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Introduction to Optimization

Any scenario in which you are trying to make certain decisions and reach the best

possible outcome. Optimization is the common goal of Management Science and

Engineering.

Optimization is concerned with the study of maximization and minimization of

mathematical functions. Very often the arguments of (i.e., variables or unknowns

in) these functions are subject to side conditions or constraints. By virtue of its

great utility in such diverse areas as applied science, engineering, economics,

finance, medicine, and statistics, optimization holds an important place in the

practical world and the scientific world. Indeed, as far back as the Eighteenth

Century, the famous Swiss mathematician and physicist Leonhard Euler

(1707-1783) proclaimeda that . . . nothing at all takes place in the Universe in

which some rule of maximum or minimum does not appear.
aSee Leonhardo Eulero, Methodus Inviendi Lineas Curvas Maximi Minimive Proprietate Gaudentes,

Lausanne & Geneva, 1744, p. 245.
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Where do Optimization Problems come from?

• Economics: Consumer theory / supplier theory

• Finance: Optimal hedging / pricing

• Science / Engineering: Aerospace, product design, data mining

• Other Business decisions: scheduling, production, organizational decisions

• Government: Military applications, fund allocation, etc

• Other Personal decisions: Sports, on-field decisions, player acquisition,

marketing
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Quantitative or Mathematical Models

The class of optimization problems considered in this course can all be expressed

in the form

(P) minimize f(x)

subject to x ∈ X

where X usually specified by constraints:

ci(x) = 0 i ∈ E
ci(x) ≤ 0 i ∈ I.
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Production Management

The Wyndor Glass Co. is a producer of high-quality glass products. It has three

plans. Aluminum frames and hardware are made in Plant 1, wood frames are

made in Plant 2, and Plant 3 is used to produce glass and assemble the products.

Wyndor produces to products which require the resources of the 2 plants as

follows:

Plant Aluminum Wood Resources

1 1 0 4

2 0 2 12

3 3 2 18

Unit Profit $3000 $5000
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Mathematical Formulation

maximize 3x1+ 5x2

subject to x1 ≤ 4,

2x2 ≤ 12,

3x1+ 2x2 ≤ 18,

x1, x2 ≥ 0.

Objective; Decision Variables; Constraints; Data Parameters.
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Linear Programming

min(or max)imize c1x1 + c2x2 + ... + cnxn

subject to a11x1 + a12x2 + ... + a1nxn {≤, =,≥} b1,

a21x1 + a22x2 + ... + a2nxn {≤, =,≥} b2,

...,

am1x1 + am2x2 + ... + amnxn {≤,=,≥} bm,

xj {≥,≤} uj , j = 1, ..., n,
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LP in Matrix Form

•

c =




c1

c2

...

cn




, b =




b1

b2

...

bm




, A =




a11 a12 ... a1n

a21 a22 ... a2n

...

am1 am2 ... amn




•

x =




x1

x2

...

xn




.
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•
min(or max)imize cT x

subject to Ax {≤, =,≥} b,

x {≥,≤} 0.
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Important Terms

• decision variable/activity, data/parameter

• objective/goal/target

• constraint/limitation/requirement

• equality/inequality constraint

• constraint function/the right-hand side

• direction of inequality

• coefficient vector/coefficient matrix

• nonnegativity constraint

• integrality constraint

• satisfied/violated
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Why Quantitative?

• Some management decisions inevitably need quantitative models and can

significantly benefit from using quantitative models

• Allow us to make rankings and use the power of computers

• Model building involves a great deal of experience, intuition, art and

imagination as well as technical know-how.
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The Optimization Process

• Formulate real life problems into mathematical models

– Study the environment and clearly understand the problem

– Formulate the problem using verbal description

– Define notations for parameters and decision variables

– Construct a model using mathematical expressions

– Collect necessary data; Transform the raw data to parameter values

• Implement the model and solution algorithms using a computer: analyze the

models and develop efficient procedures to obtain best solutions

• interpret computer solutions and perform sensitivity analysis

• Implementation: put the knowledge gained from the solution to work

• Monitor the validity and effectiveness of the model and update it when

necessary
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What do You Learn?

