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Penalty Functions

Penalty Idea

Consider the nonlinear optimization problem:

min f (x)

subject to ci(x) = 0, i = 1, ..., me;

ci(x) ≥ 0, i = me + 1, ...., m.

Feasible Set X

X = {x | ci(x) = 0, i = 1, ..., me; ci(x) ≥ 0, i = me + 1, ...., m.}

Objective: Find the best point in X .

Questions How about the points that are not belong to X?
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Penalty Functions Courant(simple) Penalty Function
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Penalty Functions Courant(simple) Penalty Function

Constraint Violation

Consider the simple case:
m = me > 0 (Equality Constrained Optimization)

A point is feasible if and only if ‖c(x)‖2 = 0

‖c(x)‖2 is a Constraint Violation.

A penalty term is a non-negative term that is zero if and only if the
variable is feasible.

A penalty function normally consists of the objective function and a
penalty term. For example

Pσ(x) = f (x) + σ‖c(x)‖22
The above function is called the Courant Penalty Function
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Penalty Functions Courant(simple) Penalty Function

Properties of the Courant Penalty Function

Assume that there exists a σ0 > 0 such that Pσ0(x) is bounded below
(we call that the constrained problem can be well-penalized.)

Let x(σ) be the solution of
min
x∈<n

Pσ(x) = f (x) + σ‖c(x)‖22.

Theorem Let 0 < σ1 < σ2. Then

f (x(σ1)) ≤ f (x(σ2))

‖c(x(σ1))‖2 ≥ ‖c(x(σ2))‖2
Theorem Let δ = ‖c(x(σ))‖2. x(σ) is also the solution of

min
x∈<n

f (x)

subject to ‖c(x)‖2 ≤ δ.
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Penalty Functions Courant(simple) Penalty Function

Theorem
lim

σ→∞
‖c(x(σ))‖2 = min

x∈<n
‖c(x)‖2.

Proof If the theorem is not true, there exists x̂ such that

‖c(x(σ))‖2 ≥ γ > ‖c(x̂)‖2 > min
x∈<n

‖c(x)‖2.

holds for all σ > σ0.
Therefore, for all σ > σ0, we can show that

f (x̂) + σ‖c(x̂)‖22 ≥ f (x(σ)) + σ‖c(x(σ))‖22
=

[
f (x(σ)) + σ0‖c(x(σ))‖22

]
+ (σ − σ0)‖c(x(σ))‖22

≥
[
f (x(σ0)) + σ0‖c(x(σ0))‖22

]
+ (σ − σ0)γ

2

Dividing both sides by σ and letting σ →∞ we obtain a contradiction.
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Penalty Functions Courant(simple) Penalty Function

A Penalty Function Method Based on Courant PF

Algorithm (A penalty function method)

Step 1 Given x0 ∈ <n, σ1 > 0, ε ≥ 0, k := 1

Step 2 Solve(starting from xk ):

min
x∈<n

Pσk (x)

obtaining x(σk ).

Step 3 If ‖c(x(σk )‖2 ≤ ε then stop.
Set xk+1 := x(σk ), σk+1 := 10σk ;
k := k + 1, go to Step 2.
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Penalty Functions Courant(simple) Penalty Function

Convergence of Penalty Function Method

Theorem If ε > min ‖c(x)‖2, the penalty function method will
terminate after finitely many iterations.

Theorem If σk →∞, any accumulation point x∗ of xk is a solution of

min
x∈<n

f (x)

subject to ‖c(x)‖2 = miny∈<n ‖c(y)‖2.

Assume that ‖c(x∗)‖ = 0 (feasible), we have

‖c(xk+1)‖ = O(1/σk ).

‖xk+1 − x∗‖ = O(1/σk ).

‖λk+1 − λ∗‖ = O(1/σk ).
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Penalty Functions Barrier Functions/Interior Point Penalty Functions

Consider the inequality constrained problem:

min
x∈<n

f (x)

s. t . ci(x) ≥ 0, i = 1, ..., m.

A barrier term is a term that approaches to positive infinity if the
variable approaches to the boundary of the feasible region.

A Barrier Function normally consists the objective function and a
barrier term.

P(x) = f (x) +
1
σ

h(c(x))

Ya-xiang Yuan (ICMSEC, CAS) Nonlinear Optimization II Sept 22, 2006 11 / 46



Penalty Functions Barrier Functions/Interior Point Penalty Functions

Some Barrier Functions

Inverse barrier function

Pµ(x) = f (x) + µ

m∑
i=1

1
ci(x)

Logarithmic barrier function

Pµ(x) = f (x) + µ
m∑

i=1

log(
1

ci(x)
)

Homework
NLP-HW4: Could you give another barrier function, and compare it
with the Log-barrier function?
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Penalty Functions Multiplier Penalty Functions

How to Avoid Infinite Penalty Parameter?

