Compressed Sensing and L¹-Related Minimization

Yin Wotao Computational and Applied Mathematics Rice University Jan 4, 2008 – Chinese Academy of Sciences – Inst. Comp. Math

The Problems of Interest

• Unconstrained

$$\min_{u} \ \mu \|u\|_{1} + \frac{1}{2} \|Au - b\|_{2}^{2}$$

• Constrained

$$\min_u \|u\|_1, \text{ s.t. } Au = b$$

• They found applications in compressed sensing, statistics, ...

Compressed Sensing

- We want to "compress" a signal
- Classical compression algorithms must know the signal first, but here the compression is done before signal is physically acquired
- The goal is to reduce the number of measurements

u: a signal with lots of null entries

- Apply a linear transform A to u, #row(A) < #col(A)
- Physically acquire b = Au
- How do we get u from b when b = Au is underdetermined?
- When *u* is sufficiently sparse and *b* is long enough, exact reconstruction is possible (both in theory and in practice)

A test in MATLAB

- % Construct the compressed sensing problem
- n = 200;
- m = 100;
- A = randn(m, n);
- u = sprandn(n, 1, .1);

 $b = A^*u;$

% least squares reconstruction % min ||u||₂, subject to A*u=b u_recon = pinv(A)*b;

A test in MATLAB

U

u_recon

A test in MATLAB via YALMIP and CVX

• Candes and Tao, Donoho suggest $\min_{u} \|u\|_1$ st Au = b

```
>> x=sdpvar(n,1);
>> solvesdp([A*x==b],norm(x,1));
```

```
>> u_recon=double(x);
```

. . .

```
cvx_begin
variable u_recon(n)
minimize(norm(u_recon,1))
subject to
        A*u_recon==b
cvx_end
```

A test in MATLAB

U

7

A test in MATLAB: noisy case

- % Construct the compressed sensing problem
- >> n = 200; >> m = 100; >> A = randn(m,n); >> u = full(sprandn(n,1,.1)); >> b = A*u + 0.01*randn(m,1); % add noise

>> epsilon = 0.02;

YALMIP and CVX

$$\min_{u} \quad \|u\|_{1} \\ \text{st} \quad \|Au - b\|_{2} \le \epsilon$$

>> x=sdpvar(n,1);

>> solvesdp(norm(A*x-b)<=epsilon,norm(x,1));

• • •

```
>> u_recon=double(x);
```

```
cvx_begin
variable u_recon(n)
minimize(norm(u_recon,1))
subject to
norm(A*x-b,2)<=epsilon</pre>
```

cvx_end

A test in MATLAB

u_recon

When is l_1 -reconstruction successful?

Def:

- *n*=dim(*u*) signal size
- $k = ||u||_0$ signal sparsity
- *m*=#.row(*A*) sample size
- When *A* is subgaussian (e.g. Gaussian, Bernoulli, etc.) (Mendelson et al)
 - $m \approx O(k \log (n/k))$
- When A is Fourier submatrix (Candes, Romberg and Tao, 2004)

• $m \approx O(k \log (n))$

• m can be even less using $||u||_p$ for p < 1 minimization (Candes-Wakin-Boyd, Chartrand, and Chartrand-Y)

What if *u* is not sparse?

- *u* is not sparse in most cases, but it needs to be sparse in some sense
- Sparse under basis (e.g., Fourier, wavelet, curvelet)
- Sparse under linear transforms (overcomplete basis, not invertible)
- Sparse under nonlinear transforms (e.g., total variation) $TV(u) = \sum_{ij} ||(\nabla u)_{ij}||_2$
- Has a low rank
- Has a low dimension embedding

Compressive Imaging

- Natural images *u* are sparse in the wavelet domain
- Φu is approximately sparse
- To recover u from Au=b, solve

$$\min_{u} \quad \|\Phi u\|_{1}$$

st
$$\|Au - b\|_{2} \le \epsilon$$

or

$$\min_{x} \quad \|x\|_{1}$$
st
$$\|(A\Phi^{-1})x - b\|_{2} \le \epsilon$$

Introduction to *Compressed Sensing*

Rice Single-Pixel Camera (Wakin *et al*)

TI Digital Micromirror Device (DMD)

1080p

0.55SVGA

0.7XGA

SXGA+

576P

DLP 1080p --> 1920 x 1080 resolution

Compressed MR Imaging

2D Fourier Transform

Inverse Fourier Transform

Compressed MR Imaging

- Data Model: b=Ru; R is Fourier
- Input: frequency response *b*
- Reconstruction:
 - R is full: solve b=Ru, solution is $u=R^{-1}b$
 - R is partial: b=Ru is underdetermined
 - *u* is sparse in the wavelet domain
 - u has a small total variation (the l_1 -norm of ∇u)

$$\min_{u} \quad \alpha \|\Phi u\|_{1} + TV(u)$$

s.t. $Ru = b.$

Numerical Examples

Figure 2. (a) is the original Brain image. (b), (c) and (d) are the recovered images at the sampling ratios of 38.65%, 21.67% and 8.66%, respectively.

