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NUMERICAL ANALYSIS ON ERGODIC LIMIT
OF APPROXIMATIONS FOR STOCHASTIC

NLS EQUATION VIA MULTI-SYMPLECTIC SCHEME⇤

JIALIN HONG† , XU WANG‡ , AND LIYING ZHANG§

Abstract. We consider a finite dimensional approximation of the stochastic nonlinear
Schrödinger equation driven by multiplicative noise, which is derived by applying a symplectic
method to the original equation in spatial direction. Both the unique ergodicity and the charge
conservation law for this finite dimensional approximation are obtained on the unit sphere. To simu-
late the ergodic limit over long time for the finite dimensional approximation, we discretize it further
in the temporal direction to obtain a fully discrete scheme, which inherits not only the stochastic
multi-symplecticity and charge conservation law of the original equation but also the unique ergod-
icity of the finite dimensional approximation. The temporal average of the fully discrete numerical
solution is proved to converge to the ergodic limit with order 1 with respect to the time step for
a fixed spatial step. Numerical experiments verify our theoretical results on charge conservation,
ergodicity, and weak convergence.
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1. Introduction. For the stochastic nonlinear Schrödinger (NLS) equation with
a multiplicative noise in Stratonovich sense,

(1)

8
><

>:

du = i
�
�u+ �|u|2u

�
dt+ iu � dW,

u(t, 0) = u(t, 1) = 0, t � 0,

u(0, x) = u0(x), x 2 [0, 1]

with � = ±1, we consider the case that W is a real valued Q-Wiener process on a fil-
tered probability space (⌦,F , (Ft)t�0,P) with paths in H1

0 := H1
0 (0, 1) with Dirichlet

boundary condition. The Karhunen–Loève expansion of W is as follows:

W (t, x,!) =
1X

k=0

�k(t,!)Q
1
2 ek(x), t � 0, x 2 [0, 1], ! 2 ⌦,

where (ek =
p
2 sin(k⇡x))k�1 is an eigenbasis of the Dirichlet Laplacian � in L2 :=

L2(0, 1) and (�k)k�1 is a sequence of independent real valued Brownian motions

⇤Received by the editors June 8, 2016; accepted for publication (in revised form) November 8,
2016; published electronically February 15, 2017.

http://www.siam.org/journals/sinum/55-1/M107909.html
Funding: The work of the first and second authors was supported by the National Natural

Science Foundation of China (91530118, 91130003, 11021101, and 11290142). The work of the third
author was supported by the National Natural Science Foundation of China (11601514).

†Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of
Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, People’s Republic
of China (hjl@lsec.cc.ac.cn).

‡Corresponding author. Institute of Computational Mathematics and Scientific/Engineering
Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing
100190, People’s Republic of China (wangxu@lsec.cc.ac.cn).

§Department of Mathematics, College of Sciences, China University of Mining and Technology,
Beijing 100083, People’s Republic of China (lyzhang@lsec.cc.ac.cn).

305

D
ow

nl
oa

de
d 

02
/1

5/
17

 to
 1

24
.1

6.
14

8.
9.

 R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.siam.org/journals/sinum/55-1/M107909.html
mailto:hjl@lsec.cc.ac.cn
mailto:wangxu@lsec.cc.ac.cn
mailto:lyzhang@lsec.cc.ac.cn


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

306 JIALIN HONG, XU WANG, AND LIYING ZHANG

associated with the filtration (Ft)t�0. In addition, the covariance operator Q is as-
sumed to commute with the Laplacian and satisfies

Qek = ⌘kek, ⌘k > 0, 8k 2 N, ⌘ :=
1X

k=1

⌘k < 1.

We refer to [9] for additional assumptions on the well-posedness of (1). It is shown
that (1) is a Hamiltonian system with stochastic multi-symplectic structure and charge
conservation law (see [6, 9, 11] and references therein). Structure-preserving numerical
schemes have remarkable superiority over conventional schemes to numerically solve
Hamiltonian systems over long time. As another kind of long-time behavior, the
ergodicity for this kind of conservative system is an important and di�cult problem
which is still open. Motivated by [10], we study the ergodicity for a finite dimensional
approximation (FDA) of the original equation instead.

In this paper, we investigate the ergodicity for a symplectic FDA of (1) and
approximate its ergodic limit via a multi-symplectic and ergodic scheme. As we show
that the FDA is charge conserved, without loss of generality, we consider the ergodicity
in the finite dimensional unit sphere S. There have been some papers considering the
additive noise case with dissipative assumptions, and also some papers requiring a
uniformly elliptic assumption on the whole space to ensure unique ergodicity (see,
e.g., [3, 12, 13, 15, 16]). A conservative FDA with linear multiplicative noise has
an uncertain nondegeneracy, which relies heavily on the solution. To overcome this
di�culty, we construct an invariant control set M0 ⇢ S, in which the FDA is shown to
be nondegenerate. Together with the Krylov–Bogoliubov theorem and the Hörmander
condition, we prove that the solution U possesses a unique invariant measure µh (i.e.,
U is uniquely ergodic) with

lim
T!1

1

T

Z T

0
Ef(U(t))dt =

Z

M0

fdµh =

Z

S

fdµh.

For many physical applications, the approximation of the invariant measure is
of fundamental importance, especially when the invariant measure is unknown (see,
e.g., [1, 3, 4, 5, 7, 13, 14, 15, 16]). Some papers construct numerical schemes which
also possess unique invariant measures, and then show the approximate error between
invariant measures. For example, [7, 15] work with dissipative systems driven by ad-
ditive noise, and [16] considers elliptic stochastic di↵erential equations (SDEs) with
bounded coe�cients and dissipative type condition. There is also some work con-
centrating on the approximation of the invariant measure, i.e., the approximation of
the ergodic limit

R
S
fdµh, in which case the numerical schemes may not be uniquely

ergodic. For instance, [3] approximates the invariant measure of stochastic partial dif-
ferential equations with an additive noise based on Kolmogorov equation. Reference
[13] gives error estimates for time-averaging estimators of numerical schemes based on
the associated Poisson equation and the assumption of local weak convergence order.
Authors in [14] calculate the ergodic limit for Langevin equations with dissipations
via quasi-symplectic integrators. There have been few results on constructing con-
servative and uniquely ergodic schemes to calculate the ergodic limit for conservative
systems, to our knowledge. We focus on the approximation of the ergodic limit via
a multi-symplectic scheme, which is also shown to be uniquely ergodic. For a fixed
spacial dimension, the local weak error of this fully discrete scheme (FDS) in temporal
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direction is of order 2, which yields order 1 for the approximate error of the ergodic
limit based on the associated Poisson equation (see also [4, 13]) and a priori estimates
of the numerical solutions. That is,

�����E
"
1

N

N�1X

n=0

f(Un)�
Z

S

fdµh

#�����  Ch

✓
1

T
+ ⌧

◆
.

