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Graph G = (V , E )
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A Non-spanning Tree T of G
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The Subgraph T of G
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The Leaves of T
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A Spanning Tree T for G = (V , E )
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The Subgraph T of G
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A Spanning Tree T of G with 6 Leaves
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A Spanning Tree T of G with 6 Leaves
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The Maximum Leaf Spanning Tree Problem

Given a graph G = (V ,E ):

find a spanning tree T of G with as many leaves as possible.
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A Closely Related Problem

Minimum Connected Dominating Set Problem:

follows from the Minimum Dominating Set Problem.
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Dominating Set S

Set S ⊂ V with i ∈ V \ S one edge away from j ∈ S
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Connected Dominating Set S

Subgraph GS = (S ,E (S)) of G is connected
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Minimum Connected Dominating Set Problem

Find connected dominating set S ⊂ V with |S | as small as possible
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Spanning Trees × Connected Dominating Sets
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Connected Dominating Sets × Spanning Trees
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Optimal Solutions

Max-Leaf Spanning Tree Problem
×

Minimum Connected Dominating Set Problem

Given an optimal solution to one :
optimal solution to the other in polynomial time!
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Why Investigate These Two Problems?

I Quite challenging NP-hard problems

I Model some telecommunication network design applications

I Model some circuit layout design applications
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Previous Work for Maximum Leaf STP

I Garey and Johnson [1979]: problem is NP-hard

I Lu and Ravi [1992,1998]: factor of 3 approximation algorithm

I Galbiati, Maffioli and Morzenti [1994]: problem is SNP-hard
(there exists ε such that finding (1 + ε)-approximation algorithm is NP-hard)

I Solis-Oba [1998]: factor of 2 approximation algorithm

I Fernandes and Gouveia [1998]: formulation for fixed number of leaves

I Fujie [2003]: formulation and branch-and-bound algorithm

I Fujie [2004]: new formulation and polyhedral study

() Reformulations and Solution Algorithms for the Maximum Leaf Spanning Tree ProblemAugust 2009 27 / 59



Previous Work for Maximum Leaf STP

I Garey and Johnson [1979]: problem is NP-hard

I Lu and Ravi [1992,1998]: factor of 3 approximation algorithm

I Galbiati, Maffioli and Morzenti [1994]: problem is SNP-hard
(there exists ε such that finding (1 + ε)-approximation algorithm is NP-hard)

I Solis-Oba [1998]: factor of 2 approximation algorithm

I Fernandes and Gouveia [1998]: formulation for fixed number of leaves

I Fujie [2003]: formulation and branch-and-bound algorithm

I Fujie [2004]: new formulation and polyhedral study

() Reformulations and Solution Algorithms for the Maximum Leaf Spanning Tree ProblemAugust 2009 27 / 59



Previous Work for Minimum Connected DSP

I Garey and Johnson [1979]: problem is NP-hard

I Guha and Khuller [1998]: Approximation algorithms

I Cheng, Huang, Li, Wu, and Du [2006]:
Polynomial-time approximation scheme

I Chen, Lujubić and Raghavan [2007], accepted for publication, 2008:
The Regenerator Location Problem
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Outline for the Presentation

Formulation + reformulations for Max. Leaf STP

I A formulation from the literature

I A reinforced direct graph reformulation

I Recasting the problem as Steiner Arborescence Problem

A heuristic for the Minimum Connected Dominating Set Problem

Pre-processing tests

Computational results

Conclusions and Future Work
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Formulation of Fujie [2003,2004]

Basic Idea: Spanning Tree Polytope + Leaf Imposing Constraints

Variables involved:

I x = {xe ∈ {0, 1} : e ∈ E}: to identify tree edges

I z = {zi ∈ {0, 1} : i ∈ V }: to identify tree leaves

Notation used:

I δ(i) ⊆ E , i ∈ V : edges incident to i

I E (S) ⊆ E , S ⊆ V : edges with both end vertices in S
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Formulation of Fujie [2003,2004]

max
∑
i∈V

zi∑
e∈E

xe = |V | − 1∑
e∈E(S)

xe ≤ |S | − 1 S ⊂ V , |S | ≥ 2

∑
e∈δ(i)

xe + (|δ(i)| − 1)zi ≤ |δ(i)| i ∈ V

xe ≥ 0 e ∈ E

zi ∈ {0, 1} i ∈ V

Follows from a formulation to
“Minimal Spanning Trees with a Constraint on the Number of Leaves”

by Fernandes and Gouveia [1998]
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LP Relaxation of Fujie’s Formulation

max
∑
i∈V

zi

s.t.
∑
e∈E

xe = |V | − 1

∑
e∈E(S)

xe ≤ |S | − 1 S ⊂ V , |S | ≥ 2 (1)

∑
e∈δ(i)

xe + (|δ(i)| − 1)zi ≤ |δ(i)| i ∈ V (2)

xe ≥ 0 e ∈ E

zi ≥ 0 i ∈ V

xe ≤ 1 is implied by (1) for |S | = 2

zi ≤ 1, i ∈ V is implied by (2)
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LP Relaxation of Fujie’s Formulation

Since one is maximizing
∑

i∈V zi :

zi ≤
[ |δ(i)|−∑

e∈δ(i) xe

|δ(i)|−1

]
, i ∈ V ,

must hold as equality, at optimality!

