Solving Quadratic Programs

via Matrix Decomposition

Shuzhong Zhang

```
Department of Systems Engineering and Engineering Management
    The Chinese University of Hong Kong
Presented at The Chinese Academy of Sciences
    June 10, 2009
```


Outline

- Examples of Practical Applications
- Semidefinite Programming
- The Matrix Rank-One Decomposition
- Theoretical Applications

Trust Region Subproblem

The Trust-Region Subproblem:

$$
\begin{array}{ll}
\operatorname{minimize} & x^{\mathrm{T}} Q_{0} x-2 b_{0}^{\mathrm{T}} x \\
\text { subject to } & \|x\| \leq \delta
\end{array}
$$

The CDT Trust Region Subproblem

The CDT (Celis, Dennis, Tapia, 1985) Trust-Region Subproblem:

$$
\begin{array}{ll}
\operatorname{minimize} & x^{\mathrm{T}} Q_{0} x-2 b_{0}^{\mathrm{T}} x \\
\text { subject to } & \|A x-b\| \leq \delta_{1} \\
& \|x\| \leq \delta_{2}
\end{array}
$$

The Radar Code Selection Problem

(Based on De Maio, De Nicola, Huang, Z., Farina, 2007)
A radar system transmits a coherent burst of pulses

$$
s(t)=a_{t} u(t) \exp \left(\boldsymbol{i}\left(2 \pi f_{0} t+\phi\right)\right)
$$

- a_{t} is the transmit signal amplitude;
- $u(t)=\sum_{k=0}^{N-1} a(k) p\left(t-k T_{r}\right)$ is the signal's complex envelope;
- $p(t)$ is the signature of the transmitted pulse, and T_{r} is the Pulse Repetition Time (PRT);
- $[a(0), a(1), \ldots, a(N-1)] \in C^{N}$ is the radar code (assumed without loss of generality with unit norm);
- f_{0} is the carrier frequency, and ϕ is a random phase.

The Output

The filter output is

$$
v(t)=\alpha_{r} e^{-\boldsymbol{i}_{2 \pi f_{0}} \tau} \sum_{k=0}^{N-1} a(k) e^{\boldsymbol{i}_{2 \pi k f_{d} T_{r}}} \chi_{p}\left(t-k T_{r}-\tau, f_{d}\right)+w(t)
$$

where $\chi_{p}(\lambda, f)$ is the pulse waveform ambiguity function

$$
\chi_{p}(\lambda, f)=\int_{-\infty}^{+\infty} p(\beta) p^{*}(\beta-\lambda) e^{i 2 \pi f \beta} d \beta
$$

and $w(t)$ is the down-converted and filtered disturbance component.

Sampling

The signal $v(t)$ is sampled at $t_{k}=\tau+k T_{r}, k=0, \ldots, N-1$, the output becomes

$$
v\left(t_{k}\right)=\alpha a(k) e^{\boldsymbol{i}_{2 \pi k f_{d} T_{r}}} \chi_{p}\left(0, f_{d}\right)+w\left(t_{k}\right), \quad k=0, \ldots, N-1
$$

where $\alpha=\alpha_{r} e^{-i 2 \pi f_{0} \tau}$.
Denote

$$
\begin{aligned}
& \boldsymbol{c}=[a(0), a(1), \ldots, a(N-1)]^{\mathrm{T}} \\
& \boldsymbol{p}=\left[1, e^{\boldsymbol{i}_{2 \pi f_{d} T_{r}}}, \ldots, e^{\left.\boldsymbol{i}_{2 \pi(N-1) f_{d} T_{r}}\right]^{\mathrm{T}}}\right. \text { (the temporal steering vector) } \\
& \boldsymbol{w}=\left[w\left(t_{0}\right), w\left(t_{1}\right), \ldots, w\left(t_{N-1}\right)\right]^{\mathrm{T}}
\end{aligned}
$$

the backscattered signal can be written as

$$
\boldsymbol{v}=\alpha \boldsymbol{c} \odot \boldsymbol{p}+\boldsymbol{w}
$$

where \odot denotes the Hadamard product.

