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Introduction The Problem

Nonlinear Optimization Problem

Nonlinear optimization problems:

min f (x)

subject to ci(x) = 0, i = 1, ..., me;

ci(x) ≥ 0, i = me + 1, ...., m.

where, f (x), and ci(x) (i = 1, ..., m) are continuously differentiable
functions from <n to <. At least one of the functions f (x), and ci(x)
(i = 1, ..., m) is nonlinear.

Homework:
NLP-Q1. What is the most important character of nonlinear
optimization?
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Introduction Problem Classification
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Introduction Problem Classification

Problem Classification - Unconstrained

m = 0 (Unconstrained Optimization)

Quadratic minimization / Linear Least Squares:

f (x) = Q(x) = ||Ax − b||22

Nonlinear Least Squares: f (x) = ‖R(x)‖2
2 =

∑N
i=1 r2

i (x)

General Norm Minimization (Approximation)
f (x) = ‖R(x)‖p (e.g. p = 1,∞)

convex unconstrained optimization: f (x) convex.
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Introduction Problem Classification

Problem Classification - Equality Constrained

m = me > 0 (Equality Constrained Optimization)

f (x) quadratic, ci(x) linear: Equality constrained QP.

f (x) nonlinear, ci(x) linear: Linear equality constrained
optimization.

nonlinear equality constrained optimization.
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Introduction Problem Classification

Problem Classification - General Constrained

m > me ≥ 0 (General Nonlinear Constrained Optimization)

Quadratic programming: f (x) quadratic and ci(x) linear.

Linearly constrained nonlinear programming: ci(x) linear.

general nonlinear constrained problems.
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Introduction Different Aspects of NLP
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Introduction Different Aspects of NLP

Theory (Understanding the Problem)

Optimal Conditions,

Penalty Function,

Dual Theory,

Sensitivity,

Solvability,

Complexity,

...
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Introduction Different Aspects of NLP

Method (How to Solve the Problem)

Steepest Descent Method,

Newton’s Method,

Conjugate Gradient Method,

Sequential QP Method,

Interior Point Method,

... ,
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Introduction Different Aspects of NLP

Algorithm (Realization of Method)

Examples:

inexact line search Newton’s method

an interior point algorithm for box constrained problems.

a trust region algorithm for nonlinear LS.

Ya-xiang Yuan (ICMSEC, CAS) Nonlinear Optimization I Sept 18, 2006 13 / 58



Introduction Different Aspects of NLP

Software (Implementation of Algorithms)

LANCELOT (Conn et al. 1992, Augmented Lagrangian)

MINOS (Murtagh and Saunders 1982, Augmented Lagrangian)

SNOP (Gill et al. 2002, SQP)

NPSOL (Schittkowski 1983, SQP)

KNITRO (Byrd et al. 2000, Interior Point)

LOGO (Vanderbei and Shanno 1999, Interior Point)

IPOPT (Vächter and Biegler 2004, Interior Point)

NLPSPR (Betts and Frank 1994, Interior Point)

FilterSQP (Fletcher and Leyffer 1998, Filter SQP)

...
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Introduction Different Aspects of NLP

Applications (Not simply applying softwares!)

Special techniques can be applied because

Special Structure

Special linear/nonlinear properties

Applications in

Science: (Information, Biology, Physics, ... )

Finance:

Transportation

Defence
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Methods for Unconstrained Optimization Steepest Descent Method
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Methods for Unconstrained Optimization Steepest Descent Method

Steepest Descent

min
x∈<n

f (x)

Steepest Descent Direction:

xk+1 = xk + αk (−∇f (xk ))

exact line search, α∗k : f (xk + α∗kdk ) = minα>0 f (xk + αdk )

Inexact line search, αk satisfies

f (xk + αkdk ) ≤ f (xk ) + b1αkdT
k ∇f (xk )

dT
k ∇f (xk + αkdk ) ≥ b2dT

k ∇f (xk )

b1 ∈ (0, 1), b2 ∈ (b1, 1).
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Methods for Unconstrained Optimization Steepest Descent Method

Convergence of SD

Assume ‖∇2f (x)‖ ≤ M.

f (xk )− f (xk + α∗kdk ) ≥ 1
2M

[dT
k ∇f (xk )/‖dk‖2]

2

f (xk )− f (xk + αkdk ) ≥ b1(1− b2)