Substituting for z in the objective function:

max
∑
i∈V

|δ(i)|
|δ(i)| − 1

−
∑

e=(i,j)∈E

(
1

|δ(i)| − 1
+

1

|δ(j)| − 1

)
xe

s.t. x ∈ Spanning Tree Polytope

LP relaxation bound could be computed efficiently!

Depth-first-search based branch-and-bound algorithm - Fujie [2003]

Does not use lower bound given by upper bounding spanning tree
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Details of Fujie’s Branch-and-Bound Algorithm

Heuristics used:

I At the root node of the enumeration tree:
I Breadth-First-Search (BFS) Spanning Tree Heuristic (Fujie [2003])
I Factor of 3 Approximation Heuristic (Lu and Ravi [1998])
I Factor of 2 Approximation Heuristic (Solis-Oba [1998])

I At nodes other than the root:
I BFS Spanning Tree Heuristic, if certain conditions are met
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Enhancements to Fujie’s Algorithm

At every enumeration tree node: lower bounds from upper bound computation

Additional speed-ups through the use of
(new) Minimum Connected Dominating Set heuristic

Number of enumeration tree nodes dropped to about half

Computational results presented for enhanced version of Fujie’s algorithm
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Facet Defining Inequalities for Fujie’s Formulation

Inequality ∑
e∈δ(i)

xe + (|δ(i)| − 1)zi ≤ |δ(i)| i ∈ V (3)

is used in the formulation to characterize spanning tree leaves

For F ⊆ δ(i), where |F | ≥ 2: inequality (3) is the particular case for F = δ(i)!

For the general case, where F ⊂ δ(i), for i ∈ V and |F | ≥ 2:∑
e∈F

xe + (|F | − 1)zi ≤ |F | (4)

is facet defining inequalities for corresponding polytope - Fujie[2004]

If ni = |δ(i)|, inequalities in (4) could be separated for i in O(ni log ni ) time
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Directed Graph Reformulation for Fujie’s Formulation

Suggested (with minor differences) in Fernandes and Gouveia [1998]

Build directed graph D = (r ,V ,A) from G = (V ,E )
I {(r , j) : ∀e = [r , j ] ∨ e = [j , r ], e ∈ E}
I {(i , j) ∧ (j , i) : ∀e = [i , j ] ∈ E , i , j ∈ V \ {r}}

Variables involved: {yij : (i , j) ∈ A} and {zi : i ∈ V }

r
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Directed Graph Reformulation for Fujie’s Formulation

max
∑
i∈V

zi

s.t.
∑
a∈A

ya = |V | − 1

∑
a∈δ−(j)

ya = 1 j ∈ V \ {r}

∑
a∈A(S)

ya ≤ |S | − 1 S ⊂ V , |S | ≥ 2

∑
a∈δ+(i)

ya + (|δ−(i)| − 1)zi ≤ |δ−(i)| − 1 i ∈ V \ {r}

∑
a∈δ+(r)

ya + (|δ+(r)| − 1)zr ≤ |δ+(r)|

ya ≥ 0 a ∈ A

zi ∈ {0, 1} i ∈ V

Same LP relaxation bound as Fujie’s undirected graph formulation!
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r -Rooted Spanning Arborescence T of D = (V , A)

For a spanning arborescence of D:
i ∈ V \ {r} is leaf implying iff it has no outwards pointing arcs

r

i
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Advantage over Fujie’s formulation

I Inequalities ya + zi ≤ 1, a = (i , j) ∈ A, i ∈ V \ {r} impose this condition
I Very few inequalities that considerably strengthen the reformulation!
I No counterpart inequalities for Fujie’s undirected graph formulation

x[i,j] + zi ≤ 1, x[i,k] + zi ≤ 1 and x[i,l ] + zi ≤ 1 are valid for vertex i

r

i

k

j

l
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Further Strengthening the Directed Graph Reformulation

