
Solving Quadratic Programs via Matrix Decomposition 1

Solving Quadratic Programs

via Matrix Decomposition

Shuzhong Zhang

Department of Systems Engineering and Engineering Management
The Chinese University of Hong Kong

Presented at The Chinese Academy of Sciences

June 10, 2009

Shuzhong Zhang, SEEM, CUHK



Solving Quadratic Programs via Matrix Decomposition 2

Outline

• Examples of Practical Applications

• Semidefinite Programming

• The Matrix Rank-One Decomposition

• Theoretical Applications

Shuzhong Zhang, SEEM, CUHK



Solving Quadratic Programs via Matrix Decomposition 3

Trust Region Subproblem

The Trust-Region Subproblem:

minimize xTQ0x− 2bT
0 x

subject to ‖x‖ ≤ δ.
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The CDT Trust Region Subproblem

The CDT (Celis, Dennis, Tapia, 1985) Trust-Region Subproblem:

minimize xTQ0x− 2bT
0 x

subject to ‖Ax− b‖ ≤ δ1

‖x‖ ≤ δ2.
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The Radar Code Selection Problem

(Based on De Maio, De Nicola, Huang, Z., Farina, 2007)

A radar system transmits a coherent burst of pulses

s(t) = atu(t) exp (i(2πf0t + φ))

• at is the transmit signal amplitude;

• u(t) =
∑N−1

k=0 a(k)p(t− kTr) is the signal’s complex envelope;

• p(t) is the signature of the transmitted pulse, and Tr is the Pulse
Repetition Time (PRT);

• [a(0), a(1), . . . , a(N − 1)] ∈ CN is the radar code (assumed without
loss of generality with unit norm);

• f0 is the carrier frequency, and φ is a random phase.
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The Output

The filter output is

v(t) = αre
−i2πf0τ

N−1∑

k=0

a(k)ei2πkfdTrχp(t− kTr − τ, fd) + w(t)

where χp(λ, f) is the pulse waveform ambiguity function

χp(λ, f) =
∫ +∞

−∞
p(β)p∗(β − λ)ei2πfβdβ

and w(t) is the down-converted and filtered disturbance component.
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Sampling

The signal v(t) is sampled at tk = τ + kTr, k = 0, . . . , N − 1, the
output becomes

v(tk) = αa(k)ei2πkfdTrχp(0, fd) + w(tk), k = 0, . . . , N − 1

where α = αre
−i2πf0τ .

Denote

c = [a(0), a(1), . . . , a(N − 1)]T,

p = [1, ei2πfdTr , . . . , ei2π(N−1)fdTr ]T (the temporal steering vector)

w = [w(t0), w(t1), . . . , w(tN−1)]T

the backscattered signal can be written as

v = αc¯ p + w

where ¯ denotes the Hadamard product.
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Performance, Doppler Accuracy, and Similarity

The Optimal Code Design Problem can be formulated as




maxc cHRc

s.t. cHc = 1

cHR1c ≥ δa

‖c− c0‖2 ≤ ε

where R = Γ−1 ¯ (pHp) with Γ = E[wwH], and
R1 = Γ−1 ¯ (ppH)∗ ¯ (uuH)∗ with u = [0, i2π, . . . , i2π(N − 1)]T.
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Commonalities

Non-Convex Quadratically Constrained Quadratic Optimization
(QCQP), in real and/or complex variables, with a few constraints.
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An Extension of Linear Programming: SDP

Semidefinite Programming

(SDP ) minimize C •X

subject to Ai •X = bi, i = 1, ..., m

X º 0

where
X • Y ≡ 〈X, Y 〉 ≡

∑

i,j

XijYij ≡ tr XY.
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Points to take:

• SDP problems can be solved efficiently in theory: O(
√

n log 1
ε )

iterations to reach an ε-optimal solution;

• SDP problems can be solved efficiently in practice: SeDuMi,
SDPT3, CSDP, SDPA, ...
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Solving QP by Matrix Decomposition

Quadratically Constrained Quadratic Programming (QCQP):

(Q) minimize q0(x) = xHQ0x− 2Re bH
0 x

subject to qi(x) = xHQix− 2Re bH
i x + ci ≤ 0, i = 1, ..., m.
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SDP Relaxation

Let

M(q0) :=


 0 −bH

0

−b0 Q0


, M(qi) :=


 ci −bH

i

−bi Qi


, for i = 1, ...,m.