M
[dT

k ∇f (xk )/‖dk‖2]
2

Either f (xk ) → −∞ or

∞∑
k=1

‖∇f (xk )‖2
2 cos2〈dk ,−∇f (xk )〉 =

∞∑
k=1

[dT
k ∇f (xk )/‖dk‖2]

2

≤ ∞

For SD Method, cos〈dk ,−∇f (xk )〉 = 1. ‖∇f (xk )‖ → 0.
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Methods for Unconstrained Optimization Steepest Descent Method

Convergence Rate of SD

Assume that f (x) is convex quadratic. f (x) = 1
2xT Hx , H is a symmetric

positive definite matrix. (gk = ∇f (xk ))

f (xk )− f (xk + α∗k (−gk ))

f (xk )
=

(xT
k H2xk )2

xT
k H3xkxT

k Hxk
≥ λ1(H)λn(H)

(λ1(H) + λn(H))2

where λ1, λn: largest eigenvalue and the smallest eigenvalues.

f (xk+1)− f (x∗)
f (xk )− f (x∗)

≤
(

µ− 1
µ + 1

)2

< 1.

µ = λ1(H)/λn(H)

Linear Convergence!
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Methods for Unconstrained Optimization Steepest Descent Method

Exact line search + steepest descent gives bad results
A typical behavior of the steepest descent method is illustrated in the
following picture where 20 iterates are plotted for the objective function
f (x , y) = 100x2 + y2, starting at the initial point (1, 100).
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Steepest descent with exact line search

Ya-xiang Yuan (ICMSEC, CAS) Nonlinear Optimization I Sept 18, 2006 20 / 58



Methods for Unconstrained Optimization Steepest Descent Method

BB method

The main idea of Barzilai and Borwein’s

xk+1 = xk − Dkgk , where Dk = αk I.

Quasi-Newton property:

min ‖sk−1 − Dkyk−1‖2

min ‖D−1
k sk−1 − yk−1‖2

where sk−1 = xk − xk−1 and yk−1 = gk − gk−1.

αk =
sT

k−1yk−1

‖yk−1‖2
2

, αk =
‖sk−1‖2

2

sT
k−1yk−1

(α∗k−1 !)

THEOREM If f (x) is a strictly quadratic convex function with 2
variables. The BB method gives that ‖gk‖ ≤ ηλ−(

√
2)k

, where
λ = σ1(H)/σ2(H), η is a constant independent of k.
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Methods for Unconstrained Optimization Steepest Descent Method

The behavior of the BB method for f (x , y) = 100x2 + y2, starting at the
initial point (1, 100).

−70 −60 −50 −40 −30 −20 −10 0 10 20
0

10

20

30

40

50

60

70

80

90

100

x

y
Steepest descent with Barzilai−Borwein Step

Ya-xiang Yuan (ICMSEC, CAS) Nonlinear Optimization I Sept 18, 2006 22 / 58



Methods for Unconstrained Optimization Steepest Descent Method

Cauchy Step too long
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Methods for Unconstrained Optimization Steepest Descent Method

Stepsizes for Gradient Method

SS1 (Short Step I)
αSS1

k = γ1α
∗
k

Short Step II

αSS2
k =

{
γ2α

∗
k , if k is odd;

α∗k , if k is even,

AM (Alternating Minimization)

αAM
k =


gT

k gk

gT
k Hgk

, if k is odd;

gT
k Hgk

gT
k H2gk

, if k is even.

RAND (Random Step)

αRAND
k = θkα∗k ,

where θk is randomly chosen in [0, 2].
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Methods for Unconstrained Optimization Steepest Descent Method

A New Step Size

Question: finite termination for two dimensional quadratic problems?

αY
k =

2√
(1/α∗k−1 − 1/α∗k )2 + 4‖gk‖2

2/‖‖sk−1‖2
2 + 1/α∗k−1 + 1/α∗k

Algorithm YA

αYA
k =

{
α∗k , if k is odd;

αY
k , if k is even

Algorithm YB

αYB
k =

{
α∗k , if mod(k , 3) 6= 0;

αY
k , if mod(k , 3) = 0
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Methods for Unconstrained Optimization Steepest Descent Method

ξk =
min{

∑L−1
j=0 |g

(i)
k+j |; i = 1, . . . , n}

max{
∑L−1

j=0 |g
(i)
k+j |; i = 1, . . . , n}
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Methods for Unconstrained Optimization Conjugate Gradient Method
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Methods for Unconstrained Optimization Conjugate Gradient Method

