Solving Quadratic Programs

via Matrix Decomposition

Shuzhong Zhang

Department of Systems Engineering and Engineering Management The Chinese University of Hong Kong

Presented at The Chinese Academy of Sciences June 10, 2009

Outline

- Examples of Practical Applications
- Semidefinite Programming
- The Matrix Rank-One Decomposition
- Theoretical Applications

Trust Region Subproblem

The Trust-Region Subproblem:

 $\begin{array}{ll}\text{minimize} & x^{\mathrm{T}}Q_0 x - 2b_0^{\mathrm{T}} x\\ \text{subject to} & \|x\| \leq \delta. \end{array}$

The CDT Trust Region Subproblem

The CDT (Celis, Dennis, Tapia, 1985) Trust-Region Subproblem:

minimize $x^{\mathrm{T}}Q_0x - 2b_0^{\mathrm{T}}x$ subject to $||Ax - b|| \le \delta_1$ $||x|| \le \delta_2.$

The Radar Code Selection Problem

(Based on De Maio, De Nicola, Huang, Z., Farina, 2007)

A radar system transmits a coherent burst of pulses

 $s(t) = a_t u(t) \exp\left(i(2\pi f_0 t + \phi)\right)$

- a_t is the transmit signal amplitude;
- $u(t) = \sum_{k=0}^{N-1} a(k)p(t kT_r)$ is the signal's complex envelope;
- p(t) is the signature of the transmitted pulse, and T_r is the Pulse Repetition Time (PRT);
- $[a(0), a(1), \ldots, a(N-1)] \in \mathbb{C}^N$ is the radar code (assumed without loss of generality with unit norm);
- f_0 is the carrier frequency, and ϕ is a random phase.

The filter output is

$$v(t) = \alpha_r e^{-i2\pi f_0 \tau} \sum_{k=0}^{N-1} a(k) e^{i2\pi k f_d T_r} \chi_p(t - kT_r - \tau, f_d) + w(t)$$

where $\chi_p(\lambda, f)$ is the pulse waveform ambiguity function

$$\chi_p(\lambda, f) = \int_{-\infty}^{+\infty} p(\beta) p^*(\beta - \lambda) e^{\mathbf{i}2\pi f\beta} d\beta$$

and w(t) is the down-converted and filtered disturbance component.

Sampling

The signal v(t) is sampled at $t_k = \tau + kT_r$, $k = 0, \ldots, N-1$, the output becomes

$$v(t_k) = \alpha a(k) e^{\mathbf{i} 2\pi k f_d T_r} \chi_p(0, f_d) + w(t_k), \qquad k = 0, \dots, N-1$$

where $\alpha = \alpha_r e^{-\mathbf{i} 2\pi f_0 \tau}$.

Denote

$$\boldsymbol{c} = [a(0), a(1), \dots, a(N-1)]^{\mathrm{T}},$$

$$\boldsymbol{p} = [1, e^{\boldsymbol{i} 2\pi f_d T_r}, \dots, e^{\boldsymbol{i} 2\pi (N-1) f_d T_r}]^{\mathrm{T}} \text{ (the temporal steering vector)}$$

$$\boldsymbol{w} = [w(t_0), w(t_1), \dots, w(t_{N-1})]^{\mathrm{T}}$$

the backscattered signal can be written as

 $\boldsymbol{v} = \alpha \boldsymbol{c} \odot \boldsymbol{p} + \boldsymbol{w}$

where \odot denotes the Hadamard product.

