Compressed Sensing and /1-Related Minimization

Yin Wotao
Computational and Applied Mathematics
Rice University
Jan 4, 2008 — Chinese Academy of Sciences — Inst. Comp. Math




Compressed Sensing and L1-Related Minimization

The Problems of Interest

« Unconstrained
ming pllulls + 5[l Au — b||3

« Constrained

ming ||ul|1, s.t. Au=1»

« They found applications in compressed sensing, statistics, ...
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Compressed Sensing

We want to “compress” a signal

Classical compression algorithms must know the signal first, but
here the compression is done before signal is physically acquired

The goal is to reduce the number of measurements

u: a signal with lots of null entries

Apply a linear transform A to u, #row(A)<#col(A)
Physically acquire b = Au
How do we get « from b when b = Awu is underdetermined?

When wu is sufficiently sparse and b is long enough, exact
reconstruction is possible (both in theory and in practice)
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A test in MATLAB

o\

Construct the compressed sensing problem

n = 200;

m = 100;

A = randn (m,n);

u = sprandn(n,1,.1);

b = A*u;

% least squares reconstruction
5 min ||ull,, subject to A*u=b

u_recon = pinv (A) *b;
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A test in MATLAB
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A test in MATLAB via YALMIP and CVX

« Candes and Tao, Donoho suggest muin ||| 1

st Au=5b

>> x=sdpvar (n,1l);
>> solvesdp ([A*x==b],norm(x,1));

>> u_recon=double (x) ;

cvx_begin
variable u_recon (n)
minimize (norm(u_recon, 1l))
subject to
A*u_recon==Db
cvx_end
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A test in MATLAB
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A test in MATLAB: noisy case

[¢)

% Construct the compressed sensing problem
>> n = 200;

>> m = 100;

>> A = randn (m,n);

>> u = full (sprandn(n,1,.1));

>> b = A*u + 0.01l*randn(m,1); % add noise

min  ully

st [JAu—b|2<c¢

>> epsilon = 0.02;
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YALMIP and CVX

min [l

st [JAu—2Df2 <e

>> x=sdpvar (n,1l);
>> solvesdp (norm(A*x-b) <=epsilon, norm(x,1));

>> u_recon=double (x);

CVX_lbegin
variable u_recon(n)
minimize (norm(u_recon, 1))
subject to
norm (A*x-b, 2) <=epsilon
cvx_end
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A test in MATLAB
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When is /-reconstruction successful?

Def:

» n=dim(u) signal size

* k=||ul|, signal sparsity

* m=#.row(A) sample size

* When A is subgaussian (e.g. Gaussian, Bernoulli, etc.)
(Mendelson et al)
*m =~ O(k log (n/k))
* When A is Fourier submatrix (Candes, Romberg and Tao, 2004)
*m ~ O(k log (n))
* m can be even less using ||u||, for p<1 minimization (Candes-
Wakin-Boyd, Chartrand, and Chartrand-Y)
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What if « is not sparse?

« w is not sparse in most cases, but it needs to be sparse in some
sense

« Sparse under basis (e.g., Fourier, wavelet, curvelet)
« Sparse under linear transforms (overcomplete basis, not invertible)
« Sparse under nonlinear transforms (e.g., total variation)
TV (u) = 35 I(Vu)yl2
« Has a low rank
« Has a low dimension embedding
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Compressive Imaging

or

Natural images u are sparse in the wavelet domain
du is approximately sparse

To recover v from Au=b, solve
min  [|®ully
st [JAu—b|2<c¢

min el

st (AP~ H)z — b2 <e
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Introduction to Compressed Sensing

Input Linear Signal Signal Signal
encoding acquisition reconstruction representation

U Au b—=Au g = du > 1y
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TI Digital Micromirror Device (DMD)

Mirror =10 deg

0.7XGA SXGA+

HD2 576P

480P

DLP 1080p --> 1920 x 1080 resolution "
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Compressed MR Imaging
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Magnetic + RF

2D Fourier Transform

[
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Magnetic + RF

Inverse Fourier Transform

S —
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Measure
Magnetic + RF a subset
of Freq.

? .
i
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Compressed MR Imaging

« Data Model: b=Ru; R is Fourier
« Input: frequency response b
« Reconstruction:
— R is full: solve b=Ru, solution is u=R1b
— R is partial: b=Ru is underdetermined
« u IS sparse in the wavelet domain
 u has a small total variation (the f—norm of Vu)

min  «af|Pul|1 + TV (u)

Uu

S.t. Ru = b.
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Numerical Examples
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Figure 2. (a) is the original Brain image. (b), (¢) and (d) are the
recovered images at the sampling ratios of 38.65%, 21.67% and
8.66%, respectively.
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Compressed Sensing

« Utilize the sparsity of a signal to reconstruct it from a smaller number
of measurements than what is usually needed

* Procedure: encoding, sensing, decoding
— Encoding: nonadaptive, linear, “random”
— Sensing: acquiring measurements
— Decoding: using optimization to recover the signal
« Advantages: improve the capacities of physical devices
— Infra-red Imaging: higher resolution
— CT: less radiation dosage
— MRI: less time
— multi-sensor distributive network: higher throughput, longer battery time
— DNA microarrays: less cost
— Low-light imaging, microcopy, video acquisition, hyper-spectral image
classification
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The Challenges

Such optimization problems

« Have large-scale and dense data (though not always)
« Are non-smooth

However,
« It is the solution that is sparse
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Classical / solvers

« Most of them solve
min | By — |1

using simplex-type methods, interior-point, or Huber-norm
approximation.