The paper is organized as follows. In section 2, we apply a symplectic semidiscrete
scheme to the original equation to get the FDA, and show the unique ergodicity as well
as the charge conservation law for the FDA. In section 3, we present a multi-symplectic
and ergodic FDS to approximate the ergodic limit, and show the approximate error
based on a priori estimates and local weak error. In section 4, the discrete charge
evolution compared with those of the Euler–Maruyama scheme and implicit Euler
scheme, the ergodic limit, and global weak convergence order are tested numerically.
Section 5 is the appendix containing proofs of some a priori estimates.

2. Unique ergodicity. In this section, we first apply the central finite di↵erence
scheme to (1) in the spatial direction to obtain a FDA, which is also a Hamiltonian
system. To investigate the ergodicity of this conservative system, we then construct
an invariant control set M0 ⇢ S with respect to a control function introduced in
section 2.2. The FDA is proved to be ergodic in M0 based on the Krylov–Bogoliubov
theorem and the Hörmander condition.

2.1. Finite dimensional approximation (FDA). Based on the central fi-
nite di↵erence scheme and the notation uj := uj(t), j = 1, . . . ,M , we consider the
following spatial semidiscretization:

duj = i


uj+1 � 2uj + uj�1

h2
+ �|uj |2uj

�
dt+ iuj

KX

k=1

p
⌘kek(xj) � d�k(t)

with a truncated noise
PK

k=1
p
⌘kek(x)�k(t), K 2 N, a given uniform step size h =

1
M+1 for some M  K, and xj = jh, j = 1, . . . ,M . The condition M  K here
ensures the existence of the solution for the control function. Denoting vectors U :=
U(t) = (u1, . . . , uM )T 2 CM , �(t) = (�1(t), . . . ,�K(t))T 2 RK , and matrices F (U) =
diag{|u1|2, . . . , |uM |2}, Ek = diag{ek(x1), . . . , ek(xM )}, ⇤ = diag{p⌘1, . . . ,

p
⌘K},

Z(U) = diag{u1, . . . , uM}EMK⇤,

A =

0

BBB@

�2 1
1 �2 1

. . .
. . .

. . .
1 �2

1

CCCA
2 RM⇥M , EMK =

0

B@
e1(x1) · · · eK(x1)

...
...

e1(xM ) · · · eK(xM )

1

CA

M⇥K

,

then the FDA is in the following form:

(2)

8
><

>:

dU = i


1

h2
AU + �F (U)U

�
dt+ iZ(U) � d�(t),

U(0) = c⇤ (u0(x1), . . . , u0(xM ))T ,

where c⇤ is a normalized constant. The noise term in (2) has an equivalent Itô form

iZ(U) � d�(t) = i
KX

k=1

p
⌘kEkU � d�k(t) = �1

2

KX

k=1

⌘kE
2
kUdt+ i

KX

k=1

p
⌘kEkUd�k(t)
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308 JIALIN HONG, XU WANG, AND LIYING ZHANG

=:� ÊUdt+ i
KX

k=1

p
⌘kEkUd�k(t)(3)

with Ê = 1
2

PK
k=1 ⌘kE

2
k. In the following, k · k denotes the 2-norm for both matrices

and vectors, which satisfies kBV k  kBkkV k for any matrices B 2 Cm⇥n and vectors
V 2 Cn, m,n 2 N. It is then easy to show that kAk  4, which is independent of the
dimension M .

Proposition 2.1. The FDA (2) possesses the charge conservation law, i.e.,

kU(t)k2 = kU(0)k2, 8 t � 0, P-a.s.

where kU(t)k = (kP (t)k2 + kQ(t)k2) 1
2 =

�PM
m=1(|pm(t)|2 + |qm(t)|2)

� 1
2
, and P (t) =

(p1(t), . . . , pM (t))T and Q(t) = (q1(t), . . . , qM (t))T are the real and imaginary parts

of U(t) respectively.

Proof. Noticing that matrices A and F (U) are symmetric and the linear function
Z(U) satisfies

U
T
Z(U) = (u1, . . . , uM )

0

B@
u1

. . .
uM

1

CAEMK

0

B@

p
⌘1

. . .
p
⌘K

1

CA

= (|u1|2, . . . , |uM |2)EMK

0

B@

p
⌘1

. . .
p
⌘K

1

CA 2 RK ,(4)

where U denotes the conjugate of U , we multiply (2) by U
T
, take the real part, and

then get the charge conservation law for U .

In the following, without pointing out, all equations hold in the sense P-a.s.
Remark 2.2. Equation. (1) can be rewritten into an infinite dimensional Hamil-

tonian system (see [11]). It is easy to verify that the central finite di↵erence scheme
(2) applied to (1) is equivalent to the symplectic Euler scheme applied to the infinite
dimensional Hamiltonian form of (1), which implies the symplecticity of (2).

2.2. Unique ergodicity. As the charge of (2) is conserved shown in Proposition
2.1, without loss of generality, we assume that U(0) 2 S and investigate the unique
ergodicity of (2) on S. As the nondegeneracy for (2) relies on the solution U as a
result of the multiplicative noise, the standard procedure to show the irreducibility
and strong Feller property on the whole S do not apply. So we need to construct an
invariant control set.

Definition 2.3. (see, e.g., [2]) A subset M 6= ; of S is called an invariant control

set for the control system

(5) d� = i


1

h2
A�+ �F (�)�

�
dt+ iZ(�)d (t)

of (2) with a di↵erentiable deterministic function  , if O+(x) = M, 8x 2 M, and M
is maximal with respect to inclusion, where O+(x) denotes the set of points reachable

from x (i.e., connected with x) in any finite time and M denotes the closure of M.
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We state one of our main results in the following theorem.

Theorem 2.4. The FDA (2) possesses a unique invariant probability measure µh

on an invariant control set M0, which implies the unique ergodicity of (2). Moreover,

supp(µh) = S and µh(S) = µh(M0) = 1.

Proof.

Step 1. Existence of invariant measures.