Compressed Sensing

- Utilize the *sparsity* of a signal to reconstruct it from *a smaller number of measurements* than what is usually needed
- Procedure: encoding, sensing, decoding
 - Encoding: **nonadaptive**, linear, "random"
 - Sensing: acquiring measurements
 - Decoding: using optimization to recover the signal
- Advantages: improve the capacities of physical devices
 - Infra-red Imaging: higher resolution
 - CT: less radiation dosage
 - MRI: less time
 - multi-sensor distributive network: higher throughput, longer battery time
 - DNA microarrays: less cost
 - Low-light imaging, microcopy, video acquisition, hyper-spectral image classification

The Challenges

Such optimization problems

- Have large-scale and dense data (though not always)
- Are non-smooth

However,

• It is the solution that is sparse

Classical I_1 solvers

• Most of them solve

$$\min_y \|By - c\|_1$$

using simplex-type methods, interior-point, or Huber-norm approximation.

- Applied to geophysics and economics problems
- Invert or factorize a matrix involving *B*

Next, recent solvers ...

Different Formulations

• Unconstrained

$$\min_{u} \ \mu \|u\|_{1} + \frac{1}{2} \|Au - b\|_{2}^{2}$$

• Basis pursuit

$$\min_{u} \|u\|_{1}, \text{ s.t. } \|Au - b\|_{2} \leq \delta$$

LASSO

$$\min_u \|Au - b\|_2$$
, s.t. $\|u\|_1 \leq \gamma$

Constrained

 $\min_u \|u\|_1$, s.t. Au = b

(A Subset of) Recent Algorithm Types

- Path-following: *LARS, etc.*
 - Start from an easy problem
 - Gradually transform the easy problem to the original one
 - Solution path is piece-wise linear
 - Solve one (small) system of linear equations for each breakpoint
- Specialized interior-point method: I1_ls
 - More accurate than first-order methods
 - Use truncated Newton's method and preconditioned conjugate gradient
- Operator splitting:
 - Cheap per-iteration cost, more iterations
 - Accelerated by line search and continuation
 - Obtain optimal support quickly
- Gradient projection: GPSR, similar to operator splitting
- Bregman method:
 - Originally for the constrained problem, finite convergence

Operator Splitting

- Observation:
 - $||u||_1$ is nonsmooth but is separable
 - $||Au-b||_2^2$ is smooth but non-separable
- Solution: apply different operations

$$T_1 = \partial_u(\mu ||u||_1) \qquad T_2 = \partial_u \frac{1}{2} ||Au - b||_2^2$$

$$u^* = \arg \min \iff \vec{0} \in (T_1 + T_2)(u^*)$$

$$\Leftrightarrow \vec{0} \in (I + \tau T_1 - I + \tau T_2)(u^*)$$

$$\Leftrightarrow (I - \tau T_2)(u^*) \in (I + \tau T_1)(u^*)$$

$$\Leftrightarrow u^* = (I + \tau T_1)^{-1}(I - \tau T_2)(u^*)$$

 $I + \tau T_1$: gradient descent with stepsize τ $(I - \tau T_1)^{-1}$: shrinkage, a closed-form operator

Shrinkage, a component-wise separable operator:

- Shrinkage (soft thresholding) previously used by, as far as I know,
 - Chambolle, DeVore, Lee and Lucier
 - Figueiredo, Nowak, and Wright
 - Daubechies, De Frise and DeMul
 - Elad, Matalon and Zibulevsky
 - Hale, Yin and Zhang
 - Darbon and Osher
 - Combettes and Pesquet

MATLAB command: sign(v).*max(0,|v|-mu)

FPC (Hale, Y, and Zhang, 07)

$$u^{k+1} \leftarrow (I + \tau T_1)^{-1} (I - \tau T_2) (u^k)$$

- Method is not new, theorems are
- Theorem:

Under mild conditions, the algorithm converges linearly.

