
Yin Wotao

Computational and Applied Mathematics 

Rice University

Jan 4, 2008 – Chinese Academy of Sciences – Inst. Comp. Math

Compressed Sensing and L1-Related Minimization



2

Compressed Sensing and L1-Related Minimization

The Problems of Interest

• Unconstrained

• Constrained

• They found applications in compressed sensing, statistics, ...
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Compressed Sensing

• We want to “compress” a signal

• Classical compression algorithms must know the signal first, but

here the compression is done before signal is physically acquired

• The goal is to reduce the number of measurements

u: a signal with lots of null entries

• Apply a linear transform A to u, #row(A)<#col(A)

• Physically acquire b = Au

• How do we get u from b when b = Au is underdetermined?

• When u is sufficiently sparse and b is long enough, exact 

reconstruction is possible (both in theory and in practice)
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A test in MATLAB

% Construct the compressed sensing problem

n = 200;

m = 100;

A = randn(m,n);

u = sprandn(n,1,.1);

b = A*u;

% least squares reconstruction

% min ||u||2, subject to A*u=b

u_recon = pinv(A)*b;
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A test in MATLAB via YALMIP and CVX

• Candes and Tao, Donoho suggest

>> x=sdpvar(n,1);

>> solvesdp([A*x==b],norm(x,1));

...

>> u_recon=double(x);

cvx_begin

variable u_recon(n)

minimize(norm(u_recon,1))

subject to

A*u_recon==b

cvx_end
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A test in MATLAB: noisy case

% Construct the compressed sensing problem

>> n = 200;

>> m = 100;

>> A = randn(m,n);

>> u = full(sprandn(n,1,.1));

>> b = A*u + 0.01*randn(m,1); % add noise

>> epsilon = 0.02;
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YALMIP and CVX

>> x=sdpvar(n,1);

>> solvesdp(norm(A*x-b)<=epsilon,norm(x,1));

...

>> u_recon=double(x);

cvx_begin

variable u_recon(n)

minimize(norm(u_recon,1))

subject to

norm(A*x-b,2)<=epsilon

cvx_end
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Def: 

• n=dim(u) signal size

• k=||u||0 signal sparsity

• m=#.row(A) sample size

• When A is subgaussian (e.g. Gaussian, Bernoulli, etc.) 

(Mendelson et al)

• m ≈ O(k log (n/k))

• When A is Fourier submatrix (Candes, Romberg and Tao, 2004)

• m ≈ O(k log (n))

• m can be even less using ||u||p for p<1 minimization (Candes-

Wakin-Boyd, Chartrand, and Chartrand-Y)

When is l1-reconstruction successful?
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What if u is not sparse?

• u is not sparse in most cases, but it needs to be sparse in some 

sense

• Sparse under basis (e.g., Fourier, wavelet, curvelet)

• Sparse under linear transforms (overcomplete basis, not invertible)

• Sparse under nonlinear transforms (e.g., total variation)

• Has a low rank

• Has a low dimension embedding
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Compressive Imaging

• Natural images u are sparse in the wavelet domain

• Φu is approximately sparse

• To recover u from Au=b, solve

or
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Introduction to Compressed Sensing

Input Linear 

encoding
Signal 

acquisition
Signal 

reconstruction

Signal

representation
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Rice Single-Pixel Camera (Wakin et al)

Object
Light

DMD+ALP Board

Lens 1

Lens 2

Photodiode circuit
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DLP 1080p --> 1920 x 1080 resolution

TI Digital Micromirror Device (DMD)



17

Compressed Sensing and L1-Related Minimization

Compressed MR Imaging
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Magnetic + RF

2D Fourier Transform
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Magnetic + RF

Inverse Fourier Transform
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Magnetic + RF

?

Measure

a subset

of Freq.

