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Abstract
In this paper, positivity-preserving symplectic numerical approximations are investi-
gated for the 2d-dimensional stochastic Lotka–Volterra predator-preymodel driven by
multiplicative noises, which plays an important role in ecosystem. Themodel is shown
to possess both a unique positive solution and a stochastic symplectic geometric struc-
ture, and hence can be interpreted as a stochastic Hamiltonian system. To inherit the
intrinsic biological characteristic of the original system, a class of stochastic Runge–
Kutta methods is presented, which is proved to preserve positivity of the numerical
solution and possess the discrete stochastic symplectic geometric structure as well.
Uniform boundedness of both the exact solution and the numerical one are obtained,
which are crucial to derive the conditions for convergence order one in the L

1(Ω)-
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norm. Numerical examples illustrate the stability and structure-preserving property of
the proposed methods over long time.

Keywords Stochastic Lotka–Volterra predator-prey model · Positivity · Stochastic
symplecticity · Structure-preserving methods · Convergence order conditions

Mathematics Subject Classification 37M15 · 60H35 · 65C30

1 Introduction

The study of dynamical relationship between population systems with random factors
is attracting more and more attention in ecology, where the randomness is usually
caused by the unpredictability of the environments and the incomplete knowledge of
the ecological system.

In this paper, we consider the following 2d-dimensional stochastic Lotka–Volterra
(LV) predator-prey model driven by multiplicative noises in the Itô sense:

dX(t) = X(t)
[(

−�(2)Y (t) + η(2)
)
dt + �(2)dW (t)

]
,

dY (t) = Y (t)
[(

�(1)X(t) − η(1)
)
dt + �(1)dW (t)

]
,

(1.1)

where X(t) = (x1(t), · · · , xd(t))� and Y (t) = (y1(t), · · · , yd(t))� denote the popu-
lation densities of d ∈ N+ species of the prey and the predator at time t , respectively,
with a deterministic and positive initial value (X(0)�,Y (0)�)� ∈ R

2d+ . For simplicity,
we denote X0 := X(0), Y0 := Y (0), and use the notation (X ,Y ) := (X�,Y�)� ∈
R
2d for any X ,Y ∈ R

d . For any vector V = (v1, · · · , vd)
� ∈ R

d , we denote

V = diag{v1, · · · , vd} ∈ R
d×d .

For anyvector ormatrixV , byusing thenotationV > 0,wemeanall the entries inV are
positive.Thevectorη(1) = (η

(1)
1 , · · · , η

(1)
d )� > 0 in (1.1) is the natural death rate of the

d species of the predator in the absence of food, and η(2) = (η
(2)
1 , · · · , η

(2)
d ) > 0 is the

natural growth rate of the d species of the prey in the absence of predation. The matrix
�(1) = [γ (1)

i j ]d×d > 0 denotes the rate of conversion of the prey into the reproduction

of the predator and �(2) = [γ (2)
i j ]d×d > 0 denotes the death rate per encounter of the

prey due to predation. Moreover,W = (W1, · · · ,Wm)� is anm-dimensional standard
Wiener process with {Wi }mi=1 being m independent one-dimensional standard Wiener

processes defined on the probability space (Ω,F ,P), and matrices�(l) = [σ (l)
i j ]d×m ,

l = 1, 2, measure the size of the noises.
Cooperation, predator-prey, and competition are three main interactions among

species in ecosystems, in which, competition is one of the most effective interactions.
Such interactions occur when two or more species compete for the same resource
such as food, shelter, nesting sites, etc. The classical deterministic LV model is one of
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the most important models of competitive interactions. However, in practical circum-
stances, randomness is common and inevitable in biological populations (cf. [1,6]).
In the past decades, besides deterministic models, stochastic ecology models have
gained increasing attention to depict more realistically ecosystems. In recent years,
the stochastic LVmodel was studied extensively and fruitful results were obtained (cf.
[4,11,14–16,19] and references therein).More precisely, [4] investigated the existence,
uniqueness and non-extinction property for the solution of the stochastic LV model.
By using the Fokker–Planck equation, [15,16] analyzed the long–time behavior of
densities of the distributions of the solutions of the stochastic LV model and proved
that the densities converge in L1 to an invariant density or converge weakly to a singu-
lar measure. The permanence of two-dimensional stochastic LV model was explored
in [11], which revealed that the noises play an essential role in the permanence and
characterize the systems being permanent or not. Recently, [14] derived the sufficient
conditions for the coexistence and exclusion of a stochastic competitive LVmodel and
established the convergence in distribution of positive solutions of the model.

In the nature, the population densities of the prey X and the predator Y should both
be positive. Therefore, the first primary goal of this work is to present the positivity
and analyze the global well-posedness and uniform boundedness of the solution to
stochastic LV model (1.1). By utilizing stopping time technique, it is proved that
there exists a unique positive solution to (1.1) (see Theorem 2.1), which is uniformly
bounded

sup
t∈[0,T ]

E

[
d∑

i=1

(
pi xi (t) + qi yi (t)

)]p

≤ C

with positive constants pi , qi and C (see Proposition 2.1). Moreover, we derive an
innovative and undiscovered geometric structure to (1.1) in the almost surely sense

dZ(t) ∧ K (Z(t))dZ(t) = dZ0 ∧ K (Z0)dZ0 (1.2)

with Z(t) = (X(t),Y (t)), Z0 = (X0,Y0) and a skew-symmetric matrix K =
[ki j ]2d×2d defined in (2.10). Here, the exterior product

dZ ∧ K (Z)dZ =
∑

i, j=1,··· ,2d
ki jdzi ∧ dz j ,

and dzi ∧ dz j of two differential 1-forms dzi and dz j defines a differential 2-form on
R
2d :

(dzi ∧ dz j )(ξ, ζ ) = det

[
dzi (ξ) dz j (ξ)

dzi (ζ ) dz j (ζ )

]
∀ ξ, ζ ∈ R

2d ,

which is the oriented area of the parallelogram generated by (ξi , ξ j )
� and (ζi , ζ j )

�
with ξi being the i th entry in ξ .We call (1.2) the stochastic symplectic conservation law
for the model (1.1) (see Theorem 2.2). To the best of our knowledge, there has been
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no work in the literature which studies positivity-preserving symplectic numerical
methods for the stochastic LV model.

For the stochastic LVmodel (1.1), an important property is that if the solution (X ,Y )

is initially positive, then it remains positive for t > 0. The violation of this positivity-
preserving property may result in unphysical numerical solutions or cause blow-ups
of the numerical algorithm. Thus, it is important to design numerical methods that
can preserve the intrinsic properties of the original system, due to their superiority in
long-time simulation and stability (cf. [2,3,7,8,18]). Motivated by this issue, the sec-
ond main goal of this work is to construct and analyze numerical methods that inherit
the positivity, uniform boundedness of the solution and stochastic symplecticity for
stochastic LV model (1.1). To this end, utilizing an auxiliary function, we introduce a
general class of stochastic Runge–Kutta type methods for this model, and derive the
symplectic conditions on coefficients for the methods to preserve the stochastic sym-
plectic structure. Moreover, for the case �(2) = 0, the pth moment of the numerical
solution is uniformly bounded (see Theorem 3.3)

sup
n=1,··· ,N

E
[|Xn|p + |Yn|p

] ≤ C .

Furthermore, the first-order conditions of the proposedmethods in theL1(Ω)-normare
given based on the uniform boundedness of both the exact solution and the numerical
one. Finally, several numerical experiments show the favorable performance of the
proposed numerical methods.

