Nonlinear Optimization: Lecture I

Ya-xiang Yuan

Inst of Computational Mathematics and Scientific/Engineering Computing Chinese Academy of Sciences, P. O. Box 2719, Beijing 100080, China Email: yyx@lsec.cc.ac.cn

Optimization and Applications, Beijing, Sept 18-Oct 15, 2006

Ya-xiang Yuan (ICMSEC, CAS)

Nonlinear Optimization I

Introduction

- The Problem
- Problem Classification
- Different Aspects of NLP ۲

Methods for Unconstrained Optimization

- Steepest Descent Method
- Conjugate Gradient Method ۰
- Newton's Method
- Quasi-Newton Method

Trust Region Algorithms for Unconstrained Optimization

- Trust Region
- A Model Trust Region Algorithm
- Trust Region Subproblem
- Combinations of TR and LS

The Problem

- Problem Classification
- Different Aspects of NLP

2 Methods for Unconstrained Optimization

- Steepest Descent Method
- Conjugate Gradient Method
- Newton's Method
- Quasi-Newton Method

Trust Region Algorithms for Unconstrained Optimization

- Trust Region
- A Model Trust Region Algorithm
- Trust Region Subproblem
- Combinations of TR and LS

< 🗇 🕨 < 🖃 >

Nonlinear Optimization Problem

Nonlinear optimization problems:

$$egin{array}{lll} \mbox{min} & f(x) \ \mbox{subject to} & c_i(x) = 0, & i = 1,...,m_e; \ & c_i(x) \geq 0, & i = m_e + 1,...,m_e \end{array}$$

where, f(x), and $c_i(x)$ (i = 1, ..., m) are continuously differentiable functions from \Re^n to \Re . At least one of the functions f(x), and $c_i(x)$ (i = 1, ..., m) is nonlinear.

Homework:

NLP-Q1. What is the most important character of nonlinear optimization?

Introduction

- The Problem
- Problem Classification
- Different Aspects of NLP

2 Methods for Unconstrained Optimization

- Steepest Descent Method
- Conjugate Gradient Method
- Newton's Method
- Quasi-Newton Method

Trust Region Algorithms for Unconstrained Optimization

- Trust Region
- A Model Trust Region Algorithm
- Trust Region Subproblem
- Combinations of TR and LS

< 🗇 🕨 < 🖃 >

Problem Classification - Unconstrained

- m = 0 (Unconstrained Optimization)
 - Quadratic minimization / Linear Least Squares:

$$f(x) = Q(x) = ||Ax - b||_2^2$$

- Nonlinear Least Squares: $f(x) = ||R(x)||_2^2 = \sum_{i=1}^N r_i^2(x)$
- General Norm Minimization (Approximation) $f(x) = ||R(x)||_p$ (e.g. $p = 1, \infty$)
- convex unconstrained optimization: f(x) convex.

Problem Classification - Equality Constrained

- $m = m_e > 0$ (Equality Constrained Optimization)
 - f(x) quadratic, $c_i(x)$ linear: Equality constrained QP.
 - *f*(*x*) nonlinear, *c_i*(*x*) linear: Linear equality constrained optimization.
 - nonlinear equality constrained optimization.

Problem Classification - General Constrained

- $m > m_e \ge 0$ (General Nonlinear Constrained Optimization)
 - Quadratic programming: f(x) quadratic and $c_i(x)$ linear.
 - Linearly constrained nonlinear programming: $c_i(x)$ linear.
 - general nonlinear constrained problems.

Introduction

- The Problem
- Problem Classification
- Different Aspects of NLP

2 Methods for Unconstrained Optimization

- Steepest Descent Method
- Conjugate Gradient Method
- Newton's Method
- Quasi-Newton Method

Trust Region Algorithms for Unconstrained Optimization

- Trust Region
- A Model Trust Region Algorithm
- Trust Region Subproblem
- Combinations of TR and LS

< 🗇 🕨 < 🖃 >

Different Aspect of NLP

- Theory
- Method
- Algorithm
- Software
- Application

Theory (Understanding the Problem)

- Optimal Conditions,
- Penalty Function,
- Dual Theory,
- Sensitivity,
- Solvability,
- Complexity,
- ...