Performance, Doppler Accuracy, and Similarity

The Optimal Code Design Problem can be formulated as

 $\begin{cases} \max_{\boldsymbol{c}} \quad \boldsymbol{c}^{\mathrm{H}} \boldsymbol{R} \boldsymbol{c} \\ \text{s.t.} \quad \boldsymbol{c}^{\mathrm{H}} \boldsymbol{c} = 1 \\ \quad \boldsymbol{c}^{\mathrm{H}} \boldsymbol{R}_{1} \boldsymbol{c} \geq \delta_{a} \\ \quad \|\boldsymbol{c} - \boldsymbol{c}_{0}\|^{2} \leq \epsilon \end{cases}$

where $\boldsymbol{R} = \Gamma^{-1} \odot (\boldsymbol{p}^{\mathrm{H}} \boldsymbol{p})$ with $\Gamma = \mathsf{E}[\boldsymbol{w}\boldsymbol{w}^{\mathrm{H}}]$, and $\boldsymbol{R}_{1} = \Gamma^{-1} \odot (\boldsymbol{p}\boldsymbol{p}^{\mathrm{H}})^{*} \odot (\boldsymbol{u}\boldsymbol{u}^{\mathrm{H}})^{*}$ with $\boldsymbol{u} = [0, \boldsymbol{i}2\pi, \dots, \boldsymbol{i}2\pi(N-1)]^{\mathrm{T}}$.

Non-Convex Quadratically Constrained Quadratic Optimization (QCQP), in real and/or complex variables, with a few constraints.

An Extension of Linear Programming: SDP

Semidefinite Programming

$$\begin{array}{lll} (SDP) & \text{minimize} & C \bullet X \\ & \text{subject to} & A_i \bullet X = b_i, \ i = 1, ..., m \\ & X \succeq 0 \end{array}$$

where

$$X \bullet Y \equiv \langle X, Y \rangle \equiv \sum_{i,j} X_{ij} Y_{ij} \equiv \operatorname{tr} XY.$$

Points to take:

- SDP problems can be solved efficiently in theory: $O(\sqrt{n}\log\frac{1}{\epsilon})$ iterations to reach an ϵ -optimal solution;
- SDP problems can be solved efficiently in practice: SeDuMi, SDPT3, CSDP, SDPA, ...

Solving QP by Matrix Decomposition

Quadratically Constrained Quadratic Programming (QCQP):

(Q) minimize $q_0(x) = x^H Q_0 x - 2 \operatorname{Re} b_0^H x$ subject to $q_i(x) = x^H Q_i x - 2 \operatorname{Re} b_i^H x + c_i \le 0, \quad i = 1, ..., m.$

SDP Relaxation

Let

$$M(q_0) := \begin{bmatrix} 0 & -b_0^{\mathrm{H}} \\ -b_0 & Q_0 \end{bmatrix}, M(q_i) := \begin{bmatrix} c_i & -b_i^{\mathrm{H}} \\ -b_i & Q_i \end{bmatrix}, \text{ for } i = 1, ..., m.$$

Then, (Q) is equivalently written as

$$(Q) \quad \min \quad M(q_0) \bullet \begin{bmatrix} t \\ x \end{bmatrix} \begin{bmatrix} t \\ x \end{bmatrix}^{\mathrm{H}} = x^{\mathrm{H}}Q_0x - 2\mathrm{Re} \ b_0^{\mathrm{H}}x\bar{t}$$

s.t.
$$M(q_i) \bullet \begin{bmatrix} t \\ x \end{bmatrix} \begin{bmatrix} t \\ x \end{bmatrix}^{\mathrm{H}} = x^{\mathrm{H}}Q_ix - 2b_i^{\mathrm{H}}x\bar{t} + c_i|t|^2 \le 0, \quad i = 1, ..., m$$
$$|t|^2 = 1.$$

13

SDP Relaxation

The so-called SDP relaxation of (Q) is

$$(SP) \quad \text{minimize} \quad M(q_0) \bullet X$$
subject to $M(q_i) \bullet X \leq 0, \quad i = 1, ..., m$

$$I_{00} \bullet X = 1$$

$$X \succeq 0 \quad \overline{X \text{ rank one}}$$
where $I_{00} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \in \mathcal{H}^{n+1}$. The dual problem of (SP) is:

$$\begin{bmatrix} 0 & \mathbf{0} \end{bmatrix}$$
(SD) maximize y_0
subject to $Z = M(q_0) - y_0 I_{00} + \sum_{i=1}^m y_i M(q_i) \succeq 0$
 $y_i \ge 0, i = 1, ..., m.$

Complementary Slackness

Under suitable conditions, (SP) and (SD) have complementary optimal solutions, X^* and Z^* :

 $X^*Z^* = \mathbf{0}.$

If we can decompose X^* into rank-one summations, evenly satisfying all the constraints, then each of the rank-one vectors will be optimal!