The paper is organized as follows. In Sect. 2, the positivity and the uniform bound-
edness of the solution to (1.1) are proved. The symplectic geometric structure is
established for (1.1), which is preserved by the phase flow of the model. In Sect.
3, a class of structure-preserving methods is proposed and our main results are stated:
in Sect. 3.1 we give some conditions to guarantee that a given stochastic Runge–
Kutta type method is symplectic; in Sect. 3.2, we get the unique existence, positivity
and uniform boundedness of the numerical solution of the general class of stochastic
Runge–Kutta type methods; Sect. 3.3 is devoted to obtaining the convergence order
condition of the stochastic Runge–Kutta typemethods. Finally, numerical experiments
are performed in Sect. 4 to testify the effectiveness of the proposed methods.

2 Internal properties of the stochastic LVmodel

This section is devoted to studying some properties of the stochastic LVmodel (1.1) in
Itô sense, including the well-posedness, positivity, uniform boundedness and stochas-
tic symplecticity of its solution. Throughout this paper,C will be used to denote generic
positive constants, which may be different from line to line, and the notation a � b
means a ≤ Cb for some positive constant C . When it is necessary, we will use the
notation C(·) to indicate the dependence on some parameters.
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2.1 Well-posedness and positivity of the solution

The global well-posedness and positivity of the solution to (1.1) are stated in the
following theorem.

Theorem 2.1 For any deterministic initial value (X0,Y0) ∈ R
2d+ , the system (1.1)

admits a unique solution (X(t),Y (t)). Moreover, (X(t),Y (t)) ∈ R
2d+ for all t ≥ 0.

Proof The local well-posedness of (1.1) is ensured by the local Lipschitz continuity of
the coefficients of the stochastic system (cf. [12]). To show the global well-posedness
and positivity of the solution, we first denote the explosion time by

τe := inf {t > 0| |xi (t)| = ∞ or |yi (t)| = ∞ for some i = 1, · · · , d} ,

before which the solution starting from (X0,Y0) does not blow up. Since the initial
value (X0,Y0) = (x0,1, · · · , x0,d , y0,1, · · · , y0,d)� ∈ R

2d+ , there exists some k0 ∈ N+
such that x0,i , y0,i ∈ [ 1

k0
, k0] for all i = 1, · · · , d. For any integer k ≥ k0, we define

the stopping time

τk := inf

{
t ∈ [0, τe)

∣∣∣∣ xi (t) /∈
(
1

k
, k

)
or yi (t) /∈

(
1

k
, k

)
for some i = 1, · · · , d

}
.

It then suffices to show that τ∞ := limk→∞ τk = ∞ almost surely.
Motivated by [10], we assume by contradiction that τ∞ < ∞ with positive proba-

bility. More precisely, there exist some constants T0 > 0, ε ∈ (0, 1) and k1 > k0 such
that P(τk ≤ T0) > ε for all k ≥ k1. We introduce the generator L of (1.1):

L :=X
(
−�(2)Y + η(2)

)
· ∇X + Y

(
�(1)X − η(1)

)
· ∇Y + 1

2

(
X�(2)

) (
X�(2)

)� : ∇2
X

+
(
X�(2)

) (
Y�(1)

)� : ∇X∇Y + 1

2

(
Y�(1)

) (
Y�(1)

)� : ∇2
Y

=
d∑

i=1

xi

⎛
⎝−

d∑
j=1

γ
(2)
i j y j + η

(2)
i

⎞
⎠ ∂

∂xi
+

d∑
i=1

yi

⎛
⎝

d∑
j=1

γ
(1)
i j x j − η

(1)
i

⎞
⎠ ∂

∂ yi

+ 1

2

d∑
i, j=1

m∑
l=1

xiσ
(2)
il σ

(2)
jl x j

∂2

∂xi∂x j
+

d∑
i, j=1

m∑
l=1

xiσ
(2)
il σ

(1)
jl y j

∂2

∂xi∂ y j

+ 1

2

d∑
i, j=1

m∑
l=1

yiσ
(1)
il σ

(1)
jl y j

∂2

∂ yi∂ y j
, (2.1)

where X = (x1, · · · , xd)�, Y = (y1, · · · , yd)�, and refer to [17] for more
details about generators for stochastic differential equations. For coefficient matri-
ces �(1), �(2) > 0 and any given scalars pi > 0, i = 1, · · · , d, we can always find
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positive scalars

q j := min
i=1,··· ,d pi

γ
(2)
i j

γ
(1)
j i

, j = 1, · · · , d (2.2)

such that

q jγ
(1)
j i − piγ

(2)
i j ≤ 0, ∀ i, j = 1, · · · , d. (2.3)

Define an auxiliary function V : R2d+ → R+ by

V (X ,Y ) :=
d∑

i=1

(
V (1)
i (xi ) + V (2)

i (yi )
)

with

V (1)
i (xi ) := pi xi − ei

(
1 − ln

(
ei
pi

))
− ei ln(xi ) ≥ 0 for xi > 0,

V (2)
i (yi ) := qi yi − fi

(
1 − ln

(
fi
qi

))
− fi ln(yi ) ≥ 0 for yi > 0,

where pi , ei , fi ∈ R+ are parameters to be determined and qi are determined by pi
in (2.2) such thatL V (X ,Y ) is uniformly bounded. Based on the definition of V , we
get

L V (X ,Y ) =
d∑

i=1

xi

⎛
⎝−

d∑
j=1

γ
(2)
i j y j + η

(2)
i

⎞
⎠
(
pi − ei

xi

)

+
d∑

i=1

yi

⎛
⎝

d∑
j=1

γ
(1)
i j x j − η

(1)
i

⎞
⎠
(
qi − fi

yi

)

+ 1

2

d∑
i=1

m∑
l=1

(
σ

(2)
il

)2
ei + 1

2

d∑
i=1

m∑
l=1

(
σ

(1)
il

)2
fi

=
d∑

i, j=1

xi
(
q jγ

(1)
j i − piγ

(2)
i j

)
y j +

d∑
i=1

xi

⎛
⎝piη

(2)
i −

d∑
j=1

f jγ
(1)
j i

⎞
⎠

−
d∑
j=1

y j

(
q jη

(1)
j −

d∑
i=1

eiγ
(2)
i j

)
+

d∑
i=1

(
fiη

(1)
i − eiη

(2)
i

)

+ 1

2

d∑
i=1

m∑
l=1

(
σ

(2)
il

)2
ei + 1

2

d∑
i=1

m∑
l=1

(
σ

(1)
il

)2
fi .
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Parameters pi , ei , fi can be chosen as positive real numbers such that

piη
(2)
i −

d∑
j=1

f jγ
(1)
j i = 0,

q jη
(1)
j −

d∑
i=1

eiγ
(2)
i j = 0,

(2.4)

which, together with (2.3), leads to

L V (X ,Y ) ≤
d∑

i=1

(
fiη

(1)
i − eiη

(2)
i

)
+ 1

2

d∑
i=1

m∑
l=1

(
σ

(2)
il

)2
ei + 1

2

d∑
i=1

m∑
l=1

(
σ

(1)
il

)2
fi

= : C∗

for any (X ,Y ) ∈ R
2d+ . Denote τ̂k := min{τk, T0}. For any t ∈ (0, τ̂k), it holds

xi (t), yi (t) ∈ ( 1k , k) for any i = 1, · · · , d according to the definition of τk and hence
L V (X(t),Y (t)) ≤ C∗. Then Itô’s formula applied to EV (X(τ̂k),Y (τ̂k)) yields

EV (X(τ̂k),Y (τ̂k)) =V (X0,Y0) + E

∫ τ̂k

0
L V (X(t),Y (t))dt

≤V (X0,Y0) + C∗T0 < ∞.

Note that

∂V

∂xi
= pi − ei

xi
,

∂V

∂ yi
= qi − fi

yi
.

