
ied. The reason is not only the increase of the order, which leads to the failure of the methods
developed for the second order equations, but also the fact that the properties of the solutions
for the higher-order equations are more sophisticated. Some of the inverse boundary value
problems for the biharmonic operator can be found in [8, 12, 20, 25, 27].

In practice, there are many uncertainties caused by, e.g., the unpredictability of the en-
vironment, incomplete knowledge of the system, or fine-scale spatial or temporal variations,
which cannot be neglected during analysis or simulation. To take account of uncertainties,
it would be necessary to introduce random parameters to the mathematical modeling. Sto-
chastic inverse problems are inverse problems that involve randomness. Compared to their
deterministic counterparts, stochastic inverse problems are more difficult due to the following
two extra challenges: the random parameter is sometimes too rough to exist pointwisely and
can only be interpreted as a distribution; and the statistics such as the average and variance
of the random parameter need to be reconstructed. Apparently, new methodology needs to
be developed for both the direct and inverse problems in stochastic settings.

In this paper, we consider an inverse source problem for the biharmonic wave equation

∆2u− k4u = f in Rd,(1.1)

where d = 2 or 3 and k > 0 is the wavenumber. The wave field u and its Laplacian ∆u are
required to satisfy the Sommerfeld radiation condition

lim
r→∞

r
d−1

2 (∂ru− iku) = lim
r→∞

r
d−1

2 (∂r∆u− ik∆u) = 0, r = |x|.(1.2)

The source f is assumed to be a microlocally isotropic Gaussian random field of order −m
(cf. Definition 2.1) such that its covariance operator is a classical pseudo-differential oper-
ator with principal symbol µ(x)|ξ|−m, where µ is called the strength of the random source
f . This type of random field belongs to the generalized fractional Gaussian random fields
(cf. [17]).

For the white noise case with m = 0, the random source can be written as f =
√
µẆ ,

where Ẇ denotes the white noise. Then the biharmonic wave equation (1.1) is interpreted
as a stochastic partial differential equation driven by an additive white noise. We refer the
reader to [2] and [3] for the inverse random source problem of the acoustic and elastic wave
equations, respectively, where the strength µ is shown to be uniquely determined by the
variance of the wave field at multiple frequencies. Recently, the microlocally isotropic Gaussian
random field with a general m has been studied widely (cf. [5, 9, 15, 17]). For the case
m ∈ [d, d + 1

2), it was shown in [15] for both the acoustic and elastic wave equations that
the strength µ is uniquely determined almost surely by a single realization of the amplitude
of the scattering field averaged over the frequency band. In [17] and [18], these results are
extended to rougher sources with m ∈ (d − 2, d] for the acoustic and electromagnetic wave
equations. However, the existing works do not contain the case m = 0 for d = 2, 3. To the
best of our knowledge, little is known about stochastic inverse problems on higher-order wave
equations. This is the first study on the inverse random source problem of the biharmonic wave
equation.
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AN INVERSE RANDOM SOURCE PROBLEM 951

In this paper, we intend to examine both the direct and inverse source problems for
the biharmonic wave equation. Particular attention is paid to the rough source with m ≤
d. We show that the direct problem is well-posed with m ∈ (d − 6, d] in the distribution
sense (cf. Theorem 3.2). This work includes the white noise case m = 0 and even rougher
cases m < 0 for both two- and three-dimensional problems. For the inverse problem, we
prove that the strength µ of the random source is uniquely determined almost surely by a
single realization of the magnitude of the wave field u averaged over the frequency band (cf.
Theorems 4.2 and 4.5), which is the main result of the work and is summarized in the following
theorem.

Theorem 1.1. Let f be a centered microlocally isotropic Gaussian random field of order
−m in a bounded domain D ⊂ Rd with m ∈ (d− 6, d] and d = 2, 3, and U ⊂ Rd be a bounded
domain that has a positive distance to D, i.e., dist (D,U) = r0 > 0. For any x ∈ U , it holds
almost surely that

lim
T→∞

1

T

∫ 2T

T
km+7−d|u(x; k)|2dk =

1

16(2π)d−1

∫
D

1

|x− ζ|d−1
µ(ζ)dζ =: Td(x).

Moreover, the strength µ can be uniquely determined by data {Td(x)}x∈U .

The paper is organized as follows. In section 2, we introduce the regularity and kernel
functions of microlocally isotropic Gaussian random fields, as well as the fundamental solution
to the biharmonic wave equation. Section 3 addresses the well-posedness of the direct problem
and the regularity of the solution. Section 4 is devoted to the inverse problem, where the
uniqueness is obtained. Numerical experiments are presented in section 5 for the white noise
case to illustrate the theoretical results. The paper is concluded with some general remarks
and future work in section 6.

2. Preliminaries. In this section, we introduce some basic properties of microlocally iso-
tropic Gaussian random fields and the fundamental solution to the biharmonic operator wave
equation, which are essential for the study of both the direct and inverse problems.

2.1. Microlocally isotropic Gaussian random fields. Denote by D(Rd) the space of test
functions, which is C∞0 (Rd) equipped with a convex topology, and by D′(Rd) the dual space
of D(Rd), which is known as the Schwartz distribution space. In the following, we use the
notation D := D(Rd) and D′ := D′(Rd) for convenience.

For a random field f ∈ D′, its covariance operator Qf : D → D′ is defined by

〈Qfϕ,ψ〉 := E[〈f, ϕ〉〈f, ψ〉] ∀ ϕ,ψ ∈ D,

where 〈·, ·〉 is the dual product between D and D′.
If Qf is a classical pseudo-differential operator of order −m, then it can be defined through

its symbol σ ∈ S−m(Rd × Rd) by

(Qfϕ)(x) :=
1

(2π)d

∫
Rd
eix·ξσ(x, ξ)ϕ̂(ξ)dξ,(2.1)

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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952 PEIJUN LI AND XU WANG

where

S−m(Rd × Rd) :=
{
a(x, ξ) ∈ C∞(Rd × Rd) : |∂αξ ∂βz a(x, ξ)| ≤ Cα,β(1 + |ξ|)−m−|α|

}
is the space of symbols of order −m, and α, β are multi-indices whose length is defined by
|α| :=

∑d
j=1 αj for any multi-index α = (α1, . . . , αd).

By the Schwartz kernel theorem, the Schwartz kernel Kf ∈ D′(Rd × Rd) of Qf satisfies

〈Qfϕ,ψ〉 = 〈Kf , ψ ⊗ ϕ〉 ∀ ϕ,ψ ∈ D,

which implies

(Qfϕ)(x) =

∫
Rd
Kf (x, y)ϕ(y)dy.(2.2)

Combining (2.1) and (2.2) yields that Kf can be represented in terms of its symbol σ as an
oscillatory integral (cf. [10, 17])

Kf (x, y) =
1

(2π)d

∫
Rd
ei(x−y)·ξσ(x, ξ)dξ =

1

(2π)d
σ̂(x, y − x),

where σ̂(x, y−x) is the Fourier transform of σ(x, ξ) with respect to ξ taking the value at y−x.

Definition 2.1. A Gaussian random field f is said to be microlocally isotropic of order −m
in D ⊂ Rd if its covariance operator Qf is a classical pseudo-differential operator of order
−m and its principal symbol has the form µ(x)|ξ|−m with µ ∈ C∞0 (D) and µ ≥ 0, where µ is
called the strength of the random field f .

The regularity of the random field f is determined by the principal symbol of the pseudo-
differential operatorQf . To investigate the regularity of f , we consider the fractional Gaussian
random field (cf. [17, 21]) f̃ :=

√
µ(−∆)−

m

4 Ẇ . The regularity of f̃ is relatively easy to get since
the regularity of the white noise has already been investigated. It is shown in Proposition 2.5
of [17] that f̃ satisfies Assumption 2.3 and has the principal symbol µ(x)|ξ|−m. Consequently,
the microlocally isotropic Gaussian random field f has the same regularity as f̃ . The result
is stated in the following lemma, whose proof can be found in Lemma 2.6 of [17].

Lemma 2.2. Let f be a microlocally isotropic Gaussian random field of order −m in
D ⊂ Rd.

(i) If m ∈ (d, d+ 2), then f ∈ C0,α(D) almost surely for all α ∈ (0, m−d2 ).

(ii) If m ∈ (−∞, d], then f ∈W
m−d

2
−ε,p(D) almost surely for all ε > 0 and p > 1.

