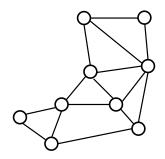
Reformulations and Solution Algorithms for the Maximum Leaf Spanning Tree Problem

Nelson Maculan¹ Abilio Lucena¹ Luidi G. Simonetti²

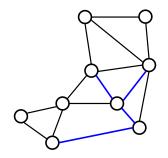
¹Universidade Federal do Rio de Janeiro ²Universidade Estadual de Campinas

August 2009

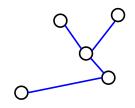
A = > 4



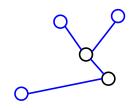
A Non-spanning Tree ${\mathcal T}$ of ${\mathcal G}$



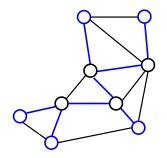
The Subgraph \mathcal{T} of G



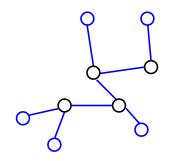
The Leaves of $\ensuremath{\mathcal{T}}$



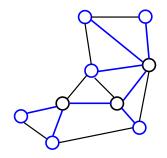
A Spanning Tree T for G = (V, E)



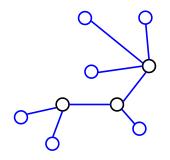
The Subgraph \mathcal{T} of G



A Spanning Tree \mathcal{T} of G with 6 Leaves



A Spanning Tree \mathcal{T} of G with 6 Leaves



Given a graph G = (V, E):

find a spanning tree T of G with as many leaves as possible.

• = • •

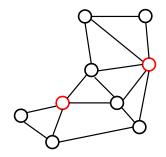
Minimum Connected Dominating Set Problem:

follows from the Minimum Dominating Set Problem.

イロト イ団ト イヨト イヨト

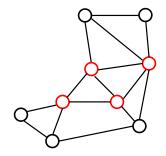
Dominating Set S

Set $S \subset V$ with $i \in V \setminus S$ one edge away from $j \in S$



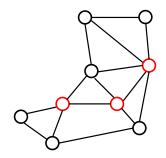
Connected Dominating Set S

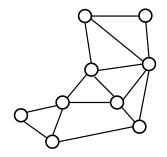
Subgraph $G_S = (S, E(S))$ of G is connected

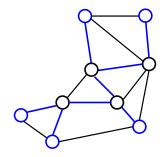


Minimum Connected Dominating Set Problem

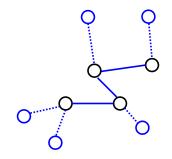
Find connected dominating set $S \subset V$ with |S| as small as possible

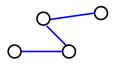


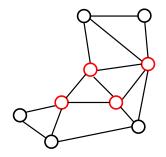


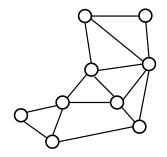


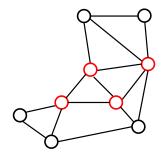
Reformulations and Solution Algorithms for the Maximum Leaf Spanning

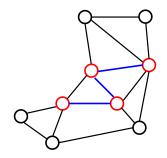


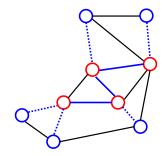


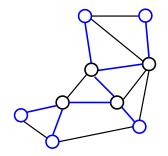












Max-Leaf Spanning Tree Problem

imes Minimum Connected Dominating Set Problem

Given an optimal solution to one : optimal solution to the other in polynomial time!

< ∃ >

Why Investigate These Two Problems?

- Quite challenging NP-hard problems
- Model some telecommunication network design applications
- Model some circuit layout design applications

A = > 4

Why Investigate These Two Problems?

- Quite challenging NP-hard problems
- Model some telecommunication network design applications
- Model some circuit layout design applications

Previous Work for Maximum Leaf STP

- ▶ Garey and Johnson [1979]: problem is NP-hard
- Lu and Ravi [1992,1998]: factor of 3 approximation algorithm
- ► Galbiati, Maffioli and Morzenti [1994]: problem is SNP-hard (there exists \epsilon such that finding (1 + \epsilon)-approximation algorithm is NP-hard)
- Solis-Oba [1998]: factor of 2 approximation algorithm
- Fernandes and Gouveia [1998]: formulation for fixed number of leaves
- Fujie [2003]: formulation and branch-and-bound algorithm
- ▶ Fujie [2004]: new formulation and polyhedral study

→ 3 → 4 3

Previous Work for Maximum Leaf STP

- ► Garey and Johnson [1979]: problem is NP-hard
- Lu and Ravi [1992,1998]: factor of 3 approximation algorithm
- ► Galbiati, Maffioli and Morzenti [1994]: problem is SNP-hard (there exists \epsilon such that finding (1 + \epsilon)-approximation algorithm is NP-hard)
- Solis-Oba [1998]: factor of 2 approximation algorithm
- ► Fernandes and Gouveia [1998]: formulation for fixed number of leaves
- ▶ Fujie [2003]: formulation and branch-and-bound algorithm
- Fujie [2004]: new formulation and polyhedral study

Previous Work for Minimum Connected DSP

- ▶ Garey and Johnson [1979]: problem is NP-hard
- ▶ Guha and Khuller [1998]: Approximation algorithms
- Cheng, Huang, Li, Wu, and Du [2006]: Polynomial-time approximation scheme
- Chen, Lujubić and Raghavan [2007], accepted for publication, 2008: The Regenerator Location Problem

→ 3 → 4 3

Previous Work for Minimum Connected DSP

- ► Garey and Johnson [1979]: problem is NP-hard
- ► Guha and Khuller [1998]: Approximation algorithms
- Cheng, Huang, Li, Wu, and Du [2006]: Polynomial-time approximation scheme
- Chen, Lujubić and Raghavan [2007], accepted for publication, 2008: The Regenerator Location Problem