Maximum Leaf STP facet defining inequalities characterized by Fujie [2004]:∑
e∈F

xe + (|F | − 1)zi ≤ |F | i ∈ V ,F ⊆ δ(i), for |F | ≥ 2

could be written as∑
a∈F

ya +
∑

a=(j,i)∈A|(i,j)∈F

ya + (|F | − 1)zi ≤ |F |, i ∈ V , F ⊆ δ+(i), |F | ≥ 2
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LP Relaxation Bound Improvements

|V | dens. opt. no ineqs. just Fujie’s just ours Fujie’s + ours

5 95 105.04 103.15 97.86 97.51
120 20 112 116.39 116.19 114.93 114.93

50 116 118.42 118.34 118.12 118.12
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Directed Graph Reformulation

Branch-and-Cut Algorithm implemented

() Reformulations and Solution Algorithms for the Maximum Leaf Spanning Tree ProblemAugust 2009 43 / 59



Steiner Arborescence Reformulation for Max. Leaf STP

Steiner Arborescence Problem:
r -rooted tree T , for directed graph D = (V ,A,T , r), must contain T ,

where r ∈ T and T ⊂ V

r
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Steiner Arborescence Reformulation for Max. Leaf STP

Steiner Arborescence T

r
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Steiner Arborescence Reformulation for Max. Leaf STP

For S ⊂ V , where r ∈ S and (V \ S) ∩ T 6= ∅:
at least one arc in cut-set δ(S ,V \ S) must be used at a feasible solution

r
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Steiner Arborescence Reformulation for Max. Leaf STP

Cut-Set Formulation for Steiner Arborescence Problem
defined over directed graph D = (V ,A, r ,T )

minimize
∑

[i,j]∈A

cijwij

subject to∑
(i,j)∈δ(S,V\S)

wij ≥ 1, r ∈ S , (V \ S) ∩ T 6= ∅

wij ∈ {0, 1}, for (i , j) ∈ A

Suggested by Aneja [1980], Wong [1989]
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Steiner Arborescence Reformulation for Max. Leaf STP

I Luidi Simonetti Phd thesis, 2008:

I Hop-Constrained Minimum Spanning Tree Problem +
Diameter-Constrained Minimum Spanning Tree Problem:

Gouveia, Simonetti and Uchoa [2006,2007,2008]
I Maximum Leaf Spanning Tree Problem:

Lucena, Maculan and Simonetti [2008]

I The Regeneration Location Problem:
(Minimum Connected Dominating Set Problem):

Chen, Lujubić and Raghavan [2007], accepted for publication, 2008
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Steiner Arborescence Reformulation for Max. Leaf STP

For simplicity, for G = (V ,E ), denote V = {v1, v2, . . . vn}

Maximum Leaf STP reformulation as Steiner Arborescence Problem
over directed graph Ds = (Vs ,As ,T , r)

() Reformulations and Solution Algorithms for the Maximum Leaf Spanning Tree ProblemAugust 2009 49 / 59



Building Ds = (Vs , As , T , r) from G = (V , E )

Vs is partitioned into V 0
s , V 1

s and V 2
s :

I V 0
s = {v0}: r = v0 is an artificial “root” vertex

I V 1
s =

{
v1
i : vi ∈ V

}
: “copy” of V

I V 2
s =

{
v2
i : vi ∈ V

}
: “copy” of V

I |Vs | = 2|V |+ 1

As is defined as:

I {(v0, v
1
i ) : vi ∈ V }: (only one is to be used)

I {(v1
i , v

1
j ) ∧ (v1

j , v
1
i ) : [vi , vj ] ∈ E}: (to identify dominating set vertices of T )

I {(v1
i , v

2
j ) : [vi , vj ] ∈ E}: (to identify spanning tree leaves of T )

I {(v1
i , v

2
i ) : vi ∈ V }: (simply used as a modeling device)

Terminal vertices for Steiner Arborescence: T = {v0} ∪ V 2
s
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Graph Gs = (Vs , As , T , r = v0)

Vs = {v0} ∪ {vk
i : 1 ≤ k ≤ 2, vi ∈ V}

As = {(v0, v
1
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i , v
1
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2
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2
j ) ∧ (v1
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Steiner Arborescence Reformulation for Max. Leaf STP

(Quite sophisticated) Branch-and-Cut Algorithm

implemented for the Steiner Arborescence Problem
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Pre-processing Tests for G = (V , E )

Degree one: if |δ(i)| = 1, vertex i must be leaf implying (from the literature)

Articulation vertex: if i is an articulation vertex for G , it can not be a leaf

Vertex dominance: for i , j ∈ V with Γ(j) ⊆ Γ(i),
optimal solution with j leaf implying

() Reformulations and Solution Algorithms for the Maximum Leaf Spanning Tree ProblemAugust 2009 53 / 59



Lower Bounds (Feasible Solutions) for Maximum Leaf STP

Lower bound = number of leaves in a (any) spanning tree of G

I Factor of 3 approximation algorithms: Lu and Ravi [1992,1998]
(performs Local Search)

I Factor of 2 approximation algorithm: Solis-Oba [1998] (no good in practice)

I Depth-first-search strategy: Build |V | spanning trees of G , Fujie [2003]

I Connected dominating set heuristic: Lucena, Maculan and Simonetti [2008]
(also in Chen, Lujubić and Raghavan [2007])

Upper bounding procedure in Fujie [2003]:

“good quality” spanning trees in dual information driven approach!