э

A D M A A A M M

Method (How to Solve the Problem)

- Steepest Descent Method,
- Newton's Method,
- Conjugate Gradient Method,
- Sequential QP Method,
- Interior Point Method,
- ... ,

Algorithm (Realization of Method)

Examples:

- inexact line search Newton's method
- an interior point algorithm for box constrained problems.
- a trust region algorithm for nonlinear LS.

A D M A A A M M

Software (Implementation of Algorithms)

- LANCELOT (Conn et al. 1992, Augmented Lagrangian)
- MINOS (Murtagh and Saunders 1982, Augmented Lagrangian)
- SNOP (Gill et al. 2002, SQP)
- NPSOL (Schittkowski 1983, SQP)
- KNITRO (Byrd et al. 2000, Interior Point)
- LOGO (Vanderbei and Shanno 1999, Interior Point)
- IPOPT (Vächter and Biegler 2004, Interior Point)
- NLPSPR (Betts and Frank 1994, Interior Point)
- FilterSQP (Fletcher and Leyffer 1998, Filter SQP)

...

Applications (Not simply applying softwares!)

Special techniques can be applied because

- Special Structure
- Special linear/nonlinear properties

Applications in

- Science: (Information, Biology, Physics, ...)
- Finance:
- Transportation
- Defence

A D b 4 A b

- The Problem
- Problem Classification
- Different Aspects of NLP

Methods for Unconstrained Optimization

Steepest Descent Method

- Conjugate Gradient Method
- Newton's Method
- Quasi-Newton Method

Trust Region Algorithms for Unconstrained Optimization

- Trust Region
- A Model Trust Region Algorithm
- Trust Region Subproblem
- Combinations of TR and LS

Steepest Descent

 $\min_{\boldsymbol{x}\in\Re^n}f(\boldsymbol{x})$

Steepest Descent Direction:

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k(-\nabla f(\mathbf{x}_k))$$

exact line search, α_k^* : $f(\mathbf{x}_k + \alpha_k^* \mathbf{d}_k) = \min_{\alpha > 0} f(\mathbf{x}_k + \alpha \mathbf{d}_k)$

Inexact line search, α_k satisfies

$$f(\mathbf{x}_{k} + \alpha_{k}\mathbf{d}_{k}) \leq f(\mathbf{x}_{k}) + b_{1}\alpha_{k}\mathbf{d}_{k}^{T}\nabla f(\mathbf{x}_{k})$$
$$\mathbf{d}_{k}^{T}\nabla f(\mathbf{x}_{k} + \alpha_{k}\mathbf{d}_{k}) \geq b_{2}\mathbf{d}_{k}^{T}\nabla f(\mathbf{x}_{k})$$

 $\textit{b}_{1}\in(0,1),\,\textit{b}_{2}\in(\textit{b}_{1},1).$

Convergence of SD

Assume $\|\nabla^2 f(\mathbf{x})\| \leq M$.

$$f(x_k) - f(x_k + \alpha_k^* d_k) \ge \frac{1}{2M} [d_k^T \nabla f(x_k) / \|d_k\|_2]^2$$
$$f(x_k) - f(x_k + \alpha_k d_k) \ge \frac{b_1 (1 - b_2)}{M} [d_k^T \nabla f(x_k) / \|d_k\|_2]^2$$

Either $f(x_k) \to -\infty$ or

$$\sum_{k=1}^{\infty} \|\nabla f(\boldsymbol{x}_k)\|_2^2 \cos^2 \langle \boldsymbol{d}_k, -\nabla f(\boldsymbol{x}_k) \rangle = \sum_{k=1}^{\infty} [\boldsymbol{d}_k^T \nabla f(\boldsymbol{x}_k) / \|\boldsymbol{d}_k\|_2]^2 \leq \infty$$

For SD Method, $\cos\langle d_k, -\nabla f(x_k) \rangle = 1$. $\|\nabla f(x_k)\| \to 0$.