Another look of the simple penalty function: Pσ(x) = f (x) + σ‖c(x)‖22:

∇f (x(σ)) + σ

m∑
i=1

ci(x(σ))∇ci(x(σ)) = 0

when x(σ)→ x∗, −σci(x(σ))→ λ∗i .

If λi = 0 for all i , we may not require σ →∞!

Consider the equivalent problem:

min f (x)−
m∑

i=1

λ∗i ci(x)

s. t . c(x) = 0.

The Lagrange multipliers for the above problem are all zero!
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Penalty Functions Multiplier Penalty Functions

Augmented Lagrangian Function

The multiplier penalty function:

P(x , λ, σ) = f (x)−
m∑

i=1

λici(x) +
1
2

m∑
i=1

σici(x)2

Powell’s modification to the simple penalty function: Compare

∇f (x∗)−
m∑

i=1

λ∗i ∇ci(x
∗) = 0 (KKT )

∇f (x(σ)) + σ

m∑
i=1

ci(x(σ))∇ci(x(σ)) = 0 (Simple Penalty)

Gradient is correct, but the function value is not → shifting ci(x)!

f (x) + σ

m∑
i=1

(ci(x)− θi)
2

which also leads to the Augmented Lagrangian Function.
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Penalty Functions Multiplier Penalty Functions

Question: How to choose proper multipliers λi?

Given λ(k) and σ(k), obtain xk+1 by minimizing the above function.

∇f (xk+1)−
m∑

i=1

(λ
(k)
i − σ

(k)
i ci(xk+1))∇ci(xk+1) = 0

Thus, it is natural to let

λ
(k+1)
i = λ

(k)
i − σ

(k)
i ci(xk+1).
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Penalty Functions Multiplier Penalty Functions

Fletcher’s Differentiable Penalty Function

Idea: multipliers depends on x instead of as parameters.
what we wish:

∇f (x)−
m∑

i=1

λi∇ci(x) = 0

Least Square Solution:

λ(x) = argminλ∈<m‖∇f (x)− A(x)λ‖2

A(x) = ∇c(x)T : Jacobian of c(x)

Fletcher’s differentiable penalty function:

P(x , σ) = f (x)− λ(x)T c(x) + σ‖c(x)‖22

Exact Penalty Function!
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Penalty Functions Nonsmooth Exact Penalty Function

Nonsmooth Exact Penalty Functions

Two commonly used exact penalty functions

L1 penalty function:

P1(x) = f (x) + σ‖c(x)‖1
L∞ penalty function:

P∞(x) = f (x) + σ‖c(x)‖∞

Advantages: 1) Simple; 2) Exact.

Generalized to Inequality constraints:
c(−)

i = ci(x)(i = 1, ..., m); c(−)
i = min{0, ci(x)}(i = me + 1, ..., m)
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Sequential Quadratic Programming (SQP) Method Lagrange-Newton Method

Lagrange-Newton Method

Consider the equality constrained problem:

min
x∈<n

f (x)

s. t. c(x) = 0,

KKT conditions (Stationary point to the Lagrangian):

∇f (x)−∇c(x)T λ = 0,

−c(x) = 0.

Apply Newton’s Method(
W (xk , λk ) −A(xk )
−A(xk )T 0

) (
(δx)k

(δλ)k

)
= −

(
∇f (xk )− A(xk )λk

−c(xk )

)
,

where A(x) = ∇c(x)T , W (x , λ) = ∇2f (x)−
∑m

i=1(λk )i∇2ci(xk ).
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Sequential Quadratic Programming (SQP) Method Lagrange-Newton Method

Lagrange-Newton Step as a QP step

(
W (xk , λk ) −A(xk )
−A(xk )T 0

) (
d
λ̄

)
= −

(
∇f (xk )
−c(xk )

)
,

Thus d is the solution of

min dT∇f (xk ) +
1
2

dT Wkd

s. t . ck + AT
k d = 0

with λ̄ being the corresponding multipliers.
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Sequential Quadratic Programming (SQP) Method SQP Method
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Sequential Quadratic Programming (SQP) Method SQP Method

SQP method

For general NLP, at each iteration, solve the following QP:

min
d∈<n

gT
k d +

1
2

dT Bkd ,

s. t. ai(xk )T d + ci(xk ) = 0, i = 1, ..., me,

ai(xk )T d + ci(xk ) ≥ 0, i = me + 1, ..., m.

Let dk be a solution of the above QP, then

gk + Bkdk − A(xk )λk = 0,

(λk )i ≥ 0, i = me + 1, ..., m;

(λk )i [ci(xk ) + ai(xk )T dk ] = 0, i = me + 1, ..., m.