Formulation + reformulations for Max. Leaf STP

- A formulation from the literature
- A reinforced direct graph reformulation
- Recasting the problem as Steiner Arborescence Problem

A heuristic for the Minimum Connected Dominating Set Problem

Pre-processing tests

Computational results

Conclusions and Future Work

Basic Idea: Spanning Tree Polytope + Leaf Imposing Constraints

Variables involved:

- $x = \{x_e \in \{0,1\} : e \in E\}$: to identify tree edges
- ▶ $z = \{z_i \in \{0,1\} : i \in V\}$: to identify tree leaves

Notation used:

- ▶ $\delta(i) \subseteq E$, $i \in V$: edges incident to i
- ▶ $E(S) \subseteq E$, $S \subseteq V$: edges with both end vertices in S

Basic Idea: Spanning Tree Polytope + Leaf Imposing Constraints

Variables involved:

- $x = \{x_e \in \{0,1\} : e \in E\}$: to identify tree edges
- $z = \{z_i \in \{0,1\} : i \in V\}$: to identify tree leaves

Notation used:

- $\delta(i) \subseteq E$, $i \in V$: edges incident to i
- ▶ $E(S) \subseteq E$, $S \subseteq V$: edges with both end vertices in S

コンマヨ

Formulation of Fujie [2003,2004]

$$\begin{aligned} \max \sum_{i \in V} z_i \\ \sum_{e \in E} x_e &= |V| - 1 \\ \sum_{e \in E(S)} x_e \leq |S| - 1 \qquad S \subset V, |S| \geq 2 \\ \sum_{e \in \delta(i)} x_e + (|\delta(i)| - 1) z_i \leq |\delta(i)| \qquad i \in V \\ \sum_{e \in \delta(i)} x_e \geq 0 \qquad e \in E \\ z_i \in \{0, 1\} \qquad i \in V \end{aligned}$$

Follows from a formulation to "Minimal Spanning Trees with a Constraint on the Number of Leaves" by Fernandes and Gouveia [1998]

(

August 2009 31 / 59

Formulation of Fujie [2003,2004]

$$\begin{aligned} \max \sum_{i \in V} z_i \\ \sum_{e \in E} x_e &= |V| - 1 \\ \sum_{e \in E(S)} x_e \leq |S| - 1 \qquad S \subset V, |S| \geq 2 \\ \sum_{e \in \delta(i)} x_e + (|\delta(i)| - 1)z_i \leq |\delta(i)| \qquad i \in V \\ \sum_{e \in \delta(i)} x_e + (|\delta(i)| - 1)z_i \leq |\delta(i)| \qquad i \in V \end{aligned}$$

Follows from a formulation to "Minimal Spanning Trees with a Constraint on the Number of Leaves" by Fernandes and Gouveia [1998]

(

August 2009 31 / 59

Formulation of Fujie [2003,2004]

$$egin{aligned} \max\sum_{i\in V} z_i \ &\sum_{e\in E} x_e = |V|-1 \ &\sum_{e\in E(S)} x_e \leq |S|-1 \qquad S\subset V, |S|\geq 2 \ &\sum_{e\in \delta(i)} x_e + (|\delta(i)|-1)z_i \leq |\delta(i)| \qquad i\in V \ &\sum_{e\in \delta(i)} x_e \geq 0 \qquad e\in E \ &z_i\in\{0,1\} \qquad i\in V \end{aligned}$$

Follows from a formulation to "Minimal Spanning Trees with a Constraint on the Number of Leaves" by Fernandes and Gouveia [1998]

August 2009 31 / 59

$$\max \sum_{i \in V} z_i$$
s.t. $\sum_{e \in E} x_e = |V| - 1$

$$\sum_{e \in E(S)} x_e \le |S| - 1 \qquad S \subset V, |S| \ge 2 \qquad (1)$$

$$\sum_{e \in \delta(i)} x_e + (|\delta(i)| - 1)z_i \le |\delta(i)| \qquad i \in V \qquad (2)$$

$$x_e \ge 0 \qquad e \in E$$

$$z_i \ge 0 \qquad i \in V$$

 $x_e \leq 1$ is implied by (1) for |S| = 2 $z_i \leq 1, i \in V$ is implied by (2)

< ∃ ►

Since one is maximizing $\sum_{i \in V} z_i$:

$$z_i \leq \left\lfloor \frac{|\delta(i)| - \sum_{e \in \delta(i)} x_e}{|\delta(i)| - 1} \right\rfloor, i \in V,$$

must hold as equality, at optimality!

Substituting for z in the objective function:

$$\begin{array}{ll} \max & \sum_{i \in V} \frac{|\delta(i)|}{|\delta(i)| - 1} - \sum_{e=(i,j) \in E} \left(\frac{1}{|\delta(i)| - 1} + \frac{1}{|\delta(j)| - 1} \right) x_e \\ \text{s.t.} & x \in \text{Spanning Tree Polytope} \end{array}$$

LP relaxation bound could be computed efficiently!

Depth-first-search based branch-and-bound algorithm - Fujie [2003]

Does not use lower bound given by upper bounding spanning tree

イロト イヨト イヨト イヨト

Since one is maximizing $\sum_{i \in V} z_i$:

$$z_i \leq \left[\frac{|\delta(i)| - \sum_{e \in \delta(i)} x_e}{|\delta(i)| - 1}\right], i \in V,$$

must hold as equality, at optimality!

Substituting for z in the objective function:

$$\begin{array}{ll} \max & \sum_{i \in V} \frac{|\delta(i)|}{|\delta(i)| - 1} - \sum_{e=(i,j) \in E} \left(\frac{1}{|\delta(i)| - 1} + \frac{1}{|\delta(j)| - 1} \right) x_e \\ \text{s.t.} & x \in \text{Spanning Tree Polytope} \end{array}$$

LP relaxation bound could be computed efficiently!