<ロト < 回 > < 回 > < 三 > < 三 > 三 三

Convergence Rate of SD

Assume that f(x) is convex quadratic. $f(x) = \frac{1}{2}x^T Hx$, H is a symmetric positive definite matrix. $(g_k = \nabla f(x_k))$

$$\frac{f(\boldsymbol{x}_k) - f(\boldsymbol{x}_k + \alpha_k^*(-\boldsymbol{g}_k))}{f(\boldsymbol{x}_k)} = \frac{(\boldsymbol{x}_k^T H^2 \boldsymbol{x}_k)^2}{\boldsymbol{x}_k^T H^3 \boldsymbol{x}_k \boldsymbol{x}_k^T H \boldsymbol{x}_k} \geq \frac{\lambda_1(H)\lambda_n(H)}{(\lambda_1(H) + \lambda_n(H))^2}$$

where λ_1, λ_n : largest eigenvalue and the smallest eigenvalues.

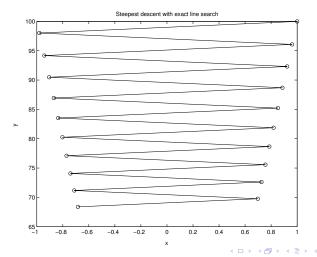
$$\frac{f(x_{k+1})-f(x^*)}{f(x_k)-f(x^*)} \leq \left(\frac{\mu-1}{\mu+1}\right)^2 < 1.$$

 $\mu = \lambda_1(H)/\lambda_n(H)$

Linear Convergence!

Ya-xiang Yuan (ICMSEC, CAS)

Exact line search + steepest descent gives bad results A typical behavior of the steepest descent method is illustrated in the following picture where 20 iterates are plotted for the objective function $f(x, y) = 100x^2 + y^2$, starting at the initial point (1, 100).



Ya-xiang Yuan (ICMSEC, CAS)

Sept 18, 2006 20 / 58

-

BB method

٧

The main idea of Barzilai and Borwein's

$$x_{k+1} = x_k - D_k g_k$$
, where $D_k = \alpha_k I$.

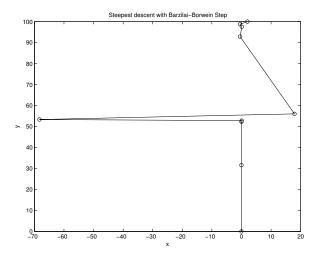
Quasi-Newton property:

$$\min \|s_{k-1} - D_k y_{k-1}\|_2$$
$$\min \|D_k^{-1} s_{k-1} - y_{k-1}\|_2$$
where $s_{k-1} = x_k - x_{k-1}$ and $y_{k-1} = g_k - g_{k-1}$.
$$\alpha_k = \frac{s_{k-1}^T y_{k-1}}{\|y_{k-1}\|_2^2}, \qquad \alpha_k = \frac{\|s_{k-1}\|_2^2}{s_{k-1}^T y_{k-1}} \quad (\alpha_{k-1}^* \quad !)$$

THEOREM If f(x) is a strictly quadratic convex function with 2 variables. The BB method gives that $||g_k|| \le \eta \lambda^{-(\sqrt{2})^k}$, where $\lambda = \sigma_1(H)/\sigma_2(H)$, η is a constant independent of k.

Ya-xiang Yuan (ICMSEC, CAS)

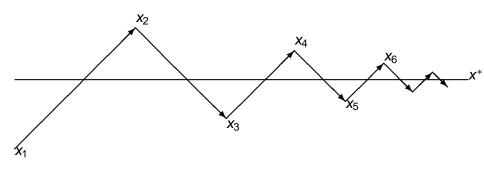
The behavior of the BB method for $f(x, y) = 100x^2 + y^2$, starting at the initial point (1, 100).



Ya-xiang Yuan (ICMSEC, CAS)

Sept 18, 2006 22 / 58

Cauchy Step too long



Ya-xiang Yuan (ICMSEC, CAS)

Nonlinear Optimization I

Sept 18, 2006 23 / 58

æ

Stepsizes for Gradient Method

SS1 (Short Step I)

$$\alpha_k^{\mathsf{SS1}} = \gamma_1 \alpha_k^*$$

Short Step II

$$\alpha_k^{SS2} = \begin{cases}
\gamma_2 \alpha_k^*, & \text{if } k \text{ is odd;} \\
\alpha_k^*, & \text{if } k \text{ is even,}
\end{cases}$$

• AM (Alternating Minimization)

$$lpha_k^{\mathcal{A}\mathcal{M}} = \left\{ egin{array}{c} rac{g_k^T g_k}{g_k^T H g_k}, & ext{if } k ext{ is odd;} \ rac{g_k^T H g_k}{g_k^T H^2 g_k}, & ext{if } k ext{ is even.} \end{array}
ight.$$

• RAND (Random Step)

$$\alpha_{k}^{RAND} = \theta_{k} \alpha_{k}^{*},$$

where θ_k is randomly chosen in [0, 2].