Performance, Doppler Accuracy, and Similarity

The Optimal Code Design Problem can be formulated as

$$
\begin{cases}\max _{\boldsymbol{c}} & \boldsymbol{c}^{\mathrm{H}} \boldsymbol{R} \boldsymbol{c} \\ \text { s.t. } & \boldsymbol{c}^{\mathrm{H}} \boldsymbol{c}=1 \\ & \boldsymbol{c}^{\mathrm{H}} \boldsymbol{R}_{1} \boldsymbol{c} \geq \delta_{a} \\ & \left\|\boldsymbol{c}-\boldsymbol{c}_{0}\right\|^{2} \leq \epsilon\end{cases}
$$

where $\boldsymbol{R}=\Gamma^{-1} \odot\left(\boldsymbol{p}^{\mathrm{H}} \boldsymbol{p}\right)$ with $\Gamma=\mathrm{E}\left[\boldsymbol{w} \boldsymbol{w}^{\mathrm{H}}\right]$, and
$\boldsymbol{R}_{1}=\Gamma^{-1} \odot\left(\boldsymbol{p} \boldsymbol{p}^{\mathrm{H}}\right)^{*} \odot\left(\boldsymbol{u} \boldsymbol{u}^{\mathrm{H}}\right)^{*}$ with $u=[0, i 2 \pi, \ldots, i 2 \pi(N-1)]^{\mathrm{T}}$.

Commonalities

Non-Convex Quadratically Constrained Quadratic Optimization (QCQP), in real and/or complex variables, with a few constraints.

An Extension of Linear Programming: SDP

Semidefinite Programming

$$
\begin{array}{lll}
(S D P) & \text { minimize } & C \bullet X \\
& \text { subject to } & A_{i} \bullet X=b_{i}, i=1, \ldots, m \\
& X \succeq 0
\end{array}
$$

where

$$
X \bullet Y \equiv\langle X, Y\rangle \equiv \sum_{i, j} X_{i j} Y_{i j} \equiv \operatorname{tr} X Y
$$

Points to take:

- SDP problems can be solved efficiently in theory: $O\left(\sqrt{n} \log \frac{1}{\epsilon}\right)$ iterations to reach an ϵ-optimal solution;
- SDP problems can be solved efficiently in practice: SeDuMi, SDPT3, CSDP, SDPA, ...

Solving QP by Matrix Decomposition

Quadratically Constrained Quadratic Programming (QCQP):
(Q) minimize $\quad q_{0}(x)=x^{\mathrm{H}} Q_{0} x-2 \operatorname{Re} b_{0}^{\mathrm{H}} x$
subject to $\quad q_{i}(x)=x^{\mathrm{H}} Q_{i} x-2 \operatorname{Re} b_{i}^{\mathrm{H}} x+c_{i} \leq 0, \quad i=1, \ldots, m$.

SDP Relaxation

Let

$$
M\left(q_{0}\right):=\left[\begin{array}{cc}
0 & -b_{0}^{\mathrm{H}} \\
-b_{0} & Q_{0}
\end{array}\right], M\left(q_{i}\right):=\left[\begin{array}{cc}
c_{i} & -b_{i}^{\mathrm{H}} \\
-b_{i} & Q_{i}
\end{array}\right], \text { for } i=1, \ldots, m .
$$