Depth-first-search based branch-and-bound algorithm - Fujie [2003]

Does not use lower bound given by upper bounding spanning tree

イロト イヨト イヨト イヨト

Since one is maximizing $\sum_{i \in V} z_i$:

$$z_i \leq \left[\frac{|\delta(i)| - \sum_{e \in \delta(i)} x_e}{|\delta(i)| - 1}\right], i \in V,$$

must hold as equality, at optimality!

Substituting for z in the objective function:

$$\begin{array}{ll} \max & \sum_{i \in V} \frac{|\delta(i)|}{|\delta(i)| - 1} - \sum_{e=(i,j) \in E} \left(\frac{1}{|\delta(i)| - 1} + \frac{1}{|\delta(j)| - 1} \right) x_e \\ \text{s.t.} & x \in \text{Spanning Tree Polytope} \end{array}$$

LP relaxation bound could be computed efficiently!

Depth-first-search based branch-and-bound algorithm - Fujie [2003] Does not use lower bound given by upper bounding spanning tree

イロト イヨト イヨト イヨト

Since one is maximizing $\sum_{i \in V} z_i$:

$$z_i \leq \left[\frac{|\delta(i)| - \sum_{e \in \delta(i)} x_e}{|\delta(i)| - 1}\right], i \in V,$$

must hold as equality, at optimality!

Substituting for z in the objective function:

$$\begin{array}{ll} \max & \sum_{i \in V} \frac{|\delta(i)|}{|\delta(i)| - 1} - \sum_{e=(i,j) \in E} \left(\frac{1}{|\delta(i)| - 1} + \frac{1}{|\delta(j)| - 1} \right) x_e \\ \text{s.t.} & x \in \text{Spanning Tree Polytope} \end{array}$$

LP relaxation bound could be computed efficiently!

Depth-first-search based branch-and-bound algorithm - Fujie [2003]

Does not use lower bound given by upper bounding spanning tree

(人間) くまり くまう

Since one is maximizing $\sum_{i \in V} z_i$:

$$z_i \leq \left[\frac{|\delta(i)| - \sum_{e \in \delta(i)} x_e}{|\delta(i)| - 1}\right], i \in V,$$

must hold as equality, at optimality!

Substituting for z in the objective function:

$$\begin{array}{ll} \max & \sum_{i \in V} \frac{|\delta(i)|}{|\delta(i)| - 1} - \sum_{e=(i,j) \in E} \left(\frac{1}{|\delta(i)| - 1} + \frac{1}{|\delta(j)| - 1} \right) x_e \\ \text{s.t.} & x \in \text{Spanning Tree Polytope} \end{array}$$

LP relaxation bound could be computed efficiently!

Depth-first-search based branch-and-bound algorithm - Fujie [2003]

Does not use lower bound given by upper bounding spanning tree

🗇 🔸 문 🛌 🖉 🗄

Heuristics used:

- At the root node of the enumeration tree:
 - Breadth-First-Search (BFS) Spanning Tree Heuristic (Fujie [2003])
 - Factor of 3 Approximation Heuristic (Lu and Ravi [1998])
 - Factor of 2 Approximation Heuristic (Solis-Oba [1998])
- At nodes other than the root:
 - BFS Spanning Tree Heuristic, if certain conditions are met

(3)

Heuristics used:

- At the root node of the enumeration tree:
 - Breadth-First-Search (BFS) Spanning Tree Heuristic (Fujie [2003])
 - Factor of 3 Approximation Heuristic (Lu and Ravi [1998])
 - Factor of 2 Approximation Heuristic (Solis-Oba [1998])
- At nodes other than the root:
 - BFS Spanning Tree Heuristic, if certain conditions are met

At every enumeration tree node: lower bounds from upper bound computation

Additional speed-ups through the use of (new) Minimum Connected Dominating Set heuristic

Number of enumeration tree nodes dropped to about half

Computational results presented for enhanced version of Fujie's algorithm

Inequality

$$\sum_{e \in \delta(i)} x_e + (|\delta(i)| - 1)z_i \le |\delta(i)| \qquad i \in V$$
(3)

is used in the formulation to characterize spanning tree leaves

For $F \subseteq \delta(i)$, where $|F| \ge 2$: inequality (3) is the particular case for $F = \delta(i)$!

For the general case, where $F \subset \delta(i)$, for $i \in V$ and $|F| \ge 2$:

$$\sum_{e \in F} x_e + (|F| - 1)z_i \le |F|$$
(4)

is facet defining inequalities for corresponding polytope - Fujie[2004]

If $n_i = |\delta(i)|$, inequalities in (4) could be separated for i in $O(n_i \log n_i)$ time

August 2009 36 / 59

- * @ * * 注 * * 注 *

Inequality

$$\sum_{e \in \delta(i)} x_e + (|\delta(i)| - 1)z_i \le |\delta(i)| \qquad i \in V$$
(3)

is used in the formulation to characterize spanning tree leaves

For $F \subseteq \delta(i)$, where $|F| \ge 2$: inequality (3) is the particular case for $F = \delta(i)$!