1

A New Step Size

Question: finite termination for two dimensional quadratic problems?

$$\alpha_{k}^{\mathsf{Y}} = \frac{2}{\sqrt{(1/\alpha_{k-1}^{*} - 1/\alpha_{k}^{*})^{2} + 4\|g_{k}\|_{2}^{2}/\|\|s_{k-1}\|_{2}^{2}} + 1/\alpha_{k-1}^{*} + 1/\alpha_{k}^{*}}$$

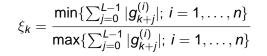
• Algorithm YA

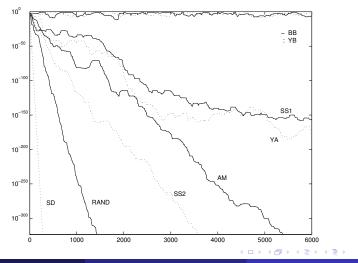
$$\alpha_k^{\mathsf{YA}} = \begin{cases} \alpha_k^*, & \text{if } k \text{ is odd;} \\ \alpha_k^{\mathsf{Y}}, & \text{if } k \text{ is even} \end{cases}$$

Algorithm YB

$$lpha_{k}^{\mathsf{YB}} = \left\{ egin{array}{cc} lpha_{k}^{*}, & ext{if } \mathit{mod}(k,3)
eq 0; \ lpha_{k}^{\mathsf{Y}}, & ext{if } \mathit{mod}(k,3) = 0 \end{array}
ight.$$

A D M A A A M M





Ya-xiang Yuan (ICMSEC, CAS)

Nonlinear Optimization I

Sept 18, 2006 26 / 58

3

- The Problem
- Problem Classification
- Different Aspects of NLP

Methods for Unconstrained Optimization

- Steepest Descent Method
- Conjugate Gradient Method
- Newton's Method
- Quasi-Newton Method

Trust Region Algorithms for Unconstrained Optimization

- Trust Region
- A Model Trust Region Algorithm
- Trust Region Subproblem
- Combinations of TR and LS

Conjugate Gradient Method:

$$d_{k+1} = -g_{k+1} + \beta_k d_k$$

Idea: (Conjugate Property) $d_k^T \nabla^2 f(x) d_j = 0$

Leading Choices for β_k

• Fletcher-Reeves: $\frac{\|g_{k+1}\|_2^2}{\|g_k\|_2^2}$ • Polak-Ribiere-Polyak: $\frac{g_{k+1}^T(g_{k+1}-g_k)}{\|g_k\|_2^2}$ • Henstenes-Stiefel: $\frac{g_{k+1}^T(g_{k+1}-g_k)}{d_k^T y_k}$ • Dai-Yuan: $\frac{\|g_{k+1}\|_2^2}{d^T y_k}$

Convergence of CG Methods

For convex quadratic functions. Exact line searches imply

•
$$d_{k_{j}}^{T}Hd_{j} = 0$$
 $(j = 1, ..., k - 1)$

•
$$g_{k_{j}}^{T}d_{j} = 0$$
 $(j = 1, ..., k - 1)$

- $g_k^{\prime} g_j = 0$ (j = 1, ..., k 1)
- For general nonlinear functions, analysis techniques:

•
$$\cos\langle d_k, -g_k \rangle = rac{-g_k^T d_k}{\|g_k\|\|d_k\|}$$

- Lower bound for $|g_k^T d_k|$
- upper bound for $\|\vec{d_k}\|$

Example 1: For exact line search: $|g_k^T d_k| = ||g_k||^2$

Example 2: For F-R method:
$$\frac{d_{k+1}}{\|g_{k+1}\|^2} = -\frac{g_{k+1}}{\|g_{k+1}\|^2} + \frac{d_k}{\|g_k\|^2}$$

Modification of β_k for inexact line searches? Genearl coefficient for g_{k+1} instead of 1 ?