As a result, V has a global minimum at (X∗,Y ∗) = ( e1
p1

, · · · ,
ed
pd

,
f1
q1

, · · · ,
fd
qd

)� with
V (X∗,Y ∗) = 0. According to the definition of τk , there exists an entry in either X(τk)

or Y (τk) that reaches the boundary of interval
( 1
k , k

)
. Thus, for any k ≥ k1 and any

sample ω ∈ {τk ≤ T0}, we obtain

V (X(τk, ω),Y (τk, ω)) ≥ min
l=1,2

i=1,··· ,d

{
V (l)
i

(
1

k

)
, V (l)

i (k)

}
.

We conclude from the above that

V (X0,Y0) + C∗T0 ≥EV (X(τ̂k),Y (τ̂k))

≥E
[
V (X(τk),Y (τk))1{τk≤T0}

]

≥ε min
l=1,2

i=1,··· ,d

{
V (l)
i

(
1

k

)
, V (l)

i (k)

}
→ ∞
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as k → ∞, which is a contradiction with V (X0,Y0) + C∗T0 < ∞.
Hence, τ∞ = ∞, which completes the proof. �


2.2 Uniform boundedness of the solution

Based on the positivity of the solution of the stochastic LV model (1.1), we now
establish the uniform boundedness of the solution.

Proposition 2.1 For any (X0,Y0) ∈ R
2d+ and p ≥ 1, the pth moment of the solution

(X(t),Y (t)) with t ∈ [0, T ] is uniformly bounded. More precisely, there exists a
positive constant C = C(X0,Y0, �(l), η(l), �(l), p, T ) with l = 1, 2 such that

sup
t∈[0,T ]

E

[
d∑

i=1

(
pi xi (t) + qi yi (t)

)]p

≤ C,

where pi and qi are positive constants determined by conditions (2.2)–(2.4).

Proof Define an auxiliary functional

Fp(t, X ,Y ) = et
[

d∑
i=1

(pi xi + qi yi )

]p

on the domain [0, T ] ×R
2d+ with X = (x1, · · · , xd)� and Y = (y1, · · · , yd)�, which

satisfies Fp(t, X(t),Y (t)) > 0 for any t ≥ 0 according to Theorem 2.1.
Moreover, based on the definition of operator L defined in (2.1), we get

L Fp(t, X ,Y ) =
d∑

i=1

pi xi

⎛
⎝−

d∑
j=1

γ
(2)
i j y j + η

(2)
i

⎞
⎠ pet

[
d∑

k=1

(pkxk + qk yk)

]p−1

+
d∑

i=1

qi yi

⎛
⎝

d∑
j=1

γ
(1)
i j x j − η

(1)
i

⎞
⎠ pet

[
d∑

k=1

(pkxk + qk yk)

]p−1

+1

2

d∑
i, j=1

r∑
l=1

pi p j xiσ
(2)
il σ

(2)
jl x j p(p − 1)et

[
d∑

k=1

(pkxk + qk yk)

]p−2

+
d∑

i, j=1

r∑
l=1

piq j xiσ
(2)
il σ

(1)
jl y j p(p − 1)et

[
d∑

k=1

(pkxk + qk yk)

]p−2

+1

2

d∑
i, j=1

r∑
l=1

qiq j yiσ
(1)
il σ

(1)
jl y j p(p − 1)et

[
d∑

k=1

(pkxk + qk yk)

]p−2

≤
[

d∑
i=1

(
η

(2)
i pi xi − η

(1)
i qi yi

)]
pet

[
d∑

k=1

(pkxk + qk yk)

]p−1
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+1

2

⎡
⎣ ∑
i, j=1,··· ,d

(
pi p j xi x j + 2piq j xi y j + qiq j yi y j

)
⎤
⎦

max
l,r=1,2

i, j=1,··· ,d

[
�(l)

(
�(r)

)�]

i j
p(p − 1)et

[
d∑

k=1

(pkxk + qk yk)

]p−2

� p2Fp(t, X ,Y ),

where we used condition (2.3) and the facts

η
(2)
i pi xi − η

(1)
i qi yi ≤ η

(2)
i (pi xi + qi yi )

and

∑
i, j=1,··· ,d

(
pi p j xi x j + 2piq j xi y j + qiq j yi y j

) =
[

d∑
i=1

(pi xi + qi yi )

]2

.

Then Itô’s formula applied to Fp(t, X(t),Y (t)) yields

E[Fp(t, X(t),Y (t))] = Fp(0, X0,Y0) + E

∫ t

0

∂

∂s
Fp(s, X(s),Y (s))ds

+E

∫ t

0
L Fp(s, X(s),Y (s))ds

≤ Fp(0, X0,Y0) +
(
1 + Cp2

) ∫ t

0
E[Fp(s, x(s), y(s))]ds.

By Gronwall’s lemma, it holds

E[Fp(t, x(t), y(t))] ≤Fp(0, X0,Y0)e
(1+Cp2)t .

Multiplying both sides of the above inequality by e−t , we get

sup
t∈[0,T ]

E

[
d∑

i=1

(pi xi (t) + qi yi (t))

]p

≤ Fp(0, X0,Y0)e
Cp2T ,

which completes the proof. �


2.3 Stochastic symplecticity

In this subsection, we investigate the geometric structure of the stochastic LV model
(1.1). To this end, we rewrite (1.1) equivalently as a stochastic differential equation in
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the Stratonovich sense:

dX(t) = X(t)

(
−�(2)Y (t) + η(2) − 1

2
Λ(2)

)
dt + X(t) ◦ �(2)dW (t),

dY (t) = Y (t)

(
�(1)X(t) − η(1) − 1

2
Λ(1)

)
dt + Y (t) ◦ �(1)dW (t),

(2.5)

where ‘◦’ means that the stochastic integral holds in the Stratonovich sense, and

Λ(l) =
(
λ

(l)
1 , · · · , λ

(l)
d

)�
with λ

(l)
i =

m∑
r=1

(
σ

(l)
ir

)2
, i = 1, · · · , d, l = 1, 2.

Before giving the geometric structure of (2.5), we first consider stochastic differ-
ential equations in the following form

dZ(t) = K−1(Z(t))∇Z H0(Z(t))dt + K−1(Z(t))∇Z H1(Z(t)) ◦ dW (t) (2.6)

with a general invertible and skew-symmetric matrix K depending on Z and general
Hamiltonian functions H0 and H1.

Theorem 2.2 Assume that K = [ki j ]2d×2d is a skew-symmetric matrix satisfying

∂k js
∂zi

+ ∂ki j
∂zs

+ ∂ksi
∂z j

= 0, ∀ i, j, s = 1, · · · , 2d. (2.7)

Then a 2d-dimensional stochastic differential equation in the form of (2.12) possesses
the following symplectic conservation law almost surely:

dZ(t) ∧ K (Z(t))dZ(t) = dZ0 ∧ K (Z0)dZ0, ∀ t ≥ 0, Z0 ∈ R
2d . (2.8)

Proof Throughout the proof, we omit the dependence of Z on t and the dependence
of K on Z unless it is necessary to avoid confusions.

Rewriting Z and K by their components, i.e., Z = (z1, · · · , z2d)� and K =
[ki j ]2d×2d , we have

d
(
dZ ∧ KdZ

)
=

2d∑
i, j=1

d(dzi ) ∧ ki jdz j +
2d∑

i, j=1

dzi ∧ (dki j )dz j +
2d∑

i, j=1

dzi ∧ ki jd(dz j )

= : I + I I + I I I .

