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Abstract. In this paper, we consider the stochastic Langevin equation with additive noises,
which possesses both conformal symplectic geometric structure and ergodicity. We propose a method-
ology of constructing high weak order conformal symplectic schemes by converting the equation into
an equivalent autonomous stochastic Hamiltonian system and modifying the associated generating
function. To illustrate this approach, we construct a specific second order numerical scheme and
prove that its symplectic form dissipates exponentially. Moreover, for the linear case, the proposed
scheme is also shown to inherit the ergodicity of the original system, and the temporal average of
the numerical solution is a proper approximation of the ergodic limit over long time. Numerical
experiments are given to verify these theoretical results.
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1. Introduction. A common way to describe dissipative systems which interact
with their environment, especially in the fields of molecular simulations, quantum
systems, cell migrations, chemical interactions, electrical engineering, and finance
(see [8, 10, 20] and references therein), is by means of the stochastic Langevin equation.
The stochastic Langevin equation considered in this paper is a dissipative Hamilto-
nian system, whose phase flow preserves conformal symplectic geometric structure [4]
as an extension of the deterministic case. Namely, its symplectic form dissipates ex-
ponentially. One can also show that the considered stochastic Langevin equation is
ergodic [13, 14, 21] with a unique invariant measure, i.e., the Boltzmann–Gibbs mea-
sure [4, 6]. This dynamical behavior implies that the temporal average of the solution
will converge to its spatial average, which is also known as the ergodic limit, with
respect to the invariant measure over long time.

This work proposes an approach for constructing high weak order conformal sym-
plectic schemes that accurately approximates the exact solution, while preserving both
the geometric structure and the dynamical behavior of the system. We illustrate this
approach by a specific case and show that the proposed scheme for this particular
case inherits the ergodicity of the original system with a unique invariant measure.
The weak convergence error, as well as the approximate error of the ergodic limit, is
proved to be of order two.
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HIGH ORDER SCHEMES VIA GENERATING FUNCTIONS 3007

There have been several works concentrating on the construction of numerical
schemes for the stochastic Langevin equation, mainly based on the splitting tech-
nique. For instance, [4] constructs a class of the conformal symplectic integrators to
preserve the conformal symplectic structure, and [18, 19] propose quasi-symplectic
methods which can degenerate into symplectic ones when the system degenerates into
a stochastic Hamiltonian system. The convergence rates of these schemes depend
heavily on the splitting forms. As for the ergodicity, to the best of our knowledge
its numerical analysis in general contains two aspects. The first is to construct nu-
merical schemes that inherit the ergodicity (see, e.g., [13, 21]) and to give the error
between the numerical invariant measure and the original one (see, e.g., [5, 7]). The
other aspect is to approximate the ergodic limit with respect to the original invariant
measure via the numerical temporal averages for some empirical test functions (see,
e.g., [12, 14, 19]). In the latter case, the numerical solutions may not be ergodic.

In this paper, for the considered stochastic Langevin equation, we aim to construct
numerical schemes which are of high weak order and are conformally symplectic. To
achieve these aims without incurring the complexity of the high order splitting tech-
nique, we introduce a transformation from the stochastic Langevin equation to an
autonomous stochastic Hamiltonian system. It then suffices to construct high order
symplectic schemes for the autonomous Hamiltonian system, which turn out to be
conformal symplectic schemes of the original system based on the inverse transfor-
mation of the phase spaces. The discretization of the modified equations, which are
constructed by modifying the drift and diffusion functions as polynomials with re-
spect to some time step, represents a powerful tool for obtaining high weak order
schemes. For example, [1] constructs high order stochastic numerical integrators for
general stochastic differential equations (SDEs), but these schemes may not be sym-
plectic when applied to the Hamiltonian systems. Based on the internal properties
of the Hamiltonian systems, [2] proposes a method for constructing high weak order
stochastic symplectic schemes with multiple stochastic Itô integrals, using truncated
generating functions. Based on these schemes, [24] gives their associated modified
equations via generating functions. To reduce the simulation cost and still get high
weak order symplectic schemes, inspired by [1, 2, 24], we modify the generating func-
tion for the equivalent stochastic Hamiltonian system and derive associated symplec-
tic numerical methods by truncating modified generating functions. We would like to
mention that this class of methods reduces the simulation of multiple stochastic Itô
integrals by simulating products of increments of Wiener processes instead. We illus-
trate this approach with the construction of a stochastic numerical scheme that has
weak order two. For the proposed numerical scheme, both the discretized phase vol-
ume and symplectic form dissipate exponentially, which coincides with the behavior
of their exact counterparts in the original stochastic Langevin equation. Furthermore,
the proposed scheme, similar to the original system, is proved to possess a numerical
invariant measure that is unique for the linear case, which implies the ergodicity of
the numerical solution. Finally, we verify that both the weak convergence error of the
numerical scheme and the error of ergodic limit are of order two.

An outline of this paper is as follows. Section 2 gives a review of some basic
properties of the stochastic Langevin equation, as well as the generating function of
the stochastic Hamiltonian system, and also the transformation between the stochastic
Langevin equation and an autonomous stochastic Hamiltonian system. In section 3, a
weakly convergent conformal numerical scheme, which possesses an invariant measure,
is proposed by means of modified generating functions and the transformation of phase
space. In section 4, we show that both the weak convergence rate of the proposed
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3008 JIALIN HONG, LIYING SUN, AND XU WANG

scheme and the approximation error of the ergodic limit are of order two, based on
the uniform estimate of the numerical solutions. Finally, we give some numerical tests
to verify the theoretical results in section 5.

2. Stochastic Langevin equations. Let (Ω,F ,P) be a probability space, Ft
be the filtration for t ≥ 0, and W (t) =

(
W1(t), . . . ,Wm(t)

)> be an m-dimensional
standard Wiener process associated to {Ft}t≥0. Denote the 2-norm for both matrices
and vectors by ‖ · ‖ and the determinant of matrices by |·| , and let C be a generic
constant, independent of h, that may differ from line to line.

2.1. Stochastic conformal symplectic structure and ergodicity. In this
section, we focus on the stochastic Langevin equation driven by additive noises with
deterministic initial values P (0) = p ∈ Rd and Q(0) = q ∈ Rd, of the following form:

dP = −f(Q)dt− vPdt−
m∑
r=1

σrdWr(t),

dQ = MPdt, t ∈ [0, T ],

(1)

where f ∈ C∞(Rd,Rd), M ∈ Rd×d is a positive definite symmetric matrix, v >
0 is the absorption coefficient, and σr ∈ Rd with r ∈ {1, . . . ,m}, m ≥ d, and
rank{σ1, . . . , σm} = d. In addition, assume that there exists a scalar function F ∈
C∞(Rd,R) satisfying

fi(Q) =
∂F (Q)
∂Qi

, i = 1, . . . , d.

To simplify the notation, we will remove any mention of the dependence on ω ∈ Ω
unless it is absolutely necessary to avoid confusion. Note that (1), as well as all the
other SDEs in what follows, holds almost surely with respect to P. It is well known
that if v = 0, (1) turns out to be a separable stochastic Hamiltonian system (SHS)
which possesses stochastic symplectic structure and phase volume preservation [17].
However, when v > 0, the symplectic form of (1) dissipates exponentially, i.e.,

dP (t) ∧ dQ(t) = e−vtdp ∧ dq ∀ t ≥ 0,

which characterizes the long-time tracking of the solutions to (1), as well as the phase
volume Vol(t). Namely, denoting by Dt = Dt(ω) ⊂ R2d a random domain which has
finite volume and is independent of Wiener processes W (t) with respect to the system
(1), one can obtain

Vol(t) =
∫
Dt

dP 1 · · · dP ddQ1 · · · dQd

=
∫
D0

∣∣∣∣D(P 1, . . . , P d, Q1, . . . , Qd)
D(p1, . . . , pd, q1, . . . , qd)

∣∣∣∣ dp1 · · · dpddq1 · · · dqd,

where the determinant of Jacobian matrix
∣∣D(P 1,...,Pd,Q1,...,Qd)
D(p1,...,pd,q1,...,qd)

∣∣ = e−vtd with d being
the dimension [16, 17].

