## Compressed Sensing and L<sup>1</sup>-Related Minimization



Yin Wotao Computational and Applied Mathematics Rice University Jan 4, 2008 – Chinese Academy of Sciences – Inst. Comp. Math

# The Problems of Interest

• Unconstrained

$$\min_{u} \ \mu \|u\|_{1} + \frac{1}{2} \|Au - b\|_{2}^{2}$$

• Constrained

$$\min_u \|u\|_1, \text{ s.t. } Au = b$$

• They found applications in compressed sensing, statistics, ...

### **Compressed Sensing**

- We want to "compress" a signal
- Classical compression algorithms must know the signal first, but here the compression is done before signal is physically acquired
- The goal is to reduce the number of measurements

*u*: a signal with lots of null entries

- Apply a linear transform A to u, #row(A) < #col(A)
- Physically acquire b = Au
- How do we get u from b when b = Au is underdetermined?
- When *u* is sufficiently sparse and *b* is long enough, exact reconstruction is possible (both in theory and in practice)

### A test in MATLAB

- % Construct the compressed sensing problem
- n = 200;
- m = 100;
- A = randn(m, n);
- u = sprandn(n, 1, .1);

 $b = A^*u;$ 

% least squares reconstruction % min ||u||<sub>2</sub>, subject to A\*u=b u\_recon = pinv(A)\*b;

### A test in MATLAB



U



u\_recon

### A test in MATLAB via YALMIP and CVX

• Candes and Tao, Donoho suggest  $\min_{u} \|u\|_1$ st Au = b

```
>> x=sdpvar(n,1);
>> solvesdp([A*x==b],norm(x,1));
```

```
>> u_recon=double(x);
```

. . .

```
cvx_begin
variable u_recon(n)
minimize(norm(u_recon,1))
subject to
        A*u_recon==b
cvx_end
```

### A test in MATLAB



U

7

#### A test in MATLAB: noisy case

- % Construct the compressed sensing problem
- >> n = 200; >> m = 100; >> A = randn(m,n); >> u = full(sprandn(n,1,.1)); >> b = A\*u + 0.01\*randn(m,1); % add noise

>> epsilon = 0.02;

# YALMIP and CVX

$$\min_{u} \quad \|u\|_{1} \\ \text{st} \quad \|Au - b\|_{2} \le \epsilon$$

>> x=sdpvar(n,1);

>> solvesdp(norm(A\*x-b)<=epsilon,norm(x,1));

• • •

```
>> u_recon=double(x);
```

```
cvx_begin
variable u_recon(n)
minimize(norm(u_recon,1))
subject to
norm(A*x-b,2)<=epsilon</pre>
```

cvx\_end

### A test in MATLAB







u\_recon

### When is $l_1$ -reconstruction successful?

#### Def:

- *n*=dim(*u*) signal size
- $k = ||u||_0$  signal sparsity
- *m*=#.row(*A*) sample size
- When *A* is subgaussian (e.g. Gaussian, Bernoulli, etc.) (Mendelson et al)
  - $m \approx O(k \log (n/k))$
- When A is Fourier submatrix (Candes, Romberg and Tao, 2004)

•  $m \approx O(k \log (n))$ 

• m can be even less using  $||u||_p$  for p < 1 minimization (Candes-Wakin-Boyd, Chartrand, and Chartrand-Y)

### What if *u* is not sparse?

- *u* is not sparse in most cases, but it needs to be sparse in some sense
- Sparse under basis (e.g., Fourier, wavelet, curvelet)
- Sparse under linear transforms (overcomplete basis, not invertible)
- Sparse under nonlinear transforms (e.g., total variation)  $TV(u) = \sum_{ij} ||(\nabla u)_{ij}||_2$
- Has a low rank
- Has a low dimension embedding

# **Compressive Imaging**

- Natural images *u* are sparse in the wavelet domain
- $\Phi u$  is approximately sparse
- To recover u from Au=b, solve

$$\min_{u} \quad \|\Phi u\|_{1}$$
  
st 
$$\|Au - b\|_{2} \le \epsilon$$

or

$$\min_{x} \quad \|x\|_{1}$$
st 
$$\|(A\Phi^{-1})x - b\|_{2} \le \epsilon$$

### Introduction to *Compressed Sensing*



# Rice Single-Pixel Camera (Wakin *et al*)



# TI Digital Micromirror Device (DMD)





1080p



0.55SVGA



0.7XGA



SXGA+





576P



#### DLP 1080p --> 1920 x 1080 resolution



# Compressed MR Imaging











#### 2D Fourier Transform











#### Inverse Fourier Transform

















# **Compressed MR Imaging**

- Data Model: b=Ru; R is Fourier
- Input: frequency response *b*
- Reconstruction:
  - R is full: solve b=Ru, solution is  $u=R^{-1}b$
  - R is partial: b=Ru is underdetermined
    - *u* is sparse in the wavelet domain
    - u has a small total variation (the  $l_1$ -norm of  $\nabla u$ )

$$\min_{u} \quad \alpha \|\Phi u\|_{1} + TV(u)$$
  
s.t.  $Ru = b.$ 



## Numerical Examples



Figure 2. (a) is the original Brain image. (b), (c) and (d) are the recovered images at the sampling ratios of 38.65%, 21.67% and 8.66%, respectively.