Then, (Q) is equivalently written as

$$
\begin{aligned}
(Q) \quad \min & M\left(q_{0}\right) \bullet\left[\begin{array}{l}
t \\
x
\end{array}\right]\left[\begin{array}{l}
t \\
x
\end{array}\right]^{\mathrm{H}}=x^{\mathrm{H}} Q_{0} x-2 \operatorname{Re} b_{0}^{\mathrm{H}} x \bar{t} \\
\text { s.t. } & M\left(q_{i}\right) \bullet\left[\begin{array}{l}
t \\
x
\end{array}\right]\left[\begin{array}{l}
t \\
x
\end{array}\right]^{\mathrm{H}}=x^{\mathrm{H}} Q_{i} x-2 b_{i}^{\mathrm{H}} x \bar{t}+c_{i}|t|^{2} \leq 0, \quad i=1, \ldots, m \\
& |t|^{2}=1 .
\end{aligned}
$$

SDP Relaxation

The so-called SDP relaxation of (Q) is

$$
\begin{array}{lll}
(S P) & \text { minimize } & M\left(q_{0}\right) \bullet X \\
\text { subject to } & M\left(q_{i}\right) \bullet X \leq 0, \quad i=1, \ldots, m \\
& I_{00} \bullet X=1 \\
& X \succeq 0 \quad X \text { rank one }
\end{array}
$$

where $I_{00}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] \in \mathcal{H}^{n+1}$. The dual problem of $(S P)$ is:
(SD) maximize y_{0}
subject to $\quad Z=M\left(q_{0}\right)-y_{0} I_{00}+\sum_{i=1}^{m} y_{i} M\left(q_{i}\right) \succeq 0$

$$
y_{i} \geq 0, i=1, \ldots, m
$$

Complementary Slackness

Under suitable conditions, $(S P)$ and ($S D$) have complementary optimal solutions, X^{*} and Z^{*} :

$$
X^{*} Z^{*}=\mathbf{0} .
$$

If we can decompose X^{*} into rank-one summations, evenly satisfying all the constraints, then each of the rank-one vectors will be optimal!

Matrix Rank-One Decomposition

Theorem (Sturm and Z.; 2003).
Let $A \in \mathcal{S}^{n}$. Let $X \in \mathcal{S}_{+}^{n}$ with rank r. There exists a rank-one decomposition for X such that

$$
X=\sum_{i=1}^{r} x_{i} x_{i}^{\mathrm{T}}
$$

and $x_{i}^{\mathrm{T}} A x_{i}=\frac{A \bullet X}{r}, i=1, \ldots, r$.

Can we do more?

It is easy to show by example that in general it is only possible to get a complete rank-one decomposition with respect to one matrix. But it is possible to get a partial decomposition for two:

Theorem (Ai and Z.; 2006).
Let $A_{1}, A_{2} \in \mathcal{S}^{n}$ and $X \in \mathcal{S}_{+}^{n}$. If $r:=\operatorname{rank}(X) \geq 3$ then one can find in polynomial-time (real-number sense) a rank-one decomposition for X,

$$
X=x_{1} x_{1}^{\mathrm{T}}+x_{2} x_{2}^{\mathrm{T}}+\cdots+x_{r} x_{r}^{\mathrm{T}}
$$

such that

$$
\begin{array}{ll}
A_{1} \bullet x_{i} x_{i}^{\mathrm{T}}=\frac{A_{1} \bullet X}{r}, & i=1, \ldots, r \\
A_{2} \bullet x_{i} x_{i}^{\mathrm{T}}=\frac{A_{2} \bullet X}{r}, & i=1, \ldots, r-2
\end{array}
$$

The Hermitian case

Theorem (Huang and Z.; 2005).

Let $A_{1}, A_{2} \in \mathcal{H}^{n}$, and $X \in \mathcal{H}_{+}^{n}$ with rank r. There exists a rankone decomposition for X such that

$$
X=\sum_{i=1}^{r} x_{i} x_{i}^{\mathrm{H}}
$$

and $x_{i}^{\mathrm{H}} A_{k} x_{i}=\frac{A_{k} \bullet X}{r}, i=1, \ldots, r ; k=1,2$.

Analog in the Hermitian case

Theorem (Ai, Huang and Z.; 2007).