As another well-known long-time behavior, the ergodicity of (1) is shown in [13]
by proving that (1) possesses a unique invariant measure µ. Noticing that (1) satisfies
the hypoelliptic setting

span{Ui, [U0, Uj ], i = 0, . . . ,m, j = 1, . . . ,m} = R2d(2)
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HIGH ORDER SCHEMES VIA GENERATING FUNCTIONS 3009

with vector fields U0 = ((−f(Q)− vP )>, (MP )>)> and Uj = (σ>j , 0)>, j = 1, . . . ,m,
which together with the following assumption yields the ergodicity of (1).

Assumption 2.1 (see [13]). Let F ∈ C∞(Rd,R) satisfy that
(i) F (u) ≥ 0 for all u ∈ Rd;
(ii) there exist α > 0 and β ∈ (0, 1) such that for all u ∈ Rd, it holds

1
2
u>f(u) ≥ βF (u) + v2 β(2− β)

8(1− β)
‖u‖2 − α.

Intuitively speaking, the ergodicity of (1) reads that the temporal averages of
P (t) and Q(t) starting from different initial values will converge almost everywhere
to its spatial average with respect to the invariant measure µ. More precisely,

lim
T→∞

1
T

∫ T

0
E(p,q) [ψ(P (t), Q(t))] dt =

∫
R2d

ψdµ ∀ ψ ∈ Cb(R2d,R)(3)

in L2(R2d, µ), where E(p,q)[·] denotes the expectation starting from P (0) = p and
Q(0) = q. In the following, we use the notation E instead of E(p,q) to simplify the
notation.

Next, we aim to convert (1) into an equivalent homogenous SHS via a transfor-
mation of phase space, such that one can construct conformal symplectic schemes
for (1) based on symplectic schemes of the homogenous SHS. To this end, denoting
Xi(t) = evtPi(t) and Yi(t) = Qi(t) and applying Itô’s formula to Xi(t) and Yi(t) for
i = 1, . . . , d, one can rewrite (1) as

dXi = −evtfi(Y1, . . . , Yd)dt− evt
m∑
r=1

σrdWr(t), dYi = e−vt
d∑
j=1

MijXjdt(4)

with Xi(0) = pi and Yi(0) = qi. It is obvious that (4) is a nonautonomous SHS with
time-dependent Hamiltonian functions

H̃0 = evtF (Y1, . . . , Yd) +
1
2
e−vt

d∑
i,j=1

XiMijXj , H̃r = evt
d∑
i=1

σirYi.

To obtain an autonomous SHS we introduce two new variablesXd+1 ∈ R and Yd+1 ∈ R
as the (d+ 1)th components of X and Y , respectively, satisfying

dYd+1 = dt, dXd+1 = −∂H̃0

∂t
dt−

m∑
r=1

∂H̃r

∂t
◦ dWr(t)

with Yd+1(0) = 0 and Xd+1(0) = F (q1, . . . , qd) + 1
2

∑d
i,j=1 piMijpj +

∑m
r=1

∑d
i=1 σ

i
rqi.

Here the notation “◦” means that the equation holds in the Stratonovich integral
sense. Then (4) becomes the (2d+ 2)-dimensional autonomous SHS

dX = −∂H0

∂Y
dt−

m∑
r=1

∂Hr

∂Y
◦ dWr(t), dY =

∂H0

∂X
dt+

m∑
r=1

∂Hr

∂X
◦ dWr(t),(5)

with X(0) = (X1(0), . . . , Xd+1(0)) ∈ Rd+1, Y (0) = (Y1(0), . . . , Yd+1(0)) ∈ Rd+1, and
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3010 JIALIN HONG, LIYING SUN, AND XU WANG

new Hamiltonian functions

H0(X,Y ) = evYd+1F (Y1, . . . , Yd) +
1
2
e−vYd+1

d∑
i,j=1

XiMijXj +Xd+1,

Hr(X,Y ) = evYd+1

d∑
i=1

σirYi.

Here, (5) is called the associated autonomous SHS of (1), and its phase flow preserves
the stochastic symplectic structure. Notice that the motion of the system can be
described by different kinds of generating functions (see [2, 23] and references therein).
We consider only the first kind of generating function S in this article.

2.2. Generating functions. For convenience, we denote X(0) = x and Y (0) =
y. It is revealed in [22] that the generating function S(X, y, t) related to (5) is the
solution of the following stochastic Hamilton–Jacobi partial differential equation:

dtS(X, y, t) = H0

(
X, y +

∂S

∂X

)
dt+

m∑
r=1

Hr

(
X, y +

∂S

∂X

)
◦ dWr(t).(6)

Moreover, the mapping (x, y) 7→ (X(t), Y (t)) defined by

X(t) = x− ∂S(X(t), y, t)
∂y

, Y (t) = y +
∂S(X(t), y, t)

∂X
(7)

is the stochastic flow of (5). Based on the Itô representation theorem and stochastic
Taylor–Stratonovich expansion, S(X, y, t) has a series expansion (see, e.g., [2, 3])

S(X, y, t) =
∑
α

Gα(X, y)J tα,(8)

where

J tα =
∫ t

0

∫ sl

0
· · ·
∫ s2

0
◦ dWj1(s1) ◦ dWj2(s2) ◦ · · · ◦ dWjl(sl)

with multi-index α = (j1, j2, . . . , jl) ∈ {0, 1, . . . ,m}⊗l, l ≥ 1, and dW0(s) := ds.
Before calculating coefficients Gα(X, y) in (8), we first specify some notation. Let
l(α) denote the length of α, and let α− be the multi-index resulting from discarding
the last index of α. Define α ∗α′ = (j1, . . . , jl, j′1, . . . , j

′
l′), where α = (j1, . . . , jl) and

α′ = (j′1, . . . , j
′
l′). The concatenation “∗” between a set of multi-indices Λ and α is

Λ ∗α = {β ∗α|β ∈ Λ}. Furthermore, define

Λα,α′ =


{(j1, j′1), (j′1, j1)} if l = l′ = 1,

{Λ(j1),α′− ∗ (j′l′),α
′ ∗ (j1)} if l = 1, l′ 6= 1,

{Λα−,(j′1) ∗ (jl),α ∗ (j′1)} if l 6= 1, l′ = 1,

{Λα−,α′ ∗ (jl),Λα,α′− ∗ (j′l′)} if l 6= 1, l′ 6= 1.

For k > 2, let Λα1,...,αk = {Λβ,αk |β ∈ Λα1,...,αk−1}. We refer the reader to [2] for more
details about this notation. Substituting (8) into (6) and applying Taylor expansions
to Hr (r = 0, 1, . . . ,m) at (X, y), we obtain Gα = Hr with α = (r) being a single
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index and

Gα =
l(α)−1∑
i=1

1
i!

d+1∑
k1,...,ki=1

∂iHjl(X, y)
∂yk1 · · · ∂yki

∑
l(α1) + · · ·+ l(αi) = l(α)− 1

α− ∈ Λα1,...,αi

∂Gα1

∂Xk1

· · · ∂Gαi

∂Xki

for any α = (j1, j2, . . . , jl) with l ≥ 2 (see, e.g., [2, 3]). To make it clear, the simplified
expressions of Gα are given when l = 2 or 3: G(j1,j2) =

∑d+1
i=1

∂Hj2
∂yi

∂Hj1
∂Xi

and

G(j1,j2,j3) =
d+1∑
i=1

∂Hj3

∂yi

∂G(j1,j2)

∂Xi
+

1
2

d+1∑
i,j=1

∂2Hj3

∂yi∂yj

(
∂Hj1

∂Xi

∂Hj2

∂Xj
+
∂Hj2

∂Xi

∂Hj1

∂Xj

)
.

Let C1 := evyd+1 and C2 := e−vyd+1 . Here yd+1 denotes the (d+ 1)th component
of y. Note that y is the initial point of the considered interval; that is, if we consider
the problem on the interval [s, t], then y = Y (s). For r1, r2, r3 ∈ {1, . . . ,m}, we have

G(r1,r2) = G(r1,0) = G(r1,r2,r3) = G(r1,r2,0) = G(r1,0,r2) = 0,

G(0,r1) =
d∑

i,j=1

σir1MijXj + vC1

d∑
i=1

σir1qi, G(0,r1,r2) = C1σ
>
r1Mσr2 ,

G(0,0) =
d∑

i,j=1

fi(y)MijXj + vC1F (y)− 1
2
vC2

d∑
i,j=1

XiMijXj .