Reason: Conjugacy is not necessary a good property when line search is not exact !

Aim:

- Making d_{k+1} heading to the solution for two dimensional problem
- For general *n* dimensional problems, making the angle between d_{k+1} and $x^* x_{k+1}$ as small as possible

Example (Stoer and Yuan): $d_{k+1} =$

$$\frac{(g_{k+1}^{T}y_{k}g_{k+1}^{T}s_{k}-s_{k}^{T}y_{k}\|g_{k+1}\|_{2}^{2})g_{k+1}+(g_{k+1}^{T}y_{k}\|g_{k+1}\|_{2}^{2}-\rho_{k}g_{k+1}^{T}s_{k})s_{k}}{\rho_{k}s_{k}^{T}y_{k}-(g_{k+1}^{T}y_{k})^{2}}$$

 $\rho_k \approx g_k^T \nabla^2 f(\boldsymbol{x}_k) g_k$

★ 3 > 3

- The Problem
- Problem Classification
- Different Aspects of NLP

Methods for Unconstrained Optimization

- Steepest Descent Method
- Conjugate Gradient Method
- Newton's Method
- Quasi-Newton Method

Trust Region Algorithms for Unconstrained Optimization

- Trust Region
- A Model Trust Region Algorithm
- Trust Region Subproblem
- Combinations of TR and LS

Newton's Method

Newton's Method

$$\nabla f(\mathbf{x}) = \mathbf{0}$$

$$\nabla f(\mathbf{x}_k) + \nabla^2 f(\mathbf{x}_k) \mathbf{d} = \mathbf{0}$$

Newton's direction

$$d_k = -(\nabla^2 f(x_k))^{-1} \nabla f(x_k)$$

Advantage of Newton's method

- Quadratic Convergence
- Easy to implement

э

A D M A A A M M

- ∢ ∃ ▶

Introductio

- The Problem
- Problem Classification
- Different Aspects of NLP

Methods for Unconstrained Optimization

- Steepest Descent Method
- Conjugate Gradient Method
- Newton's Method
- Quasi-Newton Method

Trust Region Algorithms for Unconstrained Optimization

- Trust Region
- A Model Trust Region Algorithm
- Trust Region Subproblem
- Combinations of TR and LS

Quasi-Newton

Newton's Method:
$$d_k = -(\nabla^2 f(x_k))^{-1}g_k$$

Quasi-Newton Method

$$d_k = -(B_k)^{-1}g_k$$

B_k satisfies the Quasi-Newton Equation:

$$B_k s_{k-1} = y_{k-1}$$

Normally, B_k positive definite: "Variable Metric Method". (steepest descent direction if we use the norm $||d||_{B_k} = \sqrt{d^T B_k d}$)

Ya-xiang Yuan (ICMSEC, CAS)

Major Quasi-Newton Formulae

DFP (Davidon-Fletcher-Powell)

$$B_{k+1}^{(\text{DFP})} = B_k - \frac{y_k s_k^T B_k + B_k s_k y_k^T}{y_k^T s_k} + \left(1 + \frac{s_k^T B_k s_k}{y_k^T s_k}\right) \frac{y_k y_k^T}{y_k^T s_k}$$

BFGS (Broyden-Fletcher-Goldfarb-Shanno)

$$B_{k+1}^{(\text{BFGS})} = B_k - \frac{B_k s_k s_k^T B_k}{s_k^T B_k s_k} + \frac{y_k y_k^T}{y_k^T s_k}$$

SR1 (Symmetric Rank 1)

$$B_{k+1}^{(\text{SR1})} = B_k + \frac{(y_k - B_k s_k)(y_k - B_k s_k)^T}{(y_k - B_k s_k)^T s_k}$$

Broyden Family: $B_{k+1}(\theta) = (1 - \theta)B_{k+1}^{(BFGS)} + \theta B_{k+1}^{(DFP)}$

Properties of Quasi-Newton Method

- Invariance
- Conjugacy
- Quadratic Termination
- Least Changes

< A >

Convergence Properties of Quasi-Newton Methods

Theorem(Powell, 1971) The DFP method converges for uniformly convex functions if exact line searches are used.