Conjugate Gradient Method:

dk+1 = −gk+1 + βkdk

Idea: (Conjugate Property) dT
k ∇2f (x)dj = 0

Leading Choices for βk

Fletcher-Reeves: ‖gk+1‖2
2

‖gk‖2
2

Polak-Ribiere-Polyak:
gT

k+1(gk+1−gk )

‖gk‖2
2

Henstenes-Stiefel:
gT

k+1(gk+1−gk )

dT
k yk

Dai-Yuan: ‖gk+1‖2
2

dT
k yk
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Methods for Unconstrained Optimization Conjugate Gradient Method

Convergence of CG Methods

For convex quadratic functions. Exact line searches imply

dT
k Hdj = 0 (j = 1, ..., k − 1)

gT
k dj = 0 (j = 1, ..., k − 1)

gT
k gj = 0 (j = 1, ..., k − 1)

For general nonlinear functions, analysis techniques:

cos〈dk ,−gk 〉 =
−gT

k dk

‖gk‖‖dk‖
Lower bound for |gT

k dk |
upper bound for ‖dk‖

Example 1: For exact line search: |gT
k dk | = ‖gk‖2

Example 2: For F-R method: dk+1
‖gk+1‖2 = − gk+1

‖gk+1‖2 + dk
‖gk‖2
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Methods for Unconstrained Optimization Conjugate Gradient Method

Modification of βk for inexact line searches?
Genearl coefficient for gk+1 instead of 1 ?

Reason: Conjugacy is not necessary a good property when line
search is not exact !

Aim:

Making dk+1 heading to the solution for two dimensional problem

For general n dimensional problems, making the angle between
dk+1 and x∗ − xk+1 as small as possible

Example (Stoer and Yuan): dk+1 =

(gT
k+1ykgT

k+1sk − sT
k yk‖gk+1‖2

2)gk+1 + (gT
k+1yk‖gk+1‖2

2 − ρkgT
k+1sk )sk

ρksT
k yk − (gT

k+1yk )2

ρk ≈ gT
k ∇2f (xk )gk

Ya-xiang Yuan (ICMSEC, CAS) Nonlinear Optimization I Sept 18, 2006 30 / 58



Methods for Unconstrained Optimization Newton’s Method

Outline

1 Introduction
The Problem
Problem Classification
Different Aspects of NLP

2 Methods for Unconstrained Optimization
Steepest Descent Method
Conjugate Gradient Method
Newton’s Method
Quasi-Newton Method

3 Trust Region Algorithms for Unconstrained Optimization
Trust Region
A Model Trust Region Algorithm
Trust Region Subproblem
Combinations of TR and LS

Ya-xiang Yuan (ICMSEC, CAS) Nonlinear Optimization I Sept 18, 2006 31 / 58



Methods for Unconstrained Optimization Newton’s Method

Newton’s Method

∇f (x) = 0

∇f (xk ) +∇2f (xk )d = 0

Newton’s direction

dk = −(∇2f (xk ))−1∇f (xk )

Advantage of Newton’s method

Quadratic Convergence

Easy to implement
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Methods for Unconstrained Optimization Quasi-Newton Method
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Methods for Unconstrained Optimization Quasi-Newton Method

Quasi-Newton

Newton’s Method: dk = −(∇2f (xk ))−1gk

Quasi-Newton Method

dk = −(Bk )−1gk

Bk satisfies the Quasi-Newton Equation:

Bksk−1 = yk−1

Normally, Bk positive definite: “Variable Metric Method”. (steepest
descent direction if we use the norm ‖d‖Bk =

√
dT Bkd )
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Methods for Unconstrained Optimization Quasi-Newton Method

Major Quasi-Newton Formulae

DFP (Davidon-Fletcher-Powell)

B(DFP)
k+1 = Bk −

yksT
k Bk + BkskyT

k

yT
k sk

+

(
1 +

sT
k Bksk

yT
k sk

)
ykyT

k

yT
k sk

BFGS (Broyden-Fletcher-Goldfarb-Shanno)

B(BFGS)
k+1 = Bk −

BksksT
k Bk

sT
k Bksk

+
ykyT

k

yT
k sk

SR1 (Symmetric Rank 1)

B(SR1)
k+1 = Bk +

(yk − Bksk )(yk − Bksk )T

(yk − Bksk )T sk

Broyden Family : Bk+1(θ) = (1− θ)B(BFGS)
k+1 + θB(DFP)

k+1
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Methods for Unconstrained Optimization Quasi-Newton Method

Properties of Quasi-Newton Method

Invariance

Conjugacy

Quadratic Termination

Least Changes
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Methods for Unconstrained Optimization Quasi-Newton Method

Convergence Properties of Quasi-Newton Methods

Theorem(Powell, 1971) The DFP method converges for uniformly
convex functions if exact line searches are used.