By the above lemma, if m ∈ (d, d + 2), then f is almost surely Hölder continuous and
is relatively smooth. If m ≥ d + 2, f is even smoother. The recovery of smooth random
sources can follow approaches developed for the deterministic case, which is not the scope of
this work. We mainly focus on the rougher case where f satisfies the following assumption.

Assumption 2.3. Assume that the random source f is a centered microlocally isotropic
Gaussian random field of order −m in a bounded domain D ⊂ Rd with strength µ ∈ C∞0 (D),
µ ≥ 0, and m ∈ (d− 6, d].

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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AN INVERSE RANDOM SOURCE PROBLEM 953

According to the relationship between f and f̃ , the leading term in the Schwartz kernel
of f is the same as the one of f̃ . Based on the expression of the kernel of f̃ given in Theorem
3.3 of [21], we have the following explicit expression for the kernel Kf .

Lemma 2.4. Let f be a microlocally isotropic Gaussian random field of order −m in
D ⊂ Rd with strength µ. Denote by H := m−d

2 the general Hurst parameter.

(i) If H is a nonnegative integer, then

Kf (x, y) = C1(m, d)µ(x)|x− y|2H ln |x− y|+ r(x, y),

where C1(m, d) = (−1)H+12−m+1π−
d

2 /(H!Γ(m2 )) with Γ(·) being the Gamma function,
and r(x, y) denotes the residual which is more regular than the leading term.

(ii) If H is not a nonnegative integer and m > 0, then

Kf (x, y) = C2(m, d)µ(x)|x− y|2H + r(x, y),

where C2(m, d) = 2−mπ−
d

2 Γ(−H)/Γ(m2 ).
(iii) If H is not a nonnegative integer and m ∈ (−2n− 2,−2n) with n being a nonnegative

integer, then

Kf (x, y) = C2(m, d)µ(x)|x− y|2H
1−

n∑
j=0

|x− y|2jcj∆jδ(x− y)

+ r(x, y),

where c0 = 1 and

cj =
Ad

2jj!d(d+ 2) · · · (d+ 2j − 2)

for j ≥ 1 with Ad = 2π
d

2 /Γ(d2) being the surface area of the unit sphere in Rd, and
δ(·) is the Dirac delta function centered at 0.

(iv) If H is not a nonnegative integer and m = −2n with n being a nonnegative integer,
then

Kf (x, y) = µ(x)(−∆)nδ(x− y) + r(x, y).

Remark 2.5. In cases (iii) and (iv) of Lemma 2.4, all the partial derivatives for the Dirac
delta function should be interpreted as distributions, and hence the kernels Kf in these cases
should also be interpreted as distributions (cf. [13]). More precisely, by assuming r(x, y) ≡ 0
without loss of generality,, Kf given in (iii) and (iv) satisfies∫

Rd

∫
Rd
Kf (x, y)ϕ(x)ψ(y)dxdy

= C2(m, d)

∫
Rd

∫
Rd
µ(x)|x− y|2H

ϕ(x)ψ(y)−
n∑
j=0

cj |x− y|2jϕ(x)∆jψ(x)

 dxdy
and ∫

Rd

∫
Rd
Kf (x, y)ϕ(x)ψ(y)dxdy =

∫
Rd
µ(x)ϕ(x)(−∆)nψ(x)dx,

respectively, for any test functions ϕ,ψ ∈ D.

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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954 PEIJUN LI AND XU WANG

2.2. The fundamental solution. Denote by Φ(x, y, k) the outgoing fundamental solution
to the biharmonic wave operator L = ∆2 − k4 such that

∆2Φ(x, y, k)− k4Φ(x, y, k) = −δ(x− y) in Rd,(2.3)

where δ is the Dirac delta distribution. The expression of Φ can be obtained via two different
approaches.

Since the biharmonic wave operator can be written as the product of the Helmholtz and
modified Helmholtz operators, i.e., L = (∆ − k2)(∆ + k2), the fundamental solution Φ is a
linear composition of the fundamental solutions to the Helmholtz equation (∆ +k2)u = 0 and
the modified Helmholtz equation (∆− k2)u = 0, respectively. Hence, it can be shown that Φ
takes the following form (cf. [25]):

Φ(x, y, k) =
i

8k2

(
k

2π|x− y|

) d−2

2
(
H

(1)
d−2

2

(k|x− y|) +
2i

π
K d−2

2
(k|x− y|)

)
,

where H
(1)
ν is the Hankel function of the first kind and order ν ∈ R, and

Kν(z) =
π

2
iν+1H(1)

ν (iz), −π < arg z ≤ π

2
,(2.4)

is the Macdonald function of order ν ∈ R. More precisely, we have

Φ(x, y, k) =

{
i

8k2

(
H

(1)
0 (k|x− y|)−H(1)

0 (ik|x− y|)
)
, d = 2,

1
8πk2|x−y|

(
eik|x−y| − e−k|x−y|

)
, d = 3,

(2.5)

where we use the fact H
(1)
1

2

(z) =
√

2
πz

eiz

i .

The fundamental solution Φ may also be derived from the Fourier transform. Let

Φk(x) := F−1

[
−1

|ξ|4 − k4

]
(x),(2.6)

where F−1 denotes the inverse Fourier transform. Taking the Fourier transform of (2.3) gives
that Φk(x− y) also satisfies (2.3) and hence Φk(x− y) = Φ(x, y, k).

3. The direct problem. In this section, we examine the well-posedness of the direct prob-
lem (1.1)–(1.2). The basic idea is to derive an equivalent integral equation, which will also be
used in the recovery of the strength for the random source.

Define the volume potential

Hk(φ)(x) := −
∫
Rd

Φ(x, y, k)φ(y)dy = −(Φk ∗ φ)(x),

where ∗ denotes the convolution of Φk and φ.

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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AN INVERSE RANDOM SOURCE PROBLEM 955

Lemma 3.1. Let B and G be two bounded domains in Rd. The operator Hk : H−s1(B)→
Hs2(G) is bounded and satisfies

‖Hk‖L(H−s1 (B),Hs2 (G)) .
1

k3−s

for s := s1 + s2 ∈ (0, 3) with s1, s2 ≥ 0.

Proof. For any φ ∈ C∞0 (B) and ψ ∈ C∞0 (G), we still denote by φ and ψ the zero
extensions to Rd \B and Rd \G, respectively. Then

〈Hkφ, ψ〉 = 〈Ĥkφ, ψ̂〉 =

∫
Rd

1

|ξ|4 − k4
φ̂(ξ)ψ̂(ξ)dξ

=

∫
Ω1

(1 + |ξ|2)
s

2

|ξ|4 − k4
Ĵ −s1φ(ξ)Ĵ −s2ψ(ξ)dξ +

∫
Ω2

(1 + |ξ|2)
s

2

|ξ|4 − k4
Ĵ −s1φ(ξ)Ĵ −s2ψ(ξ)dξ

=: A + B,

where φ̂ = F [φ] is the Fourier transform of φ,

Ω1 :=

{
ξ ∈ Rd : ||ξ| − k| > k

2

}
=

{
ξ ∈ Rd : |ξ| > 3k

2
or |ξ| < k

2

}
,

Ω2 :=

{
ξ ∈ Rd : ||ξ| − k| < k

2

}
=

{
ξ ∈ Rd :

k

2
< |ξ| < 3k

2

}
,

and J s : S(Rd)→ S(Rd) is the Bessel potential of order s ∈ R defined by (cf. [19])

J sφ := (I −∆)
s

2φ = F−1
[
(1 + | · |2)

s

2 φ̂
]
∀ φ ∈ S(Rd)

with S(Rd) being the Schwartz space of all rapidly decreasing smooth functions.
For any s ∈ (0, 3

2), the term A satisfies

|A | ≤
∫

Ω1

(1 + |ξ|2)
s

2

||ξ| − k|(|ξ|+ k)(|ξ|2 + k2)
|Ĵ −s1φ||Ĵ −s2ψ|dξ

.
1

k

∫
{|ξ|> 3k

2
}∪{|ξ|< k

2
}

(1 + |ξ|2)
s

2

(|ξ|+ k)(|ξ|2 + k2)
|Ĵ −s1φ||Ĵ −s2ψ|dξ

.
1

k

∫
{|ξ|> 3k

2
}

1

|ξ|3−s
|Ĵ −s1φ||Ĵ −s2ψ|dξ +

1

k

∫
{|ξ|< k

2
}

1

k3−s |Ĵ
−s1φ||Ĵ −s2ψ|dξ

.
1

k4−s ‖φ‖H−s1 (B)‖ψ‖H−s2 (G).