Then, (Q) is equivalently written as

(Q) min M(q0) •

 t

x





 t

x




H

= xHQ0x− 2Re bH
0 xt̄

s.t. M(qi) •

 t

x





 t

x




H

= xHQix− 2bH
i xt̄ + ci|t|2 ≤ 0, i = 1, ..., m

|t|2 = 1.
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SDP Relaxation

The so-called SDP relaxation of (Q) is

(SP ) minimize M(q0) •X

subject to M(qi) •X ≤ 0, i = 1, ..., m

I00 •X = 1

X º 0 X rank one

where I00 =


 1 0

0 0


 ∈ Hn+1. The dual problem of (SP ) is:

(SD) maximize y0

subject to Z = M(q0)− y0I00 +
∑m

i=1 yiM(qi) º 0

yi ≥ 0, i = 1, ..., m.
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Complementary Slackness

Under suitable conditions, (SP ) and (SD) have complementary
optimal solutions, X∗ and Z∗:

X∗Z∗ = 0.

If we can decompose X∗ into rank-one summations, evenly satisfying
all the constraints, then each of the rank-one vectors will be optimal!
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Matrix Rank-One Decomposition

Theorem (Sturm and Z.; 2003).
Let A ∈ Sn. Let X ∈ Sn

+ with rank r. There exists a rank-one
decomposition for X such that

X =
r∑

i=1

xix
T
i

and xT
i Axi = A•X

r , i = 1, ..., r.
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Can we do more?

It is easy to show by example that in general it is only possible to get
a complete rank-one decomposition with respect to one matrix. But it
is possible to get a partial decomposition for two:

Theorem (Ai and Z.; 2006).
Let A1, A2 ∈ Sn and X ∈ Sn

+. If r := rank(X) ≥ 3 then one can
find in polynomial-time (real-number sense) a rank-one decompo-
sition for X,

X = x1x
T
1 + x2x

T
2 + · · ·+ xrx

T
r ,

such that
A1 • xix

T
i = A1•X

r , i = 1, ..., r

A2 • xix
T
i = A2•X

r , i = 1, ..., r − 2.
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The Hermitian case

Theorem (Huang and Z.; 2005).
Let A1, A2 ∈ Hn, and X ∈ Hn

+ with rank r. There exists a rank-
one decomposition for X such that

X =
r∑

i=1

xix
H
i

and xH
i Akxi = Ak•X

r , i = 1, ..., r; k = 1, 2.
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Analog in the Hermitian case

Theorem (Ai, Huang and Z.; 2007).
Suppose that A1, A2, A3 ∈ Hn and X ∈ Hn

+. If r = rank(X) ≥ 3,
then one can find in polynomial-time (real-number sense) a rank-
one decomposition for X,

X =
r∑

i=1

xix
H
i ,

such that

A1 • xix
H
i = δ1/r,A2 • xix

H
i = δ2/r, for all i = 1, . . . , r;

A3 • xix
H
i = δ3/r, for i = 1, . . . , r − 2.
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Theorem (Ai, Huang and Z.; 2007). Suppose n ≥ 3. Let A1, A2, A3 ∈ Hn, and
X ∈ Hn

+ with rank r. If r ≥ 3, then one can find in polynomial-time a nonzero
vector y ∈ range(X) such that





A1 • yyH = A1 •X,

A2 • yyH = A2 •X,

A3 • yyH = A3 •X,

with X − 1
r yyH º 0 and rank(X − 1

r yyH) ≤ r − 1. If r = 2, then for any
z /∈ range(X) there exists y ∈ span{z, range(X)}:





A1 • yyH = A1 •X,

A2 • yyH = A2 •X,

A3 • yyH = A3 •X,

with X + zzH − 1
r yyH º 0 and rank(X + zzH − 1

r yyH) ≤ 2.
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Theorem (Ai, Huang and Z.; 2007).
Suppose n ≥ 3. Let A1, A2, A3, A4 ∈ Hn, and X ∈ Hn

+ with rank r. Furthermore,

suppose that (A1•Y, A2•Y, A3•Y, A4•Y ) 6= (0, 0, 0, 0), for all nonzero matrix Y ∈ Hn
+.

If r ≥ 3, then one can find in polynomial-time a nonzero vector y ∈ range(X):





A1 • yyH = A1 •X,

A2 • yyH = A2 •X,

A3 • yyH = A3 •X,

A4 • yyH = A4 •X.