For a fixed small time step h, using (8) and applying Taylor expansion to ∂S
∂yi

:=
∂S
∂yi

(X, y, h) and ∂S
∂Xi

:= ∂S
∂Xi

(X, y, h) at point (x, y, h) for i = 1, . . . , d, we obtain

∂S

∂yi
= C1

[
m∑
r=1

σir(J
h
(r) + vJh(0,r)) + fi(y)

(
h+

vh2

2

)]
+
h2

2

d∑
j,k=1

∂2F (y)
∂yi∂yj

Mjkxk +R1,

∂S

∂Xi
= C2

d∑
j=1

Mijxj

(
h− vh2

2

)
−

d∑
j=1

m∑
r=1

Mijσ
j
rJ

h
(r,0) −

h2

2

d∑
j=1

Mijfj(y) +R2,

where every term in R1 and R2 contains the product of multiply stochastic integrals
whose lowest order is at least 5

2 , as do the remainder terms Rl with l = 3, . . . , 7 in
what follows. Furthermore, ∂S

∂Xd+1
(X, y, h) = h and

∂S

∂yd+1
= vh

(
C1F (y)− C2

2

d∑
i,j=1

xiMijxj

)(
1 +

vh

2

)
+ vC1

m∑
r=1

d∑
i=1

σiryi(J
h
(r) + vJh(0,r))

+
d∑

i,j=1

m∑
r=1

vσirMijxjhJ
h
(r) + vC1

m∑
r1,r2=1

σ>r1Mσr2J
h
(0,r1,r2)

+ v

d∑
i,j=1

(
C2
∂F (y)
∂yi

Mijxjh
2 − 1

2
C1

m∑
r1,r2=1

σir1Mijσ
j
r2hJ

h
(r1)J

h
(r2)

)
+R3,

where ∂S
∂yd+1

takes the value at (X, y, h).
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By truncating the generating function, the weakly convergent stochastic symplec-
tic numerical schemes have been proposed by several authors (see, e.g., [2, 17, 22]).
In these approaches, some techniques are applied to simulate the multiple integrals in
the truncated generating functions and obtain high weak order schemes. To reduce
the simulation of multiple integrals, we introduce a modified generating function to
construct more concise symplectic schemes in section 3, from which conformal sym-
plectic and ergodic schemes for stochastic dynamical systems (1) are deduced by using
the transformation of the phase space.

3. High order conformal symplectic and ergodic schemes. To construct
high order symplectic numerical integrators for (5), we modify the stochastic Hamilto-
nian functions first. Namely, we consider the following (2d+2)-dimensional stochastic
Hamiltonian system:

dXM = −∂H
M
0 (XM , YM )
∂YM

dt−
m∑
r=1

∂HM
r (XM , YM )
∂YM

◦ dWr(t), XM (0) = x,

dYM =
∂HM

0 (XM , YM )
∂XM

dt+
m∑
r=1

∂HM
r (XM , YM )
∂XM

◦ dWr(t), YM (0) = y,

(9)

where

HM
0 (XM , YM ) = H0(XM , YM ) +H

[1]
0 (XM , YM )h+ · · ·+H

[τ ]
0 (XM , YM )hτ ,

HM
r (XM , YM ) = Hr(XM , YM ) +H [1]

r (XM , YM )h+ · · ·+H [τ ]
r (XM , YM )hτ

(10)

with functions H [j]
i , i = 0, . . . r, j = 1, . . . , τ, τ ∈ N+ to be determined. Meanwhile,

according to the definition of Gα in subsection 2.2, we get the associated generating
function of (9), which is called the modified generating function of (5). Our goal is
to choose undetermined functions in (10) such that the proposed scheme is of weak
order k+k′ when approximating (5), even though it is only a kth order approximation
of (9) for some positive integers k and k′. Now we first give a symplectic numerical
approximation to (9) via its generating function, such that this scheme shows weak
order k for (9) without specific choices of H [j]

i (see [2] and references therein). In
detail, we replace the multiple Stratonovich integrals J tα in the modified generating
function by an equivalent linear combination of multiple Itô integrals

Itβ :=
∫ t

0

∫ sl

0
· · ·
∫ s2

0
dWi1(s1)dWi2(s2) · · · dWil(sl)

with multi-index β = (i1, i2, . . . , il) ∈ {0, 1, . . . ,m}⊗l, l ≥ 1, based on the relation

J tα =


∑
β

Cβ
αI

t
β, l(α) ≥ 2,

Itα, l(α) = 1,

where Cβ
α are certain constants given in [11]. Denote by

SG(XG, y, t) =
∑
α

GGα(XG, y)
∑
l(β)≤k

Cβ
αI

t
β(11)D
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HIGH ORDER SCHEMES VIA GENERATING FUNCTIONS 3013

the truncated modified generating function (see, e.g., [2, 3, 11]), where

GGα =
l(α)−1∑
i=1

1
i!

d+1∑
k1,...,ki=1

∂iHM
jl

(XG, y)
∂yk1 · · · ∂yki

∑
l(α1) + · · ·+ l(αi) = l(α)− 1

α− ∈ Λα1,...,αi

∂GGα1

∂XG
k1

· · ·
∂GGαi
∂XG

ki

for l(α) ≥ 2, and GG(r) = HM
r for r = 0, 1, . . . ,m. Then we get the following one-step

approximation:

XG = x− ∂SG(XG, y, h)
∂y

, Y G = y +
∂SG(XG, y, h)

∂XG
,(12)

which preserves symplectic structure and is of weak order k for (9). Notice that
the truncated modified generating function contains undetermined functions H [j]

i ,
i = 0, . . . r, j = 1, . . . , τ in (10). To specify high weak order symplectic schemes, we
need to determine all the terms H [j]

i such that the numerical scheme based on (12)
satisfies ∣∣Eφ(X(h), Y (h))−Eφ(XG, Y G)

∣∣ = O(hk+k′+1)(13)

for all κ times continuously differentiable functions φ ∈ CκP (R2d+2,R) with polynomial
growth; that is, the numerical scheme based on (12) is of weak order k + k′ for
(5). Conditions on κ will be specified later. The detailed approach of choosing the
undetermined functions will be illustrated with the case k = k′ = 1 in the next section.

3.1. Numerical schemes via modified generating function. For k = k′ =
1, it is sufficient to consider τ = 1 in (10). Based on the fact that GG(r) = HM

r for
r = 0, 1, . . . ,m, we rewrite the truncated generating function (11) as

SG(XG, y, h) =

(
HM

0 (XG, y) +
1
2

m∑
r=1

GG(r,r)(X
G, y)

)
h+

m∑
r=1

HM
r (XG, y)Ih(r),(14)

where

GG(r,r) = C1

d∑
i=1

σir

(
∂H

[1]
r

∂XG
i

+ vyi
∂H

[1]
r

∂XG
d+1

)
h+

d+1∑
i=1

∂H
[1]
r

∂yi

∂H
[1]
r

∂XG
i

h2.

According to (14), the one-step approximation (12) turns out to be

XG = x−

(
∂HM

0 (XG, y)
∂y

+
1
2

m∑
r=1

∂GG(r,r)(X
G, y)

∂y

)
h−

m∑
r=1

∂HM
r (XG, y)
∂y

Jh(r),

Y G = y +

(
∂HM

0 (XG, y)
∂XG

+
1
2

m∑
r=1

∂GG(r,r)(X
G, y)

∂XG

)
h+

m∑
r=1

∂HM
r (XG, y)
∂XG

Jh(r).