Suppose that $A_{1}, A_{2}, A_{3} \in \mathcal{H}^{n}$ and $X \in \mathcal{H}_{+}^{n}$. If $r=\operatorname{rank}(X) \geq 3$, then one can find in polynomial-time (real-number sense) a rankone decomposition for X,

$$
X=\sum_{i=1}^{r} x_{i} x_{i}^{\mathrm{H}},
$$

such that

$$
\begin{aligned}
& A_{1} \bullet x_{i} x_{i}^{\mathrm{H}}=\delta_{1} / r, A_{2} \bullet x_{i} x_{i}^{\mathrm{H}}=\delta_{2} / r, \text { for all } i=1, \ldots, r ; \\
& A_{3} \bullet x_{i} x_{i}^{\mathrm{H}}=\delta_{3} / r, \text { for } i=1, \ldots, r-2 .
\end{aligned}
$$

Theorem (Ai, Huang and Z.; 2007). Suppose $n \geq 3$. Let $A_{1}, A_{2}, A_{3} \in \mathcal{H}^{n}$, and $X \in \mathcal{H}_{+}^{n}$ with rank r. If $r \geq 3$, then one can find in polynomial-time a nonzero vector $y \in \operatorname{range}(X)$ such that

$$
\left\{\begin{array}{l}
A_{1} \bullet y y^{\mathrm{H}}=A_{1} \bullet X \\
A_{2} \bullet y y^{\mathrm{H}}=A_{2} \bullet X \\
A_{3} \bullet y y^{\mathrm{H}}=A_{3} \bullet X
\end{array}\right.
$$

with $X-\frac{1}{r} y y^{\mathrm{H}} \succeq 0$ and $\operatorname{rank}\left(X-\frac{1}{r} y y^{\mathrm{H}}\right) \leq r-1$. If $r=2$, then for any $z \notin \operatorname{range}(X)$ there exists $y \in \operatorname{span}\{z, \operatorname{range}(X)\}:$

$$
\left\{\begin{array}{l}
A_{1} \bullet y y^{\mathrm{H}}=A_{1} \bullet X \\
A_{2} \bullet y y^{\mathrm{H}}=A_{2} \bullet X \\
A_{3} \bullet y y^{\mathrm{H}}=A_{3} \bullet X
\end{array}\right.
$$

with $X+z z^{\mathrm{H}}-\frac{1}{r} y y^{\mathrm{H}} \succeq 0$ and $\operatorname{rank}\left(X+z z^{\mathrm{H}}-\frac{1}{r} y y^{\mathrm{H}}\right) \leq 2$.

Theorem (Ai, Huang and Z.; 2007).

Suppose $n \geq 3$. Let $A_{1}, A_{2}, A_{3}, A_{4} \in \mathcal{H}^{n}$, and $X \in \mathcal{H}_{+}^{n}$ with rank r. Furthermore, suppose that $\left(A_{1} \bullet Y, A_{2} \bullet Y, A_{3} \bullet Y, A_{4} \bullet Y\right) \neq(0,0,0,0)$, for all nonzero matrix $Y \in \mathcal{H}_{+}^{n}$. If $r \geq 3$, then one can find in polynomial-time a nonzero vector $y \in \operatorname{range}(X)$:

$$
\left\{\begin{array}{l}
A_{1} \bullet y y^{\mathrm{H}}=A_{1} \bullet X, \\
A_{2} \bullet y y^{\mathrm{H}}=A_{2} \bullet X, \\
A_{3} \bullet y y^{\mathrm{H}}=A_{3} \bullet X, \\
A_{4} \bullet y y^{\mathrm{H}}=A_{4} \bullet X .
\end{array}\right.
$$

