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Outline

• Ad Hoc Wireless Sensor Network Localization

• SDP Relaxations and analyses

• SDP Decomposions and analyses

• Localization Demonstrations
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Ad Hoc Wireless Sensor Network Localization

• Input m known points (anchors) ak ∈ R2, k = 1, ..., m, and n unknown

points (sensors or targets) xj ∈ R2, j = 1, ..., n. For some pair of two

points, we have a Euclidean distance measure d̂kj between ak and xj , or

distance measure d̂ij between xi and xj .

• Output Position estimation for all unknown points, and confidence measures

on reliability of each position estimation.

• Objective Robust, fast and accurate.
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Figure 1: 50-Sensor Network with Radio Range .3
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Related Work

• A great deal of research has been done on the topic of position estimation in

ad-hoc networks, see Hightower and Boriello (2001) and Ganesan et al.

(2002); Beacon grid: e.g., Bulusu and Heidemann (2000) and Howard et al.

(2001); Distance measurement: e.g., Doherty et al. (2001), Niculescu and

Nath (2001), Savarese et al. (2002), Savvides et al. (2001, 2002), Shang et

al. (2003), Eren et al. (2004).

• Multidimensional scaling: Schoenberg and Young/Householder (1932)

studied the case where all pairwise distances are given; Metric embedding:

Johnson and Lindenstrauss (1984) and Bourgain (1985)

• Barvinok, Pataki, Alfakih/Wolkowicz and Laurent used SDP models to show

that the problem is solvable in polynomial time if the dimension of the

localization is not restricted. However, if we require the realization to be in Rd

for some fixed d, then the problem becomes NP–complete (e.g., Saxe 1979,
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Aspnes, Goldenberg, and Yang 2004).

• This talk: Using SDP to identify families of graph instances that admit

polynomial time algorithms for computing a localization in the required

dimension (SODA’05, ACM, IEEE, Math. Programing ...); and propose a

further relaxation to improve solution efficiency.
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Euclidean Distance Geometry Model

‖xi − xj‖2 = d2
ij , ∀ (i, j) ∈ Nx, i < j,

‖ak − xj‖2 = d2
kj , ∀ (k, j) ∈ Na,

d2
ij (d2

kj ) connects xi to xj (ak to xj ) with an edge whose length is dij (dkj ).

Does the system has a localization or realization of all xj ’s? Is the localization

unique? Is the localization reliable or trustworthy? Is the system partially

localizable?
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Convex Optimization Method: SOCP

‖xi − xj‖2 ≤ d2
ij , ∀ (i, j) ∈ Nx, i < j,

‖ak − xj‖2 ≤ d2
kj , ∀ (k, j) ∈ Na.

Doherty et al. (2001) and Tseng (2005).
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Global and Nonlinear Least Squares

min
∑

i,j∈Nx
(‖xi − xj‖2 − d2

ij)
2 +

∑
k,j∈Na

(‖ak − xj‖2 − d2
kj)

2

min
∑

i,j∈Nx
(‖xi − xj‖ − dij)2 +

∑
k,j∈Na

(‖ak − xj‖ − dkj)2

For example, Moré and Wu (1997).
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Matrix Representation

Let X = [x1 x2 ... xn] be the 2× n matrix that needs to be determined. Then

‖xi−xj‖2 = eT
ijX

T Xeij and ‖ak−xj‖2 = (ak; ej)T [I X]T [I X](ak; ej),

where eij is the vector with 1 at the ith position,−1 at the jth position and zero

everywhere else; and ej is the vector of all zero except−1 at the jth position.

eT
ijY eij = d2

ij , ∀ i, j ∈ Nx, i < j,

(ak; ej)T


 I X

XT Y


 (ak; ej) = d2

kj , ∀ k, j ∈ Na,

Y = XT X.
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SDP Relaxation and Analyses

Change

Y = XT X

to

Y º XT X.

This matrix inequality is equivalent to (e.g., Boyd et al. 1994)

 I X

XT Y


 º 0.



Sensor Network Localization Beijing, September 2006 12

SDP standard form

Z =


 I X

XT Y


 .

Find a symmetric matrix Z ∈ R(2+n)×(2+n) such that

Z1:2,1:2 = I

(0; eij)(0; eij)T • Z = d2
ij , ∀ i, j ∈ Nx, i < j,

(ak; ej)(ak; ej)T • Z = d2
kj , ∀ k, j ∈ Na,

Z º 0.