(15)

In what follows, let ∂SG

∂yj
:= ∂SG

∂yj
(XG, y, h), ∂S

G

∂XGj
:= ∂SG

∂XGj
(XG, y, h), ∂H

[1]
r

∂yj
:= ∂H[1]

r

∂yj
(x, y),

and ∂H[1]
r

∂xj
:= ∂H[1]

r

∂xj
(x, y) for j = 1, . . . , d+ 1 and r = 0, 1, . . . ,m. Applying Taylor ex-
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3014 JIALIN HONG, LIYING SUN, AND XU WANG

pansion to ∂SG

∂yi
and ∂SG

∂XGi
at (x, y, h), for i = 1, . . . , d, we obtain

∂SG

∂XG
i

= C2

d∑
j=1

Mijxjh+
m∑
r=1

(
∂H

[1]
r

∂xi
−

d∑
j=1

Mijσ
j
r

)
Ih(r)h−

d∑
j=1

Mijfj(y)h2 +
∂H

[1]
0

∂xi
h2

+
m∑
r=1

∂2H
[1]
r

∂xi∂xd+1
(XG

d+1 − xd+1)Ih(r)h− C1

m∑
r1,r2=1

d∑
j=1

∂2H
[1]
r1

∂xi∂xj
σjr2I

h
(r1)I

h
(r2)h

+
1
2
C1

d∑
j=1

m∑
r=1

σjr

(
∂2H

[1]
r

∂xi∂xj
+ vyi

∂2H
[1]
r

∂xi∂xd+1

)
h2 +R4

and

∂SG

∂yi
= C1

m∑
r=1

(
σirI

h
(r) + fi(y)h

)
+

m∑
r=1

∂H
[1]
r

∂yi
Ih(r)h+

m∑
r=1

d+1∑
j=1

∂2H
[1]
r

∂yi∂xj
(XG

j − xj)Ih(r)h

+

∂H [1]
0

∂yi
+
C1

2

m∑
r=1

 d∑
j=1

σjr
∂2H

[1]
r

∂yi∂xj
+ vσir

(
∂H

[1]
r

∂xd+1
+ yi

∂2H
[1]
r

∂xd+1∂yi

)h2 +R5.

Similarly,

∂SG

∂XG
d+1

= h+
m∑
r=1

∂H
[1]
r

∂xd+1
Ih(r)h+

d+1∑
j=1

∂2H
[1]
r

∂xd+1∂xj

(
XG
j − xj

)
Ih(r)h+

∂H
[1]
0

∂xd+1
h2

+ C1

d∑
i=1

σir
∂2H

[1]
r

∂xi∂xd+1
h2 + C1

d∑
i=1

vσiryi
∂2H

[1]
r

∂x2
d+1

h2 +R6,

and

∂SG

∂yd+1
= v

C1F (y)− 1
2
C2

d∑
i,j=1

xiMijxj

h+ vC1

m∑
r=1

d∑
i=1

σiryiI
h
(r) +

m∑
r=1

∂H
[1]
r

∂yd+1
hIh(r)

+
d∑

i,j=1

m∑
r=1

vσirMijxjhI
h
(r) +

m∑
r=1

d+1∑
i=1

∂2H
[1]
r

∂yd+1∂xi
(XG

i − xi)hIh(r) +
∂H

[1]
0

∂yd+1
h2

+
C1

2

d∑
i=1

m∑
r=1

σir

(
v
∂H

[1]
r

∂xi
+ v2yi

∂H
[1]
r

∂xd+1
+

∂2H
[1]
r

∂xi∂yd+1
+ vyi

∂2H
[1]
r

∂xd+1∂yd+1

)
h2

+ v

d∑
i,j=1

(
C2
∂F (y)
∂yi

Mijxjh
2 − C1

2

m∑
r1,r2=1

σir1Mijσ
j
r2hI

h
(r1)I

h
(r2)

)
+R7.
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Applying Taylor expansion to φ(X(h), Y (h)) and φ(XG, Y G) at (x, y) and taking
expectations, we have

Eφ(X(h), Y (h))−Eφ(XG, Y G)

=
d+1∑
i=1

∂φ(x, y)
∂xi

E
(
∂SG

∂yi
− ∂S

∂yi

)
+
d+1∑
i=1

∂φ(x, y)
∂yi

E
(
∂S

∂Xi
− ∂SG

∂XG
i

)

+
1
2

d+1∑
i,j=1

∂2φ(x, y)
∂xi∂xj

E
(
∂S

∂yi

∂S

∂yj
− ∂SG

∂yi

∂SG

∂yj

)

+
d+1∑
i,j=1

∂2φ(x, y)
∂yi∂xj

E
(
∂SG

∂XG
i

∂SG

∂yj
− ∂S

∂Xi

∂S

∂yj

)

+
1
2

d+1∑
i,j=1

∂2φ(x, y)
∂yi∂yj

E

(
∂S

∂Xi

∂S

∂Xj
− ∂SG

∂XG
i

∂SG

∂XG
j

)
+ · · · .

(16)

To make the symplectic numerical approximation be of higher weak order, we choose
H

[j]
i , i = 0, . . . , r, j = 1, . . . , τ, such that the terms containing h and h2 in the right-

hand side of (16) vanish. Note that the coefficients of Jh(r) and h in ∂SG

∂XGi
and ∂SG

∂yi
are

the same as those in ∂S
∂Xi

and ∂S
∂yi

with i = 1, . . . , d+ 1, respectively. Then we get

E

(
∂SG

∂XG
d+1

∂SG

∂yd+1
− ∂S

∂Xd+1

∂S

∂yd+1

)
=

m∑
r=1

d∑
i=1

vC1σ
i
ryi

∂H
[1]
r

∂xd+1
h2 + h3e1(x, y),

where e1(x, y) denotes the coefficient of the term containing h3 and can be calcu-
lated based on the expression of the partial derivatives of SG and S, as do the other
remainder terms el, l = 2, . . . , 7, in what follows. Thus, we choose ∂H[1]

r

∂xd+1
= 0 for

r = 1, . . . ,m. Substituting ∂H[1]
r

∂xd+1
= 0 into ∂SG

∂XGd+1
, we have

E

(
∂SG

∂XG
d+1
− ∂S

∂Xd+1

)
=
∂H

[1]
0

∂xd+1
h2 + E(R6) =

∂H
[1]
0

∂xd+1
h2 + h3e2(x, y),

which leads us to make ∂H
[1]
0

∂xd+1
= 0. In the same way, using ∂H[1]

r

∂xd+1
= 0 for r = 0, 1, . . . ,m,

we derive

E
(
∂S

∂yi

∂S

∂yj
− ∂SG

∂yi

∂SG

∂yj

)
= C1

m∑
r=1

(
vC1σ

i
rσ
j
r − σir

∂H
[1]
r

∂yj
− σjr

∂H
[1]
r

∂yi

)
h2 + h3e3(x, y)

and

E

(
∂S

∂yi

∂S

∂Xj
− ∂SG

∂yi

∂SG

∂XG
j

)
= C1

m∑
r=1

σir

(
1
2

d∑
k=1

Mjkσ
k
r −

∂H
[1]
r

∂xj

)
h2 + h3e4(x, y)

with i, j = 1, . . . , d, and hence choose

∂H
[1]
r

∂yi
=

1
2
vC1σ

i
r,

∂H
[1]
r

∂xi
=

1
2

d∑
j=1

Mijσ
j
r , r = 1, . . . ,m.
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3016 JIALIN HONG, LIYING SUN, AND XU WANG

The last term in (16) is of order 3 due to the following estimate:

E

(
∂S

∂Xi

∂S

∂Xj
− ∂SG

∂XG
i

∂SG

∂XG
j

)
= h3e5(x, y), i, j = 1, . . . , d+ 1.

Since both ∂H[1]
r

∂yi
and ∂H[1]

r

∂xi
, with r = 0, 1, . . . ,m, are independent of xi and yi, we

have

E
(
∂S

∂yi
− ∂SG

∂yi

)
=

1
2

d∑
j,k=1

∂2F (y)
∂yi∂yj

Mjkxk +
1
2
vC1fi(y)− ∂H

[1]
0

∂yi

h2 + h3e6(x, y),

E
(
∂S

∂Xi
− ∂SG

∂XG
i

)
=

1
2

d∑
j=1

Mijfj(y)− 1
2

d∑
j=1

vC2Mijxj −
∂H

[1]
0

∂xi

h2 + h3e7(x, y)

for i = 1, . . . , d. We choose H [1]
0 such that the above terms containing h2 vanish, i.e.,

∂H
[1]
0

∂yi
=

1
2

d∑
j,k=1

∂2F (y)
∂yi∂yj

Mjkxk +
1
2
vC1fi(y),

∂H
[1]
0

∂xi
=

1
2

d∑
j=1

Mij (fj(y)− vC2xj) .

Substituting the above results on the partial derivatives of H [1]
r , r = 0, 1, . . . ,m, into

(15), we have the following scheme of (9):

XG
i = xi −

m∑
r=1

evtnσirI
h
(r) − e

vtnfi(y)h− 1
2

m∑
r=1

vevtnσirhI
h
(r)

− 1
2

d∑
j,k=1

∂2F (y)
∂yi∂yj

MjkX
G
k h

2 − 1
2
vevtnfi(y)h2,

Y Gi = yi +
d∑
j=1

e−vtnMijX
G
j h+

1
2

m∑
r=1

d∑
j=1

Mijσ
j
rI
h
(r)h

+
1
2

d∑
j=1

Mij

(
fj(y)− ve−vtnXG

j

)
h2,

(17)

which is started at time tn = nh for n = 1, . . . , N = T/h. That is, xi = Xi(tn),
yi = Yi(tn) for i = 1, . . . , d, and yd+1 = tn.