« Applied to geophysics and economics problems

« Invert or factorize a matrix involving B

Next, recent solvers ...
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Different Formulations

Compressed Sensing and L1-Related Minimization

Unconstrained

Basis pursuit

LASSO

Constrained

MiNg,

MiNg,

MiNg,

MiNg,

pllully + 5]l Au — |3
ull1, s.t. ||Au—b|2 <&

|Au — bl|2, s.t. ||ull1 <~

|lul|1, s.t. Au=1>
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(A Subset of) Recent Algorithm Types

Path-following: LARS, etc.

— Start from an easy problem

— Gradually transform the easy problem to the original one

— Solution path is piece-wise linear

— Solve one (small) system of linear equations for each breakpoint
Specialized interior-point method: I1_Is

— More accurate than first-order methods

— Use truncated Newton’s method and preconditioned conjugate gradient
Operator splitting:

— Cheap per-iteration cost, more iterations

— Accelerated by line search and continuation

— Obtain optimal support quickly
Gradient projection: GPSR, similar to operator splitting

Bregman method:
— Originally for the constrained problem, finite convergence
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Operator Splitting

« Observation:
— ||ul]|; is nonsmooth but is separable
— || Au-b]|,? is smooth but non-separable

« Solution: apply different operations
Ty = du(ullull1) To = duz Au — b||3
w*=argmin < 0 e (71 + 1) (u*)
s 0e(+1Ty— 1+ 71) W)

& (I—-1T)(W™) e (I +7T1)(u™)
& u' =+ T - 1) (u")

I 4+ 717 : gradient descent with stepsize 7
(I —7T7)~1 : shrinkage, a closed-form operator
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Shrinkage, a component-wise separable operator:

« Shrinkage (soft thresholding) previously used by, as far as I know,
— Chambolle, DeVore, Lee and Lucier
— Figueiredo, Nowak, and Wright
— Daubechies, De Frise and DeMul
— Elad, Matalon and Zibulevsky
— Hale, Yin and Zhang
— Darbon and Osher
— Combettes and Pesquet

»

 [shrink(v, 1)];

/“‘)uwi

MATLAB command: sign(v).*max(0, |v|-mu)
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FPC (Hale, Y, and Zhang, 07)
uF Tt — (I 4+ 7T1) 71T — 712) (uF)
« Method is not new, theorems are

« Theorem:
Under mild conditions, the algorithm converges linearly.

« Theorem:

The algorithm obtains the optimal support in a finite number of
iterations.
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For the constrained problem: miny |jull1, s.t. Au=1»

« Let 1 goto 0, and solve the unconstrained problem
« Bregman Iterative Method (Y, Osher, Goldfarb, & Darbon, 2007)

Let w9 =0 and 8 =0. For k=0,1,...
b+l — b4 (bF — AuF)

uF L argming pllully + Al Au — 6|2

« Theorem:

The Bregman method converges to an exact solution in a finite number of
steps for any 1>0.
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Understanding the Unconstrained Problem

w(p) = argming pllully + 5| Au — f||?
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Understanding the Nonlinear Bregman Iterations
Start from «°® =0 and p° =0
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Understanding the Nonlinear Bregman Iterations
Step 1: u! = min, pD(u;u®, p°) + %HAU — flI?

w0 =0

"

ul

34



Compressed Sensing and L1-Related Minimization

Understanding the Nonlinear Bregman Iterations
Step 2: u? = min, puD(u;u!,pt) + %HAU — flI?

w0 =0

e

ul 2

:
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Understanding the Nonlinear Bregman Iterations
Step 3: u® = min, puD(u;u?, p?) + %HAU — flI?
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Understanding the Nonlinear Bregman Iterations
Step ki u = miny pD(u;ut! p" 1) + 3] Au — f|

w0 =0

Features:

e u* = u* for some finite k

* path depends on u
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Linearized Bregman Iterations

Not converges finitely, but
« Code is extremely simple (MATLAB: 2 lines + stop. criteria)

« Larger components come out first, but code still fast to recover
small components

« For 219x220 problems, more like 40 seconds.
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f,—minimization versus 4—minimization

Rao-Kreutz-Delgado, FOCUSS’99, Chartrand’06, Candes-Wakin-
Boyd'07
Chartrand-Y’07:

—l

! B = 1, unreg
W : —&—p=1/2,unreg |
.I: . = p= 0, unreg

=]
&
T

=
=

=
ha
T

exact reconstruction trequency
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Iteratively Reweighted LS seems to be better than /

exact reconstruction frequency
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Compressed Sensing and L1-Related Minimization

| —*—p=12,1RL

—%—p=1,IRL'

e p = 0, IAL’
—&—p=1,IRLS
s p=1/2, IRLS
—&—p=0,IRLS

M =100, N = 256
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Sparsity under Nonlinear Transforms

For total variation: TV (u) = 3;; [[(Vu)jll2

Long story short, 3 existing choices:
« Operator splitting (Darbon-Osher, Wang-Y.-Zhang, 07)
— Solve mMing TV (u) + %Hu — uk"'l/QH%
using max-flow (Darbon-Sigelle, Chambolle, Goldfarb-Y)
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Sparsity under Nonlinear Transforms

For total variation: TV (u) = 3;; [[(Vu)jll2

Long story short, 3 existing choices:
« Operator splitting (Darbon-Osher, Wang-Y.-Zhang, 07)
— Solve mMing TV (u) + %Hu — uk"'l/QH%
using max-flow (Darbon-Sigelle, Chambolle, Goldfarb-Y)
« A different splitting (Wang-Y.-Zhang, 07)
Ming o, pll [@ij] 11 + Bllw — Vull3 4+ 5| Au — b3
« Legrender-Fenchel Transform / Duality (Y., 07)
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Morphological
Opening
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