Note: dk is a descent direction of many penalty functions!

Ya-xiang Yuan (ICMSEC, CAS) Nonlinear Optimization II Sept 22, 2006 24 / 46



Sequential Quadratic Programming (SQP) Method SQP Method

Lemma Let dk be a K-T point of the QP subproblem and λk be the
corresponding Lagrange multiplier. Consider the L1 penalty function

P(x , σ) = f (x) + σ‖c(−)(x)‖1,

we have that

P ′α(xk + αdk , σ)
∣∣
α=0 ≤ −dT

k Bkdk − σ‖c(−)(xk )‖1 + λT
k c(xk ).

If dT
k Bkdk > 0 and σ ≥ ‖λk‖∞, then dk is a descent direction of the

penalty function P(x , σ).
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Sequential Quadratic Programming (SQP) Method SQP Method

Wilson-Han-Powell Method

Step 1. Given x1 ∈ <n, σ > 0, δ > 0, B1 ∈ <n×n, ε ≥ 0, k := 1;

Step 2. Solve QP subproblem giving dk ;
if ‖dk‖ ≤ ε then stop;
find αk ∈ [0, δ] such that

P(xk + αkdk , σ) ≤ min
0≤α≤δ

P(xk + αdk , σ) + εk .

Step 3. xk+1 = xk + αkdk ; Generate Bk+1;
k := k + 1; go to Step 2.
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Sequential Quadratic Programming (SQP) Method SQP Method

update of σ

Question: How to ensure

σ > ‖λk‖∞?

Powell(1978) suggested

P(x , σk ) = f (x) +
m∑

i=1

(σk )i |c
(−)
i (x)|

with the update

(σ1)i = (λ1)i ,

(σk )i = max
{
|[λk ]i |,

1
2
[(σk−1)i + |(λk )i |]

}
, k > 1,

i = 1, · · · , m.
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Sequential Quadratic Programming (SQP) Method SQP Method

Update of Bk

Because Bk should approximate the Hessian of the Lagrangian, it is
reasonable to require Bk+1sk = yk with

sk = xk+1 − xk ,

yk = ∇f (xk+1)−∇f (xk )−
m∑

i=1

(λk )i [∇ci(xk+1)−∇ci(xk )].

sT
k yk > 0 may not be true. :(

Therefore, yk is replaced by

ȳk =

{
yk , if sT

k yk ≥ 0.2sT
k Bksk ,

θkyk + (1− θk )Bksk , otherwise.

where θk = (0.8sT
k Bksk )/(sT

k Bksk − sT
k yk ).
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Sequential Quadratic Programming (SQP) Method SQP Method

Superlinearly Convergence of SQP method

Theorem dk is a superlinearly convergent step, namely

lim
k→∞

‖xk + dk − x∗‖
‖xk − x∗‖

= 0

if and only if

lim
k→∞

‖Pk (Bk −W (x∗, λ∗))dk‖
‖dk‖

= 0,

where Pk is a projection from <n onto the null space of A(xk )T :

Pk = (I − A(xk )(A(xk )T A(xk ))−1A(xk )T ).
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Sequential Quadratic Programming (SQP) Method Maratos Effect
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Sequential Quadratic Programming (SQP) Method Maratos Effect

Maratos Effect

Example:

min
x=(u,v)∈<2

f (x) = 3v2 − 2u,

s. t. c(x) = u − v2 = 0.

It is easy to see that x∗ = (0, 0)T is the unique minimizer. Initial point:

x̄(ε) = (u(ε), v(ε)T = (ε2, ε)T

where ε > 0 is a small parameter.
Let B = W (x∗, λ∗), the quadratic programming subproblem is

min
d∈<2

dT
(
−2
6ε

)
+

1
2

dT
[
0 0
0 2

]
d ,

s. t. dT
(

1
−2ε

)
= 0.

The solution of the above QP is d̄(ε) = (−2ε2, −ε)
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Sequential Quadratic Programming (SQP) Method Maratos Effect

Therefore, we have that

‖x̄(ε) + d̄(ε)− x∗‖ = O(‖x̄(ε)− x∗‖2).

Thus, d̄(ε) is a superlinearly convergent step. Direct calculations
indicates that

f (x̄(ε) + d̄(ε)) = 2ε2,

c(x̄(ε) + d̄(ε)) = −ε2.

Because f (x̄(ε)) = ε2 and c(x̄(ε)) = 0, we have that

f (x̄(ε) + d̄(ε)) > f (x̄(ε)),

|c(x̄(ε) + d̄(ε))| > |c(x̄(ε))|.