From Proposition 2.1, we find ⇡t(U(0),S) = 1, 8 t � 0, where ⇡t(U(0), ·) denotes
the transition probability (probability kernel) of U(t). As the finite dimensional unit
sphere S is tight, the family of measures ⇡t(U(0), ·) is tight, which implies the existence
of invariant measures by the Krylov–Bogoliubov theorem [8].

Step 2. Invariant control set.

Denoting U = P + iQ with P and Q being the real and imaginary parts of U
respectively, we first consider the following subset of S:

S1 = {U = P + iQ 2 S : P > 0}.

For any t > 0, y, z 2 S1, there exists a di↵erentiable function � satisfying �(s) =
(�1(s), . . . ,�M (s))T 2 S1, s 2 [0, t], �(0) = y, and �(t) = z by polynomial inter-
polation argument. As rank(Z(�(s))) = M for �(s) 2 S1 and M  K, the linear
equations

Z(�(s))X = �i�0(s)�

1

h2
A�(s) + �F (�(s))�(s)

�

possess a solutionX 2 CM . As, in addition, Z(�(s)) = diag{�1(s), . . . ,�M (s)}EMK⇤,
where diag{�1(s), . . . ,�M (s)} is invertible for �(s) 2 S1, the solution X depends con-
tinuously on s and is denoted by X(s). Thus, there exists a di↵erentiable function
 (·) :=

R
·

0 X(s)ds which, together with � defined above, satisfies the control function
(5) with initial data  (0) = 0. That is, for any y, z 2 S1, y and z are connected,
denoted by y $ z. The above argument also holds for the following subsets:

S2 = {U = P + iQ 2 S : P < 0},
S3 = {U = P + iQ 2 S : Q > 0},
S4 = {U = P + iQ 2 S : Q < 0}.

For any y 2 Si, z 2 Sj with i 6= j and i, j 2 {1, 2, 3, 4}, there must exist Sl, ri, and
rj , satisfying ri 2 Si \ Sl 6= ; and rj 2 Sj \ Sl 6= ; for some l 2 {1, 2, 3, 4}, such that
y $ ri $ rj $ z. Thus,

M0 := S1 [ S2 [ S3 [ S4 = {U = P + iQ 2 S : P 6= 0 or Q 6= 0},

with M0 = S, is an invariant control set for (5).
Step 3. Uniqueness of the invariant measure.

We rewrite (2) with P and Q according to its equivalent form in the Itô sense
and obtain

d

✓
P
Q

◆
=

✓
�Ê � 1

h2A� �F (P,Q)
1
h2A+ �F (P,Q) �Ê

◆✓
P
Q

◆
dt

+
KX

k=1

p
⌘k

✓
0 �Ek

Ek 0

◆✓
P
Q

◆
d�k(t)
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=: X0(P,Q)dt+
KX

k=1

Xk(P,Q)d�k(t).(6)

To derive the uniqueness of the invariant measure, we consider the Lie algebra gener-
ated by the di↵usions of (6),

L(X0, X1, . . . , XK) = span

⇢
Xl, [Xi, Xj ], [Xl, [Xi, Xj ]] , . . . , 0  l, i, j  K

�
.

Choosing p⇤ = 0 and q⇤ = �1
p
M
(1, . . . , 1)T such that z⇤ := p⇤ + iq⇤ 2 S4 ⇢ M0, we

derive that the vectors

Xk(p⇤, q⇤) =

r
⌘k
M

0

BBBBBBBB@

ek(x1)
...

ek(xM )
0
...
0

1

CCCCCCCCA

, [X0, Xk](p⇤, q⇤) =

r
⌘k
M

0

BBBBBBBB@

�Ê

0

B@
ek(x1)

...
ek(xM )

1

CA

( 1
h2A+ 1

M I)

0

B@
ek(x1)

...
ek(xM )

1

CA

1

CCCCCCCCA

are independent of each other for k = 1, . . . ,M , which hence implies the following
Hörmander condition:

dimL(X0, X1, . . . , XK)(z⇤) = 2M.

Then there is at most one invariant measure with supp(µh) = S according to [2].
Actually, according to the above procedure, we obtain that the Hörmander condition
holds uniformly for any z 2 M0.

Combining the three steps above, we conclude that there exists a unique invariant
measure µh on M0 for the FDA, with µh(S) = µh(M0) = 1.

From the theorem above, we can find out that for some other nonlinearities, e.g.,
iF (x, |u|)u with F being some potential function, such that the equation still possesses
the charge conservation law, we can still get the ergodicity of the finite dimensional
approximation of the original equation through the procedure above. The procedure
could also applied to higher dimensional Schrödinger equations with proper well-posed
assumptions, but it may be more technical to verify the Hörmander condition.

Remark 2.5. According to the ergodicity of (2), we have

lim
T!1

1

T

Z T

0
Ef(U(t))dt =

Z

S

fdµh, 8 f 2 Bb(S), in L2(S, µh),

where Bb(S) denotes the set of bounded and measurable functions and
R
S
fdµh is

known as the ergodic limit with respect to the invariant measure µh.
For more details, we refer to [8] and references therein.

3. Approximation of ergodic limit. A fully discrete scheme (FDS) with the
discrete multi-symplectic structure and the discrete charge conservation law is con-
structed in this section, which could also inherit the unique ergodicity of the FDA.
In addition, we prove that the time average of the FDS can approximate the ergodic
limit

R
S
fdµh with order 1 with respect to the time step.
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3.1. Fully discrete scheme (FDS). We apply the midpoint scheme to (2),
and obtain the following FDS:

(7)

8
<

:
Un+1 � Un = i

⌧

h2
AUn+ 1

2 + i�⌧F (Un+ 1
2 )Un+ 1

2 + iZ(Un+ 1
2 )�n+1�,

U0 = U(0) 2 S,

where ⌧ denotes the uniform time step, tn = n⌧ , Un = (un
1 , . . . , u

n
M ) 2 CM , Un+ 1

2 =
Un+1+Un

2 , and �n+1� = �(tn+1) � �(tn). For the FDS (7), which is implicit in
both deterministic and stochastic terms, its well-posedness is stated in the following
proposition.

Proposition 3.1. For any initial value U0 = U(0) 2 S, there exists a unique

solution (Un)n2N of (7), and it possesses the discrete charge conservation law, i.e.,

kUn+1k2 = kUnk2 = 1, 8 n 2 N.

Proof. We multiply both sides of (7) by Un+ 1
2 , take the real part, and obtain the

existence of the numerical solution by the Brouwer fixed-point theorem as well as the
discrete charge conservation law.