To transform scheme (17) into an equivalent scheme of (1), we denote Phi [n] :=
e−vtnxi, Q

h
i [n] := yi, P

h
i [n+ 1] := e−vtn+1XG

i , and Qhi [n+ 1] := Y Gi for i = 1, . . . , d.
Based on the transformation between two phase spaces of (1) and (5), we get

Ph[n+ 1] = e−vhPh[n]− h2

2
∇2F (Qh[n])MPh[n+ 1]− h

(
1 +

vh

2

)
e−vhf(Qh[n])

−
(

1 +
vh

2

)
e−vhσ∆n+1W,

Qh[n+ 1] = Qh[n] + h

(
1− vh

2

)
evhMPh[n+ 1] +

h2

2
Mf(Qh[n]) +

h

2
Mσ∆n+1W,

(18)
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HIGH ORDER SCHEMES VIA GENERATING FUNCTIONS 3017

where σ = (σ1, . . . , σr) and ∆n+1W = W (tn+1) − W (tn). Notice that ∆nW can
be simulated by ξn

√
h with ξn = (ξn1 , . . . , ξ

n
d )> being an Ftn -adapted d-dimensional

normal distributed random vector.

Remark 3.1. The proposed scheme (18) also has exponentially dissipative phase
volume. More precisely, denoting D(q) = (Id + h2

2 ∇
2F (q)M)−1, the determinant of

Jacobian matrix∣∣∣∣∣∣
∂Ph[1]
∂p

∂Ph[1]
∂q

∂Qh[1]
∂p

∂Qh[1]
∂q

∣∣∣∣∣∣ =

∣∣∣∣∣ e−vhD(q) ∂Ph[1]
∂q

h(1− vh
2 )MD(q) D(q)−> + h(1− vh

2 )evhM ∂Ph[1]
∂q

∣∣∣∣∣
= |e−vhId||D(q)||D(q)−>| = e−vhd.

Furthermore, ∣∣∣∣∣∣
∂Ph[n]
∂p

∂Ph[n]
∂q

∂Qh[n]
∂p

∂Qh[n]
∂q

∣∣∣∣∣∣ = e−vtnd.

3.2. Conformal symplectic structure and ergodicity. In this subsection,
we prove the conformal symplecticity of the proposed scheme (18) as well as its er-
godicity.

Theorem 3.2. The proposed scheme (18) preserves conformal symplectic struc-
ture, i.e,

dPh[n+ 1] ∧ dQh[n+ 1] = e−vhdPh[n] ∧ dQh[n].

Proof. Based on (18), we obtain

dPh[n+ 1] ∧ dQh[n+ 1]

= dPh[n+ 1] ∧ dQh[n] +
1
2
h2dPh[n+ 1] ∧M∇2FdQh[n]

= e−vhdPh[n] ∧ dQh[n]− h2

2
d
[
∇2F (Qh[n])MPh[n+ 1]

]
∧ dQh[n]

+
h2

2
dPh[n+ 1] ∧M∇2F (Qh[n])dQh[n].

Denote P̃h := MPh[n+ 1]; then the second term becomes

h2

2
d
[
∇2F (Qh[n])P̃h

]
∧ dQh[n]

=
h2

2

d∑
i,j,l=1

∂3F

∂qi∂qj∂ql
P̃hj dQ

h
l [n] ∧ dQhi [n]− h2

2
∇2F (Qh[n])MdPh[n+ 1] ∧ dQh[n].

Since matrix M is symmetric and the first term in the right-hand side of the above
equation vanishes, we finally get

dPh[n+ 1] ∧ dQh[n+ 1] = e−vhdPh[n] ∧ dQh[n].

To show the ergodicity of (18), we first introduce the following conditions which
are sufficient to ensure the existence and uniqueness of the invariant measure (see [13]
and references therein). Then we will show that these conditions are exactly satisfied
by the proposed scheme.
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Condition 3.3. The Markov chain Zn := (Ph[n]>, Qh[n]>)> with Z0 = z satis-
fies

(i) for any γ ≥ 1, there exists C2 = C(γ) > 0 which is independent of h, such that
E‖Z1‖γ ≤ C2(1 + ‖z‖γ) for all z ∈ R2d;

(ii) there exist C1 > 0 and ε > 0 which are independent of h, such that E‖Z(h) −
Z1‖2 ≤ C1(1 + ‖z‖2)hε+2 for all z ∈ R2d, where Z(h) = (P (h)>, Q(h)>)>.

Condition 3.4. For some fixed compact set G ∈ B(R2d) with B(R2d) denoting
the Borel σ-algebra on R2d, the Markov chain Zn := (Ph[n]>, Qh[n]>)> ∈ Ftn with
transition kernel Pn(z,A) satisfies

(i) for some z∗ ∈ int(G) and for any δ > 0, there exists a positive integer n such
that

Pn(z,Bδ(z∗)) > 0 ∀ y ∈ G,

where Bδ(z∗) denotes the open ball of radius δ centered at z∗;
(ii) for any n ∈ N, the transition kernel Pn(z,A) possesses a density ρn(z, w) which

is jointly continuous in (z, w) ∈ G×G.

Theorem 3.5 (see [13, Theorem 7.3]). For some K ∈ N, if Conditions 3.3 and 3.4
are satisfied by a Markov chain Zn when sampled at rate K, that is, these conditions
hold for the chain Z̃n := ZnK , then Zn has a unique invariant measure.

Theorem 3.6. Assume that the vector field f is globally Lipschitz. The solution
(Ph[n], Qh[n]) of (18), which is an Ftn-adapted Markov chain, satisfies Condition
3.3 and hence admits an invariant measure µh on R2d. In addition, if f is a linear
function, then Condition 3.4 is also satisfied and the invariant measure is unique, that
is, (18) is ergodic.

Proof. Step 1. We first show that scheme (18) satisfies Condition 3.3. Denote
Z(t) = (P (t)>, Q(t)>)> ∈ R2d, Zn = (Ph[n]>, Qh[n]>)> ∈ R2d, σ = (σ1, . . . , σr) ∈
Rd×r, W = (W1, . . . ,Wr)> ∈ Rr, and D(q) = (Id + h2

2 ∇
2F (q)M)−1. We rewrite (18)

as

Ph[1] = D(q)
(
e−vhp−

(
1 +

vh

2

)
e−vhσ∆1W − h

(
1 +

vh

2

)
e−vhf(q)

)
,

Qh[1] = q + h
(

1− vh

2

)
evhMPh[1] +

h2

2
Mf(q) +

h

2
Mσ∆1W

(19)

with z := (P>0 , Q
>
0 )> = (p>, q>)>, which yields

E‖Ph[1]‖γ + E‖Qh[1]‖γ ≤ C(1 + ‖p‖γ + ‖q‖γ) + C(1 + ‖q‖γ + E‖Ph[1]‖γ)(20)
≤ C(1 + ‖p‖γ + ‖q‖γ)

based on the fact that vector field f is globally Lipschitz, the matrix I+ h2

2 ∇
2F (q)M

is positive definite, and ‖D(q)‖ ≤ 1 for any q ∈ Rd and h ∈ (0, 1). As the norm
‖Z1‖ = (‖Ph[1]‖2 + ‖Qh[1]‖2)

1
2 is equivalent to the norm (‖Ph[1]‖γ + ‖Qh[1]‖γ)

1
γ ,

Condition 3.3(i) holds.
Rewrite (1) into the following mild solution form:

P (h) = p−
∫ h

0
e−v(h−s)f(Q(s))ds−

∫ h

0
e−v(h−s)σdW (s),

Q(h) = q +
∫ h

0
MP (s)ds
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HIGH ORDER SCHEMES VIA GENERATING FUNCTIONS 3019

with P (0) = p and Q(0) = q. Based on (18), we have

P (h)− Ph[1] =
[
h
(

1 +
vh

2

)
e−vhf(q) +

h2

2
∇2F (q)MPh[1]−

∫ h

0
e−v(h−s)f(Q(s))ds

]
+

[(
1 +

vh

2

)
e−vhσ∆1W −

∫ h

0
e−v(h−s)σdW (s)

]
= : I + II,

Q(h)−Qh[1] =

[∫ h

0
MP (s)ds− h

(
1− vh

2

)
evhMPh[1]

]
−
[
h

2
Mσ∆1W +

h2

2
Mf(q)

]
= : III + IV.