() Reformulations and Solution Algorithms for the Maximum Leaf Spanning Tree ProblemAugust 2009 54 / 59



The LM&S and CL&R Mininum Connected DS Heuristic

Graph G = (V ,E ), connected dominating set D, and leaf set L

Initialization:

I Select “seed” r ∈ V and place it into L together with all vertices in Γ(r)

I Select i ∈ L with the largest |Γ(i)|.
I Remove i from L and place it into D.

I Introduce all vertices in (Γ(i) \ L) into L.

Iteration k ≥ 2:

I Select a i ∈ L with the largest |Γ(i) \ (L ∪ D)|.
I Remove i from L and place it in D.

I Place all vertices in Γ(i) \ (L ∪ D) into L.

I Stop when all vertices of V are either in L or D.
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Computational Results

B&B Dir SAP
|V | dens. opt. LP bound # nodes T(s) LP bound # nodes T(s) LP bound # nodes T(s)

10 15 17.83 291 0.12 15.57 1 0.01 15.80 1 0.04
20 23 26.04 5055 0.33 24.48 7 0.1 23.95 1 0.12

30 30 26 27.44 842 0.24 27.05 1 0.03 26.13 5 26.7
50 27 28.46 307 0.19 28.13 3 0.09 27.94 1 1.28
70 28 28.83 1 0.16 28.73 1 0.01 28.00 1 0.26

5 19 21.50 265 0.94 19.00 1 0.02 19.00 1 0.09
10 38 42.16 82599 4.54 39.75 41 0.82 38.86 38 94

50 20 43 46.58 225771 16.9 45.22 77 1.32 44.48 57 1827
30 45 47.59 38155 5.97 46.80 39 1.21 46.08 43 22424
50 47 48.45 3050 4 48.18 13 0.51 47.36 - -
70 48 48.82 5 1.64 48.62 1 0.09 48.00 1 2.08

5 43 49.57 9068999 313 44.45 53 0.99 43.56 19 103
10 57 63.18 - - 59.20 174 4.73 58.60 - -

70 20 63 66.22 - - 65.04 607 16.3 64.37 - -
30 65 67.62 4113677 536 66.91 35 2.9 66.15 -
50 67 68.52 33058 25.3 68.14 7 1.33 - - -
70 68 68.76 2661 10.8 68.68 5 1.92 68 1 8.55
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Computational Results

B&B Dir SAP
|V | dens. opt. LP bound # nodes T(s) LP bound # nodes T(s) LP bound # nodes T(s)

5 76 83.42 - - 79.36 605 24.5 78.57 - -
10 87 93.27 - - 89.52 135 9.36 - - -

100 20 92 96.56 - - 94.85 1025 86.1 - - -
30 94 97.39 - - 96.68 1753 258 - - -
50 96 98.36 348389 213 98.03 479 132 - - -
70 97 98.76 9091 50.5 98.64 121 154 - - -

5 95 105.04 - - 97.77 24 2.65 - - -
10 107 113.16 - - 109.83 869 65.4 - - -

120 20 112 116.39 - - 114.93 2401 393 - - -
30 114 117.40 - - 116.69 2301 653 - - -
50 116 118.42 571335 435 118.12 1297 815 - - -
70 117 118.72 13791 97 118.63 137 356 - - -

5 124 135.11 - - 128.74 31077 2954 - - -
10 136 142.81 - - 139.59 6089 3247 - - -

150 20 141 146.81 - - 145.12 173425 61639 - - -
30 144 147.38 - - 146.67 3043 2617 - - -
50 146 148.38 2104992 2190 148.10 1755 2756 - - -
70 147 148.72 21625 301 148.63 219 1828 - - -

200 50 196 198.32 - - 198.07 3125 20155 - - -
70 197 198.73 38215 1322 198.63 253 8154 - - -
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Conclusions

Fujie’s algorithm:

I Weaker upper (LP) bounds

I Demanding in terms of memory

I Faster for some high density instances

Directed graph reformulation:

I Stronger LP bounds than original undirected formulation

I Faster in 31 out of 37 instances tested

I Attempted to solve the largest number of test instances

SAP reformulation:

I Stronger LP bounds than other formulations

I Highly demanding in terms of CPU time
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Future Work

Symmetry breaking

Additional strong valid inequalities

Fine tuning of branching strategy
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