For the uniqueness, we assume that X = (X1, . . . , XM )T and Y = (Y1, . . . , YM )T

are two solutions of (7) with Un = z = (z1, . . . , zM )T 2 S. It follows that X,Y 2 S
and

(8) X � Y = i
⌧

h2
A
X � Y

2
+

i�⌧

8
H(X,Y, z) + iZ

✓
X � Y

2

◆
�n+1�,

where

H(X,Y, z) =

0

B@
|X1 + z1|2(X1 + z1)� |Y1 + z1|2(Y1 + z1)

...
|XM + zM |2(XM + zM )� |YM + zM |2(YM + zM )

1

CA .

Based on the fact that |a|2a � |b|2b = |a|2(a � b) + |b|2(a � b) + ab(a � b) for any
a, b 2 C, we have

=
⇥
(X � Y )TH(X,Y, z)

⇤
= =

"
MX

m=1

(Xm + zm)(Ym + zm)(Xm � Ym)2
#

with =[V ] denoting the imaginary part of V . Multiplying (8) by (X�Y )T and taking
the real part, we get

kX � Y k2 = ��⌧

8
=
⇥
(X � Y )TH(X,Y, z)

⇤

 ⌧

8

✓
max

1mM
|Xm + zm||Ym + zm|

◆
kX � Y k2  ⌧

2
kX � Y k2,

where we have used the fact X,Y, z 2 S and (4). For ⌧ < 1, we get X = Y and
complete the proof.

The proposition above shows that (7) possesses the discrete charge conservation
law. Furthermore, (7) also inherits the unique ergodicity of the FDA and the stochas-
tic multi-symplecticity of the original equation, which are stated in the following two
theorems.
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Theorem 3.2. The FDS (7) is also ergodic with a unique invariant measure µ⌧
h

on the control set M0, such that µ⌧
h(S) = µ⌧

h(M0) = 1. Also,

lim
N!1

1

N

N�1X

n=0

f(Un) =

Z

S

fdµ⌧
h, 8 f 2 Bb(S), in L2(S, µ⌧

h).

Proof. Based on the charge conservation law for {Un}n�1, we obtain the existence
of the invariant measure similar to the proof of Theorem 2.4.

To obtain the uniqueness of the invariant measure, we show that the Markov chain
{U3n}n�1 satisfies the minorization condition (see, e.g., [12]). First, Proposition 3.1
implies that for a given Un 2 S, solution Un+1 can be defined through a continuous
function Un+1 = (Un, �n+1�). As �n+1� has a C1 density, we get a jointly continu-
ous density for Un+1. Second, similar to Theorem 2.4, for any given y, z 2 M0, there
must exist i, j, k 2 {1, 2, 3, 4} and ri, rj 2 M0, such that y 2 Si, z 2 Sj , ri 2 Si \ Sk,
and rj 2 Sj \ Sk. As y+ri

2 2 Si and Z(y+ri
2 ) is invertible, �3n+1� can be chosen to

ensure that

ri � y = i
⌧

h2
A
y + ri

2
+ i�⌧F (

y + ri
2

)
y + ri

2
+ iZ(

y + ri
2

)�3n+1�

holds, i.e., ri = (y, �3n+1�). Similarly, based on the fact ri+rj
2 2 Sk and rj+z

2 2 Sj ,
we have rj = (ri, �3n+2�) and z = (rj , �3n+3�). That is, for any given y, z 2 M0,
�3n+1�, �3n+2�, �3n+3� can be chosen to ensure that U3n = y and U3(n+1) = z.
Finally we obtain that, for any � > 0,

P3 (y,B(z, �)) := P
�
U3 2 B(z, �)

��U0 = y
�
> 0,

where B(z, �) denotes the open ball of radius � centered at z.

The infinite dimensional system (1) has been shown to preserve the stochastic
multi-symplectic conservation law locally (see, i.e., [11]):

dt(dp ^ dq)� @x(dp ^ dv + dq ^ dw)dt = 0,

with p, q denoting the real and imaginary parts of solution u respectively and v = px,
w = qx being the derivatives of p and q with respect to variable x. We now show
that this ergodic FDS (7) not only possesses the discrete charge conservation law as
shown in Proposition 3.1 but also preserves the discrete stochastic multi-symplectic
structure.

Theorem 3.3. The implicit FDS (7) preserves the discrete multi-symplectic

structure

1

⌧
(dpn+1

j ^ dqn+1
j � dpnj ^ dqnj )�

1

h
(dp

n+ 1
2

j ^ dv
n+ 1

2
j+1 � dp

n+ 1
2

j�1 ^ dv
n+ 1

2
j )

� 1

h
(dq

n+ 1
2

j ^ dw
n+ 1

2
j+1 � dq

n+ 1
2

j�1 ^ dw
n+ 1

2
j ) = 0,

where pnj , q
n
j denote the real and imaginary parts of un

j , vj = 1
h (p

n
j � pnj�1), and

wj =
1
h (q

n
j � qnj�1).
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Proof. Rewriting (7) with the real and imaginary parts of the components un
j of

Un, we get
(9)8
>>>>>>>>><

>>>>>>>>>:

1

⌧
(qn+1

j � qnj )�
1

h
(v

n+ 1
2

j+1 � v
n+ 1

2
j ) =

⇣
(p

n+ 1
2

j )2 + (q
n+ 1

2
j )2

⌘
p
n+ 1

2
j + p

n+ 1
2

j ⇣Kj ,

�1

⌧
(pn+1

j � pnj )�
1

h
(w

n+ 1
2

j+1 � w
n+ 1

2
j ) =

⇣
(p

n+ 1
2

j )2 + (q
n+ 1

2
j )2

⌘
q
n+ 1

2
j + q

n+ 1
2

j ⇣Kj ,

1

h
(p

n+ 1
2

j � p
n+ 1

2
j�1 ) = v

n+ 1
2

j ,

1

h
(q

n+ 1
2

j � q
n+ 1

2
j�1 ) = w

n+ 1
2

j ,

where ⇣Kj =
PK

k=1
p
⌘kek(xj) � d�k(t). Denoting z

n+ 1
2

j = (p
n+ 1

2
j , q

n+ 1
2

j , v
n+ 1

2
j , w

n+ 1
2

j )T

and taking the di↵erential in the phase space on both sides of (9), we obtain

1

⌧
d

0

BB@

qn+1
j � qnj

�(pn+1
j � pnj )