For the general case, where $F \subset \delta(i)$, for $i \in V$ and $|F| \ge 2$:

$$\sum_{e \in F} x_e + (|F| - 1)z_i \le |F|$$
(4)

is facet defining inequalities for corresponding polytope - Fujie[2004]

If $n_i = |\delta(i)|$, inequalities in (4) could be separated for *i* in $O(n_i \log n_i)$ time

August 2009 36 / 59

- * @ * * 注 * * 注 *

Inequality

$$\sum_{e \in \delta(i)} x_e + (|\delta(i)| - 1)z_i \le |\delta(i)| \qquad i \in V$$
(3)

is used in the formulation to characterize spanning tree leaves

For $F \subseteq \delta(i)$, where $|F| \ge 2$: inequality (3) is the particular case for $F = \delta(i)!$

For the general case, where $F \subset \delta(i)$, for $i \in V$ and $|F| \ge 2$:

$$\sum_{e \in F} x_e + (|F| - 1)z_i \le |F|$$
(4)

is facet defining inequalities for corresponding polytope - Fujie[2004]

If $n_i = |\delta(i)|$, inequalities in (4) could be separated for i in $O(n_i \log n_i)$ time

August 2009 36 / 59

- * @ * * 注 * * 注 *

Inequality

$$\sum_{e \in \delta(i)} x_e + (|\delta(i)| - 1)z_i \le |\delta(i)| \qquad i \in V$$
(3)

is used in the formulation to characterize spanning tree leaves

For $F \subseteq \delta(i)$, where $|F| \ge 2$: inequality (3) is the particular case for $F = \delta(i)!$

For the general case, where $F \subset \delta(i)$, for $i \in V$ and $|F| \ge 2$:

$$\sum_{e\in F} x_e + (|F| - 1)z_i \le |F| \tag{4}$$

is facet defining inequalities for corresponding polytope - Fujie[2004]

If $n_i = |\delta(i)|$, inequalities in (4) could be separated for *i* in $O(n_i \log n_i)$ time

・日本 ・日本 ・日本

Inequality

$$\sum_{e \in \delta(i)} x_e + (|\delta(i)| - 1)z_i \le |\delta(i)| \qquad i \in V$$
(3)

is used in the formulation to characterize spanning tree leaves

For $F \subseteq \delta(i)$, where $|F| \ge 2$: inequality (3) is the particular case for $F = \delta(i)!$

For the general case, where $F \subset \delta(i)$, for $i \in V$ and $|F| \ge 2$:

$$\sum_{e\in F} x_e + (|F| - 1)z_i \le |F| \tag{4}$$

is facet defining inequalities for corresponding polytope - Fujie[2004]

If $n_i = |\delta(i)|$, inequalities in (4) could be separated for i in $O(n_i \log n_i)$ time

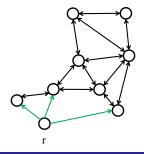
(4) E (4) E (4) E (4)

Directed Graph Reformulation for Fujie's Formulation

Suggested (with minor differences) in Fernandes and Gouveia [1998]

Build directed graph D = (r, V, A) from G = (V, E) $\blacktriangleright \{(r,j) : \forall e = [r,j] \lor e = [j,r], e \in E\}$ $\blacktriangleright \{(i,j) \land (j,i) : \forall e = [i,j] \in E, i,j \in V \setminus \{r\}\}$

Variables involved: $\{y_{ij} : (i,j) \in A\}$ and $\{z_i : i \in V\}$



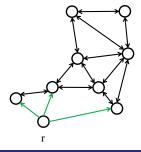
Directed Graph Reformulation for Fujie's Formulation

Suggested (with minor differences) in Fernandes and Gouveia [1998]

Build directed graph D = (r, V, A) from G = (V, E)

▶ {
$$(r,j)$$
: $\forall e = [r,j] \lor e = [j,r], e \in E$ }
▶ { $(i,j) \land (j,i)$: $\forall e = [i,j] \in E, i, j \in V \setminus \{r\}$ }

Variables involved: $\{y_{ij} : (i,j) \in A\}$ and $\{z_i : i \in V\}$



Directed Graph Reformulation for Fujie's Formulation

$$\max \sum_{i \in V} z_i$$
s.t.
$$\sum_{a \in A} y_a = |V| - 1$$

$$\sum_{a \in \delta^-(j)} y_a = 1 \qquad j \in V \setminus \{r\}$$

$$\sum_{a \in A(S)} y_a \leq |S| - 1 \qquad S \subset V, |S| \geq 2$$

$$\sum_{a \in \delta^+(i)} y_a + (|\delta^-(i)| - 1)z_i \leq |\delta^-(i)| - 1 \qquad i \in V \setminus \{r\}$$

$$\sum_{a \in \delta^+(r)} y_a + (|\delta^+(r)| - 1)z_r \leq |\delta^+(r)|$$

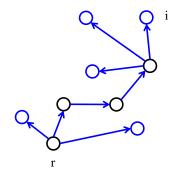
$$y_a \geq 0 \qquad a \in A$$

$$z_i \in \{0, 1\} \qquad i \in V$$

Same LP relaxation bound as Fujie's undirected graph formulation!

r-Rooted Spanning Arborescence \mathcal{T} of D = (V, A)

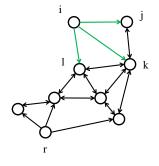
For a spanning arborescence of D: $i \in V \setminus \{r\}$ is leaf implying iff it has no outwards pointing arcs



Advantage over Fujie's formulation

- ▶ Inequalities $y_a + z_i \le 1$, $a = (i, j) \in A$, $i \in V \setminus \{r\}$ impose this condition
- Very few inequalities that considerably strengthen the reformulation!
- No counterpart inequalities for Fujie's undirected graph formulation

 $x_{[i,j]} + z_i \leq 1$, $x_{[i,k]} + z_i \leq 1$ and $x_{[i,l]} + z_i \leq 1$ are valid for vertex i



Maximum Leaf STP facet defining inequalities characterized by Fujie [2004]:

$$\sum_{e \in F} x_e + (|F| - 1)z_i \le |F| \qquad i \in V, F \subseteq \delta(i), \text{ for } |F| \ge 2$$

could be written as

$$\sum_{a \in F} y_a + \sum_{a=(j,i) \in A \mid (i,j) \in F} y_a + (|F| - 1)z_i \le |F|, \ i \in V, \ F \subseteq \delta^+(i), \ |F| \ge 2$$