If $r=2$, then for any $z \notin \operatorname{range}(X)$ there exists $y \in \operatorname{span}\{z, \operatorname{range}(X)\}:$

$$
\left\{\begin{array}{l}
A_{1} \bullet y y^{\mathrm{H}}=A_{1} \bullet X, \\
A_{2} \bullet y y^{\mathrm{H}}=A_{2} \bullet X, \\
A_{3} \bullet y y^{\mathrm{H}}=A_{3} \bullet X, \\
A_{4} \bullet y y^{\mathrm{H}}=A_{4} \bullet X .
\end{array}\right.
$$

A Key Construction

Lemma (Ai, Huang and Z.; 2007).
For any positive numbers $c_{-1}>0, c_{0}>0$, any complex numbers $a_{i}, b_{i}, c_{i}, i=$ $1,2,3$, and any real numbers a_{4}, b_{4}, c_{4}, the following system of equations

$$
\begin{aligned}
\operatorname{Re}\left(a_{1} \bar{x} y\right)+\operatorname{Re}\left(a_{2} \bar{x} z\right)+\operatorname{Re}\left(a_{3} \bar{y} z\right)+a_{4}|z|^{2} & =0, \\
\operatorname{Re}\left(b_{1} \bar{x} y\right)+\operatorname{Re}\left(b_{2} \bar{x} z\right)+\operatorname{Re}\left(b_{3} \bar{y} z\right)+b_{4}|z|^{2} & =0, \\
c_{-1}|x|^{2}-c_{0}|y|^{2}+\operatorname{Re}\left(c_{1} \bar{x} y\right)+\operatorname{Re}\left(c_{2} \bar{x} z\right)+\operatorname{Re}\left(c_{3} \bar{y} z\right)+c_{4}|z|^{2} & =0,
\end{aligned}
$$

always admits a non-zero complex-valued solution.

Consequences of the Matrix Decomposition Theorems

Polynomially solvable cases of the nonconvex quadratic programs:
Real quadratic program:

$$
m=1(m=2 \text { if homogeneous }) \Longleftarrow(\text { Sturm \& Z., 2003 })
$$

Real quadratic program:

$$
m=2(m=3 \text { if h. }) \operatorname{rank}\left(X^{*}\right) \geq 3 \Longleftarrow(\text { Ai \& Z., 2006) }
$$

Complex quadratic program:

$$
m=2(m=3 \text { if } \mathrm{h} .) \Longleftarrow(\text { Huang \& Z., 2005) }
$$

Complex quadratic program:

$$
m=3\left(m=4 \text { if h.) } \operatorname{rank}\left(X^{*}\right) \geq 3 \Longleftarrow(\text { Ai, Huang \& Z., 2007) }\right.
$$

The CDT Subproblem

The problem of concern is

$$
\begin{array}{lll}
(Q)_{2} & \text { minimize } & q_{0}(x)=x^{\mathrm{T}} Q_{0} x-2 b_{0}^{\mathrm{T}} x \\
& \text { subject to } \quad q_{1}(x)=x^{\mathrm{T}} x-1 \leq 0 \\
& q_{2}(x)=x^{\mathrm{T}} Q_{2} x-2 b_{2}^{\mathrm{T}} x+c_{2} \leq 0 .
\end{array}
$$

Conditions and Notions

Necessary and Sufficient Condition for the gap to exist:
Solve the SDP relaxation. Let \hat{X} and $\left(\hat{Z}, \hat{y}_{0}, \hat{y}_{1}, \hat{y}_{2}\right)$ be pair of optimal solutions for $(S P)_{2}$ and $(S D)_{2}$ respectively. The SDP relaxation optimal value is smaller than the optimal value of $(Q)_{2}$ iff:
(1) $\hat{y}_{1} \hat{y}_{2} \neq 0$;
(2) $\operatorname{rank}(\hat{Z})=n-1$;
(3) $\operatorname{rank}(\hat{X})=2$ and there there is a rank-one decomposition of \hat{X}, $\hat{X}=\hat{x}_{1} \hat{x}_{1}^{\mathrm{T}}+\hat{x}_{2} \hat{x}_{2}^{\mathrm{T}}$, such that

$$
M\left(q_{1}\right) \bullet \hat{x}_{i} \hat{x}_{i}^{\mathrm{T}}=0, i=1,2
$$

and

$$
\left(M\left(q_{2}\right) \bullet \hat{x}_{1} \hat{x}_{1}^{\mathrm{T}}\right)\left(M\left(q_{2}\right) \bullet \hat{x}_{2} \hat{x}_{2}^{\mathrm{T}}\right)<0
$$

Necessary and Sufficient Condition for Strong Duality

Theorem (Ai and Z.; 2006).