Any matrix solution for the SDP relaxation has rank at least 2. If every sensor

point is connected, directly or indirectly, to an anchor point, then the solution set

must be bounded.
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The dual of the SDP relaxation

minimize I • V +
∑

i<j∈Nx
wijd

2
ij +

∑
k,j∈Na

wkjd
2
kj

subject to


 V 0

0 0


 +

∑
i<j∈Nx

wij(0; eij)(0; eij)T

+
∑

k,j∈Na
wkj(ak; ej)(ak; ej)T º 0,

where variable matrix V ∈M2, varaible wij is the weight on edge from xi to

xj , and wkj is the weight on edge from ak to xj .

Note that the dual is always feasible since V = 0 and all w· equal 0 is a feasible

solution.
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Localizable problem

A sensor network is localizable if there is a unique localization in R2 and there is

no xj ∈ Rh, j = 1, ..., n, where h > 2, such that

‖xi − xj‖2 = d2
ij , ∀ i, j ∈ Nx, i < j,

‖(ak;0)− xj‖2 = d2
kj , ∀ k, j ∈ Na.

The latter says that the problem cannot be localized in a higher dimension space

where anchor points are augmented to (ak;0) ∈ Rh, k = 1, ...,m.
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Figure 2: One sensor-Two anchors: Not localizable
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When is the problem localizable?

Theorem 1. The following statements are equivalent:

1. The sensor network is localizable;

2. The max-rank solution of the SDP relaxaion has rank 2;

3. The solution matrix has Y = XT X or Trace(Y −XT X) = 0 .

When the dual has a solution with rank n, then the problem is strongly localizable.
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Figure 3: Two sensor-Three anchors: Strongly Localizable
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Figure 4: Two sensor-Three anchors: Localizable but not Strongly
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Figure 5: Two sensor-Three anchors: Not localizable
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Figure 6: Two sensor-Three anchors: Stronly Localizable

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6



Sensor Network Localization Beijing, September 2006 21

Localize All Localizable Points

Theorem 2. If a problem (graph) contains a subproblem (subgraph) that is

localizable, then the submatrix solution corresponding to the subproblem in the

SDP solution has rank 2. That is, the SDP relaxation computes a solution that

localize all possibly localizable unknown sensor points.

Implication: Trace,

Trace(Ȳ − X̄T X̄) =
n∑

j=1

(Ȳjj − ‖x̄j‖2)

Ȳjj − ‖x̄j‖2 can be used as a measure to see whether jth sensor’s estimated

position is reliable or not.
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Uncertainty Analysis and Confidence Measure

Alternatively, each xj ’s can be viewed as uncertain points from the incomplete

distance measures. Then the solution to the SDP problem provides the first and

second moment estimation (Bertsimas and Ye 1998).

Generally, x̄j is a point estimate of xj and Ȳij is a point estimate xT
i xj .

Consequently,

Ȳjj − ‖x̄j‖2,
which is the individual variance estimation of sensor j, gives an interval

estimation for its true position.
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SDP Computation

SDP solvers used were SeDuMi (Sturm, 2001) and DSDP2.0 (Benson et al.

1998).

In our computational experiments:

dij = truedij · (1 + randn(1) · nf)
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Rounding the SDP solution

• When measurement noises exist or problem is not localizable, the SDP

solution almost always has a high rank. How to round the high-rank solution

into a low rank?

• Gradient-based local search: using the SDP relaxation solution as the initial

point, we apply the steepest descent method to further reducing the

estimation error:
∑

i,j∈Nx

(‖xi − xj‖2 − d2
ij)

2 +
∑

k,j∈Na

(‖ak − xj‖2 − d2
kj)

2

or ∑

i,j∈Nx

(‖xi − xj‖ − dij)2 +
∑

k,j∈Na

(‖ak − xj‖ − dkj)2

• A checkable bound of suboptimality can be used to ensure the solution quality.
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Figure 7: Gradient search trajectories: Two sensor-Three anchor Example
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Figure 8: SDP/Gradient search trajectories: 10% Noise Example
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Figure 9: The objective value reduction: 10% Noise Example
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Figure 10: No-SDP/Gradient search trajectories: 10% Noise Example
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Figure 11: SDP lower bound and suboptimal objective function value vs noisy

factor
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NSDP Decomposition: Further Relaxation