To estimate the term B, we use the change of variables ξ∗ = (2k
|ξ| − 1)ξ, which maps the

domain Ω21 := {ξ : k
2 < |ξ| < k} to the domain Ω22 := {ξ : k < |ξ| < 3k

2 } and has the

Jacobian J(ξ) = | det(∂ξ
∗

∂ξ )| = (2k
|ξ| − 1)d−1. Then the term B satisfies

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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956 PEIJUN LI AND XU WANG

B =

∫
Ω21∪Ω22

(1 + |ξ|2)
s

2

|ξ|4 − k4
Ĵ −s1φ(ξ)Ĵ −s2ψ(ξ)dξ

=

∫
Ω21

(1 + |ξ|2)
s

2

|ξ|4 − k4
Ĵ −s1φ(ξ)Ĵ −s2ψ(ξ)dξ

+

∫
Ω21

(1 + |ξ∗|2)
s

2

|ξ∗|4 − k4
Ĵ −s1φ(ξ∗)Ĵ −s2ψ(ξ∗)J(ξ)dξ

=

∫
Ω21

[
1

|ξ|4 − k4
+

J(ξ)

|ξ∗|4 − k4

]
(1 + |ξ|2)

s

2 Ĵ −s1φ(ξ)Ĵ −s2ψ(ξ)dξ

+

∫
Ω21

J(ξ)

|ξ∗|4 − k4

[
(1 + |ξ∗|2)

s

2 Ĵ −s1φ(ξ∗)Ĵ −s2ψ(ξ∗)

+(1 + |ξ|2)
s

2 Ĵ −s1φ(ξ)Ĵ −s2ψ(ξ)
]
dξ

=

∫
Ω21

[
1

|ξ|4 − k4
+

J(ξ)

|ξ∗|4 − k4

]
(1 + |ξ|2)

s

2 Ĵ −s1φ(ξ)Ĵ −s2ψ(ξ)dξ

+

∫
Ω21

J(ξ)

|ξ∗|4 − k4

[
(1 + |ξ∗|2)

s

2 − (1 + |ξ|2)
s

2

]
Ĵ −s1φ(ξ)Ĵ −s2ψ(ξ)dξ

+

∫
Ω21

J(ξ)

|ξ∗|4 − k4
(1 + |ξ∗|2)

s

2

[
Ĵ −s1φ(ξ∗)− Ĵ −s1φ(ξ)

]
Ĵ −s2ψ(ξ)dξ

+

∫
Ω21

J(ξ)

|ξ∗|4 − k4
(1 + |ξ∗|2)

s

2 Ĵ −s1φ(ξ∗)
[
Ĵ −s2ψ(ξ∗)− Ĵ −s2ψ(ξ)

]
dξ

=: B1 + B2 + B3 + B4.

Note that∣∣∣∣ 1

|ξ|4 − k4
+

J(ξ)

|ξ∗|4 − k4

∣∣∣∣
=

∣∣∣∣ 1

(|ξ| − k)(|ξ|+ k)(|ξ|2 + k2)
+

2k − |ξ|
|ξ|(k − |ξ|)(3k − |ξ|)(|ξ|2 − 4k|ξ|+ 5k2)

∣∣∣∣
=

∣∣∣∣ 2k(3|ξ|2 − 6k|ξ|+ k2)

|ξ|(|ξ|+ k)(|ξ|2 + k2)(3k − |ξ|)(|ξ|2 − 4k|ξ|+ 5k2)

∣∣∣∣ . 1

k4

if d = 2, and∣∣∣∣ 1

|ξ|4 − k4
+

J(ξ)

|ξ∗|4 − k4

∣∣∣∣
=

∣∣∣∣ 1

(|ξ| − k)(|ξ|+ k)(|ξ|2 + k2)
+

(2k − |ξ|)2

|ξ|2(k − |ξ|)(3k − |ξ|)(|ξ|2 − 4k|ξ|+ 5k2)

∣∣∣∣
=

∣∣∣∣ −2(|ξ|4 − 4k|ξ|3 + 5k2|ξ|2 − 2k3|ξ| − 2k4)

|ξ|2(|ξ|+ k)(|ξ|2 + k2)(3k − |ξ|)(|ξ|2 − 4k|ξ|+ 5k2)

∣∣∣∣ . 1

k4

if d = 3, which leads to

|B1| .
1

k4−s ‖φ‖H−s1 (B)‖ψ‖H−s2 (G).
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AN INVERSE RANDOM SOURCE PROBLEM 957

For the term B2, since∣∣∣∣ J(ξ)

|ξ∗|4 − k4

[
(1 + |ξ∗|2)

s

2 − (1 + |ξ|2)
s

2

]∣∣∣∣
=

∣∣∣∣ (2k − |ξ|)d−1(|ξ∗|2 − |ξ|2)

|ξ|d−1(k − |ξ|)(3k − |ξ|)(|ξ|2 − 4k|ξ|+ 5k2)
s(1 + θ|ξ∗|2 + (1− θ)|ξ|2)s−1

∣∣∣∣
=

∣∣∣∣ 2(2k − |ξ|)d−1(|ξ∗|+ |ξ|)
|ξ|d−1(3k − |ξ|)(|ξ|2 − 4k|ξ|+ 5k2)

s(1 + θ|ξ∗|2 + (1− θ)|ξ|2)s−1

∣∣∣∣ . 1

k4−s

for some θ ∈ (0, 1), we then get

|B2| .
1

k4−s ‖φ‖H−s1 (B)‖ψ‖H−s2 (G).

For the term B3, it holds that (see Theorem 3.2 of [19])

|B3| ≤
∫

Ω21

∣∣∣∣J(ξ)(1 + |ξ∗|2)
s

2 (|ξ∗| − |ξ|)
|ξ∗|4 − k4

∣∣∣∣
×
∣∣∣M(|∇Ĵ −s1φ|)(ξ∗) +M(|∇Ĵ −s1φ|)(ξ)

∣∣∣ ∣∣∣Ĵ −s2ψ(ξ)
∣∣∣ dξ

=

∫
Ω21

∣∣∣∣ 2(2k − |ξ|)d−1(1 + |ξ∗|2)
s

2

|ξ|d−1(3k − |ξ|)(|ξ|2 − 4k|ξ|+ 5k2)

∣∣∣∣
×
∣∣∣M(|∇Ĵ −s1φ|)(ξ∗) +M(|∇Ĵ −s1φ|)(ξ)

∣∣∣ ∣∣∣Ĵ −s2ψ(ξ)
∣∣∣ dξ

.
1

k3−s ‖φ‖H−s1 (B)‖ψ‖H−s2 (G),

where M(f) is the Hardy–Littlewood maximal function of f . The term B4 can be estimated
similarly.

Combining the above estimates, we conclude for s ∈ (0, 3) that

|〈Hkφ, ψ〉| .
1

k3−s ‖φ‖H−s1 (B)‖ψ‖H−s2 (G) ∀ φ ∈ C∞0 (B), ψ ∈ C∞0 (G).

The proof is completed by extending the above result to φ ∈ H−s1(B) and ψ ∈ H−s2(G) based

on the facts that C∞0 (B) is dense in L2(B) and H−s1(B) = L2(B)
‖·‖

H−s1 (B) .

Theorem 3.2. Let f satisfy Assumption 2.3. Then the problem (1.1) – (1.2) admits a
unique solution

u(x; k) = −
∫
D

Φ(x, y, k)f(y)dy(3.1)

in the distribution sense such that u ∈ W γ,q
loc (Rd) almost surely for any q > 1 and 0 < γ <

min{6−d+m
2 , 6−d+m

2 + (1
q −

1
2)d}.

Proof. The uniqueness can be proved similarly to the deterministic case given in [20]. It
then suffices to show the existence and regularity of the solution.
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958 PEIJUN LI AND XU WANG

We first prove that the random field u defined in (3.1) is a solution of (1.1)–(1.2) in the
distribution sense. In fact, for any test function v ∈ D, it holds that

〈∆2u− k4u, v〉 = −
〈∫

Rd
(∆2 − k4)Φ(·, y, k)f(y)dy, v

〉
=

〈∫
Rd
δ(· − y)f(y)dy, v

〉
= 〈f, v〉.