This theorem can be extended to all Broyden’s family due to Dixon.

Theorem(Powell, 1976) The BFGS method converges for general
convex functions if inexact line searches are used.

The above theorem has been generalized to Broden’s convex family
(θ ∈ [0, 1]) except DFP (θ = 1). (Byrd, Nocedal, Yuan)

Without convexity, even BFGS fails to converge (Dai)

Question
Whether DFP with inexact LS converges for convex funtions?
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Methods for Unconstrained Optimization Quasi-Newton Method

Convergence Rate for quasi-Newton Method

Superlinearly Convergence:

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

= 0

For n > 1, least Q-Order is one, namely we can not prove

‖xk+1 − x∗‖ = O(‖xk − x∗‖1+ε)

for any given ε > 0.

Let εk =
‖xk+1−x∗‖
‖xk−x∗‖ .

Question
Could we prove εk = O(‖xk−n − x∗‖) ?
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Methods for Unconstrained Optimization Quasi-Newton Method

Limited Memory Quasi-Newton

BFGS represented as:( Hk = B−1
k )

Hk+1 =

(
I −

skyT
k

sT
k yk

)
Hk

(
I −

yksT
k

sT
k yk

)
+

sksT
k

sT
k yk

Limited BFGS formular:

H(0)
k =

sT
k yk

yT
k yk

I

H(j+1)
k = HBFGS

k+1 (H(j)
k , sk−m+j , yk−m+j), (j = 0, 1, ..., m)

Hk+1 = H(m+1)
k

m = 0 + exact line search → conjugate gradient direction (DY)

Advantage: Only need to store (sk−j , yk−i)(i = 0, 1, ..., m).
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Trust Region Algorithms for Unconstrained Optimization Trust Region

Trust Region

Main Idea: No line search,
“search” in a REGION

Current Iterate: xk

Trust Region: Rk

Trial Step: sk

Motivation:

Region better than a line

When a search direction is not good, it is likely that the model is
not accurate.
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Trust Region Algorithms for Unconstrained Optimization Trust Region

?xk

?
xk+1
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Trust Region Algorithms for Unconstrained Optimization Trust Region

?xk

?
xk+1

?
xk+2

Ya-xiang Yuan (ICMSEC, CAS) Nonlinear Optimization I Sept 18, 2006 43 / 58



Trust Region Algorithms for Unconstrained Optimization Trust Region

?xk

?
xk+1

?
xk+2

?

xk+2 + sk+2
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Trust Region Algorithms for Unconstrained Optimization Trust Region

?xk

?
xk+1

?
xk+2

?

xk+2 + sk+2

? xk+4
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Trust Region Algorithms for Unconstrained Optimization Trust Region

Key Contents of a Trust Region Algorithm

Computing the trial step

Judging the trial step

updating the trust region

modifying the approximate model

Key References:

Powell(70s) – Early Papers on TR.

Moré(1983) – Survey

Conn, Gould, Toint(2000) – Monograph
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Trust Region Algorithms for Unconstrained Optimization Trust Region

Levenberg-Marquardt Method

min
x∈<n

||F (x)||22

where F (x) = (f1(x), ....fm(x))T .
The Gauss-Newton Step: dk = −(A(xk )T )+F (xk )
The Levenberg-Marquardt method

dk = −(A(xk )A(xk )T + λk I)−1A(xk )F (xk )

which solves
min
d∈<n

||F (xk ) + A(xk )T d ||22 + λk ||d ||22

min
d∈<n

||F (xk ) + A(xk )T d ||22

s. t . ||d ||2 ≤ ‖dk‖2
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Trust Region Algorithms for Unconstrained Optimization A Model Trust Region Algorithm
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Trust Region Algorithms for Unconstrained Optimization A Model Trust Region Algorithm

A model TR for Unconstrained Optimization

– Trial Step sk : Solving subproblem

min
d∈<n

gT
k s +

1
2

sT Bks = φk (s)

s. t . ||s||2 ≤ ∆k

where gk = ∇f (xk )

Predicted Reduction:

Predk = φk (0)− φk (sk ).