This theorem can be extended to all Broyden's family due to Dixon.

Theorem(Powell, 1976) The BFGS method converges for general convex functions if inexact line searches are used.

The above theorem has been generalized to Broden's convex family $(\theta \in [0, 1])$ except DFP $(\theta = 1)$. (Byrd, Nocedal, Yuan)

Without convexity, even BFGS fails to converge (Dai)

Question

Whether DFP with inexact LS converges for convex funtions?

Ya-xiang Yuan (ICMSEC, CAS)

Convergence Rate for quasi-Newton Method

Superlinearly Convergence:

$$\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = 0$$

For n > 1, least Q-Order is one, namely we can not prove

$$\|x_{k+1} - x^*\| = O(\|x_k - x^*\|^{1+\epsilon})$$

for any given $\epsilon > 0$.

Let
$$\epsilon_k = \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|}.$$

Question

Could we prove $\epsilon_k = O(\|\mathbf{x}_{k-n} - \mathbf{x}^*\|)$?

Limited Memory Quasi-Newton

BFGS represented as:($H_k = B_k^{-1}$)

$$H_{k+1} = \left(I - \frac{s_k y_k^T}{s_k^T y_k}\right) H_k \left(I - \frac{y_k s_k^T}{s_k^T y_k}\right) + \frac{s_k s_k^T}{s_k^T y_k}$$

Limited BFGS formular:

•
$$H_k^{(0)} = \frac{s_k^T y_k}{y_k^T y_k} I$$

• $H_k^{(j+1)} = H_{k+1}^{BFGS}(H_k^{(j)}, s_{k-m+j}, y_{k-m+j}), \quad (j = 0, 1, ..., m)$
• $H_{k+1} = H_k^{(m+1)}$

m = 0 + exact line search \rightarrow conjugate gradient direction (DY)

Advantage: Only need to store $(s_{k-j}, y_{k-i})(i = 0, 1, ..., m)$.

Outline

- Introductio
 - The Problem
 - Problem Classification
 - Different Aspects of NLP

2 Methods for Unconstrained Optimization

- Steepest Descent Method
- Conjugate Gradient Method
- Newton's Method
- Quasi-Newton Method

Trust Region Algorithms for Unconstrained Optimization

Trust Region

- A Model Trust Region Algorithm
- Trust Region Subproblem
- Combinations of TR and LS

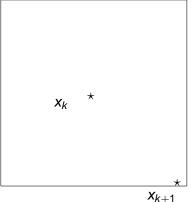
Trust Region

Main Idea: No line search, "search" in a REGION

- Current Iterate: x_k
- Trust Region: R_k
- Trial Step: s_k

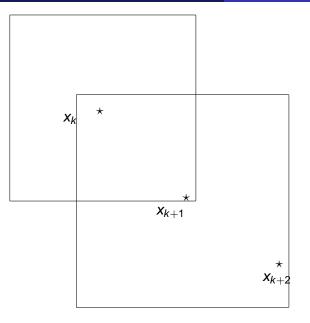
Motivation:

- Region better than a line
- When a search direction is not good, it is likely that the model is not accurate.



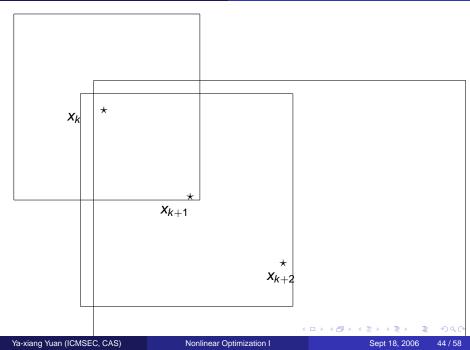
2

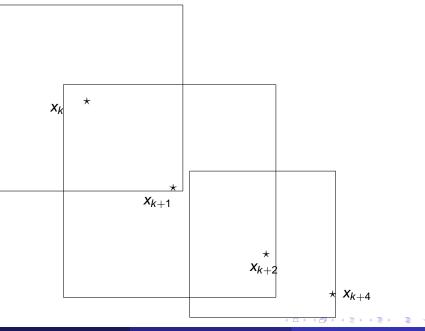
<ロ> <四> <ヨ> <ヨ>



2

ヘロト 人間 とくほとくほとう





Ya-xiang Yuan (ICMSEC, CAS)