Hence, u = Hkf satisfies (1.1) in the distribution sense, where f ∈ W
m−d

2
−ε,p(D) with m ∈

(d − 6, d] for any ε > 0 and p > 1 according to Lemma 2.2. Note that (d−m2 , 3) 6= ∅ since
m > d− 6 according to Assumption 2.3. Then for any s1 ∈ (d−m2 , 3) and p ≥ 2, the condition
1
2 >

1
p −

m−d
2
−ε+s1
d is satisfied, and hence the embedding

W
m−d

2
−ε,p(D) ↪→ H−s1(D)

is continuous according to the Kondrachov embedding theorem.
For any bounded domain G ⊂ Rd with a C1-boundary, it follows from Lemma 3.1 that

Hk : H−s1(D) → Hs2(G) is bounded for any positive s2 < 3 − s1 < 6−d+m
2 . Choosing

s1 = d−m+ε
2 and s2 = 6−d+m

2 − ε for a sufficiently small ε > 0, then parameters γ and q given
in the theorem satisfy γ < s2 and 1

q >
1
2 −

s2−γ
d such that the embedding

Hs2(G) ↪→W γ,q(G)

is also continuous. We then conclude that Hk is bounded from W
m−d

2
−ε,p(D) to W γ,q(G) with

p ≥ 2, and hence u = Hkf ∈W γ,q(G), which completes the proof.

It is easy to verify that the solution u = Hkf obtained above is a linear combination of
the solutions to the second order differential equations ∆u±k2u = f . In fact, we may rewrite
the fundamental solution Φ as

Φ(x, y, k) =
1

2k2
Φ+(x, y, k)− 1

2k2
Φ−(x, y, k),

where

Φ+(x, y, k) :=
i

4

(
k

2π|x− y|

) d−2

2

H
(1)
d−2

2

(k|x− y|),

Φ−(x, y, k) :=
1

2π

(
k

2π|x− y|

) d−2

2

K d−2

2
(k|x− y|)

are Green’s functions to the second order linear operators ∆± k2 and satisfy

∆Φ±(x, y, k)± k2Φ±(x, y, k) = −δ(x− y) in Rd.

Then

v± := −
∫
Rd

Φ±(x, y, k)φ(y)dy

are solutions of the equations ∆v± ± k2v± = f such that

u =
1

2k2
(v+ − v−).(3.2)

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/1

8/
22

 to
 1

28
.2

10
.1

07
.1

30
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



AN INVERSE RANDOM SOURCE PROBLEM 959

4. The inverse problem.In this section, we study the inverse source problem, which is to
determine the strength µ of the random source f based on some proper data of the wave field u.
Let U ⊂ Rd be the measurement domain, which is bounded and satisfies dist(D,U) = r0 > 0.

In the following, we begin with the discussion on the three-dimensional problem and then
proceed to the more involved two-dimensional problem.

4.1. The three-dimensional case. For the case d = 3 and m ∈ (−3, 3], it follows from
Assumption 2.3 and (2.5) that the distributional solution (3.1) has the form

u(x; k) = − 1

8πk2

∫
D

eik|x−y| − e−k|x−y|

|x− y|
f(y)dy.(4.1)

Before introducing the framework of the inverse problem for a general order m, we first study
a special case with order m = 0. Consider a Gaussian random field f =

√
µẆ generated by

the white noise Ẇ . It is easy to verify that f is microlocally isotropic of order m = 0 with
symbol σ(x, ξ) = µ(x). The Itô isometry can be used in this case to recover the strength µ.
In fact, by noting that

E|u(x; k)|2 =
1

64π2k4
E
∣∣∣∣∫
D

eik|x−y| − e−k|x−y|

|x− y|
√
µ(y)dW (y)

∣∣∣∣2
=

1

64π2k4

∫
D

1− 2 cos(k|x− y|)e−k|x−y| + e−2k|x−y|

|x− y|2
µ(y)dy,

we get the recovery formula

lim
k→∞

k4E|u(x; k)|2 =
1

64π2

∫
D

1

|x− y|2
µ(y)dy,(4.2)

where µ can be uniquely determined by the integral on the right-hand side for all x ∈ U .
For the general order case, the Itô isometry is not available if m 6= 0, and hence some

other technique is required to deal with the correlation of the random source f . Moreover,
in (4.2), a huge number of realizations is required to approximate the expectation involved in
the high frequency data on the left-hand side.

To deduce the recovery result based on the data from a single realization almost surely
and get a more efficient recovery result for the general order case, the decay property of the
solution with respect to the frequency is needed. According to the linear combination (3.2),
the required decay property of the solution u can be obtained based on an analogue of the
ergodicity in the frequency domain of v+ (cf. [15]) and the exponential decay property of v−,
which is stated in the following lemma.

Lemma 4.1. Let f satisfy Assumption 2.3 with d = 3. For k1, k2 ≥ 1, it holds uniformly
for x ∈ U that

|E[u(x; k1)u(x; k2)]| . k−2
1 k−2

2

[
(k1 + k2)−m(1 + |k1 − k2|)−M1 + k−M2

1 + k−M2

2

]
,(4.3)

|E [u(x; k1)u(x; k2)]| . k−2
1 k−2

2

[
(k1 + k2)−M1(1 + |k1 − k2|)−m + k−M2

1 + k−M2

2

]
,(4.4)

where M1,M2 > 0 are arbitrary integers. In particular, if k1 = k2 = k, then
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960 PEIJUN LI AND XU WANG

E|u(x; k)|2 =

[
1

64π2

∫
D

1

|x− ζ|2
µ(ζ)dζ

]
k−m−4 +O(k−m−5) as k →∞.(4.5)

Proof. According to (4.1), we get

E[u(x; k1)u(x; k2)]

=
1

64π2k2
1k

2
2

∫
D

∫
D

eik1|x−y| − e−k1|x−y|

|x− y|
e−ik2|x−z| − e−k2|x−z|

|x− z|
E[f(y)f(z)]dydz

=
1

64π2k2
1k

2
2

∫
D

∫
D

ei(k1|x−y|−k2|x−z|)

|x− y||x− z|
Kf (y, z)dydz

− 1

64π2k2
1k

2
2

∫
D

∫
D

eik1|x−y|−k2|x−z| + e−k1|x−y|−ik2|x−z|

|x− y||x− z|
Kf (y, z)dydz

+
1

64π2k2
1k

2
2

∫
D

∫
D

e−k1|x−y|−k2|x−z|

|x− y||x− z|
Kf (y, z)dydz

=: I1(x; k1, k2) + I2(x; k1, k2) + I3(x; k1, k2).

The first term I1 has been estimated in Lemma A.1 of [16] and satisfies

|I1(x; k1, k2)| . k−2
1 k−2

2 (k1 + k2)−m(1 + |k1 − k2|)−M1(4.6)

and

I1(x; k, k) =
1

64π2k4

[(∫
D

1

|x− ζ|
µ(ζ)dζ

)
k−m +O(k−m−1)

]
=

[
1

64π2

∫
D

1

|x− ζ|2
µ(ζ)dζ

]
k−m−4 +O(k−m−5),(4.7)

where M1 > 0 is an arbitrary integer.
The other two terms can be estimated by utilizing Lemma 2.4 and the exponential decay

property of the integrant, i.e., e−k1|x−y| ≤ k−M2

1 for any M2 > 0 since |x−y| is bounded below
and above for any x ∈ U and y ∈ D. Without loss of generality, we only consider the leading
term in the kernel function Kf since the residual r is more regular than the corresponding
leading term. For d = 3, we get m ∈ (−3, 3] according to Assumption 2.3. We take the term
I2 as an example, whose estimate is given separately for different cases of m.

(i) The case m ∈ (0, 3]. By Lemma 2.4, it holds that

Kf (y, z) =

{
C1(m, 3)µ(y) ln |y − z|, m = 3,

C2(m, 3)µ(y)|y − z|m−3, m ∈ (0, 3),

and hence
∫
D

∫
D |Kf (y, z)|dydz < ∞ due to the boundedness of the domain D. Then the

term I2 satisfies

|I2(x; k1, k2)| . k−2
1 k−2

2

∫
D

∫
D

e−k2|x−z| + e−k1|x−y|

|x− y||x− z|
|Kf (y, z)|dydz

. k−2
1 k−2

2

(
k−M2

1 + k−M2

2

)
,

where M2 > 0 is an arbitrary integer.
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AN INVERSE RANDOM SOURCE PROBLEM 961

(ii) The case m = 0. We get from Lemma 2.4(iv) with n = 0 that Kf (y, z) = µ(y)δ(y−z),
which leads to

|I2(x; k1, k2)| =
∣∣∣∣ 1

64π2k2
1k

2
2

∫
D

e(ik1−k2)|x−y| + e(−k1−ik2)|x−y|

|x− y|2
dy

∣∣∣∣ . k−2
1 k−2

2

(
k−M2

1 + k−M2

2

)
with M2 > 0 being an arbitrary integer.