Less time



21

Compressed Sensing and L1-Related Minimization

Compressed MR Imaging

• Data Model: b=Ru; R is Fourier

• Input: frequency response b

• Reconstruction:

– R is full: solve b=Ru, solution is u=R-1b

– R is partial: b=Ru is underdetermined

• u is sparse in the wavelet domain

• u has a small total variation (the l1–norm of ∇u)
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Numerical Examples
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Compressed Sensing

• Utilize the sparsity of a signal to reconstruct it from a smaller number 

of measurements than what is usually needed

• Procedure: encoding, sensing, decoding

– Encoding: nonadaptive, linear, “random”

– Sensing: acquiring measurements

– Decoding: using optimization to recover the signal

• Advantages: improve the capacities of physical devices

– Infra-red Imaging: higher resolution

– CT: less radiation dosage

– MRI: less time

– multi-sensor distributive network: higher throughput, longer battery time

– DNA microarrays: less cost

– Low-light imaging, microcopy, video acquisition, hyper-spectral image 

classification



24

Compressed Sensing and L1-Related Minimization

The Challenges

Such optimization problems

• Have large-scale and dense data (though not always)

• Are non-smooth

However,

• It is the solution that is sparse
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Classical l1 solvers

• Most of them solve 

using simplex-type methods, interior-point, or Huber-norm 
approximation.

• Applied to geophysics and economics problems

• Invert or factorize a matrix involving B

Next, recent solvers ...
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Different Formulations

• Unconstrained

• Basis pursuit

• LASSO

• Constrained
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(A Subset of) Recent Algorithm Types

• Path-following: LARS, etc.
– Start from an easy problem

– Gradually transform the easy problem to the original one

– Solution path is piece-wise linear

– Solve one (small) system of linear equations for each breakpoint

• Specialized interior-point method: l1_ls
– More accurate than first-order methods

– Use truncated Newton’s method and preconditioned conjugate gradient

• Operator splitting:
– Cheap per-iteration cost, more iterations

– Accelerated by line search and continuation

– Obtain optimal support quickly

• Gradient projection: GPSR, similar to operator splitting

• Bregman method:
– Originally for the constrained problem, finite convergence
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Operator Splitting

• Observation:

– ||u||1 is nonsmooth but is separable

– ||Au-b||2
2 is smooth but non-separable

• Solution: apply different operations
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Shrinkage, a component-wise separable operator:

• Shrinkage (soft thresholding) previously used by, as far as I know,

– Chambolle, DeVore, Lee and Lucier

– Figueiredo, Nowak, and Wright

– Daubechies, De Frise and DeMul

– Elad, Matalon and Zibulevsky

– Hale, Yin and Zhang

– Darbon and Osher

– Combettes and Pesquet

MATLAB command: sign(v).*max(0,|v|-mu)
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• Method is not new, theorems are

• Theorem:

Under mild conditions, the algorithm converges linearly.

• Theorem:

The algorithm obtains the optimal support in a finite number of 
iterations.

FPC (Hale, Y, and Zhang, 07)
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For the constrained problem:

• Let µ go to 0, and solve the unconstrained problem

• Bregman Iterative Method (Y, Osher, Goldfarb, & Darbon, 2007)

• Theorem:

The Bregman method converges to an exact solution in a finite number of 
steps for any µ>0.
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Understanding the Unconstrained Problem
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Understanding the Nonlinear Bregman Iterations
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Understanding the Nonlinear Bregman Iterations



35

Compressed Sensing and L1-Related Minimization

Understanding the Nonlinear Bregman Iterations
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Understanding the Nonlinear Bregman Iterations
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Understanding the Nonlinear Bregman Iterations

Features:

• uk = u* for some finite k

• path depends on µ
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Not converges finitely, but

• Code is extremely simple (MATLAB: 2 lines + stop. criteria)

• Larger components come out first, but code still fast to recover
small components

• For 210x220 problems, more like 40 seconds.

Linearized Bregman Iterations
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lp–minimization versus l1–minimization

• Rao-Kreutz-Delgado, FOCUSS’99, Chartrand’06, Candes-Wakin-
Boyd’07

• Chartrand-Y’07:
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Iteratively Reweighted LS seems to be better than l1
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Sparsity under Nonlinear Transforms

For total variation: 

Long story short, 3 existing choices:

• Operator splitting (Darbon-Osher, Wang-Y.-Zhang, 07)

– Solve

using max-flow (Darbon-Sigelle, Chambolle, Goldfarb-Y)
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Sparsity under Nonlinear Transforms

For total variation: 

Long story short, 3 existing choices:

• Operator splitting (Darbon-Osher, Wang-Y.-Zhang, 07)

– Solve

using max-flow (Darbon-Sigelle, Chambolle, Goldfarb-Y)

• A different splitting (Wang-Y.-Zhang, 07)

• Legrender-Fenchel Transform / Duality (Y., 07)
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Morphological
Opening

Input

TV-L1
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