Key Contents of a Trust Region Algorithm

- Computing the trial step
- Judging the trial step
- updating the trust region
- modifying the approximate model

Key References:

- Powell(70s) Early Papers on TR.
- Moré(1983) Survey
- Conn, Gould, Toint(2000) Monograph

Levenberg-Marquardt Method

 $\min_{x\in\Re^n}||F(x)||_2^2$

where $F(x) = (f_1(x), ..., f_m(x))^T$. The Gauss-Newton Step: $d_k = -(A(x_k)^T)^+ F(x_k)$ The Levenberg-Marquardt method

$$d_k = -(A(x_k)A(x_k)^T + \lambda_k I)^{-1}A(x_k)F(x_k)$$

which solves

$$\min_{\boldsymbol{d}\in\Re^n} ||\boldsymbol{F}(\boldsymbol{x}_k) + \boldsymbol{A}(\boldsymbol{x}_k)^T \boldsymbol{d}||_2^2 + \lambda_k ||\boldsymbol{d}||_2^2$$

$$\min_{d\in\Re^n} ||F(x_k) + A(x_k)^T d||_2^2$$

s. t.
$$||d||_2 \leq ||d_k||_2$$

Outline

- Introductio
 - The Problem
 - Problem Classification
 - Different Aspects of NLP

2 Methods for Unconstrained Optimization

- Steepest Descent Method
- Conjugate Gradient Method
- Newton's Method
- Quasi-Newton Method

Trust Region Algorithms for Unconstrained Optimization

- Trust Region
- A Model Trust Region Algorithm
- Trust Region Subproblem
- Combinations of TR and LS

A model TR for Unconstrained Optimization

- Trial Step sk: Solving subproblem

$$\min_{d \in \mathbb{R}^n} g_k^T s + \frac{1}{2} s^T B_k s = \phi_k(s)$$

s. t. $||s||_2 \le \Delta_k$

where $g_k = \nabla f(x_k)$

Predicted Reduction:

$$Pred_k = \phi_k(0) - \phi_k(s_k).$$

Actually Reduction:

$$Ared_k = f(x_k) - f(x_k + s_k).$$

Ya-xiang Yuan (ICMSEC, CAS)

A Model Algorithm - Algorithm Descriptions

Step 1 Given $x_1 \in \Re^n$, $\Delta_1 > 0$, $\epsilon \ge 0$, $B_1 \in \Re^{n \times n}$ symmetric; $0 < \tau_3 < \tau_4 < 1 < \tau_1$, $0 \le \tau_0 \le \tau_2 < 1$, $\tau_2 > 0$, k := 1. Step 2 If $||g_k||_2 \le \epsilon$ then stop; Compute s_k . Step 3 Compute $r_k = Ared_k/Pred_k$ Let

$$m{x}_{k+1} = \left\{egin{array}{cc} m{x}_k & ext{if } m{r}_k \leq au_0 \ m{x}_k + m{s}_k & ext{otherwise} ; \end{array}
ight.$$

Choose Δ_{k+1} that satisfies

$$\Delta_{k+1} \in \begin{cases} [\tau_3 || s_k ||_2, \ \tau_4 \Delta_k] & \text{if } r_k < \tau_2, \\ [\Delta_k, \ \tau_1 \Delta_k] & \text{otherwise}; \end{cases}$$

Step 4 Update
$$B_{k+1}$$
;
 $k := k + 1$; go to Step 2.