Now we estimate terms I, II, III, and IV , respectively:

E‖I‖2 ≤ CE
∥∥∥∥h2

2
∇2F (q)Ph[1]

∥∥∥∥2

+ CE

∥∥∥∥∥
∫ h

0
e−v(h−s) (f(Q(s))− f(q)) ds

∥∥∥∥∥
2

+ C

∥∥∥∥∥
∫ h

0
e−v(h−s)dsf(q)− h

(
1 +

vh

2

)
e−vhf(q)

∥∥∥∥∥
2

≤ Ch4(1 + ‖z‖2) + C

∫ h

0
e−2v(h−s)ds

∫ h

0

(
‖Q(s)−Qh[1]‖2 + ‖Qh[1]− q‖2

)
ds

+ C

(
1− e−vh

v
− h
(

1 +
vh

2

)
e−vh

)2

(1 + ‖q‖2)

≤ Ch3(1 + ‖z‖2) + C

∫ h

0
‖Q(s)−Qh[1]‖2ds,(21)

where in the last step we have used (20). For the term II, based on the Itô isometry,

E‖II‖2 ≤
∫ h

0

((
1 +

vh

2

)
e−vh − e−v(h−s)

)2

dsTr
(
σσ>

)
≤ Ch3.(22)

Similarly, we have

E‖III‖2 ≤ CE

∥∥∥∥∥
∫ h

0
M
(
P (s)− Ph[1]

)
ds

∥∥∥∥∥
2

+ CE
∥∥∥∥h(1−

(
1− vh

2

)
evh
)
MPh[1]

∥∥∥∥2

(23)

≤ C
∫ h

0
‖P (s)− Ph[1]‖2ds+ Ch4(1 + ‖z‖2)

and

E‖IV ‖2 ≤ Ch3(1 + ‖q‖2).(24)

From (21)–(24), we conclude

E‖Z(h)− Z1‖2 ≤ C
∫ h

0
E‖Z(s)− Z1‖2ds+ Ch3(1 + ‖z‖2),
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3020 JIALIN HONG, LIYING SUN, AND XU WANG

which together with Gronwall’s inequality yields Condition 3.3(ii) with ε = 1. In this
case, there exist real numbers α̃ ∈ (0, 1) and β̃ ∈ [0,∞) such that E[V (Zn+1)|Ftn ] ≤
α̃V (Zn) + β̃ for V (z) = 1

2‖p‖
2 + F (q) + v

2p
>q + v2

4 ‖q‖
2 + 1 with z = (p>, q>)> (see

Theorem 7.2 in [13]). Hence,

E[V (Zn+1)] ≤ α̃E[V (Zn)] + β̃ ≤ α̃n+1E[V (Z0)] + β̃
1− α̃n

1− α̃
≤ C(Z0),

which induces the existence of invariant measures (see Proposition 7.10 in [9]).
Step 2. We now consider the chain Z2n sampled at rate K = 2 and verify

Condition 3.4 when f is linear with a constant Cf := ∇f = ∇2F . Let G :={
(P>, Q>)> ∈ R2d : Q = 0, ‖P‖ ≤ 1

}
, which is a compact set. For any z = (p>, 0)> ∈

G and w = (w>1 , w
>
2 )> ∈ B with B ∈ B(R2d), we aim to show that ∆1W and ∆2W

can be properly chosen to ensure that Ph[2] = w1 and Qh[2] = w2 starting from
(P>0 , Q

>
0 )> = z. Denoting Lh = h(1− vh

2 )evhM , from (18), we have

w1 = e−vhPh[1]− h2

2
CfMw1 − h

(
1 +

vh

2

)
e−vhf(Qh[1])−

(
1 +

vh

2

)
e−vhσ∆2W,

(25)

w2 = Qh[1] + Lhw1 +
h2

2
Mf(Qh[1]) +

h

2
Mσ∆2W

(26)

= Qh[1] + Lhw1 +
h

2

(
1 +

vh

2

)−1
evhM

(
e−vhPh[1]− w1 −

h2

2
CfMw1

)
,

Ph[1] = e−vhp− h2

2
CfMPh[1]− h

(
1 +

vh

2

)
e−vhf(0)−

(
1 +

vh

2

)
e−vhσ∆1W,

(27)

Qh[1] = LhP
h[1] +

h2

2
Mf(0) +

h

2
Mσ∆1W

(28)

= LhP
h[1] +

h

2

(
1 +

vh

2

)−1
evhM

(
e−vhp− Ph[1]− h2

2
CfMPh[1]

)
.

Notice that (26) and (28) form a linear system, from which we can get the solution
Ph[1] and Qh[1] based on the positive definite coefficient matrix. Then ∆2W and
∆1W can be uniquely determined by (25) and (27), respectively. Condition 3.4(i) is
then ensured according to the property that Brownian motions hit a cylinder set with
positive probability. For Condition 3.4(ii), from (19), we can find out that Ph[1] has
a C∞ density based on the facts that ∆1W has a C∞ density, σ is full rank, and D(q)
is positive definite for any q ∈ Rd. Thus, Qh[1] also has a C∞ density, and Theorem
3.5 is applied to complete the proof.

Remark 3.7. For the nonlinear case, the uniqueness of the invariant measure is
unsolved since both equations in (18) contain the same noise, which is totally different
from the continuous case and brings essential difficulties when showing the irreducible
property. For higher k and k′, following the same procedure as for the case k = k′ = 1
(see also [1]), choosing undetermined functions such that the error in (13) is of higher
order, we can also get higher weak order symplectic schemes for (5), which turn
out to be high weak order conformal symplectic schemes for the original system (1)
based on the inverse transformation (X,Y ) 7→ (P,Q). It is worth mentioning that
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the solvability of undetermined functions, as well as the ergodicity of the schemes, is
unknown for high order cases, as far as we know.

4. Approximation error. In this section, we consider the weak convergence
order of (18) by investigating the local convergence error first. Furthermore, based
on the local convergence error and the hypoelliptic setting (2), we can also get the
approximation error of the ergodic limit. Denote the exact solution of (1) and the
numerical solution by Z(t) = (P (t)>, Q(t)>)> and Zn = (Ph[n]>, Qh[n]>)>, respec-
tively. The next theorem gives that the moments of (1) are uniformly bounded, and
its proof follows the same procedure as that of Lemma 3.3 in [13].

Theorem 4.1. Let Assumption 2.1 hold. Then for any k ∈ N+, the kth moments
of P (t) and Q(t) are uniformly bounded with respect to t ∈ R+.

Before proving the main convergence theorem, we first show the boundedness of
the numerical solution to (18) in the following theorem.

Theorem 4.2. Assume that the coefficient f of (1) is globally Lipschitz and sat-
isfies the linear growth condition, i.e.,

(29) ‖f(u)− f(w)‖ ≤ L‖u− w‖, ‖f(u)‖ ≤ Cf (1 + ‖u‖)

for some constants L > 0 and Cf ≥ 0, and any u,w ∈ Rd. Then there exists a positive
constant h0 such that for any h ≤ h0, it holds that

sup
n∈{1,...,N}

E
[
‖Ph[n]‖k + ‖Qh[n]‖k

]
<∞.

Proof. For any fixed initial value z = (p>, q>)>, random variable ξ := ξ1, and h,
we have based on (18) that

‖Ph[1]− p‖ ≤ |e−vh − 1|‖p‖+ h
(

1 +
vh

2

)
‖f(q)‖+

√
h
(

1 +
vh

2

)
‖σξ‖

+
h2

2
‖∇2F (q)‖‖M‖‖p‖+

h2

2
‖∇2F (q)‖‖M‖‖Ph[1]− p‖.

Denote Cv := 1 + vh
2 . Using the global Lipschitz condition and mean value theorem,

there exists some θ ∈ (0, 1) such that

‖Ph[1]− p‖ ≤ | − vhe−vθh|‖p‖+ hCf (1 + ‖z‖) +
√
hCv‖σξ‖

+
h2

2
L‖M‖‖z‖+

h2

2
L‖M‖‖Ph[1]− p‖

≤ C(1 + ‖z‖)(‖ξ‖
√
h+ h) + L‖M‖‖Ph[1]− p‖h

2

2
.