This example shows that a superlinearly convergent step can not
ensure a reduction in the penalty function (Maratos Effect)
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Sequential Quadratic Programming (SQP) Method Maratos Effect

Techniques to overcome Maratos Effect

Watch-dog
Reducing the Lagrange function instead of the L1 penalty.

Second Order Correction Step
Another step to the feasible set from the failed point.

Smooth Exact Penalty Functions as merit
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Trust Region Methods for Constrained Problems

How to combine trust region to SQP?

SQP subproblem:

min
d∈<n

gT
k d +

1
2

dT Bkd = φk (d)

subject to

ci(xk ) + dT∇ci(xk ) = 0 i = 1, 2, . . . , me

ci(xk ) + dT∇ci(xk ) ≥ 0 i = me + 1, . . . , m

How to combine the above QP with Trust Region ‖d‖ ≤ ∆k?

Null Space

Exact penalty function

Two ball subproblem
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Trust Region Methods for Constrained Problems

Null Space TR Algorithm

min
d∈<n

gT
k d +

1
2

dT Bkd = φk (d)

subject to

θci(xk ) + dT∇ci(xk ) = 0 i = 1, 2, . . . , me

θci(xk ) + dT∇ci(xk ) ≥ 0 i = me + 1, . . . , m

where θk ∈ (0, 1]

range space step, Cauchy step

null step, quasi-Newton step

geometrically move feasible region towards to the current iterate

? Quadratic Program,
? A TRS problem in the Null Space.
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Trust Region Methods for Constrained Problems

Exact Penalty TR algorithm

min
d∈<n

gT
k d +

1
2

dT Bkd + σk ||(ck + AT
k d)−||∞ = Φk (d)

s. t . ||d ||∞ ≤ ∆k .

Advantages:

trial step closed related to the merit function

subproblem always feasible

automatically update penalty parameter

no need for approximating Lagrange multipliers

Difficulties: – nonsmooth subproblem
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Trust Region Methods for Constrained Problems

Two Ball TR Subproblem

Celis, Dennis and Tapia(1985):

min
d∈<n

gT
k d +

1
2

dT Bkd = φk (d)

s. t . ||(ck + AT
k d)−||2 ≤ ξk

||d ||2 ≤ ∆k .

where ck = c(xk ) = (c1(x), ..., cm(x))T , Ak = A(xk ) = ∇c(xk )T , ξk ≥ 0
is a parameter and the superscript “-” means that
v−i = vi(i = 1, ..., me), v−i = min[0, vi ](i = me + 1, ..., m).

Ya-xiang Yuan (ICMSEC, CAS) Nonlinear Optimization II Sept 22, 2006 37 / 46



Filter Methods

liberation of Newton Movement −→
αk = 1 for line search, xk+1 = xk + sk for trust region.
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Filter Methods

Definition of Filter

Definition I A pair (fk , hk ) is said to dominate another pair (fl , hl) if
and only if both fk ≤ fl and hk ≤ hl .

Definition II A filter is a list of pairs (fl , hl) such that no pair dominates
any other. A pair (fk , hk ) is said to be acceptable for inclusion in the
filter if it is not dominated by any pair in the filter.
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Filter Methods

Geometric representation of a filter[1,1,1]

6

-

q
q

q q
q q

h

f

Ya-xiang Yuan (ICMSEC, CAS) Nonlinear Optimization II Sept 22, 2006 40 / 46



Filter Methods

Filter vs. Penalty (A filter view of Penalty)

6

-
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← slope of penalty contour: −σ
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Filter Methods

Generalized Filter – Geometric

6

-
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f B
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← penalty

← standard filter

← generalized filter
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Subspace Algorithms

General Subspace Model for Unconstrained Opt.

At each iteration, a subspace Sk is available.
Try to construct a quadratic model Qk (d) ≈ f (xk + d) for d ∈ Sk

Solve(obtaining dk ):

min
d∈Sk

Qk (d)

Do not carry line search – nor trust region
Either continue the process xk+1 − xk = sk = dk

or modify the model (and the subspace):

Qk (dk ) = f (xk + dk ), Sk := Sk ∪ {dk}\{some old v}
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Subspace Algorithms

Choices for Subspaces

Unconstrained Optimization:

Subspace

Span{−g1,−g2, ...,−gk} = Span{−gk , yk−1, ..., y1}
= Span{−gk , sk−1, ..., s1}

Subspace Span{−gk , sk−1, ..., sk−m}
Subspace Span{−gk , yk−1, ..., yk−m}

Constrained Optimization:
A possible choice:

Sk = Span{−gk , s1, ..., sk ,−∇cki}

Adding (a few) random directions to the subspace.
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Discussions

Discussions

Challenges and Opportunities

Literature Driven / Problem Driven

No significant advances /Difficult

Popular / Recover

Special Features / Special Applications
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Discussions

THANK YOU!
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