If r = 2, then for any z /∈ range(X) there exists y ∈ span{z, range(X)}:




A1 • yyH = A1 •X,

A2 • yyH = A2 •X,

A3 • yyH = A3 •X,

A4 • yyH = A4 •X.
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A Key Construction

Lemma (Ai, Huang and Z.; 2007).
For any positive numbers c−1 > 0, c0 > 0, any complex numbers ai, bi, ci, i =
1, 2, 3, and any real numbers a4, b4, c4, the following system of equations

Re (a1x̄y) + Re (a2x̄z) + Re (a3ȳz) + a4|z|2 = 0,

Re (b1x̄y) + Re (b2x̄z) + Re (b3ȳz) + b4|z|2 = 0,

c−1|x|2 − c0|y|2 + Re (c1x̄y) + Re (c2x̄z) + Re (c3ȳz) + c4|z|2 = 0,

always admits a non-zero complex-valued solution.
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Consequences of the Matrix Decomposition Theorems

Polynomially solvable cases of the nonconvex quadratic programs:

Real quadratic program:

m = 1 (m = 2 if homogeneous) ⇐= (Sturm & Z., 2003)

Real quadratic program:

m = 2 (m = 3 if h.) rank(X∗) ≥ 3 ⇐= (Ai & Z., 2006)

Complex quadratic program:

m = 2 (m = 3 if h.) ⇐= (Huang & Z., 2005)

Complex quadratic program:

m = 3 (m = 4 if h.) rank(X∗) ≥ 3 ⇐= (Ai, Huang & Z., 2007)
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The CDT Subproblem

The problem of concern is

(Q)2 minimize q0(x) = xTQ0x− 2bT
0 x

subject to q1(x) = xTx− 1 ≤ 0

q2(x) = xTQ2x− 2bT
2 x + c2 ≤ 0.
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Conditions and Notions

Necessary and Sufficient Condition for the gap to exist:

Solve the SDP relaxation. Let X̂ and (Ẑ, ŷ0, ŷ1, ŷ2) be pair of optimal
solutions for (SP )2 and (SD)2 respectively. The SDP relaxation
optimal value is smaller than the optimal value of (Q)2 iff:

(1) ŷ1ŷ2 6= 0;

(2) rank(Ẑ) = n− 1;

(3) rank(X̂) = 2 and there there is a rank-one decomposition of X̂,
X̂ = x̂1x̂

T
1 + x̂2x̂

T
2 , such that

M(q1) • x̂ix̂
T
i = 0, i = 1, 2

and
(M(q2) • x̂1x̂

T
1 )(M(q2) • x̂2x̂

T
2 ) < 0.
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Necessary and Sufficient Condition for Strong Duality

Theorem (Ai and Z.; 2006).
Consider (Q)2 where the Slater condition is satisfied. Suppose
that X̂ and (Ẑ, ŷ0, ŷ1, ŷ2) are a pair of optimal solutions for its
SDP relaxation (SP )2 and the dual (SD)2 respectively. Then,
v((SP )2) < v((Q)2) holds if and only if X̂ and (Ẑ, ŷ0, ŷ1, ŷ2) satisfy
the previous condition.

Shuzhong Zhang, SEEM, CUHK



Solving Quadratic Programs via Matrix Decomposition 27

Further Theoretical Applications

Field of Values of a Matrix

Let A be any n× n matrix, the field of values of A is given by

F(A) := {zHAz | zHz = 1} ⊆ C.

This set, like the spectrum set, contains a lot of information about the
matrix A.

The set is known to be convex.

Reference: R.A. Horn and C.R. Johnson. Topics in Matrix analysis.
Cambridge University Press, Cambridge, 1991.
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Joint Numerical Ranges

In general, the joint numerical range of matrices is defined to be

F(A1, ..., Am) :=








zHA1z
...

zHAmz




∣∣∣∣∣∣∣∣∣
zHz = 1, z ∈ Cn





.

Theorem (Hausdorff; 1919).
If A1 and A2 are Hermitian, then F(A1, A2) is a convex set.
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A Theorem of Brickman

Theorem (Brickman; 1961).
Suppose that A1, A2, A3 are n× n Hermitian matrices. Then








zHA1z

zHA2z

zHA3z




∣∣∣∣∣∣∣∣
z ∈ Cn





is a convex set.

Shuzhong Zhang, SEEM, CUHK



Solving Quadratic Programs via Matrix Decomposition 30

The S-Procedure

It is often useful to consider the following implication

G1(x) ≥ 0, G2(x) ≥ 0, ..., Gm(x) ≥ 0 =⇒ F (x) ≥ 0.

A sufficient condition is:

∃τ1 ≥ 0, τ2 ≥ 0, ..., τm ≥ 0 such that F (x)−
m∑

i=1

τiGi(x) ≥ 0∀x.

This procedure is called lossless if the above condition is also
necessary.