(iii) The case m ∈ (−2, 0). Utilizing Lemma 2.4(iii) with n = 0 and Remark 2.5, we get

|I2(x; k1, k2)| ≤ |C2(m, 3)|
64π2k2

1k
2
2

∣∣∣∣∫
D

∫
D

eik1|x−y|

|x− y|

(
e−k2|x−z|

|x− z|
− e−k2|x−y|

|x− y|

)
µ(y)|y − z|m−3dydz

∣∣∣∣
+
|C2(m, 3)|
64π2k2

1k
2
2

∣∣∣∣∫
D

∫
D

e−k1|x−y|

|x− y|

(
e−ik2|x−z|

|x− z|
− e−ik2|x−y|

|x− y|

)
µ(y)|y − z|m−3dydz

∣∣∣∣ .
Since the estimates are the same for the two terms on the right-hand side of the above

inequality, to estimate the term I2, it suffices to estimate the integral

I(x, y) :=

∫
D

(
e−k2|x−z|

|x− z|
− e−k2|x−y|

|x− y|

)
|y − z|m−3dz =

∫
D−{y}

(Fx(y + z̃)− Fx(y)) |z̃|m−3dz̃

for x ∈ U and y ∈ D, where

Fx(z) :=
e−k2|x−z|

|x− z|
.

It is clear to note that Fx is smooth in D and its derivatives decay exponentially. Define

F̃x(y, r) =
1

A3

∫
|z̃|=r

Fx(y + z̃)ds(z̃),

where A3 is the surface area of the unit sphere in R3 given in Lemma 2.4 and R∗ :=
maxy,z∈D |y − z|. We get from (1.1.5) of [13]that

|I(x, y)| =

∣∣∣∣∣
∫
D−{y}

(Fx(y + z̃)− Fx(y)) |z̃|m−3dz̃

∣∣∣∣∣
=

∣∣∣∣A3

∫ R∗

0

(
F̃x(y, r)− Fx(y)

)
rm−1dr

∣∣∣∣ . k−M2

2 ,

where we use the fact |F̃x(y, r)− Fx(y)| . k−M2

2 r2 based on the Pizzetti formula (cf. [13])

F̃x(y, r) = Fx(y) +
∆Fx(y)

2 · 1!d
r2 + · · ·+ ∆jFx(y)

2jj!d(d+ 2) · · · (d+ 2j − 2)
r2j + · · · as r → 0

and the exponential decay property of Fx.
(iv) The case m = −2. Based on Lemma 2.4(iv) with n = 1 and Remark 2.5, it holds that

|II(x; k1, k2)| = 1

64π2k2
1k

2
2

∣∣∣∣∫
D
µ(y)

(
eik1|x−y|

|x− y|
(−∆y)

e−k2|x−y|

|x− y|
+
e−k1|x−y|

|x− y|
(−∆y)

e−ik2|x−y|

|x− y|

)
dy

∣∣∣∣
. k−2

1 k−2
2

(
k−M2

1 + k−M2

2

)
,
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962 PEIJUN LI AND XU WANG

where we use again the smoothness and exponential decay property of the function e−k2|x−y|

|x−y|
for x ∈ U and y ∈ D.

(v) The case m ∈ (−3,−2). This case can be proved through the same procedure used in
the case (iii) by applying Lemma 2.4(iii) with n = 1 and the Pizzetti formula.

We can now conclude from the above discussions that

|I2(x; k1, k2)| . k−2
1 k−2

2

(
k−M2

1 + k−M2

2

)
.(4.8)

By choosing M2 > m+ 1, we have from the above estimate that

I2(x; k, k) = O(k−m−5).(4.9)

Following estimates similar to those for the term I2, we may show that I3 satisfies

|I3(x; k1, k2)| . k−2−M2

1 k−2−M2

2 . k−2
1 k−2

2

(
k−M2

1 + k−M2

2

)
(4.10)

and

I3(x; k, k) = O(k−m−5).(4.11)

As a result, the estimate (4.3) is proved by combining (4.6), (4.8), and (4.10), and the formula
(4.5) is concluded by using (4.7), (4.9), and (4.11). The proof is completed by noting that
(4.4) can be estimated based on the same procedure as the proof of (4.3).

Theorem 4.2. Let f satisfy Assumption 2.3 with d = 3. For any x ∈ U , it holds almost
surely that

lim
T→∞

1

T

∫ 2T

T
km+4|u(x; k)|2dk =

1

64π2

∫
D

1

|x− ζ|2
µ(ζ)dζ =: T3(x).(4.12)

Moreover, the strength µ can be uniquely recovered by the measurement {T3(x)}x∈U .

Proof. If T3(x) is known for x ∈ U , which is smooth in U , then the strength µ can be
uniquely recovered by solving a deconvolution problem (cf. Theorem 1 of [14], Lemma 3.6 of
[15], or Theorem 4.4 of [17]).

Next, we prove (4.12). It follows from Lemma 4.1 that

lim
T→∞

1

T

∫ 2T

T
km+4E|u(x; k)|2dk =

1

64π2

∫
D

1

|x− ζ|2
µ(ζ)dζ.

It then suffices to show that

lim
T→∞

1

T

∫ 2T

T
Y (x; k)dk = 0(4.13)

almost surely with

Y (x; k) : = km+4
(
|u(x; k)|2 − E|u(x; k)|2

)
= km+4

(
ur(x; k)2 − E[ur(x; k)2]

)
+ km+4

(
ui(x; k)2 − E[ui(x; k)2]

)
(4.14)

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/1

8/
22

 to
 1

28
.2

10
.1

07
.1

30
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



AN INVERSE RANDOM SOURCE PROBLEM 963

being a real-valued random process. Here, ur := <[u] and ui := =[u] denote the real and
imaginary parts of u, respectively. Note that

E
∣∣∣∣ 1

T

∫ 2T

T
Y (x; k)dk

∣∣∣∣2 =
1

T 2

∫ 2T

T

∫ 2T

T
E[Y (x; k1)Y (x; k2)]dk1dk2.

To show (4.13), we only need to show

lim
T→∞

1

T 2

∫ 2T

T

∫ 2T

T
E[Y (x; k1)Y (x; k2)]dk1dk2 = 0.(4.15)

According to (4.14), we get

E[Y (x; k1)Y (x; k2)] = km+4
1 km+4

2 E
[(
ur(x; k1)2 − E[ur(x; k1)2]

) (
ur(x; k2)2 − E[ur(x; k2)2]

)]
+ km+4

1 km+4
2 E

[(
ur(x; k1)2 − E[ur(x; k1)2]

) (
ui(x; k2)2 − E[ui(x; k2)2]

)]
+ km+4

1 km+4
2 E

[(
ui(x; k1)2 − E[ui(x; k1)2]

) (
ur(x; k2)2 − E[ur(x; k2)2]

)]
+ km+4

1 km+4
2 E

[(
ui(x; k1)2 − E[ui(x; k1)2]

) (
ui(x; k2)2 − E[ui(x; k2)2]

)]
=: Y1 + Y2 + Y3 + Y4.

It is shown in Lemma 4.2 of [5] that for two real-valued random variables X and Z with (X,Z)
being a Gaussian random vector and E[X] = E[Z] = 0, it holds that

E[(X2 − EX2)(Z2 − EZ2)] = 2(E[XZ])2.

Note that, for any fixed x ∈ U and k > 1, ur(x; k) and ui(x; k) are both real-valued Gaussian
random variables. Hence, we obtain

Y1 = 2km+4
1 km+4

2 (E[ur(x; k1)ur(x; k2)])2

=
1

2
km+4

1 km+4
2

(
<[E[u(x; k1)u(x; k2)] + E[u(x; k1)u(x; k2)]]

)2
.

The estimate of Y1 is given below for the two different cases (i) m > 0 and (ii) m ≤ 0.
(i) For the case m > 0, by choosing M1 = m in Lemma 4.1, we get

Y1 . km+4
1 km+4

2

(
k−2

1 k−2
2

[
(k1 + k2)−m(1 + |k1 − k2|)−m + k−M2

1 + k−M2

2

])2

. (1 + |k1 − k2|)−2m + k−2M2+m
1 km2 + km1 k

−2M2+m
2 ,(4.16)

where we use the fact km1 k
m
2 (k1 + k2)−2m = ( k1k2

(k1+k2)2 )m ≤ 1. Note that

Y11 :=
1

T 2

∫ 2T

T

∫ 2T

T
(1 + |k1 − k2|)−2mdk1dk2 =

2

T 2

∫ 2T

T

∫ 2T

k2

(1 + k1 − k2)−2mdk1dk2.