Replace

(C1) :


 I X

XT Y


 º 0;

by

(C2) :




I xi xi1 ... xid(i)

xT
i Yii Yii1 ... Yiid(i)

xT
i1

Yi1i Yi1i1 ... Yi1id(i)

... ... ... ... ...

xT
id(i)

Yid(i)i Yid(i)i1 Yid(i)id(i)




º 0, ∀i,

where (i, iik) ∈ Nx and d(i) is the degree of sensor node i.
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ESDP Decomposition: Further Relaxation

Replace

(C1) :


 I X

XT Y


 º 0;

by

(C2) :




I xi xj

xT
i Yii Yij

xT
j Yji Yjj


 º 0, ∀(i, j) ∈ Nx.
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Analyses

A undirected graph is a chordal graph if every cycle of length greater than three

has a chord.

A square matrix is called to be partial symmetric if it is symmetric to the extent of

its specified entries, i.e., if the (i, j) entry of the matrix is specified, then so is the

(j, i) entry and the two are equal. A partial semi-definite matrix is a partial

symmetric matrix and every fully specified principal submatrix is positive

semi-definite.

Lemma 1. (Hogben 2001) Every partial positive semi-definite matrix with

undirected graph G has positive semi-definite completion if and only if G is

chordal.
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The Equivalence Theorem for NSDP

Theorem 3. (Wang, Zheng, Boyd and Ye [2006]) Suppose the undirected graph

of sensor nodes with edge set Nx is chordal, then SDP and NSDP relaxations

are equivalent.
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The Trace Theorem for ESDP

Theorem 4. Let

Z =


 I X

XT Y




be a solution of ESDP computed by a path-following method. If the diagonal

entry or individual trace

(Y −XT X)ī̄i = 0

then the īth column of X , xī, must be the true location of the īth sensor, and xī

is invariant over all solutions Z for ESDP.
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Relations of ESDP and SOCP

Let

Z =


 I X

XT Y




be a solution of ESDP. Then, X is also feasible for SOCP; and the reverse is not

true.
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ESDP Computational Results
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Test Problem # n nf r SDP dim

1 100 0 0.25 3815× 7372

2 100 0.005 0.25 3815× 7372

3 100 0.05 0.25 3815× 7372

4 500 0 0.1 13685× 27166

5 500 0.005 0.1 13685× 27166

6 500 0.05 0.1 13685× 27166

7 1000 0 0.06 28879× 57004

8 1000 0.005 0.06 28879× 57004

9 1000 0.05 0.06 28879× 57004

10 4000 0 0.035 133759× 261214

Table 1: Input parameters for the test problems and the corresponding SDP dimen-

sions
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Test Problem # iter CPUtime obj RMSD

1 13 4.65 2e-4 4.8e-5

2 17 6.17 6.9e-4 2.9e-4

3 17 5.1 3e-4 1e-3

4 14 21.73 6.5e-5 4e-6

5 15 21.87 1.5e-3 3e-4

6 17 24.35 0.035 1e-3

7 15 65.64 4e-3 9e-4

8 16 72.86 4.5e-3 0.03

9 17 73.26 0.024 0.03

10 17 1035.45 0.024 3e-4

Table 2: ESDP mumerical results where CPUtime are in seconds on a laptop with

256MB Memory and 1.4GHz CPU
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Figure 12: Graphical localization result of the ESDP model on the problem of Nie,

500 sensors, 4 anchors, r = 0.3, RMSD=1e− 6
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ESDP and SOCP Comparisons

Test Problem # n nf r ESDP SeDuMi of SOCP SCGD of SOCP

1 500 0 0.1 21.73sec 5.5min 0.4min

2 500 0.005 0.1 21.87sec 5.4min 3.3min

3 500 0.05 0.1 24.35sec 4.6min 2.2min

4 1000 0 0.06 65.64sec 209.6min 1.3 min

5 1000 0.005 0.06 72.86sec 230.1min 6.8min

6 1000 0.05 0.06 73.26sec 176.6min 3.75min

Table 3: ESDP times are taken on a laptop (256MB and 1.4GHz), and SOCP times

are reported from Tseng on a HP DL360 (1G Memory and 3GHz)
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Related Problem: the Graph Realization Problem

Given a graph G = (V, E) and a set of non–negative edge weights

{dij : (i, j) ∈ E}, the goal is to compute a realization of G in the Euclidean

space Rd for a given dimension d, i.e. to place the vertices of G in Rd such that

the Euclidean distance between every pair of adjacent vertices (i, j) in E equals

the prescribed weight dij .
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d–Realizable Graphs

A graph is d–realizable if it can always be realized in Rd whenever it is realizable

(the edge weights are Euclidean metric) for every instance of the graph.