It is obvious that there exists a positive constant h0 such that for any h ≤ h0,

L‖M‖h
2

2
≤ 1

2
.

It then yields

‖Ph[1]− p‖ ≤ 2C(1 + ‖z‖)(‖ξ‖
√
h+ h).
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On the other hand, for h ≤ h0, we have

‖E(Ph[1]− p)‖

≤
∥∥∥∥(e−vh − 1)p− h2

2
∇2F (q)Mp− hCve−vhf(q)

∥∥∥∥+
∥∥∥∥h2

2
∇2F (q)ME(Ph[1]− p)

∥∥∥∥
≤ vh‖p‖+ hL‖M‖‖p‖+ hCfCv(1 + ‖z‖) +

h2

2
L‖M‖‖E(Ph[1]− p)‖,

which leads to

‖E(Ph[1]− p)‖ ≤ C(1 + ‖z‖)h.

Based on the estimate of Ph[1]− p, similarly, we have

‖Qh[1]− q‖ ≤ C(1 + ‖z‖)(‖ξ‖
√
h+ h), ‖E(Qh[1]− q)‖ ≤ C(1 + ‖z‖)h.

We can conclude that, for Z1 = (Ph[1]>, Qh[1]>)>,

‖Z1 − z‖ ≤ C(‖ξ‖+
√
h)(1 + ‖z‖)

√
h ≤ C(‖ξ‖+ 1)(1 + ‖z‖)

√
h.(30)

Thus, we complete the proof according to Lemma 9.1 in [15].

Based on the above preliminaries, our result concerning the weak convergence
order of the proposed scheme is as follows.

Theorem 4.3. Under the assumptions in Theorem 4.2, the proposed scheme (18)
is of weak order 2. More precisely,∣∣Eψ (P (T ), Q(T ))−Eψ

(
Ph[N ], Qh[N ]

)∣∣ = O(h2)

for all ψ ∈ C6
P (R2d,R) and T = Nh.

Proof. Without loss of generality, we consider the case of d = 1. Based on Itô’s
formula and Theorems 4.1 and 4.2, we obtain

P (h) = p−
∫ h

0
(f(Q(s)) + vP (s)) ds−

m∑
r=1

∫ h

0
σrdWr(s)

= p−
∫ h

0

(
f(q) +

∫ s

0
∇2F (Q(θ))MP (θ)dθ

)
ds−

m∑
r=1

∫ h

0
σrdWr(s)

− v
∫ h

0

(
p−

∫ s

0
f(Q(θ))dθ −

∫ s

0
vP (θ)dθ −

m∑
r=1

σrdWr(θ)

)
ds,

which leads to

P (h) = p− f(q)h− vph− 1
2
∇2F (q)Mph2 −

m∑
r=1

∫ h

0
σrdWr(s)

+
1
2
vf(q)h2 +

1
2
v2ph2 + v

m∑
r=1

∫ h

0

∫ s

0
σrdWr(θ)ds+ δ1,

(31)

where E‖δ1‖ = O(h3) and E‖δ1‖2 = O(h5). Analogously, it also holds that

Q(h) = q +
∫ h

0
M

(
p−

∫ s

0
f(Q(θ))dθ − v

∫ s

0
P (θ)dθ −

m∑
r=1

∫ s

0
σrdWr(θ)

)
ds

= q +Mph− 1
2
f(q)h2 − 1

2
vMph2 −

m∑
r=1

Mσr

∫ h

0

∫ s

0
dWr(θ)ds+ δ2

(32)
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with E‖δ2‖ = O(h3) and E‖δ2‖2 = O(h5). For (18), applying Taylor expansion to
Ph[1] and Qh[1] at (p, q), we obtain

Ph[1] = p− f(q)h− vph− 1
2
∇2F (q)Mph2 −

m∑
r=1

σr∆1W

+
1
2
vf(q)h2 +

1
2
v2ph2 +

1
2
v

m∑
r=1

σrh∆1W + δ3,

(33)

Qh[1] = q +Mph− 1
2
f(q)h2 − 1

2
vMph2 − 1

2

m∑
r=1

Mσrh∆1W + δ4,(34)

where E‖δi‖ = O(h3) and E‖δi‖2 = O(h5) with i = 3, 4. Due to (31) and (33), we
know that

P (h)− Ph[1] = v

m∑
r=1

σr

(∫ h

0

∫ s

0
dWr(θ)ds−

1
2
h∆1W

)
+ (δ1 − δ3),

and thus ‖E(P (h) − Ph[1])‖ = O(h3). Similarly, based on (32) and (34), we have
‖E(Q(h)−Qh[1])‖ = O(h3). For i = 2, 3, 4, 5, we obtain∥∥E [(P (h)− p)i − (Ph[1]− p)i

]∥∥ ≤ Ch3 +O(h4),∥∥E [(Q(h)− q)i − (Qh[1]− q)i
]∥∥ ≤ Ch3 +O(h4).

Moreover, for i1 + i2 = 2, 3, 4, 5 and i1 ≥ 1,∥∥E [(P (h)− p)i1(Q(h)− q)i2 − (Ph[1]− p)i1(Qh[1]− q)i2
]∥∥ ≤ Ch3 +O(h4).

By Taylor expansion and the mean value theorem, we obtain

∣∣E [ψ(P (h), Q(h))− ψ(Ph[1], Qh[1])
]∣∣

≤
∣∣∣∣∂ψ∂p (p, q)

∣∣∣∣ ∥∥E(P (h)− Ph[1])
∥∥+

∣∣∣∣∂ψ∂q (p, q)
∣∣∣∣ ∥∥E(Q(h)−Qh[1])

∥∥
+

5∑
j=2

j∑
i=0

∣∣∣∣∂jψ(p, q)
∂pi∂qj−i

∣∣∣∣ ∥∥E[(P (h)− p)i(Q(h)− q)j−i − (Ph[1]− p)i(Qh[1]− q)j−i]
∥∥

+
6∑
i=0

E
(∣∣∣∣∂6ψ(p+ θ1P (h), q + θ1Q(h))

∂pi∂q6−i

∣∣∣∣ ∥∥(P (h)− p)i(Q(h)− q)6−i∥∥)

+
6∑
i=0

E
(∣∣∣∣∂6ψ(p+ θ2P

h[1], q + θ2Q
h[1])

∂pi∂q6−i

∣∣∣∣ ∥∥(Ph[1]− p)i(Qh[1]− q)6−i∥∥)

(35)

with constants 0 ≤ θ1 ≤ 1 and 0 ≤ θ2 ≤ 1. Here, based on (31)–(34) and Theorems
4.1 and 4.3, we derive

E
(∣∣∣∣∂6ψ(p+ θ1P (h), q + θ1Q(h))

∂pi∂q6−i

∣∣∣∣ ∥∥(P (h)− p)i(Q(h)− q)6−i∥∥)
≤ C

(
E
∥∥(P (h)− p)2i(Q(h)− q)12−2i

∥∥) 1
2 ≤ Ch6− i

2 ,

D
ow

nl
oa

de
d 

11
/1

5/
19

 to
 1

28
.2

10
.1

07
.1

31
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3024 JIALIN HONG, LIYING SUN, AND XU WANG

where we also use the fact that ψ ∈ C6
P (R2d,R). Analogously,

E
(∣∣∣∣∂6ψ(p+ θ2P

h[1], q + θ2Q
h[1])

∂pi∂q6−i

∣∣∣∣ ∥∥(Ph[1]− p)i(Qh[1]− q)6−i∥∥) = O(h6− i
2 )

for 0 ≤ i ≤ 6. Finally, we deduce

(36)
∣∣Eψ(P (h), Q(h))−Eψ(Ph[1], Qh[1])

∣∣ ≤ O(h3),

which, together with Theorem 9.1 in [15], yields global weak order two for the proposed
scheme (18).

According to the above theorem and the condition (2), we can get that the tem-
poral average of the proposed scheme (18) is a proper approximation of the ergodic
limit

∫
R2d ψdµ.

Theorem 4.4. For any ψ ∈ C6
b (R2d,R) and any initial values, under assumptions

in Theorems 3.6 and 4.3, the scheme (18) satisfies∣∣∣∣∣ 1
N

N∑
n=1

Eψ(Ph[n], Qh[n])−
∫

R2d
ψdµ

∣∣∣∣∣ ≤ C
(
h2 +

1
T

)
.