• Models –the art: How we choose to represent real problems

• Theory – the science: What we know about different classes of models; e.g.

necessary and sufficient conditions for optimality

• Algorithms – the tools: How we apply the theory to robustly and efficiently

solve powerful models
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The Art of Modeling

Objective to distill the real-world as accurately and succinctly as possible into a

quantitative model

• Dont want models to be too generalized might not draw much real world

value from your results. Ex. Analyzing traffic flows assuming every person

has the same characteristics

• Dont want models to be too specific might lose the ability to solve problems

or gain insights. Ex. Trying to analyze traffic flows by modeling every single

individual using different assumptions
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Formulation of Optimization Models: Four-Step Rule

• Sort out data and parameters from the verbal description

• Define the set of decision variables

• Formulate the objective function of data and decision variables

• Set up equality and/or inequality constraints
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Formulation 1: Air Traffic Control I

Air plane j, j = 1, ..., n arrives at the airport within the time interval [aj , bj ] in

the order of 1, 2, ..., n. The airport wants to find the arrival time for each air plane

such that the narrowest metering time (inter-arrival time between two consecutive

airplanes) is the greatest.

Let: tj be the arrival time of plane j. Then

maximize minj=1,...,n−1(tj+1 − tj)

subject to aj ≤ tj ≤ bj , j = 1, 2, ..., n.
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Air Traffic Control II

Equivalent smooth formulation:

maximize ∆

subject to t2 − t1 −∆ ≥ 0,

t3 − t2 −∆ ≥ 0,

...,

tn − tn−1 −∆ ≥ 0,

aj ≤ tj ≤ bj , j = 1, 2, ..., n.
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Formulation 2: Data Fitting I

Given data points aj , j = 1, ..., n, and the observation value cj at data point

aj , the least squares problem is to find y such that

∑

j

(aT
j y − cj)2

is minimized.

Sometime, it is desired to minimize the p norm, where p = 1 or p = ∞,
∑

j

|aT
j y − cj‖ or max

j
|aT

j y − cj‖

Homework 1: Rewrite the problems as linear programs.
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Data Fitting II

Constrained data fitting–Fingerprint Matching: cj is the measured signal strength

from base-station j at a location, and aj contains base-station j ’s signal

strengths for all known individual locations.

minimize
∑n

j=1 |aT
j y − cj |

subject to eT y = 1, yi ∈ {0, 1}.
LP relaxation:

minimize
∑n

j=1 |aT
j y − cj |

subject to eT y = 1, y ≥ 0.
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Formulation 3: Minimize max-TSP-tour I

Given two-dimension sensor points aj , j = 1, ..., n, and the vehicle locations

bi, i = 1, ..., m; find the best m clusters assigned to each vehicle such that the

maximum of the TSP tour length is minimized.
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Figure 1: Base-Station Location
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Minimize max-TSP-tour II

Let: xij be the binary decision variable to assign sensor point j to vehicle i.

Then

minimize
∑

i,j ‖aj − bi‖xij

subject to
∑

j xij = n
m , ∀i,

∑
i xij = 1, ∀j,

xij ∈ {0, 1}.
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Minimize max-TSP-tour III

Let: xij be the continuous variable to assign sensor point j to vehicle i. Then

minimize
∑

i,j ‖aj − bi‖xij

subject to
∑

j xij = n
m , ∀i,

∑
i xij = 1, ∀j,

xij ≥ 0.

There is no difference between the binary and continuous models. LP will

generate an optimal binary solution!
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Formulation 4: Supporting Vector Machine I

Suppose we have two-class discrimination data. We assign the first class with 1
and the second with−1. A powerful discrimination method is the Supporting

Vector Machine (SVM).

Let the data point i be given by ai ∈ Rd, i = 1, ..., n. With this data set, we

have some ȳi = 1 (in the first class) and the rest ȳi = −1 (in the second class).