Outline

- The Problem
- Problem Classification
- Different Aspects of NLP

Methods for Unconstrained Optimization

- Steepest Descent Method
- Conjugate Gradient Method
- Newton's Method
- Quasi-Newton Method

Trust Region Algorithms for Unconstrained Optimization

- Trust Region
- A Model Trust Region Algorithm
- Trust Region Subproblem
- Combinations of TR and LS

Trust Region Subproblem

$$\min_{d \in \Re^n} g^T s + \frac{1}{2} s^T B s = \phi(s)$$

s. t. $||s||_2 \le \Delta$

THEOREM (Moré and Sorensen, 1983) s^* is a solution of the Trust Region Subproblem TRS if and only if there exists $\lambda^* \ge 0$ such that

$$(B+\lambda^*I)s^*=-g$$

and that $B + \lambda^* I$ is positive semi-definite, $||s^*||_2 \leq \Delta$ and

$$\lambda^*(\Delta - ||\mathbf{s}^*||_2) = \mathbf{0}.$$

Exact solution of TRS

•
$$s^* = -B^{-1}g$$

• $s^* = -(B + \lambda^* I)^{-1}g$
• $s^* = -(B + \lambda^* I)^+ g + v$ ("Hard Case")
Define $d(\lambda) = -(B + \lambda I)^{-1}g$
Need: $||d(\lambda)|| = \Delta$ or
 $\frac{1}{||d(\lambda)||} - \frac{1}{\Delta} = 0$

- $1/\|d(\lambda)\|$ is a "linear-like" function.
- Newton's Method can be used.

A D M A A A M M

Inexact Solution of TRS

Motivation:

- sufficient to ensure convergence
- save computations
- Newton's step near solution

Main approaches

- dog-leg method (Powell, Dennis, Mei)
 Cauchy point and Newton Step
- 2-Dimensional Search

 $Span\{-g, -B^{-1}g\}$

- Truncated CG method(Toint, Steihaug) precondition and truncation
- Semi-definite program approach (Rendl and Wolkowicz)

▶ < ∃ ▶</p>

2 Dimensional Minimizer of TRS

THEOREM (Yuan, 1996)Let s^* be the exact solution of trust region subproblem, and s^*_{2D} minimizes min $g^T s + \frac{1}{2}s^T Bs$ subject to $s \in Span\{-g, -B^{-1}g\}, \|s\| \le \Delta$. There exists no positive constant c

$$rac{\phi(\mathsf{0})-\phi(s^*_{2D})}{\phi(\mathsf{0})-\phi(s^*)}\geq c.$$

for all B > 0. **EXAMPLE** $g = (-1, -\epsilon, -\epsilon^3)^T$, and

$$B = egin{pmatrix} \epsilon^{-3} & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & \epsilon^3 \end{pmatrix},$$

where $\epsilon > 0$ is a very small positive number.

$$\frac{\phi(\mathbf{0}) - \phi(\mathbf{s}_{2D}^*)}{\phi(\mathbf{0}) - \phi(\mathbf{s}^*)} = O(\epsilon)$$

Truncated CG Step

THEOREM (Yuan, 2000) Assume B > 0, let s^* be the exact solution of trust region subproblem, and s^*_{CG} is the truncated CG step by Steihaug's algorithm, then

$$rac{\phi(\mathbf{0})-\phi(oldsymbol{s}^*_{CG})}{\phi(\mathbf{0})-\phi(oldsymbol{s}^*)}\geq rac{1}{2}.$$

Idea of Proof

- $\bullet \ \cos < -g, s^*_{CG} > \geq \cos < -g, s^* >$
- Define CG path
- $d_k \in S_k = Span\{g, Bg, B^2g, ..., B^{k-1}g\}$
- Span{ $g, (B + \lambda I)g, (B + \lambda I)^2g, ..., (B + \lambda I)^{k-1}g$ } = S_k
- exact solution expressed as CG solution

Combinations of TR and LS

Outline

- Different Aspects of NLP

- ٠
- Conjugate Gradient Method
- Newton's Method
- Quasi-Newton Method

Trust Region Algorithms for Unconstrained Optimization

- Trust Region
- A Model Trust Region Algorithm
- Trust Region Subproblem
- Combinations of TR and LS

Combining TR with Backtracking

TR+LS: (Nocedal +Yuan, 1991) If s_k is not accepable by TR, $x_{k+1} = x_k + \delta^P s_k$ ($\delta \in (0, 1), P > 1$)

Motivations:

- Trust Region Trial Step is descent
- Subproblem is difficult to solve
 - Under the Framework of TR method
 - Back-tracking if trial step is unacceptable
 - nice convergence results as TR
 - numerical results better than pure TR.

Homework

NLP-Q2. What is the main difference between LS and TR? NLP-Q3. What is the similarity between LS and TR?