Consider $(Q)_{2}$ where the Slater condition is satisfied. Suppose that \hat{X} and $\left(\hat{Z}, \hat{y}_{0}, \hat{y}_{1}, \hat{y}_{2}\right)$ are a pair of optimal solutions for its SDP relaxation $(S P)_{2}$ and the dual $(S D)_{2}$ respectively. Then, $v\left((S P)_{2}\right)<v\left((Q)_{2}\right)$ holds if and only if \hat{X} and $\left(\hat{Z}, \hat{y}_{0}, \hat{y}_{1}, \hat{y}_{2}\right)$ satisfy the previous condition.

Further Theoretical Applications

Field of Values of a Matrix
Let A be any $n \times n$ matrix, the field of values of A is given by

$$
\mathcal{F}(A):=\left\{z^{\mathrm{H}} A z \mid z^{\mathrm{H}} z=1\right\} \subseteq \mathbf{C} .
$$

This set, like the spectrum set, contains a lot of information about the matrix A.

The set is known to be convex.
Reference: R.A. Horn and C.R. Johnson. Topics in Matrix analysis. Cambridge University Press, Cambridge, 1991.

Joint Numerical Ranges

In general, the joint numerical range of matrices is defined to be

$$
\mathcal{F}\left(A_{1}, \ldots, A_{m}\right):=\left\{\left.\left(\begin{array}{c}
z^{\mathrm{H}} A_{1} z \\
\vdots \\
z^{\mathrm{H}} A_{m} z
\end{array}\right) \right\rvert\, z^{\mathrm{H}} z=1, z \in \mathbf{C}^{n}\right\}
$$

Theorem (Hausdorff; 1919).

If A_{1} and A_{2} are Hermitian, then $\mathcal{F}\left(A_{1}, A_{2}\right)$ is a convex set.

A Theorem of Brickman

Theorem (Brickman; 1961).

Suppose that A_{1}, A_{2}, A_{3} are $n \times n$ Hermitian matrices. Then

$$
\left\{\left.\left(\begin{array}{c}
z^{\mathrm{H}} A_{1} z \\
z^{\mathrm{H}} A_{2} z \\
z^{\mathrm{H}} A_{3} z
\end{array}\right) \right\rvert\, z \in \mathbf{C}^{n}\right\}
$$

is a convex set.

The S-Procedure

It is often useful to consider the following implication

$$
G_{1}(x) \geq 0, G_{2}(x) \geq 0, \ldots, G_{m}(x) \geq 0 \Longrightarrow F(x) \geq 0 .
$$

A sufficient condition is:

$$
\exists \tau_{1} \geq 0, \tau_{2} \geq 0, \ldots, \tau_{m} \geq 0 \text { such that } F(x)-\sum_{i=1}^{m} \tau_{i} G_{i}(x) \geq 0 \forall x
$$

This procedure is called lossless if the above condition is also necessary.

The S-Lemma

Theorem (Jakubovic; 1971).

Suppose that $m=1$, and F, G_{1} are real quadratic forms. Moreover, there is $x_{0} \in \Re^{n}$ such that $x_{0}^{\mathrm{T}} G_{1} x_{0}>0$. Then the S-procedure is lossless.

Theorem (Jakubovic; 1971).