If m = 1
2 ,

Y11 =
2

T 2

∫ 2T

T
ln(1 + 2T − k2)dk2 ≤

2

T
ln(1 + 2T ).
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964 PEIJUN LI AND XU WANG

If m = 1,

Y11 =
2

T
− 2

T 2
ln(1 + T ).

If m 6= 1
2 , 1,

Y11 =
2− 2(1 + T )2−2m

T 2(2− 2m)(1− 2m)
− 2

(1− 2m)T
.

The above estimates lead to

lim
T→∞

1

T 2

∫ 2T

T

∫ 2T

T
(1 + |k1 − k2|)−2mdk1dk2 = 0(4.17)

for m > 0. Moreover, by choosing M2 > m, we have

lim
T→∞

1

T 2

∫ 2T

T

∫ 2T

T
k−2M2+m

1 km2 dk1dk2

= lim
T→∞

1

T 2

(2T )−2M2+m+1 − T−2M2+m+1

−2M2 +m+ 1

(2T )m+1 − Tm+1

m+ 1

= lim
T→∞

(2−2M2+m+1 − 1)(2m+1 − 1)

(−2M2 +m+ 1)(m+ 1)
T−2M2+2m = 0,(4.18)

which, together with (4.16) and (4.17), leads to

lim
T→∞

1

T 2

∫ 2T

T

∫ 2T

T
Y1dk1dk2 = 0.

(ii) For the case m ≤ 0, an application of Lemma 4.1 yields

Y1 . km+4
1 km+4

2

(
k−2

1 k−2
2

[
(k1 + k2)−m(1 + |k1 − k2|)−M1 + k−M2

1 + k−M2

2

])2

. km1 k
m
2 (k1 + k2)−2m(1 + |k1 − k2|)−2M1 + k−2M2+m

1 km2 + km1 k
−2M2+m
2(4.19)

due to the fact

(k1 + k2)−M1(1 + |k1 − k2|)−m . (1 + |k1 − k2|)−M1(k1 + k2)−m.

It is easy to obtain

lim
T→∞

1

T 2

∫ 2T

T

∫ 2T

T

(
k−2M2+m

1 km2 + km1 k
−2M2+m
2

)
dk1dk2 = 0(4.20)

for any M2 > 0 according to (4.18). In addition,

1

T 2

∫ 2T

T

∫ 2T

T
km1 k

m
2 (k1 + k2)−2m(1 + |k1 − k2|)−2M1dk1dk2

.

(
1

T 2

∫ 2T

T

∫ 2T

T
k2m

1 k2m
2 (k1 + k2)−4mdk1dk2

) 1

2
(

1

T 2

∫ 2T

T

∫ 2T

T
(1 + |k1 − k2|)−4M1dk1dk2

) 1

2

→ 0 as T →∞
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AN INVERSE RANDOM SOURCE PROBLEM 965

for any M1 > 0 based on (4.17) and the fact

1

T 2

∫ 2T

T

∫ 2T

T
k2m

1 k2m
2 (k1 + k2)−4mdk1dk2 .

1

T 2

∫ 2T

T

∫ 2T

T

(
k−2m

1 k2m
2 + k2m

1 k−2m
2

)
dk1dk2 . 1.

The above estimate together with (4.19) and (4.20) also gives rise to

lim
T→∞

1

T 2

∫ 2T

T

∫ 2T

T
Y1dk1dk2 = 0.

The terms Y2, Y3, and Y4 can be estimated similarly. The details are omitted for brevity.
Combining these estimates yields (4.15) and completes the proof.

4.2. The two-dimensional case. For the case d = 2 and m ∈ (−4, 2], we obtain from
Assumption 2.3 and (2.5) that the distributional solution given in (3.1) takes the form

u(x; k) = − i

8k2

∫
D

(
H

(1)
0 (k|x− y|)−H(1)

0 (ik|x− y|)
)
f(y)dy,(4.21)

where the Hankel function H
(1)
0 has the following asymptotic expansion (cf. [1]):

H
(1)
0 (z) =

∞∑
j=0

ajz
−(j+ 1

2
)eiz as |z| → ∞

with a0 =
√

2
πe
− iπ

4 and aj =
√

2
π ( i

8)j(
∏j
l=1(2l − 1)2/j!)e−

iπ

4 for j ≥ 1.

To recover the strength µ of f , compared to the three-dimensional case, an additional
truncation technique is needed in the two-dimensional case. Define the truncated functions

H
(1)
0,N (z) : =

N∑
j=0

ajz
−(j+ 1

2
)eiz,

ΦN (x, y, k) : =
i

8k2

(
H

(1)
0,N (k|x− y|)−H(1)

0,N (ik|x− y|)
)
.

For any N ∈ N, a simple calculation yields

Φ(x, y, k)− ΦN (x, y, k) =
i

8k2

∞∑
j=N+1

aj

(
(k|x− y|)−(j+ 1

2
)eik|x−y| − (ik|x− y|)−(j+ 1

2
)e−k|x−y|

)
= O

(
1

k2(k|x− y|)N+ 3

2

)
as k|x− y| → ∞.(4.22)

Using the truncated fundamental solution ΦN , we define the truncated solution

uN (x; k) : = −
∫
D

ΦN (x, y, k)f(y)dy

= − i

8k2

∫
D

(
H

(1)
0,N (k|x− y|)−H(1)

0,N (ik|x− y|)
)
f(y)dy

= − i

8k2

N∑
j=0

aj

∫
D

(
(k|x− y|)−(j+ 1

2
)eik|x−y| − (ik|x− y|)−(j+ 1

2
)e−k|x−y|

)
f(y)dy.
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966 PEIJUN LI AND XU WANG

To ensure that the contribution of the residual u− uN is negligible in the measurement such
that we only need to investigate the contribution of uN , we choose N = 3 and give the estimate
of the residual as follows.

Lemma 4.3. Let f satisfy Assumption 2.3 with d = 2. For k � 1 and x ∈ U , the following
estimate holds almost surely:

|u(x; k)− u3(x; k)| .

{
k−

7

2 , m ∈ (−4, 0],

k−
11

2 , m ∈ (0, 2].

Proof. According to (4.22), for y ∈ D and x ∈ U with dist(D,U) = r0 > 0, we get

|Φ(x, y, k)− Φ3(x, y, k)| = O
(
k−

13

2 |x− y|−
9

2

)
,

|∂yiΦ(x, y, k)− ∂yiΦ3(x, y, k)| = O
(
k−

11

2 |x− y|−
9

2

)
,

|∂2
yiyjΦ(x, y, k)− ∂2

yiyjΦ3(x, y, k)| = O
(
k−

9

2 |x− y|−
9

2

)
,

|∂3
yiyjylΦ(x, y, k)− ∂3

yiyjylΦ3(x, y, k)| = O
(
k−

7

2 |x− y|−
9

2

)
.

If m ∈ (−4, 0], then f ∈ W
m−d

2
−ε,p(D) ⊂ W−3,p(D) for any p > 1 according to Lemma 2.2.

We then get

|u(x; k)− u3(x; k)| ≤ ‖Φ(x, ·, k)− Φ3(x, ·, k)‖W 3,q(D)‖f‖W−3,p(D) . k−
7

2

with q satisfying 1
p + 1

q = 1.

If m ∈ (0, 2], then f ∈W
m−d

2
−ε,p(D) ⊂W−1,p(D) for any p > 1, and hence

|u(x; k)− u3(x; k)| ≤ ‖Φ(x, ·, k)− Φ3(x, ·, k)‖W 1,q(D)‖f‖W−1,p(D) . k−
11

2 ,

which completes the proof.

Similarly, we need to show the asymptotic independence of the truncated solution u3.