# **Compressed Sensing**

- Utilize the *sparsity* of a signal to reconstruct it from *a smaller number of measurements* than what is usually needed
- Procedure: encoding, sensing, decoding
  - Encoding: **nonadaptive**, linear, "random"
  - Sensing: acquiring measurements
  - Decoding: using optimization to recover the signal
- Advantages: improve the capacities of physical devices
  - Infra-red Imaging: higher resolution
  - CT: less radiation dosage
  - MRI: less time
  - multi-sensor distributive network: higher throughput, longer battery time
  - DNA microarrays: less cost
  - Low-light imaging, microcopy, video acquisition, hyper-spectral image classification

#### The Challenges

Such optimization problems

- Have large-scale and dense data (though not always)
- Are non-smooth

However,

• It is the solution that is sparse

# Classical $I_1$ solvers

• Most of them solve

$$\min_y \|By - c\|_1$$

using simplex-type methods, interior-point, or Huber-norm approximation.

- Applied to geophysics and economics problems
- Invert or factorize a matrix involving *B*

Next, recent solvers ...

## **Different Formulations**

• Unconstrained

$$\min_{u} \ \mu \|u\|_{1} + \frac{1}{2} \|Au - b\|_{2}^{2}$$

• Basis pursuit

$$\min_{u} \|u\|_{1}, \text{ s.t. } \|Au - b\|_{2} \leq \delta$$

LASSO

$$\min_u \|Au - b\|_2$$
, s.t.  $\|u\|_1 \leq \gamma$ 

Constrained

 $\min_u \|u\|_1$ , s.t. Au = b

# (A Subset of) Recent Algorithm Types

- Path-following: *LARS, etc.* 
  - Start from an easy problem
  - Gradually transform the easy problem to the original one
  - Solution path is piece-wise linear
  - Solve one (small) system of linear equations for each breakpoint
- Specialized interior-point method: I1\_ls
  - More accurate than first-order methods
  - Use truncated Newton's method and preconditioned conjugate gradient
- Operator splitting:
  - Cheap per-iteration cost, more iterations
  - Accelerated by line search and continuation
  - Obtain optimal support quickly
- Gradient projection: GPSR, similar to operator splitting
- Bregman method:
  - Originally for the constrained problem, finite convergence

## **Operator Splitting**

- Observation:
  - $||u||_1$  is nonsmooth but is separable
  - $||Au-b||_2^2$  is smooth but non-separable
- Solution: apply different operations

$$T_1 = \partial_u(\mu ||u||_1) \qquad T_2 = \partial_u \frac{1}{2} ||Au - b||_2^2$$

$$u^* = \arg \min \iff \vec{0} \in (T_1 + T_2)(u^*)$$
  

$$\Leftrightarrow \vec{0} \in (I + \tau T_1 - I + \tau T_2)(u^*)$$
  

$$\Leftrightarrow (I - \tau T_2)(u^*) \in (I + \tau T_1)(u^*)$$
  

$$\Leftrightarrow u^* = (I + \tau T_1)^{-1}(I - \tau T_2)(u^*)$$

 $I + \tau T_1$ : gradient descent with stepsize  $\tau$  $(I - \tau T_1)^{-1}$ : shrinkage, a closed-form operator

# Shrinkage, a component-wise separable operator:

- Shrinkage (soft thresholding) previously used by, as far as I know,
  - Chambolle, DeVore, Lee and Lucier
  - Figueiredo, Nowak, and Wright
  - Daubechies, De Frise and DeMul
  - Elad, Matalon and Zibulevsky
  - Hale, Yin and Zhang
  - Darbon and Osher
  - Combettes and Pesquet



MATLAB command: sign(v).\*max(0,|v|-mu)

# FPC (Hale, Y, and Zhang, 07)

$$u^{k+1} \leftarrow (I + \tau T_1)^{-1} (I - \tau T_2) (u^k)$$

- Method is not new, theorems are
- Theorem:

Under mild conditions, the algorithm converges linearly.

• Theorem:

The algorithm obtains the optimal support in a finite number of iterations.