Matrix Rank-One Decomposition

Theorem (Sturm and Z.; 2003). Let $A \in S^n$. Let $X \in S^n_+$ with rank r. There exists a rank-one

decomposition for X such that

$$X = \sum_{i=1}^{r} x_i x_i^{\mathrm{T}}$$

and $x_i^{\mathrm{T}} A x_i = \frac{A \bullet X}{r}, i = 1, ..., r.$

Can we do more?

It is easy to show by example that in general it is only possible to get a complete rank-one decomposition with respect to one matrix. But it is possible to get a partial decomposition for two:

Theorem (Ai and Z.; 2006). Let $A_1, A_2 \in S^n$ and $X \in S^n_+$. If $r := \operatorname{rank}(X) \ge 3$ then one can find in polynomial-time (real-number sense) a rank-one decomposition for X,

$$X = x_1 x_1^{\mathrm{T}} + x_2 x_2^{\mathrm{T}} + \dots + x_r x_r^{\mathrm{T}},$$

such that

$$A_{1} \bullet x_{i} x_{i}^{\mathrm{T}} = \frac{A_{1} \bullet X}{r}, \quad i = 1, ..., r$$
$$A_{2} \bullet x_{i} x_{i}^{\mathrm{T}} = \frac{A_{2} \bullet X}{r}, \quad i = 1, ..., r - 2.$$

The Hermitian case

Theorem (Huang and Z.; 2005). Let $A_1, A_2 \in \mathcal{H}^n$, and $X \in \mathcal{H}^n_+$ with rank r. There exists a rankone decomposition for X such that

$$X = \sum_{i=1}^{r} x_i x_i^{\mathrm{H}}$$

and $x_i^{\text{H}} A_k x_i = \frac{A_k \bullet X}{r}$, i = 1, ..., r; k = 1, 2.

Analog in the Hermitian case

Theorem (Ai, Huang and Z.; 2007). Suppose that $A_1, A_2, A_3 \in \mathcal{H}^n$ and $X \in \mathcal{H}^n_+$. If $r = \operatorname{rank}(X) \geq 3$, then one can find in polynomial-time (real-number sense) a rank-one decomposition for X,

$$X = \sum_{i=1}^{r} x_i x_i^{\mathrm{H}},$$

such that

$$A_1 \bullet x_i x_i^{\mathrm{H}} = \delta_1 / r, A_2 \bullet x_i x_i^{\mathrm{H}} = \delta_2 / r, \text{ for all } i = 1, \dots, r;$$

 $A_3 \bullet x_i x_i^{\mathrm{H}} = \delta_3 / r, \text{ for } i = 1, \dots, r - 2.$

Theorem (Ai, Huang and Z.; 2007). Suppose $n \ge 3$. Let $A_1, A_2, A_3 \in \mathcal{H}^n$, and $X \in \mathcal{H}^n_+$ with rank r. If $r \ge 3$, then one can find in polynomial-time a nonzero vector $y \in \operatorname{range}(X)$ such that

$$\begin{cases} A_1 \bullet yy^{\mathrm{H}} = A_1 \bullet X, \\ A_2 \bullet yy^{\mathrm{H}} = A_2 \bullet X, \\ A_3 \bullet yy^{\mathrm{H}} = A_3 \bullet X, \end{cases}$$