Denote K−1 =
[
k̃i j

]
2d×2d

, which satisfies

2d∑
r=1

kir k̃r j = −
2d∑
r=1

kri k̃r j = δi j :=
{
1, i = j,

0, i �= j .
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Then for terms I and I I I , we get

I =
2d∑

i, j,r ,s=1

ki j

[(
∂ k̃ir
∂zs

∂H0

∂zr
+ k̃ir

∂2H0

∂zs∂zr

)
dt +

(
∂ k̃ir
∂zs

∂H1

∂zr
+ k̃ir

∂2H1

∂zs∂zr

)
◦ dW

]
dzs ∧ dz j

=
2d∑

i, j,r ,s=1

(
ks j

∂ k̃sr
∂zi

∂H0

∂zr
dt + ks j

∂ k̃sr
∂zi

∂H1

∂zr
◦ dW

)
dzi ∧ dz j

−
2d∑

j,r ,s=1

δ jr

(
∂2H0

∂zs∂zr
dt + ∂2H1

∂zs∂zr
◦ dW

)
dzs ∧ dz j

and

I I I =
2d∑

i, j,r ,s=1

ki j

[(
∂ k̃ jr
∂zs

∂H0

∂zr
+ k̃ jr

∂2H0

∂zs∂zr

)
dt +

(
∂ k̃ jr
∂zs

∂H1

∂zr
+ k̃ jr

∂2H1

∂zs∂zr

)
◦ dW

]
dzi ∧ dzs

=
2d∑

i, j,r ,s=1

(
kis

∂ k̃sr
∂z j

∂H0

∂zr
dt + kis

∂ k̃sr
∂z j

∂H1

∂zr
◦ dW

)
dzi ∧ dz j

+
2d∑

i,r ,s=1

δir

(
∂2H0

∂zs∂zr
dt + ∂2H1

∂zs∂zr
◦ dW

)
dzi ∧ dzs .

For term I I , it holds

I I =
2d∑

i, j,r ,s=1

(
k̃rs

∂ki j
∂zr

∂H0

∂zs
dt + k̃rs

∂ki j
∂zr

∂H1

∂zs
◦ dW

)
dzi ∧ dz j

=
2d∑

i, j,r ,s=1

(
k̃sr

∂ki j
∂zs

∂H0

∂zr
dt + k̃sr

∂ki j
∂zs

∂H1

∂zr
◦ dW

)
dzi ∧ dz j .

Adding these three equalities and utilizing the fact that

2d∑
s=1

(
kis

∂ k̃sr
∂z j

+ ∂kis
∂z j

k̃sr

)
= 0 and kis = −ksi ,
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we get

d
(
dZ ∧ KdZ

)
=

2d∑
i, j,r ,s=1

(
ks j

∂ k̃sr
∂zi

+ k̃sr
∂ki j
∂zs

+ kis
∂ k̃sr
∂z j

)(
∂H0

∂zr
dt + ∂H1

∂zr
◦ dW

)
dzi ∧ dz j

+ 2
2d∑

r ,s=1

(
∂2H0

∂zs∂zr
dt + ∂2H1

∂zs∂zr
◦ dW

)
dzr ∧ dzs

=
2d∑

i, j,r ,s=1

(
∂k js
∂zi

+ ∂ki j
∂zs

+ ∂ksi
∂z j

)
k̃sr

(
∂H0

∂zr
dt + ∂H1

∂zr
◦ dW

)
dzi ∧ dz j

+ 2
2d∑

r ,s=1

(
∂2H0

∂zs∂zr
dt + ∂2H1

∂zs∂zr
◦ dW

)
dzr ∧ dzs

= 0

almost surely due to the skew-symmetry of the 2-form dzr ∧dzs = −dzs ∧dzr , which
completes the proof. �


Remark 2.1 To avoid confusion, we would like to mention that the operator ‘d’ in
equation (2.12) denotes the differential with respect to time, while the operator ‘d’ in
the differential 2-forms in (2.8) denotes the exterior derivative on the manifold.

Theorem 2.3 Assume that the coefficient matrices �(l) with l = 1, 2 are diagonal.
Then the phase flow of (2.5) is a stochastic symplectic transformation and possesses
the stochastic symplectic conservation law

dZ(t) ∧ K (Z(t))dZ(t) = dZ0 ∧ K (Z0)dZ0, ∀ t ≥ 0 (2.9)

almost surely, where Z = (X ,Y ) = (x1, · · · , xd , y1, · · · , yd)� with Z0 = (X0,Y0) ∈
R
2d+ and K is a skew-symmetric matrix given by

K (Z) =
[

0 −K ∗(Z)

K ∗(Z) 0

]
, K ∗(Z) = diag

{
(x1y1)

−1, · · · , (xd yd)
−1
}

. (2.10)

Equivalently, the phase flow ϕt : Z0 �→ Z(t) satisfies

[
∂ϕt (Z0)

∂Z0

]�
K (ϕt (Z0))

[
∂ϕt (Z0)

∂Z0

]
= K (Z0). (2.11)
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Proof We first show that (2.5) possesses the stochastic symplectic conservation law.
Denote

H0(Z) :=
d∑

i=1

⎡
⎣−γ

(1)
i i xi +

⎛
⎝η

(1)
i + 1

2

d∑
j=1

(
σ

(1)
i j

)2
ln xi

⎞
⎠
⎤
⎦

+
d∑

i=1

⎡
⎣−γ

(2)
i i yi +

⎛
⎝η

(2)
i − 1

2

d∑
j=1

(
σ

(2)
i j

)2
ln yi

⎞
⎠
⎤
⎦ ,

H1(Z) :=
[

d∑
i=1

(
−σ

(1)
i1 ln xi + σ

(2)
i1 ln yi

)
, · · · ,

d∑
i=1

(
−σ

(1)
im ln xi + σ

(2)
im ln yi

)]

1×m

.

Due to Theorem 2.1, functions H0(Z(t)) and H1(Z(t)) are well-defined, and (2.5) can
be rewritten as

dZ(t) = K−1(Z(t))∇Z H0(Z(t))dt + K−1(Z(t))∇Z H1(Z(t)) ◦ dW (t) (2.12)

with K given in (2.10). According to Theorem 2.2, it suffices to show that condition
(2.7) is satisfied.

In fact, the matrix K = [ki j ]2d×2d given in (2.10) satisfies

ki j =

⎧
⎪⎨
⎪⎩

−(xi yi )
−1, |i − j | = d, i < j

(x j y j )
−1, |i − j | = d, i > j

0, otherwise.

By noting that zi+d = yi for i = 1, · · · , d, it can be verified that
∂k js
∂zi

�= 0 if and only
if | j − s| = d and i ∈ { j, s}. For the case i = j , we get (2.7) holds with

∂k js
∂zi

+ ∂ki j
∂zs

+ ∂ksi
∂z j

= ∂k js
∂z j

+ ∂ks j
∂z j

= 0,

and the case i = s can be proved similarly.
Next, we show the equivalence between (2.9) and (2.11). Note that

dZ(t) ∧ K (Z(t))dZ(t) = ∂ϕt (Z0)

∂Z0
dZ0 ∧ K (Z(t))

∂ϕt (Z0)

∂Z0
dZ0

= dZ0 ∧
([

∂ϕt (Z0)

∂Z0

]�
K (ϕt (Z0))

[
∂ϕt (Z0)

∂Z0

])
dZ0.

If (2.11) holds, then (2.9) holds apparently. If (2.9) holds, then we get

dZ0 ∧
([

∂ϕt (Z0)

∂Z0

]�
K (ϕt (Z0))

[
∂ϕt (Z0)

∂Z0

]
− K (Z0)

)
dZ0 = 0.
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On one hand, since K is a skew-symmetric matrix, the matrix

M :=
[
∂ϕt (Z0)

∂Z0

]�
K (ϕt (Z0))

[
∂ϕt (Z0)

∂Z0

]
− K (Z0)

is also skew-symmetric. On the other hand, the equation dZ0 ∧ MdZ0 = 0, together
with the property for wedge product, implies that M is symmetric. We then conclude
that M = 0, that is, (2.11) holds. �


3 Positivity-preserving symplectic methods

In this section, we design a Runge–Kutta type method for the stochastic LV model
(1.1), which is obtained by applying the stochasticRunge–Kuttamethod to an auxiliary
equation. We show the positivity of the numerical solution, and present the conditions
for the proposed method to be symplectic.