In fact, one can check that the assumptions in Theorem 5.6 in [14] are satisfied
by (18) and thus deduce this result.

5. Numerical experiments. The first example (section 5.1) tests the numer-
ical approximation by simulating a linear stochastic Langevin equation. In section
5.2, numerical tests of the conformal symplectic scheme for the nonlinear case are
presented. In all of the experiments, the expectation is approximated by taking the
average over 5000 realizations.

5.1. A linear oscillator with damping. Consider the following two-dimensional
stochastic Langevin equation:

dP = −aQdt− vPdt− σdW (t), P (0) = p,

dQ = aPdt, Q(0) = q,
(37)

where a, v > 0 and σ 6= 0 are constants and W (t) is a one-dimensional standard
Wiener process. The solution to (37) possesses a unique invariant measure µ1:

dµ1 = ρ1(p, q)dpdq,

where ρ1(p, q) = Θ exp (−av(p2+q2)
σ2 ) is known as the Boltzmann–Gibbs density and

Θ =
( ∫

R2 exp
(
− av(p2+q2)

σ2

)
dpdq

)−1
is a renormalization constant. The proposed

scheme applied to (37) yields

Pn+1 = e−vhPn −
h2

2
a2Pn+1 − h

(
1 +

vh

2

)
e−vhQn −

(
1 +

vh

2

)
e−vhσ∆n+1W,

Qn+1 = Qn + h
(

1− vh

2

)
evhaPn+1 +

h2

2
a2Qn +

h

2
aσ∆n+1W.

(38)

Based on Theorems 3.2 and 3.6, scheme (38) inherits both the conformal symplecticity
and ergodicity of the original system. To verify these properties numerically, we choose
p = 3 and q = 1.
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(c) v = 4.

Fig. 1. The value Sn exp(vtn)
S0

of two numerical schemes (a = 1 and σ = 1).

Figure 1 shows the value Sn exp(vtn)
S0

of the weak Taylor 2 method and the proposed
scheme, with v being different dissipative scales and Sn being the triangle square at
step n. We choose the original triangle which is produced by three points (−1, 5)>,
(20, 2)>, (0, 30)>. We find out that the discrete phase square of the proposed scheme
exhibits exponential decay, i.e., Sn = exp(−vtn)S0 with the same dissipative coeffi-
cient v as in the continuous case, while the weak Taylor 2 scheme does not.

For ergodicity and weak convergence of the proposed scheme, we have taken
the three different kinds of test functions (a) ψ(p, q) = cos(p + q), (b) ψ(p, q) =
exp (−p

2

2 −
q2

2 ), and (c) ψ(p, q) = sin(p2 + q2) as the test functions. To verify that
the temporal averages starting from different initial values will converge to the spatial
average, i.e., the ergodic limit∫

R2
ψ(p, q)dµ1 =

∫
R2
ψ(p, q)ρ1(p, q)dpdq,

we introduce the reference value for a specific test function ψ to represent the er-
godic limit: since the function ψ is uniformly bounded and the density function ρ1
dissipates exponentially, the integrator is almost zero when p2 + q2 is sufficiently
large. Thus, we choose

∫ 10
−10

∫ 10
−10 ψ(p, q)ρ1(p, q)dpdq as the reference value, which

appears as the dashed line in Figure 2. We can tell from Figure 2 that the tempo-
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(a) ψ(p, q) = cos(p+ q).
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Fig. 2. The temporal averages 1
N

∑N
n=1 Eψ(Pn, Qn) starting from different initial values (a =

1, v = 2, σ = 0.5, and T = 300).
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ral averages 1
N

∑N
n=1 Eψ(Pn, Qn) of the proposed scheme starting from four different

initial values, initial(1) = (−10, 1)>, initial(2) = (2, 0)>, initial(3) = (0, 3)>, and
initial(4) = (4, 2)>, converge to the reference line with error no more than h2 + 1

T ,
which coincides with Theorem 4.4.
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(c) ψ(p, q) = sin(p2 + q2).

Fig. 3. Rate of convergence in weak sense (a = 1, v = 2, and σ = 0.5).

Figure 3 plots the value ln |Eψ(P (T ), Q(T ))− Eψ(PN , QN )| against lnh for five
different step sizes h = [2−3, 2−4, 2−5, 2−6, 2−7] at T = 1, where (P (T ), Q(T )) and
(PN , QN ) represent the exact and numerical solutions at time T , respectively. It can
be seen that the weak order of (38) is two, as indicated by the reference line of slope 2.

5.2. A nonlinear oscillator with linear damping. In this section, we con-
sider the following equation:

dP = −(4Q3 − 6Q)dt− vPdt+
√

2β−1vdW (t), P (0) = p,

dQ = Pdt, Q(0) = q,
(39)

where v, β > 0 are fixed constants and W (t) denotes a one-dimensional standard
Wiener process. Similarly to (37), [14] shows that the dynamics generated by (39) is
ergodic with the invariant measure µ2, which can be characterized by the Boltzmann–
Gibbs density

ρ2(p, q) = Θ exp
(
− β

(
1
2
p2 +

(
3
2
− q2

)2))

with the renormalization constant Θ =
( ∫

R2 e
−β( 1

2p
2+( 3

2−q
2)2)dpdq

)−1
. Based on (18),

we get the associated conformal symplectic scheme

Pn+1 = e−vhPn −
h2

2
Pn+1

(
12Q2

n − 4
)
− he−vh

(
1 +

vh

2

)(
4Q3

n − 6Qn
)

+ e−vh
(

1 +
vh

2

)√
2β−1v∆n+1W,

Qn+1 = Qn + hevh
(

1− vh

2

)
Pn+1 +

h2

2

(
4Q3

n − 6Qn
)
− h

2

√
2β−1v∆n+1W.

(40)

Since this nonglobal Lipschitz case is not included in Theorems 3.6 and 4.3, we inves-
tigate its ergodicity and weak convergence order in view of numerical tests.
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Fig. 4. The temporal averages 1
N

∑N
n=1 Eψ(Pn, Qn) starting from different initial values with

T = 300.

Let v = 4, β = 2, and test functions ψ be the same as those in section 5.1.
Figure 4 shows the temporal averages 1

N

∑N
n=1 Eψ(Pn, Qn) of (40) starting from dif-

ferent initial values initial(1) = (−10, 1)>, initial(2) = (2, 7)>, initial(3) = (0, 3)>, and
initial(4) = (4, 6)>. We also use

∫ 10
−10

∫ 10
−10 ψ(p, q)ρ2(p, q)dpdq as an approximation of

the reference value, i.e., the ergodic limit∫
R2
ψ(p, q)dµ =

∫
R2
ψ(p, q)ρ2(p, q)dpdq.

Figure 4 indicates that the proposed scheme also converges to the reference line when
time goes to infinity.
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Fig. 5. Rate of convergence in weak sense (p = −2 and q = −2).

The value ln |Eψ(P (T ), Q(T )) − Eψ(PN , QN )| against lnh for five different step
sizes h = [2−4, 2−5, 2−6, 2−7, 2−8] at T = 0.5 is shown in Figure 5, similarly to Figure 3.
Compared with the reference line of slope 2 in Figure 5, it can be seen that (40) has
order two in the sense of weak approximations.

6. Conclusion. In this paper, an approach for constructing high weak order
conformal symplectic schemes for stochastic Langevin equations is developed, moti-
vated by the ideas in [1, 2, 18, 24]. The key points are that the generating function is
applied to ensure that the proposed scheme preserves the geometric structure, while
the modified technique is used to reduce the simulation of multiple integrations. We

D
ow

nl
oa

de
d 

11
/1

5/
19

 to
 1

28
.2

10
.1

07
.1

31
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3028 JIALIN HONG, LIYING SUN, AND XU WANG

show that, for the case k = k′ = 1, the proposed scheme could inherit both the confor-
mal symplectic geometric structure (under Lipschitz assumption) and the ergodicity
(under linear assumption) of the stochastic Langevin equation. Numerical experi-
ments verify our theoretical results. In addition, the numerical tests of an oscillator
with nonglobal Lipschitz coefficients indicate that the proposed scheme could also
inherit the internal properties of the original system, which implies that our results
may possibly be extended to the nonglobal Lipschitz case. The theoretical analysis
of this extension is also ongoing.
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