with $X - \frac{1}{r}yy^{\mathrm{H}} \succeq 0$ and $\operatorname{rank}(X - \frac{1}{r}yy^{\mathrm{H}}) \leq r - 1$. If r = 2, then for any $z \notin \operatorname{range}(X)$ there exists $y \in \operatorname{span}\{z, \operatorname{range}(X)\}$:

$$\begin{cases} A_1 \bullet yy^{\mathrm{H}} = A_1 \bullet X, \\ A_2 \bullet yy^{\mathrm{H}} = A_2 \bullet X, \\ A_3 \bullet yy^{\mathrm{H}} = A_3 \bullet X, \end{cases}$$

with $X + zz^{\mathrm{H}} - \frac{1}{r}yy^{\mathrm{H}} \succeq 0$ and $\operatorname{rank}(X + zz^{\mathrm{H}} - \frac{1}{r}yy^{\mathrm{H}}) \leq 2$.

Theorem (Ai, Huang and Z.; 2007).

Suppose $n \geq 3$. Let $A_1, A_2, A_3, A_4 \in \mathcal{H}^n$, and $X \in \mathcal{H}^n_+$ with rank r. Furthermore, suppose that $(A_1 \bullet Y, A_2 \bullet Y, A_3 \bullet Y, A_4 \bullet Y) \neq (0, 0, 0, 0)$, for all nonzero matrix $Y \in \mathcal{H}^n_+$. If $r \geq 3$, then one can find in polynomial-time a nonzero vector $y \in \operatorname{range}(X)$:

$$\begin{cases} A_1 \bullet yy^{\mathrm{H}} = A_1 \bullet X, \\ A_2 \bullet yy^{\mathrm{H}} = A_2 \bullet X, \\ A_3 \bullet yy^{\mathrm{H}} = A_3 \bullet X, \\ A_4 \bullet yy^{\mathrm{H}} = A_4 \bullet X. \end{cases}$$

If r = 2, then for any $z \notin \operatorname{range}(X)$ there exists $y \in \operatorname{span}\{z, \operatorname{range}(X)\}$:

$$\begin{cases} A_1 \bullet yy^{\mathrm{H}} = A_1 \bullet X, \\ A_2 \bullet yy^{\mathrm{H}} = A_2 \bullet X, \\ A_3 \bullet yy^{\mathrm{H}} = A_3 \bullet X, \\ A_4 \bullet yy^{\mathrm{H}} = A_4 \bullet X. \end{cases}$$

A Key Construction

Lemma (Ai, Huang and Z.; 2007).

For any positive numbers $c_{-1} > 0, c_0 > 0$, any complex numbers $a_i, b_i, c_i, i = 1, 2, 3$, and any real numbers a_4, b_4, c_4 , the following system of equations

Re
$$(a_1 \bar{x} y)$$
 + Re $(a_2 \bar{x} z)$ + Re $(a_3 \bar{y} z)$ + $a_4 |z|^2 = 0$,

Re
$$(b_1 \bar{x}y)$$
 + Re $(b_2 \bar{x}z)$ + Re $(b_3 \bar{y}z)$ + $b_4 |z|^2 = 0$,

$$c_{-1}|x|^2 - c_0|y|^2 + \operatorname{Re}(c_1\bar{x}y) + \operatorname{Re}(c_2\bar{x}z) + \operatorname{Re}(c_3\bar{y}z) + c_4|z|^2 = 0,$$

always admits a non-zero complex-valued solution.

Consequences of the Matrix Decomposition Theorems

Polynomially solvable cases of the nonconvex quadratic programs: Real quadratic program:

 $m = 1 \ (m = 2 \text{ if homogeneous}) \iff (\text{Sturm \& Z., 2003})$

Real quadratic program:

 $m = 2 \ (m = 3 \text{ if h.}) \ \operatorname{rank}(X^*) \ge 3 \iff (\operatorname{Ai} \& \mathbb{Z}, 2006)$

Complex quadratic program:

 $m = 2 \ (m = 3 \text{ if h.}) \iff (\text{Huang \& Z., 2005})$

Complex quadratic program:

 $m = 3 \ (m = 4 \text{ if h.}) \ \operatorname{rank}(X^*) \ge 3 \iff (Ai, Huang \& Z., 2007)$

The CDT Subproblem

The problem of concern is

$$(Q)_2 \quad \text{minimize} \quad q_0(x) = x^{\mathrm{T}} Q_0 x - 2b_0^{\mathrm{T}} x$$

subject to
$$q_1(x) = x^{\mathrm{T}} x - 1 \le 0$$
$$q_2(x) = x^{\mathrm{T}} Q_2 x - 2b_2^{\mathrm{T}} x + c_2 \le 0.$$

Conditions and Notions

Necessary and Sufficient Condition for the gap to exist:

Solve the SDP relaxation. Let \hat{X} and $(\hat{Z}, \hat{y}_0, \hat{y}_1, \hat{y}_2)$ be pair of optimal solutions for $(SP)_2$ and $(SD)_2$ respectively. The SDP relaxation optimal value is smaller than the optimal value of $(Q)_2$ iff:

- (1) $\hat{y}_1\hat{y}_2 \neq 0;$
- (2) $\operatorname{rank}(\hat{Z}) = n 1;$
- (3) $\operatorname{rank}(\hat{X}) = 2$ and there there is a rank-one decomposition of \hat{X} , $\hat{X} = \hat{x}_1 \hat{x}_1^{\mathrm{T}} + \hat{x}_2 \hat{x}_2^{\mathrm{T}}$, such that

$$M(q_1) \bullet \hat{x}_i \hat{x}_i^{\mathrm{T}} = 0, \ i = 1, 2$$

and

$$(M(q_2) \bullet \hat{x}_1 \hat{x}_1^{\mathrm{T}})(M(q_2) \bullet \hat{x}_2 \hat{x}_2^{\mathrm{T}}) < 0.$$

Necessary and Sufficient Condition for Strong Duality

Theorem (Ai and Z; 2006).

Consider $(Q)_2$ where the Slater condition is satisfied. Suppose that \hat{X} and $(\hat{Z}, \hat{y}_0, \hat{y}_1, \hat{y}_2)$ are a pair of optimal solutions for its SDP relaxation $(SP)_2$ and the dual $(SD)_2$ respectively. Then, $v((SP)_2) < v((Q)_2)$ holds if and only if \hat{X} and $(\hat{Z}, \hat{y}_0, \hat{y}_1, \hat{y}_2)$ satisfy the previous condition. Further Theoretical Applications

Field of Values of a Matrix

Let A be any $n \times n$ matrix, the *field of values* of A is given by

$$\mathcal{F}(A) := \{ z^{\mathrm{H}} A z \mid z^{\mathrm{H}} z = 1 \} \subseteq \mathbf{C}.$$

This set, like the spectrum set, contains a lot of information about the matrix A.

The set is known to be convex.

<u>Reference</u>: R.A. Horn and C.R. Johnson. *Topics in Matrix analysis*. Cambridge University Press, Cambridge, 1991.

Joint Numerical Ranges

In general, the *joint numerical range* of matrices is defined to be

$$\mathcal{F}(A_1, \dots, A_m) := \left\{ \left(\begin{array}{c} z^{\mathrm{H}} A_1 z \\ \vdots \\ z^{\mathrm{H}} A_m z \end{array} \right) \middle| z^{\mathrm{H}} z = 1, z \in \mathbf{C}^n \right\}$$

Theorem (Hausdorff; 1919).

If A_1 and A_2 are Hermitian, then $\mathcal{F}(A_1, A_2)$ is a convex set.

A Theorem of Brickman

Theorem (Brickman; 1961).

Suppose that A_1, A_2, A_3 are $n \times n$ Hermitian matrices. Then

$$\left\{ \left(\begin{array}{c} z^{\mathrm{H}}A_{1}z \\ z^{\mathrm{H}}A_{2}z \\ z^{\mathrm{H}}A_{3}z \end{array} \right) \middle| z \in \mathbf{C}^{n} \right\}$$

is a convex set.