0
0

1

CCA+
1

h
d

0

BBBB@

�(v
n+ 1

2
j+1 � v

n+ 1
2

j )

�(w
n+ 1

2
j+1 � w

n+ 1
2

j )

p
n+ 1

2
j � p

n+ 1
2

j�1

q
n+ 1

2
j � q

n+ 1
2

j�1

1

CCCCA

= r2S1(z
n+ 1

2
j )dz

n+ 1
2

j +r2S2(z
n+ 1

2
j )dz

n+ 1
2

j ⇣Kj ,(10)

where

S1(z
n+ 1

2
j ) =

1

4

⇣
(p

n+ 1
2

j )2 + (q
n+ 1

2
j )2

⌘2
+

1

2

⇣
v
n+ 1

2
j

⌘2
+

1

2

⇣
w

n+ 1
2

j

⌘2

and

S2(z
n+ 1

2
j ) =

1

2

⇣
p
n+ 1

2
j

⌘2
+

1

2

⇣
q
n+ 1

2
j

⌘2
.

Then the wedge product between dz
n+ 1

2
j and (10) concludes the proof based on the

symmetry of r2S1 and r2S2.

Before giving the approximate error of the ergodic limit, we give some essential
a priori estimates about the stability of (7) and (2). In the following, C denotes a
generic constant independent of T , N , ⌧ , and h while Ch denotes a constant depending
also on h, whose value may be di↵erent from line to line.

Lemma 3.4. For any initial value U0 2 S and � � 1, if Q 2 HS(L2, H
3
2�

1
� ),

then there exists a constant C such that the solution (Un)n2N of (7) satisfies

E
��Un+1 � Un

��2�  C(⌧2�h�4� + ⌧�), 8 n 2 N,

where HS(L�1 , H�2) denotes the space of Hilbert–Schmidt operators from L�1 to H�2 .

Lemma 3.5. For any initial value U(0) 2 S and � � 1, there exists a constant C
such that the solution U(t) of (2) satisfies

EkU(tn+1)� U(tn)k2�  C(⌧2�h�4� + ⌧�), 8 n 2 N.

The proofs of the lemmas above are given in the Appendix for the readers’ con-
venience.
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3.2. Approximation of ergodic limit. To approximate the ergodic limit of
(2) and get the approximate error, we give an estimate of the local weak convergence
between U(⌧) and U1, and the Poisson equation associated with (2) is also used (see
[13]). Recall that the SDE (2) in the Stratonovich sense has an equivalent Itô form

dU =


i
1

h2
AU + i�F (U)U � ÊU

�
dt+ iZ(U)d�(t)

=: b(U)dt+ �(U)d�(t)(11)

based on (3). For any fixed f 2 W 4,1(S), let f̂ :=
R
S
fdµh and ' be the unique

solution of the Poisson equation L' = f � f̂ , where

L := b ·r+
1

2
��T : r2

denotes the generator of (11). It is easy to find out that (11) satisfies the hypoelliptic
setting (see, e.g., [13]) according to the Hörmander condition in Theorem 2.4. Thus,
' 2 W 4,1(S) according to Theorem 4.1 in [13]. Based on the well-posedness of the
numerical solution (Un)n2N and the implicit function theorem, (7) can be rewritten
in the form

Un+1 = Un + ⌧�(Un, ⌧, h, �n+1�)(12)

for some function �. Denoting by D'(u)�1 and Dk'(u)(�1, . . . ,�k) the first and kth
order weak derivatives evaluated in the directions �j , j = 1, . . . , k, with Dk'(u)(�)k

for shorthand if all the directions are the same in the kth derivatives, then we have

'(Un+1) = '(Un) + ⌧


D'(Un)�n +

1

2
⌧D2'(Un)(�n)2

�
+

1

6
D3'(Un)(⌧�n)3 +R�

n

=: '(Un) + ⌧L�'(Un) +
1

6
D3'(Un)(⌧�n)3 +R�

n ,(13)

where �n := �(Un, ⌧, h, �n+1�),

L�'(Un) = D'(Un)�n +
1

2
⌧D2'(Un)(�n)2,

and

R�
n =

1

4!
D4'(✓n)(⌧�

n)4

for some ✓n 2 [Un, Un+1] := [un
1 , u

n+1
1 ]⇥ . . .⇥ [un

M , un+1
M ]. Adding (13) together from

n = 0 to n = N � 1 for some fixed N 2 N, then dividing the result by T = N⌧ , and
noticing that L'(Un) = f(Un)� f̂ , we obtain

'(UN )� '(U0)

N⌧
=

1

N

 
N�1X

n=0

⇥
L�'(Un)� L'(Un)

⇤
+

N�1X

n=0

L'(Un)

+
1

⌧

N�1X

n=0

1

6
D3'(Un)(⌧�n)3 +

1

⌧

N�1X

n=0

R�
n

!

=
1

N

N�1X

n=0

⇥
L�'(Un)� L'(Un) +

1

6⌧
D3'(Un)(⌧�n)3

⇤
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+

 
1

N

N�1X

n=0

f(Un)� f̂

!
+

1

N⌧

N�1X

n=0

R�
n ,

which shows�����E
"
1

N

N�1X

n=0

f(Un)� f̂

#����� 
����
1

N⌧
E
⇥
'(UN )� '(U0)

⇤����+

�����
1

N⌧

N�1X

n=0

ER�
n

�����

+

�����
1

N

N�1X

n=0

E

L�'(Un)� L'(Un) +

1

6⌧
D3'(Un)(⌧�n)3

������ =: I + II + III.(14)

The average 1
N

PN�1
n=0 f(Un) is regarded as an approximation of f̂ . We next begin to

investigate the approximate error by estimating I, II, and III respectively.
According to the fact that ' 2 W 4,1(S) and Lemma 3.4, we have

I  2k'k0,1
N⌧

 C

T
(15)

and

II  1

N⌧

N�1X

n=0

E
h
k⌧�nk4 kD4'kL1

i
 C

N⌧

N�1X

n=0

E
h��Un+1 � Un

��4
i

 C

N⌧

N�1X

n=0

�
⌧4h�8 + ⌧2

�
 C

�
⌧3h�8 + ⌧

�
,(16)

where k'k�,1 := sup
|↵|�,u2S

|D↵'(u)|, � 2 N.
It then remains to estimate the term III. To this end, we need the estimate of

the local weak convergence, which is stated in the following theorem. The proof of
the following theorem is also given in the Appendix.