• = • •

Maximum Leaf STP facet defining inequalities characterized by Fujie [2004]:

$$\sum_{e \in F} x_e + (|F| - 1)z_i \le |F| \qquad i \in V, F \subseteq \delta(i), \text{ for } |F| \ge 2$$

could be written as

$$\sum_{a \in F} y_a + \sum_{a=(j,i) \in A \mid (i,j) \in F} y_a + (|F| - 1)z_i \le |F|, \ i \in V, \ F \subseteq \delta^+(i), \ |F| \ge 2$$

LP Relaxation Bound Improvements

V	dens.	opt.	no ineqs.	just Fujie's	just ours	Fujie's + ours
	5	95	105.04	103.15	97.86	97.51
120	20	112	116.39	116.19	114.93	114.93
	50	116	118.42	118.34	118.12	118.12

Directed Graph Reformulation

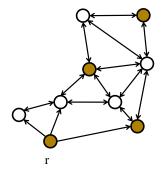
Branch-and-Cut Algorithm implemented

- ● ▶ ▲ 臣 ▶ ▲ 臣

Steiner Arborescence Reformulation for Max. Leaf STP

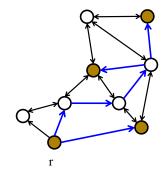
Steiner Arborescence Problem:

r-rooted tree T, for directed graph D = (V, A, T, r), must contain T, where $r \in T$ and $T \subset V$

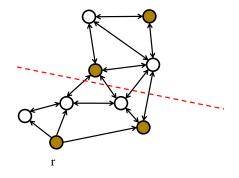


Steiner Arborescence Reformulation for Max. Leaf STP

Steiner Arborescence ${\mathcal T}$

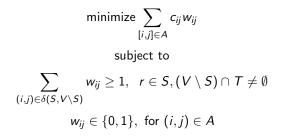


For $S \subset V$, where $r \in S$ and $(V \setminus S) \cap T \neq \emptyset$: at least one arc in cut-set $\delta(S, V \setminus S)$ must be used at a feasible solution



Steiner Arborescence Reformulation for Max. Leaf STP

Cut-Set Formulation for Steiner Arborescence Problem defined over directed graph D = (V, A, r, T)



Suggested by Aneja [1980], Wong [1989]

• • = • • = •

Luidi Simonetti Phd thesis, 2008:

 Hop-Constrained Minimum Spanning Tree Problem + Diameter-Constrained Minimum Spanning Tree Problem: Gouveia, Simonetti and Uchoa [2006,2007,2008]

 Maximum Leaf Spanning Tree Problem: Lucena, Maculan and Simonetti [2008]

► The Regeneration Location Problem:

(Minimum Connected Dominating Set Problem):

Chen, Lujubić and Raghavan [2007], accepted for publication, 2008

48 / 59

For simplicity, for G = (V, E), denote $V = \{v_1, v_2, \dots, v_n\}$

Maximum Leaf STP reformulation as Steiner Arborescence Problem over directed graph $D_s = (V_s, A_s, T, r)$

 V_s is partitioned into V_s^0 , V_s^1 and V_s^2 :

•
$$V_s^0 = \{v_0\}$$
: $r = v_0$ is an artificial "root" vertex

$$\blacktriangleright \ V^1_s = \left\{ v^1_i : v_i \in V \right\}: \text{ "copy" of } V$$

•
$$V_s^2 = \{v_i^2 : v_i \in V\}$$
: "copy" of V

$$|V_s| = 2|V| + 1$$

A_s is defined as:

- ▶ $\{(v_0, v_i^1): v_i \in V\}$: (only one is to be used)
- ▶ $\{(v_i^1, v_j^1) \land (v_j^1, v_i^1) : [v_i, v_j] \in E\}$: (to identify dominating set vertices of \mathcal{T})
- ▶ $\{(v_i^1, v_j^2) : [v_i, v_j] \in E\}$: (to identify spanning tree leaves of \mathcal{T})
- $\{(v_i^1, v_i^2) : v_i \in V\}$: (simply used as a modeling device)

Terminal vertices for Steiner Arborescence: $T = \{v_0\} \cup V_s^2$

E 5 4 E

 V_s is partitioned into V_s^0 , V_s^1 and V_s^2 :

A_s is defined as:

- ▶ $\{(v_0, v_i^1): v_i \in V\}$: (only one is to be used)
- ▶ $\{(v_i^1, v_j^1) \land (v_j^1, v_i^1) : [v_i, v_j] \in E\}$: (to identify dominating set vertices of \mathcal{T})
- ▶ $\{(v_i^1, v_j^2) : [v_i, v_j] \in E\}$: (to identify spanning tree leaves of \mathcal{T})
- $\{(v_i^1, v_i^2) : v_i \in V\}$: (simply used as a modeling device)

Terminal vertices for Steiner Arborescence: $T = \{v_0\} \cup V_s^2$

 V_s is partitioned into V_s^0 , V_s^1 and V_s^2 :

A_s is defined as:

- $\{(v_0, v_i^1): v_i \in V\}$: (only one is to be used)
- ▶ $\{(v_i^1, v_j^1) \land (v_j^1, v_i^1) : [v_i, v_j] \in E\}$: (to identify dominating set vertices of \mathcal{T})
- ▶ $\{(v_i^1, v_j^2) : [v_i, v_j] \in E\}$: (to identify spanning tree leaves of \mathcal{T})
- $\{(v_i^1, v_i^2) : v_i \in V\}$: (simply used as a modeling device)

Terminal vertices for Steiner Arborescence: $T = \{v_0\} \cup V_s^2$

 V_s is partitioned into V_s^0 , V_s^1 and V_s^2 :

A_s is defined as:

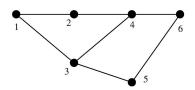
- $\{(v_0, v_i^1): v_i \in V\}$: (only one is to be used)
- ▶ $\{(v_i^1, v_j^1) \land (v_j^1, v_i^1) : [v_i, v_j] \in E\}$: (to identify dominating set vertices of \mathcal{T})
- ▶ $\{(v_i^1, v_j^2) : [v_i, v_j] \in E\}$: (to identify spanning tree leaves of \mathcal{T})
- $\{(v_i^1, v_i^2) : v_i \in V\}$: (simply used as a modeling device)

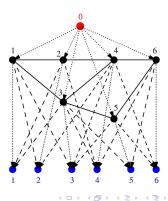
Terminal vertices for Steiner Arborescence: $T = \{v_0\} \cup V_s^2$

Graph $G_s = (V_s, A_s, T, r = v_0)$

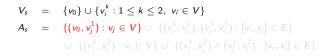
$V_s = \{v_0\} \cup \{v_i^k : 1 \le k \le 2, v_i \in V\}$

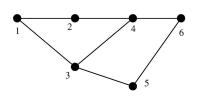
$\begin{array}{rcl} \mathcal{A}_{s} & = & \{(v_{0},v_{j}^{1}):v_{j}\in V\}\cup \{(v_{j}^{1},v_{j}^{1}),(v_{j}^{1},v_{j}^{1}):[v_{i},v_{j}]\in E\}\\ & \cup & \{(v_{j}^{1},v_{j}^{2}):v_{i}\in V\}\cup \{(v_{j}^{1},v_{j}^{2})\wedge (v_{j}^{1},v_{j}^{2}):[v_{i},v_{j}]\in E\} \end{array}$

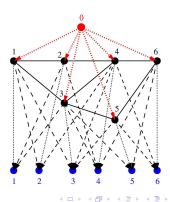




Graph $G_s = (V_s, A_s, T, r = v_0)$

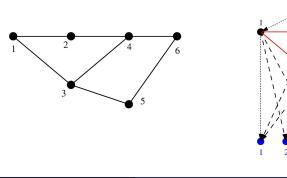


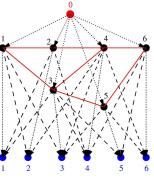




Graph $G_s = (V_s, A_s, T, r = v_0)$

$$\begin{aligned} V_s &= \{v_0\} \cup \{v_i^k : 1 \le k \le 2, \ v_i \in V\} \\ A_s &= \{(v_0, v_j^1) : v_j \in V\} \cup \{(v_i^1, v_j^1), (v_j^1, v_i^1) : [v_i, v_j] \in E\} \\ &\cup \{(v_i^1, v_i^2) : v_i \in V\} \cup \{(v_i^1, v_j^2) \land (v_j^1, v_i^2) : [v_i, v_j] \in E\} \end{aligned}$$

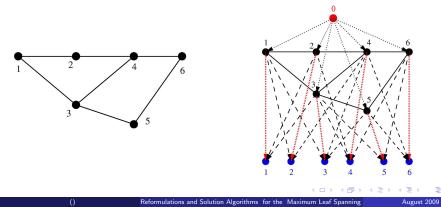




< E > < E

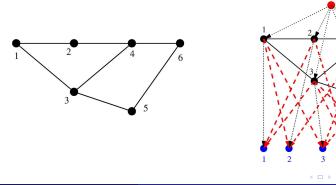
Graph $G_s = (V_s, A_s, T, r = v_0)$

$$\begin{split} V_s &= \{v_0\} \cup \{v_i^k : 1 \le k \le 2, \ v_i \in V\} \\ A_s &= \{(v_0, v_j^1) : v_j \in V\} \cup \{(v_i^1, v_j^1), (v_j^1, v_i^1) : [v_i, v_j] \in E\} \\ &\cup \{(v_i^1, v_i^2) : v_i \in V\} \cup \{(v_i^1, v_j^2) \land (v_j^1, v_i^2) : [v_i, v_j] \in E\} \end{split}$$



Graph $G_s = (V_s, A_s, T, r = v_0)$

$$\begin{split} V_s &= \{v_0\} \cup \{v_i^k : 1 \le k \le 2, \ v_i \in V\} \\ A_s &= \{(v_0, v_j^1) : v_j \in V\} \cup \ \{(v_i^1, v_j^1), (v_j^1, v_i^1) : [v_i, v_j] \in E\} \\ &\cup \ \{(v_i^1, v_i^2) : v_i \in V\} \cup \ \{(v_i^1, v_j^2) \land (v_j^1, v_i^2) : [v_i, v_j] \in E\} \end{split}$$



(Quite sophisticated) Branch-and-Cut Algorithm

implemented for the Steiner Arborescence Problem

Degree one: if $|\delta(i)| = 1$, vertex *i* must be leaf implying (from the literature)

Articulation vertex: if i is an articulation vertex for G, it can not be a leaf

Vertex dominance: for $i, j \in V$ with $\Gamma(j) \subseteq \Gamma(i)$, optimal solution with j leaf implying

() <) <)</p>

Lower Bounds (Feasible Solutions) for Maximum Leaf STP

Lower bound = number of leaves in a (any) spanning tree of G

- Factor of 3 approximation algorithms: Lu and Ravi [1992,1998] (performs Local Search)
- ▶ Factor of 2 approximation algorithm: Solis-Oba [1998] (no good in practice)
- Depth-first-search strategy: Build |V| spanning trees of G, Fujie [2003]
- Connected dominating set heuristic: Lucena, Maculan and Simonetti [2008] (also in Chen, Lujubić and Raghavan [2007])

Upper bounding procedure in Fujie [2003]:

"good quality" spanning trees in dual information driven approach!