Lemma 4.4. Let f satisfy Assumption 2.3. For k1, k2 ≥ 1, x ∈ U , it holds uniformly that

|E[u3(x; k1)u3(x; k2)]| . k
− 5

2

1 k
− 5

2

2

[
(k1 + k2)−m(1 + |k1 − k2|)−M1 + k−M2

1 + k−M2

2

]
,(4.23)

|E[u3(x; k1)u3(x; k2)]| . k
− 5

2

1 k
− 5

2

2

[
(k1 + k2)−M1(1 + |k1 − k2|)−m + k−M2

1 + k−M2

2

]
,(4.24)

where M1,M2 > 0 are arbitrary integers. In particular, if k1 = k2 = k, then

E|u3(x; k)|2 =

[
1

32π

∫
D

1

|x− ζ|
µ(ζ)dζ

]
k−m−5 +O(k−m−6).(4.25)
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AN INVERSE RANDOM SOURCE PROBLEM 967

Proof. The truncated solution u3 at two different frequencies k1 and k2 satisfies

E[u3(x; k1)u3(x; k2)]

=
1

64k2
1k

2
2

3∑
j,l=0

ajal

∫
D

∫
D

(
(k1|x− y|)−(j+ 1

2
)eik1|x−y| − (ik1|x− y|)−(j+ 1

2
)e−k1|x−y|

)
×
(

(k2|x− z|)−(l+ 1

2
)e−ik2|x−z| − (−ik2|x− z|)−(l+ 1

2
)e−k2|x−z|

)
E[f(y)f(z)]dydz

=
1

64k2
1k

2
2

3∑
j,l=0

ajal

k
j+ 1

2

1 k
l+ 1

2

2

∫
D

∫
D

ei(k1|x−y|−k2|x−z|)

|x− y|j+
1

2 |x− z|l+
1

2

E[f(y)f(z)]dydz

− 1

64k2
1k

2
2

3∑
j,l=0

ajal

k
j+ 1

2

1 (−ik2)l+
1

2

∫
D

∫
D

eik1|x−y|−k2|x−z|

|x− y|j+
1

2 |x− z|l+
1

2

E[f(y)f(z)]dydz

− 1

64k2
1k

2
2

3∑
j,l=0

ajal

(ik1)j+
1

2k
l+ 1

2

2

∫
D

∫
D

e−k1|x−y|−ik2|x−z|

|x− y|j+
1

2 |x− z|l+
1

2

E[f(y)f(z)]dydz

+
1

64k2
1k

2
2

3∑
j,l=0

ajal

(ik1)j+
1

2 (−ik2)l+
1

2

∫
D

∫
D

e−k1|x−y|−k2|x−z|

|x− y|j+
1

2 |x− z|l+
1

2

E[f(y)f(z)]dydz

=: J1(x; k1, k2) + J2(x; k1, k2) + J3(x; k1, k2) + J4(x; k1, k2).

For the term J1, we have from Lemma A. 1. of [16] that

|J1(x; k1, k2)| . k
− 5

2

1 k
− 5

2

2 (k1 + k2)−m(1 + |k1 − k2|)−M1

and

J1(x; k, k) =
|a0|2

64k5

∫
D

∫
D

ei(k|x−y|−k|x−z|)

|x− y|
1

2 |x− z|
1

2

E[f(y)f(z)]dydz

+
1

64k4

3∑
j,l=0
j or l 6=0

ajal
kj+l+1

∫
D

∫
D

ei(k|x−y|−k|x−z|)

|x− y|j+
1

2 |x− z|l+
1

2

E[f(y)f(z)]dydz

=
1

32π

[∫
D

1

|x− ζ|
µ(ζ)dζ

]
k−m−5 +O(k−m−6),

where M1 > 0 is an arbitrary integer.
Similar to the three-dimensional case, the other three terms can be estimated by taking

advantage of the exponential decay of the integrands. We then obtain

|J2(x; k1, k2) + J3(x; k1, k2) + J4(x; k1, k2)| . k
− 5

2

1 k
− 5

2

2

(
k−M2

1 + k−M2

2

)
for any M2 > 0 and

J2(x; k, k) + J3(x; k, k) + J4(x; k, k) = O(k−m−6)

by choosing M2 > m+ 1.
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968 PEIJUN LI AND XU WANG

The estimates above lead to (4.23) and (4.25). The proof of (4.24) is to combine a similar
proof of (4.23) and Corollary 5.4 of [16].

Based on the estimates for the truncated solution u3, the unique recovery of the strength
can be obtained by a single realization of the wave field u in the almost surely sense, which is
stated in the following theorem.

Theorem 4.5. Let f satisfy Assumption 2.3. For any x ∈ U , it holds almost surely that

lim
T→∞

1

T

∫ 2T

T
km+5|u(x; k)|2dk =

1

32π

∫
D

1

|x− ζ|
µ(ζ)dζ =: T2(x),(4.26)

and the strength µ can be uniquely determined by the measurement {T2(x)}x∈U .

Proof. We first mention that, similar to the three-dimensional case, the unique recovery of
the strength µ from the data {T2(x)}x∈U follows directly from Lemma 3.6 of [15] or Theorem
4.4 of [17].

Next, we aim to prove (4.26). Using (4.25) in Lemma 4.4, we get for x ∈ U that

lim
T→∞

1

T

∫ 2T

T
km+5E|u3(x; k)|2dk =

1

32π

∫
D

1

|x− ζ|
µ(ζ)dζ.(4.27)

First we show that

lim
T→∞

1

T

∫ 2T

T
km+5|u3(x; k)|2dk =

1

32π

∫
D

1

|x− ζ|
µ(ζ)dζ(4.28)

in the almost surely sense. In fact, following the same procedure as the proof of (4.13) in
Theorem 4.2 and utilizing Lemma 4.4, we have almost surely that

lim
T→∞

1

T

∫ 2T

T
km+5

(
|u3(x; k)|2 − E|u3(x; k)|2

)
dk = 0,

which, together with (4.27), leads to (4.28).
Note that

1

T

∫ 2T

T
km+5|u(x; k)|2dk =

1

T

∫ 2T

T
km+5|u3(x; k)|2dk

+
1

T

∫ 2T

T
km+5|u(x; k)− u3(x; k)|2dk +

2

T

∫ 2T

T
km+5<

[
u3(x; k)(u(x; k)− u3(x; k))

]
dk,

where

2

T

∫ 2T

T
km+5<

[
u3(x; k)(u(x; k)− u3(x; k))

]
dk

.

[
1

T

∫ 2T

T
km+5|u3(x; k)|2dk

] 1

2
[

1

T

∫ 2T

T
km+5|u(x; k)− u3(x; k)|2dk

] 1

2

.
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AN INVERSE RANDOM SOURCE PROBLEM 969

As a result, to prove (4.26), it suffices to show

lim
T→∞

1

T

∫ 2T

T
km+5|u(x; k)− u3(x; k)|2dk = 0.

For the case m ∈ (−4, 0], according to Lemma 4.3, it holds that

1

T

∫ 2T

T
km+5|u(x; k)− u3(x; k)|2dk .

1

T

∫ 2T

T
km−2dk → 0 as T →∞.

For the case m ∈ (0, 2], an application of Lemma 4.3 leads to

1

T

∫ 2T

T
km+5|u(x; k)− u3(x; k)|2dk .

1

T

∫ 2T

T
km−6dk → 0 as T →∞,

which completes the proof.

5. Numerical experiments. In this section, we present some numerical experiments to
demonstrate the validity and effectiveness of the proposed method. Specifically, we consider
the case d = 2 and m = 0, where f =

√
µẆ .

5.1. The reconstruction formula. By the Itô isometry, the covariance operator Qf is
given explicitly by

〈Qfϕ,ψ〉 = E[〈f, ϕ〉〈f, ψ〉] = E
[∫

D
ϕ(x)

√
µ(x)dW (x)

∫
D
ψ(y)

√
µ(y)dW (y)

]
= 〈µϕ, ψ〉

for any ϕ,ψ ∈ D, which implies

(Qfϕ)(x) = µ(x)ϕ(x) =
1

(2π)2

∫
R2

eix·ξµ(x)ϕ̂(ξ)dξ.

Hence, the symbol σ(x, ξ) of the pseudo-differential operator Qf depends only on x in the
form σ(x, ξ) = µ(x) with µ being the strength of the source f .

Consequently, when using the second moment of u to recover the strength µ, the wavenum-
ber k is not required to be sufficiently large for the white noise case. More precisely, according
to the expression of the solution given in (4.21), we get

u(x; k) = − i

8k2

∫
D

(
H

(1)
0 (k|x− y|)−H(1)

0 (ik|x− y|)
)√

µ(y)dW (y),(5.1)

which leads to

64k4E|u(x; k)|2 =

∫
D

∣∣∣H(1)
0 (k|x− y|)−H(1)

0 (ik|x− y|)
∣∣∣2 µ(y)dy.(5.2)

Since the symbol σ(x, ξ) for the white noise case has only the principal symbol term µ(x), to
recover the strength µ numerically, we may use (5.2) directly without taking the limit k →∞.
However, the numerical solution is rather unstable if one uses the numerical integration of
(5.2) directly to recover the strength µ due to the fast decay of its singular values. We refer the
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970 PEIJUN LI AND XU WANG

reader to [2] for the investigation of numerical instability for the Helmholtz equation, whose
solution has a similar form as (5.1).