Theorem 3.6. For a fixed spatial approximation (2), and for any initial value

U0 2 S and ' 2 W 4,1(S), it holds under the condition Q 2 HS(L2, H
5
4 ) and ⌧ =

O(h4) that
��E
⇥
'(U(⌧))� '(U1)

⇤��  Ch⌧
2

for some constant Ch = C(', ⌘, h).

Now we are in the position of showing the approximation error between the time
average of FDS and the ergodic limit of FDA.

Theorem 3.7. Under the assumptions in Theorem 3.6 and for any f 2 W 4,1(S),
there exists a positive constant Ch = C(f, ⌘, h) such that

�����E
"
1

N

N�1X

n=0

f(Un)� f̂

#�����  Ch

✓
1

T
+ ⌧

◆
.

Proof. Based on (14)–(16), it su�ces to estimate term III. For any f 2 W 4,1(S),
we know from the statement above that the solution to the Poisson equation L' =
f� f̂ satisfies ' 2 W 4,1(S). Based on (13), Lemma 3.4, and the condition ⌧ = O(h4),
we have

'(U1)
E
= '(U0) + ⌧L�'(U0) +

1

6
D3'(U0)(U1 � U0)3 +O(⌧2)

E
= '(U0) + ⌧L�'(U0) +O(⌧2),(17)
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where
E
= means that the equation holds in expectation sense, and in the last step

we have used the fact that

D3'(U0)(U1 � U0)3 = D3'(U0)
⇣
i
⌧

h2
AU

1
2 + i�⌧F (U

1
2 )U

1
2 + iZ(U

1
2 )�1�

⌘3

E
= D3'(U0)

⇣
iZ(U

1
2 )�1�

⌘3
+O(⌧2h�2 + ⌧2)

E
= D3'(U0)

✓
i

2
Z(U1 � U0)�1� + iZ(U0)�1�

◆3

+O(⌧2h�2 + ⌧2)

E
= O(⌧2h�2 + ⌧2)(18)

based on the linearity of Z, Lemma 3.4, and that E
�
iZ(U0)�1�

�3
= 0. We can also

get the following expression similar to (17) based on Taylor expansion and Lemma
3.5:

'(U(⌧))
E
= '(U0) +

Z ⌧

0

✓
D'(U0)b(U(t)) +

1

2
D2'(U0) (�(U(t)))2

◆
dt

+

Z ⌧

0
D'(U0)�(U(t))d�(t) +

1

6
D3'(U0)(U(⌧)� U0)3 +O(⌧2)

E
= '(U0) +

Z ⌧

0
L̃t'(U

0)dt+O(⌧2),(19)

where

L̃t'(U
0) := D'(U0)b(U(t)) +

1

2
D2'(U0) (�(U(t)))2

and E
⇥R ⌧

0 D'(U0)�(U(t))d�(t)
⇤
= 0. Thus, subtracting (17) from (19), we derive

����E

⌧L�'(U0)�

Z ⌧

0
L̃t'(U

0)dt

����� 
��E
⇥
'(U(⌧))� '(U1)

⇤��+ C⌧2.(20)

We notice that
����
Z ⌧

0
E
h
L̃t'(U

0)� L'(U0)
i
dt

���� 
����
Z ⌧

0
E
⇥
D'(U0)

�
b(U(t))� b(U0)

�⇤
dt

����

+

����
1

2

Z ⌧

0
E
⇥
D2'(U0)

�
�(U(t))� �(U0),�(U(t)) + �(U0)

�⇤
dt

���� ,(21)

in which we have

��E
⇥
D'(U0)

�
b(U(t))� b(U0)

�⇤�� =
���E
h
D2'(U0)

⇣
i
1

h2
A
�
U(t)� U0

�

+ i�
⇣
F (U(t))U(t)� F (U0)U0

⌘
� Ê(U(t)� U0)

⌘i���  C(th�2 + t)

for the first term in (21). In the last step, we have used the fact that g(V ) := F (V )V ,
8 V 2 S, is a continuous di↵erentiable function which satisfies |Dkg(V )|  C for
kV k  1 and k 2 N, and then replaced U(t) � U0 by the integral form of (2) to get
the result. The second term in (21) can be estimated in the same way. Thus, we have

����
Z ⌧

0
E
h
L̃t'(U

0)� L'(U0)
i
dt

����  C(⌧2h�2 + ⌧2).(22)
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We hence conclude based on (18), (20), (22) and Theorem 3.6 that

III =

�����
1

N

N�1X

n=0

E

L�'(Un)� L'(Un) +

1

6⌧
D3'(Un)(Un+1 � Un)3

������

 1

⌧
sup
U02S

⇢����E

⌧L�'(U0)�

Z ⌧

0
L̃t'(U

0)dt

�����+
����
Z ⌧

0
E
h
L̃t'(U

0)� L'(U0)
i
dt

����

�

+ C(⌧h�2 + ⌧)  Ch⌧.
(23)

Noticing that ⌧3h�8 = O (⌧) under the condition ⌧ = O(h4), from (15), (16), and
(23), we finally obtain

�����E
"
1

N

N�1X

n=0

f(Un)� f̂

#�����  Ch

✓
1

T
+ ⌧

◆
.

Remark 3.8. Based on the theorem above and the ergodicity of (2), for a fixed h,
we obtain

�����E
"
1

N

N�1X

n=0

f(Un)� 1

T

Z T

0
f(U(t))dt

#�����  Ch(B(T ) + ⌧),

which implies that the global weak error is of order 1, i.e.,
���E
h
f(Un)� f(U(t))

i���  Ch(B̃(t) + ⌧), t 2 [n⌧, (n+ 1)⌧ ],

where B(T ) ! 0 and B̃(T ) ! 0 as T ! 1. On the other hand, a time independent
weak error in turn leads to the result stated in Theorem 3.7.