Based on the positivity of the solution (X ,Y ) to (2.5), we introduce the auxiliary
stochastic processes

U = ln X := (ln x1, · · · , ln xd)
�,

V = ln Y := (ln y1, · · · , ln yd)
�,

and define notations eV := (ev1 , · · · , evd )� and V p := (v
p
1 , · · · , v

p
d )� for any vector

V = (v1, . . . , vd)
� and p ∈ R+. Then (2.5) can be rewritten into a system related to

(U , V ):

dU (t) =
(

−�(2)eV (t) + η(2) − 1

2
Λ(2)

)
dt + �(2)dW (t),

dV (t) =
(

�(1)eU (t) − η(1) − 1

2
Λ(1)

)
dt + �(1)dW (t).

(3.1)

For the time interval [0, T ], we introduce the uniform partition 0 = t0 < t1 <

· · · < tN = T with step-size h = T /N . For any fixed s ∈ N, applying the s-stage
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stochastic Runge–Kutta method to (3.1), we obtain

Un,i = Un + h
s∑

j=1

ai j

(
−�(2)eVn, j + η(2) − 1

2
Λ(2)

)
+

s∑
j=1

bi j�
(2) Jn+1,

Vn,i = Vn + h
s∑

j=1

ai j

(
�(1)eUn, j − η(1) − 1

2
Λ(1)

)
+

s∑
j=1

bi j�
(1) Jn+1,

Un+1 = Un + h
s∑

i=1

αi

(
−�(2)eVn,i + η(2) − 1

2
Λ(2)

)
+

s∑
i=1

βi�
(2) Jn+1,

Vn+1 = Vn + h
s∑

i=1

αi

(
�(1)eUn,i − η(1) − 1

2
Λ(1)

)
+

s∑
i=1

βi�
(1) Jn+1

(3.2)

starting from U0 = ln X0 and V0 = ln X0 for i = 1, · · · , s and n = 0, · · · , N − 1.
Here, Jn+1 := W (tn+1) − W (tn) denotes the increment of the Wiener process. By
defining Xn,i = eUn,i , Yn,i = eVn,i , Xn = eUn and Yn = eVn , we finally get the
following s-stage method starting from (X0,Y0) for the original system (1.1):

Xn,i = Xn . ∗ exp

⎛
⎝h

s∑
j=1

ai j

(
−�(2)Yn, j + η(2) − 1

2
Λ(2)

)⎞
⎠ . ∗ exp

⎛
⎝

s∑
j=1

bi j�
(2) Jn+1

⎞
⎠ ,

Yn,i = Yn . ∗ exp

⎛
⎝h

s∑
j=1

ai j

(
�(1)Xn, j − η(1) − 1

2
Λ(1)

)⎞
⎠ . ∗ exp

⎛
⎝

s∑
j=1

bi j�
(1) Jn+1

⎞
⎠ ,

Xn+1 = Xn . ∗ exp

(
h

s∑
i=1

αi

(
−�(2)Yn,i + η(2) − 1

2
Λ(2)

))
. ∗ exp

(
s∑

i=1

βi�
(2) Jn+1

)
,

Yn+1 = Yn . ∗ exp

(
h

s∑
i=1

αi

(
�(1)Xn,i − η(1) − 1

2
Λ(1)

))
. ∗ exp

(
s∑

i=1

βi�
(1) Jn+1

)
,

(3.3)

where the product ‘.∗’ is defined by

U . ∗ V = V . ∗U := (u1v1, · · · , udvd)
� ∈ R

d , c. ∗ V = V . ∗ c := cV

for any vectors U = (u1, · · · , ud)�, V = (v1, · · · , vd)
� ∈ R

d and scalar c ∈ R.
The parameters of method (3.3) can be characterized by the Butcher tableau

A B

α� β�

with A = [ai j ]s×s, B = [bi j ]s×s, α = (α1, · · · , αs)
� and β = (β1, · · · , βs)

�.
For the stochastic Runge–Kutta type method (3.3), the positivity of its solution can

be obtained directly.
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Theorem 3.1 For any deterministic initial value (X0,Y0) ∈ R
2d+ , the solution of (3.3)

satisfies (Xn,Yn) ∈ R
2d+ for all n = 0, 1, · · · , N.

3.1 Symplectic condition of stochastic Runge–Kutta typemethod

In this subsection, we proceed to analyze the condition of stochastic symplecticity for
the proposed method (3.3).

Theorem 3.2 Assume that assumptions in Theorem 2.3 hold and coefficients ai j , αi in
(3.3) satisfy

αi ai j + α j a ji = αiα j , ∀ i, j = 1, 2, . . . , s. (3.4)

Then the stochastic Runge–Kutta type method (3.3) preserves the discrete stochastic
symplectic conservation law

dZn+1 ∧ K (Zn+1)dZn+1 = dZn ∧ K (Zn)dZn, ∀ n ∈ N

almost surely, where Zn = (Xn,Yn) and K is defined in (2.10).

Proof Based on (3.2), we denote

Fj = −�(2)eVn, j , G j = �(1)eUn, j .

Then the exterior differential applied to (3.2) leads to

dUn,i = dUn + h
s∑

j=1

ai jdFj , dVn,i = dVn + h
s∑

j=1

ai jdG j ,

dUn+1 = dUn + h
s∑

i=1

αidFi , dVn+1 = dVn + h
s∑

i=1

αidGi .

(3.5)

Therefore, we obtain

dUn+1 ∧ dVn+1 = dUn ∧ dVn + h
s∑

i=1

αidUn ∧ dGi

+h
s∑

i=1

αidFi ∧ dVn + h2
s∑

i, j=1

αiα jdFi ∧ dG j

= dUn ∧ dVn + h
s∑

i=1

αi
(
dUn,i ∧ dGi + dFi ∧ dVn,i

)

+h2
s∑

i, j=1

(
αiα j − αi ai j − α j a ji

)
dFi ∧ dG j , (3.6)
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where we used the facts

dUn ∧ dGi = dUn,i ∧ dGi − h
s∑

j=1

ai jdFj ∧ dGi ,

dFi ∧ dVn = dFi ∧ dVn,i − h
s∑

j=1

ai jdFi ∧ dG j

according to (3.5). Note that

dUn,i ∧ dGi = dUn,i ∧
(
�(1)eUn,i

)
dUn,i = 0,

where the notation eUn,i is defined in the introduction, and the last step holds due to the
fact that �(1)eUn,i is a symmetric matrix. Similarly, we can also get dFi ∧ dVn,i = 0.
Combined with condition (3.4), formula (3.6) turns to be

dUn+1 ∧ dVn+1 = dUn ∧ dVn .

We then complete the proof by noting the facts

dUn ∧ dVn = K ∗(Zn)dXn ∧ dYn,

and

dZn ∧ K (Zn)dZn = −2K ∗(Zn)dXn ∧ dYn = −2dUn ∧ dVn,

where K ∗ is the symmetric matrix defined in (2.10). �


3.2 Uniform boundedness of the numerical solution

In this subsection, we consider a special case that �(2) = 0, that is, only the death rate
of the predator is perturbed by a random noise which may be caused by poaching. The
uniform boundedness of the numerical solution given by the stochastic Runge–Kutta
type method (3.3) is studied.