Assuming in addition that the phased data {u(x, k)}x∈U is available, we utilize a modified
integral equation to handle the instability which arises from the ill-posedness of the integral

equation (5.2). Note that H
(1)
0 = J0+iY0 with J0 and Y0 being the real-valued Bessel functions

of the first kind and the second kind, respectively, and the function

iH
(1)
0 (ik|x− y|) =

2

π
K0(k|x− y|)

obtained by (2.4) with d = 2 is also real-valued. We then split the solution u into its real and
imaginary parts as follows:

<[u(x; k)] =
1

8k2

∫
D

(
Y0(k|x− y|) + iH

(1)
0 (ik|x− y|)

)√
µ(y)dW (y),

=[u(x; k)] = − 1

8k2

∫
D
J0(k|x− y|)

√
µ(y)dW (y),

and use the modified integral equation

64k4E
[
(<[u(x; k)])2 − (=[u(x; k)])2

]
=

∫
D

[(
Y0(k|x− y|) + iH

(1)
0 (ik|x− y|)

)2
− (J0(k|x− y|))2

]
µ(y)dy

=:

∫
D
G(x− y)µ(y)dy(5.3)

to reconstruct the strength µ.

5.2. The synthetic data. The direct problem is solved numerically to generate the syn-
thetic data. In the experiments, we choose a square domain D := [−1, 1] × [−1, 1] for the
support and the measurement domain U , which is specified in the next subsection, such that
dist(D,U) > 0. For square domains D and U , we define two index sets

TU : = {i = (i1, i2) : il = 0, . . . , NU , l = 1, 2},
TD : = {j = (j1, j2) : jl = 0, . . . , ND, l = 1, 2}

with NU = 40 and ND = 20, and define two sets of discrete points

{xi}i∈TU : =
{
xi = (x

(1)
i1
, x

(2)
i2

)> ∈ U : xi = x(0,0) + (i1δx, i2δx)>
}
i∈TU

,

{yj}j∈TD : =
{
yj = (y

(1)
j1
, y

(2)
j2

)> ∈ D : yj = y(0,0) + (j1δy, j2δy)>
}
i∈TD

,

where δx = 1/NU and δy = 1/ND. The synthetic data is generated at the discrete points
{xi}i∈TU , and the solution u(xi; k) is approximated through the numerical quadrature of the
Itô integral (5.1) by
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AN INVERSE RANDOM SOURCE PROBLEM 971

u(xi; k) ≈ unum(xi, ω, k) :=
1

8ik2

∑
j∈TD

(
H

(1)
0 (k|xi − yj |)−H

(1)
0 (ik|xi − yj |)

)√
µ(yj)δjW,

where δjW :=
∫
Ij
dW (y)

d
=
√
|Ij |ξj . Here, the notation A

d
= B means that A and B have

the same distributions, {ξj}j∈TD is a set of independent and identically distributed normal
random variables, Ij = [j1δy, (j1 + 1)δy] × [j2δy, (j2 + 1)δy] is a square with side length δy,
and |Ij | is the area of Ij .

5.3. The numerical method. According to (5.3), we define the measurement

M(x, k) = 64k4E
[
(<[u(x; k)])2 − (=[u(x; k)])2

]
, x ∈ U.

Then its evaluation at the discrete points {xi}i∈TU can be approximated by

M(xi, k) ≈
∑
j∈TD

|Ij |G(xi − yj)µ(yj).

In the numerical experiments, the measurement is taken as

Mnum(xi, k) := 64k4 1

P

P∑
ω=1

[
(<[unum(xi, ω, k)]2 − (=[unum(xi, ω, k)]2)

]
,

where P = 1000 denotes the number of sample paths used to approximate the expectation
involved inM(xi, k). Then the strength µ at the discrete points {yj}j∈TD can be numerically
recovered through the formula

Mnum(xi, k) =
∑
j∈TD

|Ij |G(xi − yj)µ(yj).(5.4)

Next we introduce the regularized Kaczmarz algorithm, which is an iterative method with
two loops. To enhance the stability and get more accurate reconstructions, we choose N = 4
measurement domains

U1 = [1.5, 2.5]× [1.5, 2.5], U2 = [1.5, 2.5]× [−2.5,−1.5],

U3 = [−2.5,−1.5]× [−2.5,−1.5], U4 = [−2.5,−1.5]× [1.5, 2.5].

For each domain Un, n = 1, . . . , N , according to (5.4), we get a linear system

bn = Anq, n = 1, . . . , N,

where bn is the discrete measurement vector with components Mnum(xi, k) for xi ∈ Un, An
is the matrix generated by G(xi − yj), and q is the unknown vector consisting of µ(yj). The
inner loop of the Kaczmarz algorithm is formed by taking iterations with respect to the index
n. The outer loop with respect to the index l = 1, . . . , L is used to ensure the convergence of
the method as L→∞ (cf. [3]). Given an initial guess q0 = 0, for each l ∈ N+, the regularized
Kaczmarz algorithm reads

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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972 PEIJUN LI AND XU WANG
q0 = ql,

qn = qn−1 +A>n (γI +AnA
>
n )−1(bn −Anqn−1), n = 1, . . . , N,

ql+1 = qN ,

where γ > 0 is the regularization parameter.

5.4. The numerical examples. We present two numerical examples to illustrate the va-
lidity and effectiveness of the proposed method.

Example 1: Reconstruct the strength function given by

µ(y1, y2) = 4e−4(y21+y22), y = (y1, y2)> ∈ D.

The exact strength µ is plotted in Figure 1(a). We choose the iteration number of the outer
loop L = 6 and the regularization parameter γ = 10−7. Figure 1(b) plots the reconstructed
strength by using a single frequency k = 2. It can be seen that the bump of the exact strength
is well reconstructed by using data with only one frequency.

Example 2: Reconstruct the strength function give by µ(y1, y2) = µ̃(3y1, 3y2), where

µ̃(y1, y2) = 0.3(1− y1)2e−y
2
1−(y2+1)2 − (0.2y1 − y3

1 − y5
2)e−y

2
1−y22 − 0.03e−(y1+1)2−y22 .

The exact strength µ is plotted in Figure 2(a). This example is oscillatory and contains more
Fourier modes than Example 1. It is expected that the multifrequency data is needed for
such an example. To incorporate the data with multiple frequencies, one more outer loop is
added to the Kaczmarz algorithm, and this loop is taken with respect to the wavenumber k.
We choose L = 6 for the intermediate loop and γ = 10−5 for the regularization parameter.
As a comparison, Figure 2(b) shows the reconstruction at a single frequency k = 2. Clearly,
it is insufficient to reconstruct all the details. Figure 2(c) plots the reconstruction by using
multifrequency data at k = 1 : 3. The improvement of the reconstruction is obvious, and
some details of the true strength are already recovered. Figure 2(d) shows the reconstruction
by using multifrequency data at k = 1 : 5. It can be seen that almost all the details of the
exact strength are recovered.

(a) (b)

Figure 1. Example 1: (a) the exact strength; (b) the reconstructed strength at a single frequency k = 2.
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AN INVERSE RANDOM SOURCE PROBLEM 973

(a) (b)

(c) (d)

Figure 2. Example 2: (a) the exact strength; (b) the reconstructed strength at a single frequency k = 2;
(c) the reconstructed strength by using multiple frequencies k = 1 : 3; (d) the reconstructed strength by using
multiple frequencies k = 1 : 5.

6. Conclusion. We have studied the direct and inverse source problems for the stochastic
biharmonic wave equation. The well-posedness of the direct problem is obtained in the distri-
bution sense. For the inverse problem, we show that a single realization of the magnitude of
the wave field averaged over the frequency band is enough to uniquely determine the strength
of the random source. Numerical experiments are presented for the white noise model to
demonstrate the effectiveness of the proposed method.

The inverse source problem is linear, which makes it possible to get an explicit integral
expression of the wave field by using the fundamental solution. For the inverse random medium
or potential problem, it is nonlinear and the present method is no longer applicable. It is open
for the inverse random potential or medium problem of the biharmonic wave equation. We
hope to be able to report the progress on these problems elsewhere in the future.
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