• Theorem:

The algorithm obtains the optimal support in a finite number of iterations.

For the constrained problem: $\min_u \|u\|_1$, s.t. Au = b

- Let μ go to 0, and solve the unconstrained problem
- Bregman Iterative Method (Y, Osher, Goldfarb, & Darbon, 2007)

Let
$$u^0 = 0$$
 and $b^0 = 0$. For $k = 0, 1, ...$
 $b^{k+1} \leftarrow b + (b^k - Au^k)$
 $u^{k+1} \leftarrow \arg\min_u \ \mu \|u\|_1 + \frac{1}{2} \|Au - b^k\|^2$

• Theorem:

The Bregman method converges to an exact solution in a finite number of steps for any μ >0.

Understanding the Unconstrained Problem

$$u(\mu) := \arg \min_{u} \ \mu \|u\|_1 + \frac{1}{2} \|Au - f\|^2$$

Understanding the Nonlinear Bregman Iterations Start from $u^0 = 0$ and $p^0 = 0$

Understanding the Nonlinear Bregman Iterations Step 1: $u^1 = \min_u \mu D(u; u^0, p^0) + \frac{1}{2} ||Au - f||^2$

Understanding the Nonlinear Bregman Iterations Step 2: $u^2 = \min_u \mu D(u; u^1, p^1) + \frac{1}{2} ||Au - f||^2$

Understanding the Nonlinear Bregman Iterations Step 3: $u^3 = \min_u \mu D(u; u^2, p^2) + \frac{1}{2} ||Au - f||^2$

Understanding the Nonlinear Bregman Iterations Step k: $u^k = \min_u \ \mu D(u; u^{k-1}, p^{k-1}) + \frac{1}{2} ||Au - f||^2$

 $u^{0} = 0$ u^{1} u^{2} u^{3} Au = f u^{*} Features: $u^{k} = u^{*} \text{ for some finite } k$ • path depends on μ

Linearized Bregman Iterations

Not converges finitely, but

- Code is extremely simple (MATLAB: 2 lines + stop. criteria)
- Larger components come out first, but code still fast to recover small components
- For 2¹⁰x2²⁰ problems, more like 40 seconds.

$l_{\rm p}$ -minimization versus $l_{\rm 1}$ -minimization

- Rao-Kreutz-Delgado, FOCUSS'99, Chartrand'06, Candes-Wakin-Boyd'07
- Chartrand-Y'07:

Iteratively Reweighted *LS* seems to be better than I_1

Sparsity under Nonlinear Transforms

For total variation: $TV(u) = \sum_{ij} ||(\nabla u)_{ij}||_2$

Long story short, 3 existing choices:

- Operator splitting (Darbon-Osher, Wang-Y.-Zhang, 07)
 - Solve $\min_{u} \mu TV(u) + \frac{1}{2} ||u u^{k+1/2}||_{2}^{2}$ using max-flow (Darbon-Sigelle, Chambolle, Goldfarb-Y)

Sparsity under Nonlinear Transforms

For total variation: $TV(u) = \sum_{ij} ||(\nabla u)_{ij}||_2$

Long story short, 3 existing choices:

- Operator splitting (Darbon-Osher, Wang-Y.-Zhang, 07)
 - Solve $\min_{u} \mu TV(u) + \frac{1}{2} ||u u^{k+1/2}||_{2}^{2}$
 - using max-flow (Darbon-Sigelle, Chambolle, Goldfarb-Y)
- A different splitting (Wang-Y.-Zhang, 07)

 $\min_{\vec{w},u} \mu \| \|\vec{w}_{ij}\|_1 + \beta \|\vec{w} - \nabla u\|_2^2 + \frac{1}{2} \|Au - b\|_2^2$

• Legrender-Fenchel Transform / Duality (Y., 07)

(a)

			1			(* ())
(E. 2)	16 3-4	15 31	1: 31	the set	15 34	
	A State	in it	R. S.	(6.3)	11.1	1:31

Acknowledgements

Special Thanks: 袁老师 and 戴老师 for their invitation and 刘昕 for his arrangement.

Collaborators on *L*¹-related minimization:

- Columbia: Don Goldfarb, Jianing Shi
- Rice CAAM: Yin Zhang, Elaine Hale, Yilun Wang
- Rice ECE: Rich Baraniuk, Kevin Kelly, etc.
- UCLA: Stan Osher, Jerome Darbon, Bin Dong, Yu Mao