Theorem 3.3 Assume that �(2) = 0 and αi ≥ 0 for i = 1, · · · , s. For any determinis-
tic initial value (X0,Y0) ∈ R

2d+ , the stochastic Runge–Kutta type method (3.3) admits
an Ftn -adapted solution (Xn,Yn) ∈ R

2d+ . Furthermore, for any integer p ≥ 1, the
pth moment of the numerical solution is uniformly bounded

sup
n=1,··· ,N

E
[|Xn|p + |Yn|p

] ≤ C,

where C = C(X0,Y0, �(l), η(l), �(l), p, T , A, α, β) with l = 1, 2 is a positive con-
stant, and | · | denotes the Euclidean norm of a vector.
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Proof The existence and adaptness of the solution to (3.3) can be proved by means of
the procedure given in [5]. Noting that (Xn,i ,Yn,i ) ∈ R

2d+ with

Xn,i ≤ Xn . ∗ exp

⎛
⎝h

s∑
j=1

ai jη
(2)

⎞
⎠ ,

and denoting constants Cα = ∑s
j=1 α j and Cβ = ∑s

j=1 β j , we have for all n =
0, 1, · · · , N − 1 that

Xn+1 ≤Xn . ∗ exp
(
hCαη(2)

)
≤ X0. ∗ exp

(
TCαη(2)

)
,

Yn+1 ≤Yn . ∗ exp

(
h

s∑
i=1

αi�
(1)Xn,i

)
. ∗ exp

(
Cβ�(1) Jn+1

)

≤Yn . ∗ exp

⎡
⎣h

s∑
i=1

αi�
(1)Xn . ∗ exp

⎛
⎝h

s∑
j=1

ai jη
(2)

⎞
⎠
⎤
⎦ . ∗ exp

(
Cβ�(1) Jn+1

)

≤Yn . ∗ exp

⎡
⎣h

s∑
i=1

αi�
(1)X0. ∗ exp

⎛
⎝TCαη(2) + h

s∑
j=1

ai jη
(2)

⎞
⎠
⎤
⎦ . ∗ exp

(
Cβ�(1) Jn+1

)

≤Y0. ∗ exp(C̃). ∗ exp
(
Cβ�(1)W (tn+1)

)

with

C̃ := T
s∑

i=1

αi�
(1)X0. ∗ exp

⎛
⎝TCαη(2) + h

s∑
j=1

ai jη
(2)

⎞
⎠

being a deterministic vector.
Note also that |U .∗V | ≤ |U ||V | for any vectorsU , V ∈ R

d . Then the pth moment
of the numerical solution satisfies

E
[|Xn+1|p + |Yn+1|p

] ≤ |X0|p
∣∣∣exp

(
TCαη(2)

)∣∣∣
p

+|Y0|p
∣∣∣exp

(
C̃
)∣∣∣

p
E

∣∣∣exp
(
Cβ�(1)W (tn+1)

)∣∣∣
p
,

which is uniformly bounded due to the fact

E

∣∣∣exp
(
Cβ�(1)W (tn+1)

)∣∣∣
p = E

⎡
⎣

d∑
i=1

(
exp

(
Cβ

m∑
r=1

σ
(1)
i,r Wr (tn+1)

))2
⎤
⎦

p
2

�
d∑

i=1

E

[
exp

(
pCβ

m∑
r=1

σ
(1)
i,r Wr (tn+1)

)]
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=
d∑

i=1

m∏
r=1

E

[
exp

(
pCβσ

(1)
i,r Wr (tn+1)

)]

=
d∑

i=1

m∏
r=1

exp

(
1

2
p2C2

β

(
σ

(1)
i,r

)2
tn+1

)

≤
d∑

i=1

exp

(
1

2
p2C2

β

m∑
r=1

(
σ

(1)
i,r

)2
T

)

according to the independence of Wr and Itô’s formula. �

Remark 3.1 The assumption �(2) = 0 leads to the uniform boundedness of Xn in the
almost surely sense, which results in the boundedness of Yn . For the case �(2) �= 0, it
can be shown that the pth moment of Xn is still uniformly bounded: based on the fact
(Xn,i ,Yn,i ) ∈ R

2d+ , we get from (3.3) that

Xn+1 ≤ Xn . ∗ exp
(
hCαη(2) + Cβ�(2) Jn+1

)

≤ X0. ∗ exp
(
TCαη(2) + Cβ�(2)W (tn+1)

)
,

and hence E|Xn+1|p ≤ C based on the procedure used in the proof of Theorem
3.3. However, in this case, the boundedness of Yn can not be obtained based on the
same procedure, and some other techniques need to be explored to investigate the
boundedness of the numerical solution.

3.3 Convergence order conditions

Based on the uniform boundedness of both the exact solution and the numerical one,
the convergence order conditions are stated in the following theorem.

Theorem 3.4 Assume that assumptions in Theorem 3.3 and the condition

s∑
i=1

αi =
s∑

i=1

βi = 1 (3.7)

hold, then the stochastic Runge–Kutta type method (3.3) converges with global order
one in the L1(Ω)-norm.

Proof It follows from Theorem 2.1 that the auxiliary processes U (t) = ln X(t) and
V (t) = ln Y (t) are well-defined and satisfy (3.1). Considering the local error between
(3.1) and (3.2) with �(2) = 0, and utilizing (3.7), we get

U (h) −U1 = �(2)
∫ h

0

s∑
i=1

αi e
V0,i − eV (t)dt,
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where

eV (t) = eV0 +
∫ t

0
eV (s). ∗ dV (s)

= eV0 +
∫ t

0
eV (s). ∗

[(
�(1)eU (s) − η(1) − 1

2
Λ(1)

)
ds + �(1)dW (s)

]
.

Denote CB
i := ∑s

j=1 bi j . According to the Taylor expansion, there exists some θ ∈
(0, 1), such that

s∑
i=1

αi e
V0,i

=
s∑

i=1

αi

[
eV0 + eV0 . ∗

(
h

s∑
j=1

ai j
(
�(1)eU0, j − η(1) − 1

2
Λ(1)

)
+ CB

i �(1) J1

)

+1

2
eθV0+(1−θ)V0,i . ∗

(
h

s∑
j=1

ai j
(
�(1)eU0, j − η(1) − 1

2
Λ(1)

)
+ CB

i �(1) J1

)2]

= eV0 + h
s∑

i, j=1

αi ai j e
V0 . ∗

(
�(1)eU0, j − η(1) − 1

2
Λ(1)

)
+ eV0 . ∗ �(1) J1

s∑
i, j=1

αi bi j

+
s∑

i=1

αi

2
eθV0+(1−θ)V0,i . ∗

(
h

s∑
j=1

ai j
(
�(1)eU0, j − η(1) − 1

2
Λ(1)

)
+ CB

i �(1) J1

)2

.

We then conclude that the weak local error between U (h) and U1 is of order two:

|E[U (h) −U1]|

=
∣∣∣∣�(2)

∫ h

0
E

[
h

s∑
i, j=1

αi ai j e
V0 . ∗

(
�(1)eU0, j − η(1) − 1

2
Λ(1)

)

−
∫ t

0
eV (s). ∗

(
�(1)eU (s) − η(1) − 1

2
Λ(1)

)
ds

+
s∑

i=1

αi

2
eθV0+(1−θ)V0,i . ∗

(
h

s∑
j=1

ai j
(
�(1)eU0, j − η(1) − 1

2
Λ(1)

)
+ CB

i �(1) J1

)2]
dt

∣∣∣∣

≤
∣∣∣�(2)

∣∣∣
F

{
h2

s∑
i, j=1

|αi ai j |
∣∣∣eV0

∣∣∣
∣∣∣∣�(1)

E

[
eU0, j

]
− η(1) − 1

2
Λ(1)

∣∣∣∣

+
∫ h

0

∫ t

0
E

[∣∣∣eV (s)
∣∣∣
∣∣∣∣�(1)eU (s) − η(1) − 1

2
Λ(1)

∣∣∣∣
]
dsdt

+h
s∑

i=1

αi

2
E

[ ∣∣∣eθV0+(1−θ)V0,i
∣∣∣
∣∣∣∣∣∣
h

s∑
j=1

ai j
(
�(1)eU0, j − η(1) − 1

2
Λ(1)

)
+ CB

i �(1) J1

∣∣∣∣∣∣

2 ]}

� h2,

123



Positivity-preserving symplectic methods for stochastic LV model 513

where we used the uniform boundedness of the solution X(t) = eU (t) and Y (t) =
eV (t), as well as the facts |U . ∗ V | ≤ |U ||V | for any vectors U , V ∈ R

d and |AU | ≤
|A|F |U | for a matrix A and a vectorU with | · |F being the Frobenius norm of a matrix.