The S-Procedure

It is often useful to consider the following implication

 $G_1(x) \ge 0, G_2(x) \ge 0, \dots, G_m(x) \ge 0 \Longrightarrow F(x) \ge 0.$

A sufficient condition is:

$$\exists \tau_1 \ge 0, \tau_2 \ge 0, \dots, \tau_m \ge 0 \text{ such that } F(x) - \sum_{i=1}^m \tau_i G_i(x) \ge 0 \,\forall x.$$

This procedure is called *lossless* if the above condition is also *necessary*.

Theorem (Jakubovic; 1971).

Suppose that m = 1, and F, G_1 are real quadratic forms. Moreover, there is $x_0 \in \Re^n$ such that $x_0^T G_1 x_0 > 0$. Then the S-procedure is lossless.

Theorem (Jakubovic; 1971).

Suppose that m = 2, and F, G_1, G_2 are Hermitian quadratic forms. Moreover, there is $x_0 \in \mathbb{C}^n$ such that $x_0^{\mathrm{H}}G_i x_0 > 0$, i = 1, 2. Then the S-procedure is lossless.

Proof of the S-Lemma: The Hermitian case

We need only to show that the S-procedure is lossless in this case. Let $G_i(x) = x^{\mathrm{H}} A_i x$, i = 1, 2, and $F(x) = x^{\mathrm{H}} A_3 x$.

Consider the following cone

$$\left\{ \left(\begin{array}{c} x^{\mathrm{H}} A_{1} x \\ x^{\mathrm{H}} A_{2} x \\ x^{\mathrm{H}} A_{3} x \end{array} \right) \middle| x \in \mathbf{C}^{n} \right\}.$$

It is a convex cone in \Re^3 by Brickman's theorem. Moreover, it does not intersect with $\Re_{++} \times \Re_{++} \times \Re_{--}$.

Proof of the S-Lemma (continued)

By the separation theorem, there is $(t_1, t_2, t_3) \neq 0$, such that

$$t_1x_1 + t_2x_2 + t_3x_3 \le 0, \, \forall x_1 > 0, x_2 > 0, x_3 < 0,$$

and

$$t_1 x^{\mathrm{H}} A_1 x + t_2 x^{\mathrm{H}} A_2 x + t_3 x^{\mathrm{H}} A_3 x \ge 0, \, \forall x \in \mathbf{C}^n.$$

The first condition implies that $t_1 \leq 0, t_2 \leq 0$, and $t_3 \geq 0$. We see that $t_3 > 0$ in this case, and so

$$A_3 - \frac{t_1}{t_3}A_1 - \frac{t_2}{t_3}A_2 \succeq 0.$$

But how to prove Brickman's theorem?

Clearly, it will be sufficient if we can show

$$\left\{ \begin{pmatrix} z^{\mathrm{H}}A_{1}z \\ z^{\mathrm{H}}A_{2}z \\ z^{\mathrm{H}}A_{3}z \end{pmatrix} \middle| z \in \mathbf{C}^{n} \right\} = \left\{ \begin{pmatrix} A_{1} \bullet Z \\ A_{2} \bullet Z \\ A_{3} \bullet Z \end{pmatrix} \middle| Z \succeq 0 \right\}$$

Proof of the Brickman Theorem

Take any nonzero vector

$$\left(\begin{array}{c} v_1\\ v_2\\ v_3\end{array}\right) = \left(\begin{array}{c} A_1 \bullet Z\\ A_2 \bullet Z\\ A_3 \bullet Z\end{array}\right).$$

Suppose that $v_3 \neq 0$. Consider two matrix equations

$$\left(A_1 - \frac{v_1}{v_3}A_3\right) \bullet Z = 0$$
$$\left(A_2 - \frac{v_2}{v_3}A_3\right) \bullet Z = 0$$

Proof of the Brickman Theorem (continued)

Using our decomposition, there will be $Z = \sum_{i=1}^{r} z_i z_i^{\mathrm{H}}$ such that $z_i^{\mathrm{H}} \left(A_1 - \frac{v_1}{v_3} A_3 \right) z_i = 0$ $z_i^{\mathrm{H}} \left(A_2 - \frac{v_2}{v_3} A_3 \right) z_i = 0$

for i = 1, ..., r. Among these, there will be one vector such that $z_i^H A_3 z_i$ has the same sign as $A_3 \bullet Z$.