Actually Reduction:

Aredk = f (xk )− f (xk + sk ).
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Trust Region Algorithms for Unconstrained Optimization A Model Trust Region Algorithm

A Model Algorithm - Algorithm Descriptions

Step 1 Given x1 ∈ <n, ∆1 > 0, ε ≥ 0, B1 ∈ <n×nsymmetric;
0 < τ3 < τ4 < 1 < τ1, 0 ≤ τ0 ≤ τ2 < 1, τ2 > 0, k := 1.

Step 2 If ||gk ||2 ≤ ε then stop; Compute sk .

Step 3 Compute rk = Aredk/Predk Let

xk+1 =

{
xk if rk ≤ τ0 ,
xk + sk otherwise ;

Choose ∆k+1 that satisfies

∆k+1 ∈
{

[τ3||sk ||2, τ4∆k ] if rk < τ2,
[∆k , τ1∆k ] otherwise;

Step 4 Update Bk+1;
k := k + 1; go to Step 2.
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Trust Region Algorithms for Unconstrained Optimization Trust Region Subproblem
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Trust Region Subproblem

min
d∈<n

gT s +
1
2

sT Bs = φ(s)

s. t . ||s||2 ≤ ∆

THEOREM (Moré and Sorensen, 1983) s∗ is a solution of the Trust
Region Subproblem TRS if and only if there exists λ∗ ≥ 0 such that

(B + λ∗I)s∗ = −g

and that B + λ∗I is positive semi-definite, ||s∗||2 ≤ ∆ and

λ∗(∆− ||s∗||2) = 0.
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Exact solution of TRS

s∗ = −B−1g

s∗ = −(B + λ∗I)−1g

s∗ = −(B + λ∗I)+g + v (“Hard Case”)

Define d(λ) = −(B + λI)−1g
Need: ‖d(λ)‖ = ∆ or

1
‖d(λ)‖

− 1
∆

= 0

1/‖d(λ)‖ is a “linear-like” function.

Newton’s Method can be used.
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Inexact Solution of TRS

Motivation:

sufficient to ensure convergence

save computations

Newton’s step near solution

Main approaches

dog-leg method (Powell, Dennis, Mei)
Cauchy point and Newton Step

2-Dimensional Search
Span{−g,−B−1g}

Truncated CG method(Toint, Steihaug)
precondition and truncation

Semi-definite program approach (Rendl and Wolkowicz)
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2 Dimensional Minimizer of TRS

THEOREM (Yuan, 1996)Let s∗ be the exact solution of trust region
subproblem, and s∗2D minimizes min gT s + 1

2sT Bs subject to
s ∈ Span{−g,−B−1g}, ‖s‖ ≤ ∆. There exists no positive constant c

φ(0)− φ(s∗2D)

φ(0)− φ(s∗)
≥ c.

for all B > 0.
EXAMPLE g = (−1,−ε,−ε3)T , and

B =

ε−3 0 0
0 1 0
0 0 ε3

 ,

where ε > 0 is a very small positive number.

φ(0)− φ(s∗2D)

φ(0)− φ(s∗)
= O(ε)
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Truncated CG Step

THEOREM (Yuan, 2000) Assume B > 0, let s∗ be the exact solution of
trust region subproblem, and s∗CG is the truncated CG step by
Steihaug’s algorithm, then

φ(0)− φ(s∗CG)

φ(0)− φ(s∗)
≥ 1

2
.

Idea of Proof

cos < −g, s∗CG >≥ cos < −g, s∗ >

Define CG path

dk ∈ Sk = Span{g, Bg, B2g, ..., Bk−1g}
Span{g, (B + λI)g, (B + λI)2g, ..., (B + λI)k−1g} = Sk

exact solution expressed as CG solution
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Combining TR with Backtracking

TR+LS: (Nocedal +Yuan, 1991)
If sk is not accepable by TR, xk+1 = xk + δPsk (δ ∈ (0, 1), P > 1)

Motivations:
– Trust Region Trial Step is descent
– Subproblem is difficult to solve

Under the Framework of TR method

Back-tracking if trial step is unacceptable

nice convergence results as TR

numerical results better than pure TR.

Homework
NLP-Q2. What is the main difference between LS and TR?
NLP-Q3. What is the similarity between LS and TR?
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