• • = • • = •

The LM&S and CL&R Mininum Connected DS Heuristic

Graph G = (V, E), connected dominating set \mathcal{D} , and leaf set \mathcal{L}

Initialization:

- ► Select "seed" $r \in V$ and place it into \mathcal{L} together with all vertices in $\Gamma(r)$
- Select $i \in \mathcal{L}$ with the largest $|\Gamma(i)|$.
- Remove *i* from \mathcal{L} and place it into \mathcal{D} .
- Introduce all vertices in $(\Gamma(i) \setminus \mathcal{L})$ into \mathcal{L} .

Iteration $k \ge 2$:

- Select a $i \in \mathcal{L}$ with the largest $|\Gamma(i) \setminus (\mathcal{L} \cup \mathcal{D})|$.
- Remove *i* from \mathcal{L} and place it in \mathcal{D} .
- ▶ Place all vertices in $\Gamma(i) \setminus (\mathcal{L} \cup \mathcal{D})$ into \mathcal{L} .
- Stop when all vertices of V are either in \mathcal{L} or \mathcal{D} .

< ∃ > <

The LM&S and CL&R Mininum Connected DS Heuristic

Graph G = (V, E), connected dominating set \mathcal{D} , and leaf set \mathcal{L}

Initialization:

- ▶ Select "seed" $r \in V$ and place it into \mathcal{L} together with all vertices in $\Gamma(r)$
- Select $i \in \mathcal{L}$ with the largest $|\Gamma(i)|$.
- Remove *i* from \mathcal{L} and place it into \mathcal{D} .
- Introduce all vertices in $(\Gamma(i) \setminus \mathcal{L})$ into \mathcal{L} .

Iteration $k \ge 2$:

- Select a $i \in \mathcal{L}$ with the largest $|\Gamma(i) \setminus (\mathcal{L} \cup \mathcal{D})|$.
- Remove *i* from \mathcal{L} and place it in \mathcal{D} .
- ▶ Place all vertices in $\Gamma(i) \setminus (\mathcal{L} \cup \mathcal{D})$ into \mathcal{L} .
- Stop when all vertices of V are either in \mathcal{L} or \mathcal{D} .

() <) <)</p>

The LM&S and CL&R Mininum Connected DS Heuristic

Graph G = (V, E), connected dominating set \mathcal{D} , and leaf set \mathcal{L}

Initialization:

- Select "seed" $r \in V$ and place it into \mathcal{L} together with all vertices in $\Gamma(r)$
- Select $i \in \mathcal{L}$ with the largest $|\Gamma(i)|$.
- Remove *i* from \mathcal{L} and place it into \mathcal{D} .
- Introduce all vertices in $(\Gamma(i) \setminus \mathcal{L})$ into \mathcal{L} .

Iteration $k \ge 2$:

- Select a $i \in \mathcal{L}$ with the largest $|\Gamma(i) \setminus (\mathcal{L} \cup \mathcal{D})|$.
- Remove *i* from \mathcal{L} and place it in \mathcal{D} .
- Place all vertices in $\Gamma(i) \setminus (\mathcal{L} \cup \mathcal{D})$ into \mathcal{L} .
- Stop when all vertices of V are either in \mathcal{L} or \mathcal{D} .

() <) <)</p>

				B&B			Dir			SAP	
V	dens.	opt.	LP bound	# nodes	T(s)	LP bound	# nodes	T(s)	LP bound	# nodes	T(s)
	10	15	17.83	291	0.12	15.57	1	0.01	15.80	1	0.04
	20	23	26.04	5055	0.33	24.48	7	0.1	23.95	1	0.12
30	30	26	27.44	842	0.24	27.05	1	0.03	26.13	5	26.7
	50	27	28.46	307	0.19	28.13	3	0.09	27.94	1	1.28
	70	28	28.83	1	0.16	28.73	1	0.01	28.00	1	0.26
	5	19	21.50	265	0.94	19.00	1	0.02	19.00	1	0.09
	10	38	42.16	82599	4.54	39.75	41	0.82	38.86	38	94
50	20	43	46.58	225771	16.9	45.22	77	1.32	44.48	57	1827
	30	45	47.59	38155	5.97	46.80	39	1.21	46.08	43	22424
	50	47	48.45	3050	4	48.18	13	0.51	47.36	-	-
	70	48	48.82	5	1.64	48.62	1	0.09	48.00	1	2.08
	5	43	49.57	9068999	313	44.45	53	0.99	43.56	19	103
	10	57	63.18	-	-	59.20	174	4.73	58.60	-	-
70	20	63	66.22	-	-	65.04	607	16.3	64.37	-	-
	30	65	67.62	4113677	536	66.91	35	2.9	66.15		-
	50	67	68.52	33058	25.3	68.14	7	1.33	-	-	-
	70	68	68.76	2661	10.8	68.68	5	1.92	68	1	8.55

				B&B			Dir			SAP	
V	dens.	opt.	LP bound	# nodes	T(s)	LP bound	# nodes	T(s)	LP bound	# nodes	T(s)
	10	15	17.83	291	0.12	15.57	1	0.01	15.80	1	0.04
	20	23	26.04	5055	0.33	24.48	7	0.1	23.95	1	0.12
30	30	26	27.44	842	0.24	27.05	1	0.03	26.13	5	26.7
	50	27	28.46	307	0.19	28.13	3	0.09	27.94	1	1.28
	70	28	28.83	1	0.16	28.73	1	0.01	28.00	1	0.26
	5	19	21.50	265	0.94	19.00	1	0.02	19.00	1	0.09
	10	38	42.16	82599	4.54	39.75	41	0.82	38.86	38	94
50	20	43	46.58	225771	16.9	45.22	77	1.32	44.48	57	1827
	30	45	47.59	38155	5.97	46.80	39	1.21	46.08	43	22424
	50	47	48.45	3050	4	48.18	13	0.51	47.36	-	-
	70	48	48.82	5	1.64	48.62	1	0.09	48.00	1	2.08
	5	43	49.57	9068999	313	44.45	53	0.99	43.56	19	103
	10	57	63.18	-	-	59.20	174	4.73	58.60	-	-
70	20	63	66.22	-	-	65.04	607	16.3	64.37	-	-
	30	65	67.62	4113677	536	66.91	35	2.9	66.15		-
	50	67	68.52	33058	25.3	68.14	7	1.33	-	-	-
	70	68	68.76	2661	10.8	68.68	5	1.92	68	1	8.55