Shuzhong Zhang, SEEM, CUHK
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The S-Lemma

Theorem (Jakubovic; 1971).
Suppose that m = 1, and F,G1 are real quadratic forms. Moreover,
there is x0 ∈ <n such that xT

0 G1x0 > 0. Then the S-procedure is
lossless.

Theorem (Jakubovic; 1971).
Suppose that m = 2, and F, G1, G2 are Hermitian quadratic forms.
Moreover, there is x0 ∈ Cn such that xH

0 Gix0 > 0, i = 1, 2. Then
the S-procedure is lossless.
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Proof of the S-Lemma: The Hermitian case

We need only to show that the S-procedure is lossless in this case. Let
Gi(x) = xHAix, i = 1, 2, and F (x) = xHA3x.

Consider the following cone







xHA1x

xHA2x

xHA3x




∣∣∣∣∣∣∣∣
x ∈ Cn





.

It is a convex cone in <3 by Brickman’s theorem.

Moreover, it does not intersect with <++ ×<++ ×<−−.
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Proof of the S-Lemma (continued)

By the separation theorem, there is (t1, t2, t3) 6= 0, such that

t1x1 + t2x2 + t3x3 ≤ 0, ∀x1 > 0, x2 > 0, x3 < 0,

and
t1x

HA1x + t2x
HA2x + t3x

HA3x ≥ 0, ∀x ∈ Cn.

The first condition implies that t1 ≤ 0, t2 ≤ 0, and t3 ≥ 0. We see that
t3 > 0 in this case, and so

A3 − t1
t3

A1 − t2
t3

A2 º 0.
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But how to prove Brickman’s theorem?

Clearly, it will be sufficient if we can show







zHA1z

zHA2z

zHA3z




∣∣∣∣∣∣∣∣
z ∈ Cn





=








A1 • Z

A2 • Z

A3 • Z




∣∣∣∣∣∣∣∣
Z º 0
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Proof of the Brickman Theorem

Take any nonzero vector



v1

v2

v3


 =




A1 • Z

A2 • Z

A3 • Z


 .

Suppose that v3 6= 0. Consider two matrix equations
(
A1 − v1

v3
A3

)
• Z = 0

(
A2 − v2

v3
A3

)
• Z = 0
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Proof of the Brickman Theorem (continued)

Using our decomposition, there will be Z =
r∑

i=1

ziz
H
i such that

zH
i

(
A1 − v1

v3
A3

)
zi = 0

zH
i

(
A2 − v2

v3
A3

)
zi = 0

for i = 1, ..., r. Among these, there will be one vector such that zH
i A3zi

has the same sign as A3 • Z.

Let ρ :=
√

v3/zH
i A3zi, and z := ρzi. Then,

zHA3z = ρ2zH
i A3zi = v3, zHAkz =

vk

v3
zHA3z = vk, k = 1, 2.
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An Extension of Brickman’s Theorem

Corollary (Ai, Huang, and Z.; 2007).
Suppose that A1, A2, A3, A4 are n × n Hermitian matrices with
n ≥ 3. Moreover, (A1 • Y, A2 • Y, A3 • Y, A4 • Y ) 6= (0, 0, 0, 0), for
all nonzero matrix Y ∈ Hn

+. Then







zHA1z

zHA2z

zHA3z

zHA4z




∣∣∣∣∣∣∣∣∣∣∣

z ∈ Cn





is a convex set.
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A Result of Yuan

Theorem (Yuan; 1990).
Let A1 and A2 be in Sn. If

max{xTA1x, xTA2x} ≥ 0 ∀x ∈ <n

then there exist µ1 ≥ 0, µ2 ≥ 0, µ1 + µ2 = 1 such that

µ1A1 + µ2A2 º 0.
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Extension

Theorem (Ai, Huang, Zhang; 2007).
Let A1, A2, A3 be in Hn. If

max{zHA1z, zTA2z, zTA3z} ≥ 0 ∀z ∈ Cn

then there exist µ1, µ2, µ3 ≥ 0, µ1 + µ2 + µ3 = 1 such that

µ1A1 + µ2A2 + µ3A3 º 0.
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Further Extension

Theorem (Ai, Huang, Zhang; 2007).
Suppose that n ≥ 3, Ai ∈ Hn, i = 1, 2, 3, 4, and (A1 • Y, A2 • Y, A3 • Y,A4 •
Y ) 6= (0, 0, 0, 0), for all nonzero matrix Y ∈ Hn

+. If

max{zHA1z, zHA2z, zHA3z, zHA4z} ≥ 0, ∀z ∈ Cn

then there are µi ≥ 0, i = 1, 2, 3, 4, such that µ1 + µ2 + µ3 + µ4 = 1 such
that

µ1A1 + µ2A2 + µ3A3 + µ4A4 º 0.
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Conclusions

• Non-convex (real and/or complex) quadratically constrained
quadratic programs have a lot of applications.

• SDP relaxation can help to solve such non-convex problems to
optimality under some conditions.

• Matrix rank-one decomposition theorems play a key role in this
approach.
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