We wish to find a hyper-plane in Rd to separate ais with yi = 1 from ajs with

yj = −1. Mathematically, we wish to find ω ∈ Rd and β ∈ R such that

aT
i ω + β > 0 ∀{i : ȳi = 1}

and

aT
i ω + β < 0 ∀{i : ȳi = −1}.
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Figure 2: Linear Support Vector Machine
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Supporting Vector Machine II

We wish to find a hyper-plane in Rd to separate ais with red from ajs with green.

Mathematically, we wish to find ω ∈ Rd and β ∈ R such that

aT
i ω + β > 1 ∀{i : ȳi = 1}

and

aT
i ω + β < −1 ∀{i : ȳi = −1},

that is,

ȳi(aT
i ω + β) > 1 ∀i.

The hyperp-lane would be

{x : xT ω + β = 0}.
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Supporting Vector Machine III

If a clean separation is possible, we can formulate the problem as a maximization

problem:

minimize ‖ω‖p

subject to ȳi(aT
i ω + β) > 1, ∀i.
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Supporting Vector Machine IV

A clean separation may not be possible for noisy data. Another formulation of the

problem is a minimization problem:

minimize ‖ω‖p + γ ·∑n
i=1 |ei|

subject to ȳi(aT
i ω + β) > 1 + ei, ∀i.
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Formulation 5: Combinatorial Auction I

Given the m different states that are mutually exclusive and exactly one of them

will be true at the maturity.

A contract on a state is a paper agreement so that on maturity it is worth a

notional $w if it is on the winning state and worth $0 if is not on the winning state.

There are n orders betting on one or a combination of states, with a price limit

and a quantity limit.
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Combinatorial Auction II: an order

The jth order is given as (aj ∈ Rm
+ , πj ∈ R+, qj ∈ R+): aj is the

combination betting vector where each component is either 1 or 0

aj =




a1j

a2j

...

amj




,

where 1 is betting state and 0 is non-betting state; πj is the price limit for one

such a contract, and qj is the maximum number of contracts the better like to buy.
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Combinatorial Auction III: qualified orders

Let xj be the number of contracts awarded to the jth order. Then, the jth bidder

will pay the amount πj · xj and the total amount paid is πT x.

If the ith state is the winning state, then the auction organizer need to pay back

w ·



n∑

j=1

aijxj


 = w · ai·x

The question is, how to decide x ∈ Rn, that is, how to fill the orders.
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Combinatorial Auction Pricing IV: Robust model

max πT x− w ·maxi{ai·x}
s.t. x ≤ q,

x ≥ 0.

πT x: the amount can be collected.

max πT x− w ·max(Ax)

s.t. x ≤ q,

x ≥ 0.
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Combinatorial Auction Pricing V: linear model

max πT x− w · s
s.t. Ax− e · s ≤ 0,

x ≤ q,

x ≥ 0.

πT x: the potentiall revenue can be collected.

w · s: the worst-case amount need to pay out (cost).
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Formulation 6: Sensor Localization I

• Input m known points (anchors) ak ∈ R2, k = 1, ..., m, and n unknown

points (sensors or targets) xj ∈ R2, j = 1, ..., n. For some pair of two

points, we have a Euclidean distance measure d̂kj between ak and xj , or

distance measure d̂ij between xi and xj .

• Output Position estimation for all unknown points, and confidence measures

on reliability of each position estimation.

• Objective Robust, fast and accurate.
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Figure 3: 50-Sensor Network with Radio Range .3
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Sensor Localization II: Distance Geometry Model

System of nonlinear equations for xi’s:

‖xi − xj‖ = dij , ∀ (i, j) ∈ Nx, i < j,

‖ak − xj‖ = dkj , ∀ (k, j) ∈ Na,
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Sensor Localization III: Convex Relaxation

System of nonlinear inequalities for xi’s:

‖xi − xj‖ ≤ dij , ∀ (i, j) ∈ Nx, i < j,

‖ak − xj‖ ≤ dkj , ∀ (k, j) ∈ Na,

Homework 2: Prove the solution set of xi, i = 1, ..., n, is convex.