			B&B				Dir		SAP		
V	dens.	opt.	LP bound	# nodes	T(s)	LP bound	# nodes	T(s)	LP bound	# nodes	T(s)
	5	76	83.42	-	-	79.36	605	24.5	78.57	-	-
	10	87	93.27	-	-	89.52	135	9.36	-	-	-
100	20	92	96.56	-	-	94.85	1025	86.1	-	-	-
	30	94	97.39	-	-	96.68	1753	258	-	-	-
	50	96	98.36	348389	213	98.03	479	132	-	-	-
	70	97	98.76	9091	50.5	98.64	121	154	-	-	-
	5	95	105.04	-	-	97.77	24	2.65	-	-	-
	10	107	113.16	-	-	109.83	869	65.4	-	-	-
120	20	112	116.39	-	-	114.93	2401	393	-	-	-
	30	114	117.40	-	-	116.69	2301	653	-	-	-
	50	116	118.42	571335	435	118.12	1297	815	-	-	-
	70	117	118.72	13791	97	118.63	137	356	-	-	-
	5	124	135.11	-	-	128.74	31077	2954	-	-	-
	10	136	142.81	-	-	139.59	6089	3247	-	-	-
150	20	141	146.81	-	-	145.12	173425	61639	-	-	-
	30	144	147.38	-	-	146.67	3043	2617	-	-	-
	50	146	148.38	2104992	2190	148.10	1755	2756	-	-	-
	70	147	148.72	21625	301	148.63	219	1828	-	-	-
200	50	196	198.32	-	-	198.07	3125	20155	-	-	-
	70	197	198.73	38215	1322	198.63	253	8154	-	-	-

			B&B				Dir		SAP		
V	dens.	opt.	LP bound	# nodes	T(s)	LP bound	# nodes	T(s)	LP bound	# nodes	T(s)
	5	76	83.42	-	-	79.36	605	24.5	78.57	-	-
	10	87	93.27	-	-	89.52	135	9.36	-	-	-
100	20	92	96.56	-	-	94.85	1025	86.1	-	-	-
	30	94	97.39	-	-	96.68	1753	258	-	-	-
	50	96	98.36	348389	213	98.03	479	132	-	-	-
	70	97	98.76	9091	50.5	98.64	121	154	-	-	-
	5	95	105.04	-	-	97.77	24	2.65	-	-	-
	10	107	113.16	-	-	109.83	869	65.4	-	-	-
120	20	112	116.39	-	-	114.93	2401	393	-	-	-
	30	114	117.40	-	-	116.69	2301	653	-	-	-
	50	116	118.42	571335	435	118.12	1297	815	-	-	-
	70	117	118.72	13791	97	118.63	137	356	-	-	-
	5	124	135.11	-	-	128.74	31077	2954	-	-	-
	10	136	142.81	-	-	139.59	6089	3247	-	-	-
150	20	141	146.81	-	-	145.12	173425	61639	-	-	-
	30	144	147.38	-	-	146.67	3043	2617	-	-	-
	50	146	148.38	2104992	2190	148.10	1755	2756	-	-	-
	70	147	148.72	21625	301	148.63	219	1828	-	-	-
200	50	196	198.32	-	-	198.07	3125	20155	-	-	-
	70	197	198.73	38215	1322	198.63	253	8154	-	-	-

Fujie's algorithm:

- Weaker upper (LP) bounds
- Demanding in terms of memory
- Faster for some high density instances

Directed graph reformulation:

- Stronger LP bounds than original undirected formulation
- Faster in 31 out of 37 instances tested
- Attempted to solve the largest number of test instances

SAP reformulation:

- Stronger LP bounds than other formulations
- Highly demanding in terms of CPU time

Fujie's algorithm:

- Weaker upper (LP) bounds
- Demanding in terms of memory
- Faster for some high density instances

Directed graph reformulation:

- Stronger LP bounds than original undirected formulation
- Faster in 31 out of 37 instances tested
- Attempted to solve the largest number of test instances

SAP reformulation:

- Stronger LP bounds than other formulations
- Highly demanding in terms of CPU time

Fujie's algorithm:

- Weaker upper (LP) bounds
- Demanding in terms of memory
- Faster for some high density instances

Directed graph reformulation:

- Stronger LP bounds than original undirected formulation
- Faster in 31 out of 37 instances tested
- Attempted to solve the largest number of test instances

SAP reformulation:

- Stronger LP bounds than other formulations
- Highly demanding in terms of CPU time

Fujie's algorithm:

- Weaker upper (LP) bounds
- Demanding in terms of memory
- Faster for some high density instances

Directed graph reformulation:

- Stronger LP bounds than original undirected formulation
- Faster in 31 out of 37 instances tested
- Attempted to solve the largest number of test instances

SAP reformulation:

- Stronger LP bounds than other formulations
- Highly demanding in terms of CPU time

(3)

Additional strong valid inequalities

Fine tuning of branching strategy

■ ▶ ★ Ξ ▶ ★ Ξ

Additional strong valid inequalities

Fine tuning of branching strategy

🗇 🕨 🔺 臣 🕨 🔺 臣

Additional strong valid inequalities

Fine tuning of branching strategy

▶ ★ 臣 ▶ ★

Additional strong valid inequalities

Fine tuning of branching strategy

< ≣ ▶