Suppose that $m=2$, and F, G_{1}, G_{2} are Hermitian quadratic forms. Moreover, there is $x_{0} \in \mathbf{C}^{n}$ such that $x_{0}^{\mathrm{H}} G_{i} x_{0}>0, i=1,2$. Then the S-procedure is lossless.

Proof of the S-Lemma: The Hermitian case

We need only to show that the S-procedure is lossless in this case. Let $G_{i}(x)=x^{\mathrm{H}} A_{i} x, i=1,2$, and $F(x)=x^{\mathrm{H}} A_{3} x$.

Consider the following cone

$$
\left\{\left.\left(\begin{array}{c}
x^{\mathrm{H}} A_{1} x \\
x^{\mathrm{H}} A_{2} x \\
x^{\mathrm{H}} A_{3} x
\end{array}\right) \right\rvert\, x \in \mathbf{C}^{n}\right\} .
$$

It is a convex cone in \Re^{3} by Brickman's theorem.
Moreover, it does not intersect with $\Re_{++} \times \Re_{++} \times \Re_{--}$.

Proof of the S-Lemma (continued)

By the separation theorem, there is $\left(t_{1}, t_{2}, t_{3}\right) \neq 0$, such that

$$
t_{1} x_{1}+t_{2} x_{2}+t_{3} x_{3} \leq 0, \forall x_{1}>0, x_{2}>0, x_{3}<0,
$$

and

$$
t_{1} x^{\mathrm{H}} A_{1} x+t_{2} x^{\mathrm{H}} A_{2} x+t_{3} x^{\mathrm{H}} A_{3} x \geq 0, \forall x \in \mathbf{C}^{n} .
$$

The first condition implies that $t_{1} \leq 0, t_{2} \leq 0$, and $t_{3} \geq 0$. We see that $t_{3}>0$ in this case, and so

$$
A_{3}-\frac{t_{1}}{t_{3}} A_{1}-\frac{t_{2}}{t_{3}} A_{2} \succeq 0
$$

But how to prove Brickman's theorem?

Clearly, it will be sufficient if we can show

$$
\left\{\left.\left(\begin{array}{l}
z^{\mathrm{H}} A_{1} z \\
z^{\mathrm{H}} A_{2} z \\
z^{\mathrm{H}} A_{3} z
\end{array}\right) \right\rvert\, z \in \mathrm{C}^{n}\right\}=\left\{\left.\left(\begin{array}{c}
A_{1} \bullet Z \\
A_{2} \bullet Z \\
A_{3} \bullet Z
\end{array}\right) \right\rvert\, Z \succeq 0\right\}
$$

Proof of the Brickman Theorem

Take any nonzero vector

$$
\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{l}
A_{1} \bullet Z \\
A_{2} \bullet Z \\
A_{3} \bullet Z
\end{array}\right) .
$$

Suppose that $v_{3} \neq 0$. Consider two matrix equations

$$
\begin{aligned}
& \left(A_{1}-\frac{v_{1}}{v_{3}} A_{3}\right) \bullet Z=0 \\
& \left(A_{2}-\frac{v_{2}}{v_{3}} A_{3}\right) \bullet Z=0
\end{aligned}
$$

Proof of the Brickman Theorem (continued)

Using our decomposition, there will be $Z=\sum_{i=1}^{r} z_{i} z_{i}^{\mathrm{H}}$ such that

$$
\begin{aligned}
& z_{i}^{\mathrm{H}}\left(A_{1}-\frac{v_{1}}{v_{3}} A_{3}\right) z_{i}=0 \\
& z_{i}^{\mathrm{H}}\left(A_{2}-\frac{v_{2}}{v_{3}} A_{3}\right) z_{i}=0
\end{aligned}
$$

for $i=1, \ldots, r$. Among these, there will be one vector such that $z_{i}^{\mathrm{H}} A_{3} z_{i}$ has the same sign as $A_{3} \bullet Z$.