• Connelly and Sloughter have recently given a complete characterization of

the class of d–realizable graphs, where d = 1, 2, 3

• It is trivial to find a realization of an 1–realizable graph, since a graph is

1–realizable iff it is a forest.

• A polynomial time algorithm for realizing 2–realizable graphs exists:

triangulation.

• Finding a corresponding algorithm for 3–realizable graphs is posed as an

open question.
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3–realizable graph II

Using the forbidden minor characterization of partial 3–trees, one can show that a

graph is 3–realizable if it either

• contains an V8 or an C5 × C2 as a minor

• or does not contain either graphs as a minor.

Indeed, if it is the latter, then G is a partial 3–tree.

An k-tree is defined recursively as follows. The complete graph on k vertices is

an k–tree. An k–tree with n + 1 vertices (where n ≥ k) can be constructed from

an k–tree with n vertices by adding a vertex adjacent to all vertices of one of its

k–vertex complete subgraphs, and only to those vertices.

A partial k–tree is a subgraph of an k–tree.
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Figure 13: V-8
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Our Result

We resolve the above open question by giving a polynomial time algorithm for

(approximately) realizing 3–realizable graphs.

The main bottleneck in the proof is to show that two graphs, V8 and C5 × C2,

are 3–realizable.

There exists a realization p of H ∈ {V8, C5 × C2} such that the distance

between a certain pair of non–adjacent vertices (i, j) is maximized. Such a

realization induces a non–zero equilibrium stress on the graph H ′ obtained from

H by adding the edge (i, j). Then use this equilibrium force to prove that H ′

must be in R3.

We show that the problem of computing the desired p can be formulated as an

SDP. More interesting is that the optimal dual multipliers of our SDP give rise to a

non–zero equilibrium stress.
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Related Problem: the Kissing Number Problem

• Given a unit center sphere, the maximum number of unit spheres, in n

dimensions, can touch or kiss the center sphere?

• General Solutions does not exist.

• Delsarte Method uses linear programming to provide an upper bound on the

number of spheres.

• K(8) = 240, K(24) = 196650.

• K(4) = 24: proved using Delsarte Method by Oleg Musin only 3 years ago.

• For other dimensions, lower bounds have been provided by constructing a

lattice structure. There also exists a bound using the Riemann zeta function,

but is non-constructive.
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The Kissing Problem as a Graph Realization

• Can be formulated as a SDP feasibility problem; but SDP solution may not

provide proper rank.

(ei − ej)T X(ei − ej) ≥ 4, ∀i 6= j,

eT
i Xei = 4, ∀i

• Construct a nonzero SDP objective function to reduce the rank of a solution.

min C •X,

s.t. (ei − ej)T X(ei − ej) ≥ 4, ∀i 6= j,

eT
i Xei = 4, ∀i
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Solving the 3-D Kissing Problem

This objective structure can be extended to dimension 3. For 12 spheres, SDP

method provides the following realization
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Figure 14: 12 Spheres in 3-D
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The Kissing Problem and Coding

Given the number of points, find the largest r such that

(ei − ej)T X(ei − ej) ≥ (1 + r)2, ∀i 6= j,

eT
i Xei = (1 + r)2, ∀i

has a rank 3 matrix solution.

Schoenberg’s theorem on the Gegenbauer polynomial may be used to strenghten

the above SDP formulation.
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More Applications

• Global Position System (GPS)

• Molecular conformation

• Data dimension reduction

• Euclidean ball packing
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More research topics

• Sensor Network Design: how many anchors need to be used? Where to

place them?

• Why ESDP works well?

• Applicable to solving general SDPs?

• How to efficiently round an SDP solution matrix into a lower rank solution

matrix (if it exists)?