4. Numerical experiments. In this section, numerical experiments are given
to test several properties of scheme (7) with � = 1, i.e., the focusing case. In the fol-
lowing experiments, we simulate the noise �n+1� by

p
⌧⇠n with ⇠n being independent

K-dimensional N(0, 1)-random variables, and choose ⌘k = k�4, k = 1, . . . ,K. In ad-
dition, we approximate the expectation by taking averaged value over 500 paths, and
the proposed scheme, which is implicit, is numerically solved utilizing the fixed point
iteration. In the following, we will use the notation kUk�� :=

PM
m=1 (|pm|� + |qm|�)

for U 2 CM and � 2 N with P = (p1, . . . , pM )T , and Q = (q1, . . . , pM )T being the
real and imaginary parts of U . Notice that k · k2 = k · k.

t
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(a) Proposed scheme
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Fig. 1. Charge evolution EkUnk2 � 1 for (a) the proposed scheme with T = 100 under steps
⌧ = 2�i (i = 4, 5, 6, 7), (b) IME scheme with T = 3 under steps ⌧ = 2�i (i = 4, 5, 6, 7), and (c) EM
scheme with T = 2�5 under steps ⌧ = 2�i (i = 10, 11, 12, 13) (h = 0.05, K = 30).
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We omit the boundary nodes in the simulation; as a result, we may choose the
normalized initial value U0 = c⇤(U0(1), . . . , U0(M))T based on function u0(x) satisfy-
ing U0(m) = u0(mh), m = 1, . . . ,M , in which u0(x) need not to satisfy the boundary
condition in (1). Let u0(x) = 1, and we get the normalized initial value U0 satisfying
kU0k = 1, which is used in Figures 1, 3, and 4. We first simulate the discrete charge for
the proposed scheme compared with the Euler–Maruyama (EM) scheme and implicit
Euler (IE) scheme, respectively. Figure 1 shows that the proposed scheme possesses
the discrete charge conservation law EkUnk2 = 1, which coincides with Proposition
3.1, while both the EM scheme and the IE scheme do not. As the EM scheme is not
stable—its solution will blow up in a short time—we choose the time step ⌧ small
enough for the EM scheme in the experiments.

As the ergodic limit
R
S
fdµh is unknown, to verify the ergodicity of the numerical

solution, we simulate the time averages 1
N

PN
n=1 E[f(Un)] for the proposed scheme

with the bounded function f 2 Cb(S) being (a) f(U) = kUk33, (b) f(U) = sin(kUk44),
and (c) f(U) = e�kUk

4
4 in Figure 2, starting from five di↵erent initial values U0

l , 1 
l  5. It is known from Theorem 3.2 that, for almost every initial value U0 2 S, the
time averages will converge to the same value, i.e., the ergodic limit. Thus, we choose
five initial values

U0
l = c⇤(U

0
l (1), . . . , U

0
l (M))T , l = 1, . . . , 5

based on the following five functions:

u0,1(x) =
1p
2
+

ip
2
, u0,2(x) = 1, u0,3(x) = 2x,

u0,4(x) =

 
1�

r
⇡

2
(exp

1

4
� 1)

!
(1� exp (x(1� x))),

u0,5(x) = c⇤sech

✓
xp
2

◆
exp

⇣
i
x

2

⌘

with U0
l (m) = u0,l(hm), 1  m  M , and c⇤ being normalized constants. The charge

of all the initial functions equals 1, and u0,4(x) even satisfies the boundary condition
in (1). Figure 2 shows that the proposed scheme starting from di↵erent initial values
converges to the same value with error no more than O(⌧) with h = 0.05 and ⌧ = 2�6,
which coincides with Theorem 3.7.
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(a) f(U) = kUk33, T = 20
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(b) f(U) = sin(kUk44), T = 20
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Fig. 2. The time averages 1
N

PN
n=1 E[f(Un)] for the proposed scheme with (a) f(U) = kUk33,

(b) f(U) = sin(kUk44), and (c) f(U) = e
�kUk44 (⌧ = 2�6, h = 0.05, K = 30).
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(a) f(U) = kUk33
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(c) f(U) = e
�kUk44

Fig. 3. The weak convergence order of |E[f(Un) � f(U(T ))]| with (a) f(U) = kUk33,
(b) f(U) = sin(kUk44), and (c) f(U) = e

�kUk44 (⌧ = 2�i
, 10  i  13, h = 0.05, T = 2�1

,

K = 30).

For a fixed h, Figures 3 and 4 show the weak convergence order in the temporal
direction and the weak error over long time, respectively. Figure 3 shows that the
proposed scheme is of order 1 in the weak sense for (a) f(U) = kUk33, (b) f(U) =

sin(kUk44), and (c) f(U) = e�kUk
4
4 , which coincides with the statement in Remark

3.8. Furthermore, based on the ergodicity for both FDS and FDA, the weak error is
supposed to be independent of time interval when time is large enough. To verify this
property, we simulate the weak error over long time in Figure 4 for (a) f(U) = kUk33,
(b) f(U) = sin(kUk44), and (c) f(U) = e�kUk

4
4 ; it shows that the weak error for the

proposed scheme would not increase before T = 1000 while the weak error for the EM
scheme would increase with time.
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(a) f(U) = kUk33
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(b) f(U) = sin(kUk44)
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(c) f(U) = e
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Fig. 4. The weak error |E[f(Un)� f(U(T ))]| for (a) f(U) = kUk33, (b) f(U) = sin(kUk44), and
(c) f(U) = e

�kUk44 (⌧ = 2�12, h = 0.05, T = 103, K = 30).

5. Appendix.

5.1. Proof of Lemma 3.4. As proved in Proposition 3.1 that kUnk = 1, 8 n 2
N, for the nonlinear term, we have

E
���F (Un+ 1

2 )Un+ 1
2

���
2�

= E
MX

m=1

���un+ 1
2

m

���
6�

 E
 

MX

m=1

���un+ 1
2

m

���
2
!3�

 E
���Un+ 1

2

���
6�

 1

by the convexity of S, i.e., kUn+ 1
2 k  1, a.s. The noise term can be estimated as

E
���Z(Un+ 1

2 )�n+1�
���
2�

= E

0

@
MX

m=1

�����

KX

k=1

u
n+ 1

2
m ek(xm)

p
⌘k�n+1�k

�����

2
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E
 
2

MX

m=1

���un+ 1
2

m

���
2 ⇣ KX

k=1

p
⌘k|�n+1�k|

⌘2
!�

= E
 
2
���Un+ 1

2

���
2 ⇣ KX

k=1

p
⌘k|�n+1�k|

⌘2
!�

CE
 

KX

k=1

⌘
1
4
k ⌘

1
4
k |�n+1�k|

!2�

 CE
⇣ KX

k=1

⌘
�

2(2��1)

k

⌘2��1⇣ KX

k=1

⌘
�
2
k |�n+1�k|2�

⌘�
 C⌧�

(24)

by |ek(xm)| 
p
2 and Hölder’s inequality. In the last step of (24) we notice that, as

Q 2 HS(L2, H
3
2�

1
� ),
P

1

k=1 k
3� 2

� ⌘k < 1, so ⌘k = O(k�(4� 2
� +✏)) for any ✏ > 0. Thus,

1X

k=1

⌘
�

2(2��1)

k  C
1X

k=1

k�(4� 2
� +✏) �

2(2��1) = C
1X

k=1

k�(1+
✏�

2(2��1) ) < 1.