For the constrained problem:  $\min_u \|u\|_1$ , s.t. Au = b

- Let  $\mu$  go to 0, and solve the unconstrained problem
- Bregman Iterative Method (Y, Osher, Goldfarb, & Darbon, 2007)

Let 
$$u^0 = 0$$
 and  $b^0 = 0$ . For  $k = 0, 1, ...$   
 $b^{k+1} \leftarrow b + (b^k - Au^k)$   
 $u^{k+1} \leftarrow \arg\min_u \ \mu \|u\|_1 + \frac{1}{2} \|Au - b^k\|^2$ 

• Theorem:

The Bregman method converges to an exact solution in a finite number of steps for any  $\mu$ >0.

# Understanding the Unconstrained Problem

$$u(\mu) := \arg \min_{u} \ \mu \|u\|_1 + \frac{1}{2} \|Au - f\|^2$$



# Understanding the Nonlinear Bregman Iterations Start from $u^0 = 0$ and $p^0 = 0$



# Understanding the Nonlinear Bregman Iterations Step 1: $u^1 = \min_u \mu D(u; u^0, p^0) + \frac{1}{2} ||Au - f||^2$



# Understanding the Nonlinear Bregman Iterations Step 2: $u^2 = \min_u \mu D(u; u^1, p^1) + \frac{1}{2} ||Au - f||^2$



# Understanding the Nonlinear Bregman Iterations Step 3: $u^3 = \min_u \mu D(u; u^2, p^2) + \frac{1}{2} ||Au - f||^2$



# Understanding the Nonlinear Bregman Iterations Step k: $u^k = \min_u \ \mu D(u; u^{k-1}, p^{k-1}) + \frac{1}{2} ||Au - f||^2$

 $u^{0} = 0$   $u^{1}$   $u^{2}$   $u^{3}$  Au = f  $u^{*}$ Features:  $u^{k} = u^{*} \text{ for some finite } k$ • path depends on  $\mu$ 

# Linearized Bregman Iterations

Not converges finitely, but

- Code is extremely simple (MATLAB: 2 lines + stop. criteria)
- Larger components come out first, but code still fast to recover small components
- For 2<sup>10</sup>x2<sup>20</sup> problems, more like 40 seconds.

# $l_{\rm p}$ -minimization versus $l_{\rm 1}$ -minimization

- Rao-Kreutz-Delgado, FOCUSS'99, Chartrand'06, Candes-Wakin-Boyd'07
- Chartrand-Y'07:



# Iteratively Reweighted *LS* seems to be better than $I_1$



### Sparsity under Nonlinear Transforms

For total variation:  $TV(u) = \sum_{ij} ||(\nabla u)_{ij}||_2$ 

Long story short, 3 existing choices:

- Operator splitting (Darbon-Osher, Wang-Y.-Zhang, 07)
  - Solve  $\min_{u} \mu TV(u) + \frac{1}{2} ||u u^{k+1/2}||_{2}^{2}$ using max-flow (Darbon-Sigelle, Chambolle, Goldfarb-Y)



### Sparsity under Nonlinear Transforms

For total variation:  $TV(u) = \sum_{ij} ||(\nabla u)_{ij}||_2$ 

Long story short, 3 existing choices:

- Operator splitting (Darbon-Osher, Wang-Y.-Zhang, 07)
  - Solve  $\min_{u} \mu TV(u) + \frac{1}{2} ||u u^{k+1/2}||_{2}^{2}$ 
    - using max-flow (Darbon-Sigelle, Chambolle, Goldfarb-Y)
- A different splitting (Wang-Y.-Zhang, 07)

 $\min_{\vec{w},u} \mu \| \|\vec{w}_{ij}\|_1 + \beta \|\vec{w} - \nabla u\|_2^2 + \frac{1}{2} \|Au - b\|_2^2$ 

• Legrender-Fenchel Transform / Duality (Y., 07)









(a)



|        |         |       | 1     |         |       | (* ()) |
|--------|---------|-------|-------|---------|-------|--------|
| (E. 2) | 16 3-4  | 15 31 | 1: 31 | the set | 15 34 |        |
|        | A State | in it | R. S. | (6.3)   | 11.1  | 1:31   |



### Acknowledgements

Special Thanks: 袁老师 and 戴老师 for their invitation and 刘昕 for his arrangement.

Collaborators on *L*<sup>1</sup>-related minimization:

- Columbia: Don Goldfarb, Jianing Shi
- Rice CAAM: Yin Zhang, Elaine Hale, Yilun Wang
- Rice ECE: Rich Baraniuk, Kevin Kelly, etc.
- UCLA: Stan Osher, Jerome Darbon, Bin Dong, Yu Mao