Let
$$\rho := \sqrt{v_3/z_i^{\mathrm{H}} A_3 z_i}$$
, and $z := \rho z_i$. Then,
 $z^{\mathrm{H}} A_3 z = \rho^2 z_i^{\mathrm{H}} A_3 z_i = v_3, \ z^{\mathrm{H}} A_k z = \frac{v_k}{v_3} z^{\mathrm{H}} A_3 z = v_k, \ k = 1, 2.$

An Extension of Brickman's Theorem

Corollary (Ai, Huang, and Z.; 2007). Suppose that A_1, A_2, A_3, A_4 are $n \times n$ Hermitian matrices with $n \geq 3$. Moreover, $(A_1 \bullet Y, A_2 \bullet Y, A_3 \bullet Y, A_4 \bullet Y) \neq (0, 0, 0, 0)$, for all nonzero matrix $Y \in \mathcal{H}^n_+$. Then

$$\left(\left(\begin{array}{c} z^{\mathrm{H}} A_{1} z \\ z^{\mathrm{H}} A_{2} z \\ z^{\mathrm{H}} A_{3} z \\ z^{\mathrm{H}} A_{4} z \end{array} \right) \middle| z \in \mathbf{C}^{n} \right)$$

is a convex set.

A Result of Yuan

Theorem (Yuan; 1990). Let A_1 and A_2 be in S^n . If $\max\{x^T A_1 x, x^T A_2 x\} \ge 0 \ \forall x \in \Re^n$ then there exist $\mu_1 \ge 0, \mu_2 \ge 0, \mu_1 + \mu_2 = 1$ such that $\mu_1 A_1 + \mu_2 A_2 \ge 0.$

Extension

Theorem (Ai, Huang, Zhang; 2007). Let A_1 , A_2 , A_3 be in \mathcal{H}^n . If $\max\{z^{\mathrm{H}}A_1z, z^{\mathrm{T}}A_2z, z^{\mathrm{T}}A_3z\} \ge 0 \ \forall z \in C^n$ then there exist $\mu_1, \mu_2, \mu_3 \ge 0, \mu_1 + \mu_2 + \mu_3 = 1$ such that $\mu_1 A_1 + \mu_2 A_2 + \mu_3 A_3 \succeq 0.$

Further Extension

Theorem (Ai, Huang, Zhang; 2007). Suppose that $n \ge 3$, $A_i \in \mathcal{H}^n$, i = 1, 2, 3, 4, and $(A_1 \bullet Y, A_2 \bullet Y, A_3 \bullet Y, A_4 \bullet Y) \ne (0, 0, 0, 0)$, for all nonzero matrix $Y \in \mathcal{H}^n_+$. If $\max\{z^H A_1 z, z^H A_2 z, z^H A_3 z, z^H A_4 z\} \ge 0, \forall z \in \mathbb{C}^n$ then there are $\mu_i \ge 0, i = 1, 2, 3, 4$, such that $\mu_1 + \mu_2 + \mu_3 + \mu_4 = 1$ such that

$$\mu_1 A_1 + \mu_2 A_2 + \mu_3 A_3 + \mu_4 A_4 \succeq 0.$$

Conclusions

- Non-convex (real and/or complex) quadratically constrained quadratic programs have a lot of applications.
- SDP relaxation can help to solve such non-convex problems to optimality under some conditions.
- Matrix rank-one decomposition theorems play a key role in this approach.