In conclusion,

E
��Un+1 � Un

��2�

 C

✓
E
���
⌧

h2
AUn+ 1

2

���
2�

+ E
����⌧F (Un+ 1

2 )Un+ 1
2

���
2�

+ E
���Z(Un+ 1

2 )�n+1�
���
2�
◆

 C⌧2�

h4�
E
���Un+ 1

2

���
2�

+ C⌧2� + C⌧�  C
�
⌧2�h�4� + ⌧�

�
,

where we have used the fact that kAk  4.

5.2. Proof of Lemma 3.5. From (2) and (3), based on Hölder’s inequality, we
obtain

EkU(tn+1)� U(tn)k2�

= E
����
Z tn+1

tn


i
1

h2
AU + i�F (U)U � ÊU

�
dt+

Z tn+1

tn

iZ(U)d�(t)

����
2�

 C

 Z tn+1

tn

E
����i

1

h2
AU + i�F (U)U � ÊU

����
2�

dt

✓Z tn+1

tn

1
2�

2��1 dt

◆2��1

+ E
����
Z tn+1

tn

iZ(U)d�(t)

����
2�
!

 C⌧2��1

����
1

h2
A

����
2� Z tn+1

tn

E kUk2� dt+ C⌧2� + C⌧�

 C(⌧2�h�4� + ⌧�),

where we have used the boundedness of F (U)U in S similar to that in Lemma 3.4.
In the third step of the equation above, we also used
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and

E
����
Z tn+1

tn

iZ(U)d�(t)

����
2�

 C

✓Z tn+1

tn

⇣
EkZ(U)k2�

HS

⌘ 1
�
dt

◆�

 C
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@
Z tn+1

tn

 
E
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m=1

KX

k=1

|umek(xm)
p
⌘k|2

!�! 1
�

dt

1

A

�

 C

✓Z tn+1

tn

⇣
E
�
2⌘kUk2

��⌘ 1
�
dt

◆�

 C⌧�

according to the Burkholder–Davis–Gundy inequality and the fact that the Hilbert–
Schmidt operater norm kZ(U)kHS = kZ(U)kF , with k · kF denoting the Frobenius
norm.

5.3. Proof of Theorem 3.6. Based on Taylor expansion and Lemmas 3.4 and
3.5, we obtain

E
⇥
'(U(⌧))� '(U1)

⇤
= E

⇥
D'(U1)

�
U(⌧)� U1

�
+O

�
kU(⌧)� U1k2

�⇤

= E
⇥
D'(U0)

�
U(⌧)� U1

�⇤
+ E

⇥
D2'(U0)(U1 � U0, U(⌧)� U1)

⇤

+O
⇣
E
⇥
kU1 � U0k2kU(⌧)� U1k

⇤
+ EkU(⌧)� U1k2

⌘

=: A+ B + C.

We give the mild solution and discrete mild solution of (2) and (7) respectively:

U(⌧) = ei
1
h2 A⌧U0 +

Z ⌧

0
ei

1
h2 A(⌧�s)

⇣
i�F (U(s))U(s)� ÊU(s)
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ds

+
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0
ei

1
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✓
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2h2
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2h2
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Estimation of A. Considering the di↵erence between the above equations, we
have

U(⌧)� U1 =

 
ei

1
h2 A⌧ �

✓
I � i⌧

2h2
A

◆�1✓
I +

i⌧

2h2
A

◆!
U0

+ i

Z ⌧

0

"
ei

1
h2 A(⌧�s) �

✓
I � i⌧

2h2
A

◆�1
#
�F (U(s))U(s)ds

+ i

Z ⌧

0

✓
I � i⌧

2h2
A

◆�1

�
h
F (U(s))U(s)� F

⇣
U

1
2

⌘
U

1
2

i
ds

+ i

Z ⌧

0

"
ei

1
h2 A(⌧�s) �

✓
I � i⌧

2h2
A

◆�1
#
Z(U(s))d�(s)

D
ow

nl
oa

de
d 

02
/1

5/
17

 to
 1

24
.1

6.
14

8.
9.

 R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

322 JIALIN HONG, XU WANG, AND LIYING ZHANG

+ i

Z ⌧

0

✓
I � i⌧

2h2
A

◆�1

Z(U(s)� U0)d�(s)

�
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Z(U1 � U0)�1� +

Z ⌧

0
ei

1
h2 A(⌧�s)ÊU(s)ds

#
,

=: a+ b+ c+ d+ e+ f ,

which, together with the fact that E[D'(U0)d] = E[D'(U0)e] = 0, yields that

A = E
⇥
D'(U0)a

⇤
+ E

⇥
D'(U0)b

⇤
+ E

⇥
D'(U0)c

⇤
+ E

⇥
D'(U0)f

⇤

=: A1 +A2 +A3 +A4.

Based on the estimates ex � (1� x
2 )

�1(1 + x
2 ) = O(x3) for kxk < 1, and
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i 1
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2h2
A)�1

����  C
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⌘
 C⌧h�2, 8 s 2 [0, ⌧ ],(25)

we have

|A1|  Ck'k1,1k⌧h�2Ak3EkU0k  C⌧3h�6  C⌧2h�2(26)

under the condition ⌧ = O(h4), and

|A2|  Ck'k1,1
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0
k⌧h�2AkkF (U(s))U(s)kds  C⌧2h�2.(27)

Term A3 can be estimated based on Lemmas 3.4 and 3.5:
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in which we have known from the proof of Theorem 3.7 that
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similar to the proof of Lemma 3.5. We rewrite
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=

0

B@

PK
k=1 ek(x1)

p
⌘k�1�k

. . .
PK

k=1 ek(xM )
p
⌘k�1�k

1

CA (U1 � U0)

=:G(U1 � U0),

where G satisfies that E[GU0] = 0. Utilizing that E[GF (U0)U0] = 0, we can rewrite
term A4 as
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Thus, we obtain
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where in the last step we have used the fact that
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Noticing that the first term in (30) vanishes as E(�1�k)2 = ⌧ and replacing U(s)�U0

by the integral type of (2), then further calculation shows that
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