Similarly, according to the Taylor expansion, we obtain

s∑
i=1

αi e
V0,i = eV0 +

s∑
i=1

αi e
θ̃V0+(1−θ̃ )V0,i . ∗

[
h

s∑
j=1

ai j
(
�(1)eU0, j − η(1) − 1

2
Λ(1)

)

+CB
i �(1) J1

]

for some θ̃ ∈ (0, 1). Then the strong local error satisfies

E |U (h) −U1|2

= E

∣∣∣∣
∫ h

0

s∑
i=1

αi e
θ̃V0+(1−θ̃ )V0,i . ∗

(
h

s∑
j=1

ai j
(
�(1)eU0, j − η(1) − 1

2
Λ(1)

)
+ CB

i �(1) J1

)
dt

−
∫ h

0

∫ t

0
eV (s). ∗

[(
�(1)eU (s) − η(1) − 1

2
Λ(1)

)
ds + �(1)dW (s)

]
dt

∣∣∣∣
2

� h2
s∑

i=1

α2
i E

⎡
⎢⎣
∣∣∣eθ̃V0+(1−θ̃ )V0,i

∣∣∣
2

∣∣∣∣∣∣
h

s∑
j=1

ai j
(
�(1)eU0, j − η(1) − 1

2
Λ(1)

)
+ CB

i �(1) J1

∣∣∣∣∣∣

2
⎤
⎥⎦

+h
∫ h

0
E

∣∣∣∣
∫ t

0
eV (s). ∗

[(
�(1)eU (s) − η(1) − 1

2
Λ(1)

)
ds + �(1)dW (s)

]∣∣∣∣
2

dt

≤ Ch3.

The estimates for V (h) − V1 can be obtained similarly. Based on the fundamental
theorem on the mean-square order of convergence (cf. [13]), one has

(
E

[
|U (tn) −Un|2 + |V (tn) − Vn|2

]) 1
2 ≤ Ch

for any tn = nh ∈ [0, T ], which ensures the final result

E (|X(tn) − Xn | + |Y (tn) − Yn |)
= E

(∣∣∣eU (tn) − eUn

∣∣∣ +
∣∣∣eV (tn) − eVn

∣∣∣
)

≤ E

(∣∣∣eθ1Un+(1−θ1)U (tn)(U (tn) −Un)

∣∣∣ +
∣∣∣eθ2Vn+(1−θ2)V (tn)(V (tn) − Vn)

∣∣∣
)

≤ max
{∣∣X θ1

n X(tn)
1−θ1

∣∣
L2(Ω)

,
∣∣Y θ2

n Y (tn)
1−θ2

∣∣
L2(Ω)

} (
E
[|U (tn)−Un |2+|V (tn)−Vn |2

]) 1
2

≤ Ch

according to the uniformboundedness of the solution (X(t),Y (t)) and (Xn,Yn) shown
in Proposition 2.1 and Theorem 3.3 with θ1, θ2 ∈ (0, 1). �
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Remark 3.2 Based on the procedure above, we can also construct positivity-preserving
symplectic methods for (1.1) based on the following stochastic partitioned Runge–
Kutta method

Xn,i = Xn . ∗ exp

(
h

s∑
j=1

ai j

(
−�(2)Yn, j + η(2) − 1

2
Λ(2)

))
. ∗ exp

( s∑
j=1

bi j�
(2) Jn+1

)
,

Yn,i = Yn . ∗ exp

(
h

s∑
j=1

ãi j

(
�(1)Xn, j − η(1) − 1

2
Λ(1)

))
. ∗ exp

( s∑
j=1

b̃i j�
(1) Jn+1

)
,

Xn+1 = Xn . ∗ exp

(
h

s∑
j=1

α j

(
−�(2)Yn, j + η(2) − 1

2
Λ(2)

))
. ∗ exp

( s∑
j=1

β j�
(2) Jn+1

)
,

Yn+1 = Yn . ∗ exp

(
h

s∑
j=1

α̃ j

(
�(1)Xn, j − η(1) − 1

2
Λ(1)

))
. ∗ exp

( s∑
j=1

β̃ j�
(1) Jn+1

)
.

(3.8)

The parameters of method (3.8) can be characterized by the Butcher tableau

A Ã B B̃

α� α̃� β� β̃�

with A = [ai j ]s×s, Ã = [ãi j ]s×s, B = [bi j ]s×s, B̃ = [b̃i j ]s×s, α =
(α1, · · · , αs)

�, α̃ = (α̃1, · · · , α̃s)
�, β = (β1, · · · , βs)

� and β̃ = (β̃1, · · · , β̃s)
�.

In this case, the stochastic symplectic conditions (3.4) is modified as

αi = α̃i , αi ãi j + α̃ j a ji = αi α̃ j ,

and order conditions (3.7) turns to be

s∑
j=1

α j =
s∑

j=1

α̃ j =
s∑

j=1

β̃ j = 1

for the case �(2) = 0.

4 Numerical examples

In Sect. 4.1, we present several low-stage positive-preserving symplectic methods sat-
isfying both the order conditions and the stochastic symplectic conditions for (1.1).
In Sect. 4.2, numerical experiments are given for two specific models, where conver-
gence errors and the evolution of the phase area are tested for a one-stage stochastic
Runge–Kutta method (Scheme 1) and a two-stage stochastic partitioned Runge–Kutta
method (Scheme 4) compared with Euler–Maruyama and Milstein schemes.
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4.1 Some low-stage positive-preserving symplectic methods

Four specific s-stage Runge–Kutta methods are presented below whose coefficients
A, B, α and β satisfy the assumptions in Theorems 3.2 and 3.4, and thus are all
positivity-preserving symplectic methods.

Scheme 1 The one-stage stochastic Runge–Kutta method with the Butcher tableau

1/2 1/2
1 1

.

More precisely, the scheme has the following form

Xn+1 = Xn . ∗ exp

(
h

(
−�(2)(Yn+1. ∗ Yn)

1
2 + η(2) − 1

2
Λ(2)

)
+ �(2) Jn+1

)
,

Yn+1 = Yn . ∗ exp

(
h

(
�(1)(Xn+1. ∗ Xn)

1
2 − η(1) − 1

2
Λ(1)

)
+ �(1) Jn+1

)
.

Scheme 2 The two-stage stochastic Runge–Kutta method with the Butcher tableau

1/8 0 1/4 0
1/4 3/8 1/2 1/4
1/4 3/4 1/2 1/2

.

Scheme 3 The one-stage stochastic partitioned Runge–Kutta method with the Butcher
tableau

1/2 1/2 1/2 1/2
1 1 1 1

.

Scheme 4 The two-stage stochastic partitioned Runge–Kutta method with the Butcher
tableau

0 0 1/2 0 0 0 1/2 0
1/2 1/2 1/2 0 1/2 1/2 1/2 0
1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

.