Let $\rho:=\sqrt{v_{3} / z_{i}^{\mathrm{H}} A_{3} z_{i}}$, and $z:=\rho z_{i}$. Then,

$$
z^{\mathrm{H}} A_{3} z=\rho^{2} z_{i}^{\mathrm{H}} A_{3} z_{i}=v_{3}, z^{\mathrm{H}} A_{k} z=\frac{v_{k}}{v_{3}} z^{\mathrm{H}} A_{3} z=v_{k}, k=1,2 .
$$

An Extension of Brickman's Theorem

Corollary (Ai, Huang, and Z.; 2007).
Suppose that $A_{1}, A_{2}, A_{3}, A_{4}$ are $n \times n$ Hermitian matrices with $n \geq 3$. Moreover, $\left(A_{1} \bullet Y, A_{2} \bullet Y, A_{3} \bullet Y, A_{4} \bullet Y\right) \neq(0,0,0,0)$, for all nonzero matrix $Y \in \mathcal{H}_{+}^{n}$. Then

$$
\left\{\left.\left(\begin{array}{c}
z^{\mathrm{H}} A_{1} z \\
z^{\mathrm{H}} A_{2} z \\
z^{\mathrm{H}} A_{3} z \\
z^{\mathrm{H}} A_{4} z
\end{array}\right) \right\rvert\, z \in \mathbf{C}^{n}\right\}
$$

is a convex set.

A Result of Yuan

Theorem (Yuan; 1990).

Let A_{1} and A_{2} be in \mathcal{S}^{n}. If

$$
\max \left\{x^{\mathrm{T}} A_{1} x, x^{\mathrm{T}} A_{2} x\right\} \geq 0 \forall x \in \Re^{n}
$$

then there exist $\mu_{1} \geq 0, \mu_{2} \geq 0, \mu_{1}+\mu_{2}=1$ such that

$$
\mu_{1} A_{1}+\mu_{2} A_{2} \succeq 0 .
$$

Extension

Theorem (Ai, Huang, Zhang; 2007).
Let A_{1}, A_{2}, A_{3} be in \mathcal{H}^{n}. If

$$
\max \left\{z^{\mathrm{H}} A_{1} z, z^{\mathrm{T}} A_{2} z, z^{\mathrm{T}} A_{3} z\right\} \geq 0 \forall z \in C^{n}
$$

then there exist $\mu_{1}, \mu_{2}, \mu_{3} \geq 0, \mu_{1}+\mu_{2}+\mu_{3}=1$ such that

$$
\mu_{1} A_{1}+\mu_{2} A_{2}+\mu_{3} A_{3} \succeq 0 .
$$

Further Extension

Theorem (Ai, Huang, Zhang; 2007).
Suppose that $n \geq 3, A_{i} \in \mathcal{H}^{n}, i=1,2,3,4$, and $\left(A_{1} \bullet Y, A_{2} \bullet Y, A_{3} \bullet Y, A_{4} \bullet\right.$ $Y) \neq(0,0,0,0)$, for all nonzero matrix $Y \in \mathcal{H}_{+}^{n}$. If

$$
\max \left\{z^{\mathrm{H}} A_{1} z, z^{\mathrm{H}} A_{2} z, z^{\mathrm{H}} A_{3} z, z^{\mathrm{H}} A_{4} z\right\} \geq 0, \forall z \in \mathbf{C}^{n}
$$

then there are $\mu_{i} \geq 0, i=1,2,3,4$, such that $\mu_{1}+\mu_{2}+\mu_{3}+\mu_{4}=1$ such that

$$
\mu_{1} A_{1}+\mu_{2} A_{2}+\mu_{3} A_{3}+\mu_{4} A_{4} \succeq 0
$$

Conclusions

- Non-convex (real and/or complex) quadratically constrained quadratic programs have a lot of applications.
- SDP relaxation can help to solve such non-convex problems to optimality under some conditions.
- Matrix rank-one decomposition theorems play a key role in this approach.