More precisely, the scheme has the following explicit form

Yn,1 = Yn . ∗ exp

(
h

2

(
�(1)Xn − η(1) − 1

2
Λ(1)

)
+ 1

2
�(1) Jn+1

)
,

Xn+1 = Xn . ∗ exp

(
h

(
−�(2)Yn,1 + η(2) − 1

2
Λ(2)

)
+ �(2) Jn+1

)
,

Yn+1 = Yn . ∗ exp

(
h

(
1

2
�(1)(Xn+1 + Xn) − η(1) − 1

2
Λ(1)

)
+ �(1) Jn+1

)
.
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4.2 Numerical experiments

In this section, we consider the following two-dimensional stochastic LV model per-
turbed by an m-dimensional Wiener process W = (W1, · · · ,Wm)�:

dx(t) = x(t)
[
(−γ2y(t) + η2) dt + σ2dW (t)

]
, x(0) = x0,

dy(t) = y(t)
[
(γ1x(t) − η1) dt + σ1dW (t)

]
, y(0) = y0,

(4.1)

where γl , ηl > 0 and σl = (σl1, · · · , σlm) ∈ R
1×m . We will use Schemes 1 and 4 to

present some numerical experiments to show the favorable performance of the pro-
posed numericalmethods in comparisonwith the following twowidely used numerical
methods applied to the stochastic LV model (4.1):

– The Euler–Maruyama (EM) scheme

Xn+1 = Xn + h(−γ2XnYn + η2Xn) + Xnσ2 Jn+1,

Yn+1 = Yn + h (γ1XnYn − η1Yn) + Ynσ1 Jn+1.

– The Milstein scheme

Xn+1 = Xn + h(−γ2XnYn + η2Xn) + Xnσ2 Jn+1 + Xn

r∑
k,l=1

σ2,kσ2,l I
(n+1)
kl ,

Yn+1 = Yn + h (γ1XnYn − η1Yn) + Ynσ1 Jn+1 + Yn

r∑
k,l=1

σ1,kσ1,l I
(n+1)
kl ,

where

I (n+1)
kl =

∫ (n+1)h

nh
(Wk(t) − Wk(nh)) dWl(t).

Throughout these experiments, the expectation is approximated by taking averaged
value over 1000 realizations. We use the solution of Scheme 4 with a fine step size
2−12 as the reference value of the exact solution.

4.2.1 The single noise case

We first consider the single noise case m = 1 and choose parameters γ1 = γ2 = η1 =
η2 = σ1 = 1 and σ2 = 0.

The convergence order in the L
1(Ω)-norm as well as the convergence error is

investigated for the EM scheme, the Milstein scheme, Schemes 1 and 4. It can be
observed from Fig. 1 that the EM scheme is of order 0.5 while the other three schemes
are all of order 1 in theL1(Ω)-normcomparedwith the reference lines,which coincides
with the theoretical analysis in Theorem 3.4. The convergence errors for the above
four schemes are given in Table 1 over different time intervals T = 0.5, 1, 5, 10, 20.
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Fig. 1 L
1(Ω)-convergence

order for numerical solution
(XN , YN ) at T = 1 in log-log
scale with step size
h ∈ {2−i , 4 ≤ i ≤ 9}

Table 1 L
1(Ω) convergence error for schemes with h = 2−6

T 0.5 1 5 10 20

EM scheme 5.18e−01 3.93e−01 2.35e−01 1.89 3.39

Milstein scheme 5.20e−02 4.99e−02 1.52e−01 1.26 2.91

Scheme 1 6.80e−03 5.00e−03 1.74e−02 8.08e−02 4.82e−01

Scheme 4 7.00e−03 5.20e−03 1.67e−02 1.08e−01 7.67e−01

It shows that the errors for Schemes 1 and 4 are smaller than that of the EM scheme
and the Milstein scheme.

The performance of two positivity-preserving symplecticmethods—Schemes 1 and
4—are investigated, comparedwith EMandMilstein schemeswhich are not stochastic
symplectic or positivity-preserving.We present the evolution of the phase area and the
error of the phase area for theEMscheme, theMilstein scheme, Schemes 1 and 4 in Fig.
2. The triangle determined by three points w1

0 = (1, 7), w2
0 = (7, 1) and w3

0 = (4, 4)
is chosen as the initial area. We can get three series of points {wi

n}n≥0, i = 1, 2, 3,
under the propagation of a specific scheme. At each step n in the time interval [0, 20],
the phase area is the area of the triangle determined by points {w1

n, w
2
n, w

3
n}.

Figure 2 shows the evolution of the phase area and the error of the phase area. As
shown in (a), the evolution of the phase area of either Schemes 1 or 4 is almost the
same as the exact one, while the phase areas of both EM and Milstein schemes turn to
deviate from the exact one. This phenomenon appears more evident in (b), where we
simulate the error of the phase area for the EM scheme, the Milstein scheme, Schemes
1 and 4. The good performance of Schemes 1 and 4 benefits from the preservation
of the geometric structure, which shows the superiority of our proposed numerical
methods in this work.
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(a) (b)

Fig. 2 Evolution of a the phase area and b the error of the phase area for the EM scheme, the Milstein
scheme, Scheme 1 and Scheme 4 (h = 2−5, T = 20)

4.2.2 Amultiple noise case

In this subsection, we consider a multiple noise case withm = 3, and choose parame-
ters (γ1, γ2, η1, η2) = (0.5, 0.6, 0.7, 0.8), σ1 = (0,−0.3, 0.4) and σ2 = (0.2, 0, 0) in
(4.1) such that the species X is perturbed by W1, while Y is perturbed by independent
random processes W2 and W3. Under this setting, (4.1) turns to be

dx(t) = x(t) [(−0.6y(t) + 0.8) dt + 0.2dW1(t)] , x(0) = x0,

dy(t) = y(t) [(0.5x(t) − 0.7) dt − 0.3dW2(t) + 0.4dW3(t)] , y(0) = y0.

For the multiple noise case, the Milstein scheme is not easy to implement due to
the presence of the double Wiener integral I (n)

kl with k �= l. More precisely, I (n)
kl can

not be expressed in terms of simpler stochastic integrals when k �= l, and the Fourier
series expansion is usually used to approximate this kind of integral. Details of the
implementation of the Milstein scheme can be found in [9], and won’t be discussed
here. In the following, Schemes 1 and 4 are tested in comparison with the EM scheme.

Similar to the single noise case, the convergence order in the L1(Ω)-norm, and the
evolution of the area as well as its error are given in Figs. 3 and 4, respectively. One
can figure it out from Fig. 3 that Schemes 1 and 4 are both of order 1 while the EM
scheme is of order 0.5. The errors of the phase area for Schemes 1 and 4 are much
smaller than that for the EM scheme as shown in Fig. 4.

5 Conclusion

We have studied the behavior for the stochastic Lotka–Volterra predator-prey model,
including the positivity and the stochastic symplecticity of the solution. A class of
Runge–Kutta methods is presented to preserve the positivity. Both symplectic con-
ditions and order conditions are given to ensure the stochastic symplecticity and the
convergence order one in the L1(Ω)-norm of the proposed methods.
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Fig. 3 L
1(Ω)-convergence

order for numerical solution
(XN , YN ) at T = 1 in log-log
scale with step size
h ∈ {2−i , 4 ≤ i ≤ 9}

(a) (b)

Fig. 4 Evolution of a the phase area and b the error of the phase area for the EM scheme, Schemes 1 and
4 (h = 2−5, T = 20)

For more complex biological systems, such as models with competition or cooper-
ation, it is still not clear if the solution is positive mathematically when perturbed by
random noises or if it possesses some kinds of stochastic conservation laws. More-
over, constructions and analysis of numerical methods are more challenging due to the
interacting among different species and non-global Lipschitz nonlinear term involved
in the equation. Some other tools or techniques need to be explored to study the
other biological systems. We hope to be able to report the progress on these problems
elsewhere in the future.
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