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Real n-Space; Euclidean Space

• R: real numbers

• Rn: n-dimensional Euclidean space

• x ≥ y means xj ≥ yj for j = 1, 2, ..., n

• 0: vector of all zeros; e: vector of all ones

• Inner-product of two vectors:

x • y := xT y =
n∑

j=1

xjyj

• Euclidean norm: ‖x‖2 =
√

xT x,

Infinity-norm: ‖x‖∞ = max{|x1|, |x2|, ..., |xn|},

p-norm: ‖x‖p =
(∑n

j=1 |xj |p
)1/p
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• Column vector:

x = (x1; x2; . . . ; xn)

and row vector:

x = (x1, x2, . . . , xn)

• Transpose operation: AT

• A set of vectors a1, ...,am is said to be linearly dependent if there are

scalars λ1, ..., λm, not all zero, such that the linear combination

m∑

i=1

λiai = 0

• A linearly independent set of vectors that span Rn is a basis.



Yinyu Ye, Stanford Lecture Note #02 4

Hyper Planes

The most important type of convex set is a hyperplane. Hyperplanes dominate

the entire theory of optimization. Let a be a nonzero n-dimensional vector, and let

b be a real number. The set

H = {x ∈ Rn : aT x = b}

is a hyperplane inRn. Relating to hyperplane, positive and negative closed half

spaces are given by

H+ = {x : aT x ≥ b}

H− = {x : aT x ≤ b}.
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System of Linear Equations

Solve for x ∈ Rn from:

a1x = b1

a2x = b2

· · · · ·
amx = bm

⇒ Ax = b

Basic solution: select m columns from A to form a square matrix AB such that

ABxB = b, the rest of xN = 0

where B is the index set of selected m coolumns.
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Figure 1: System of Linear Equations
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Fundamental theorem of linear equations

Theorem 1 Let A ∈ Rm×n and b ∈ Rm. The system {x : Ax = b} has a

solution if and only if that AT y = 0 and bT y 6= 0 has no solution.

A vector y, with AT y = 0 and bT y 6= 0, is called an infeasibility certificate for

the system.

Example Let A = (1;−1) and b = (1; 1). Then, y = (1/2; 1/2) is an

infeasibility certificate.



Yinyu Ye, Stanford Lecture Note #02 8

Gaussian elimination method


 a11 A1.

0 A′





 x1

x′


 =


 b1

b′


 .

A = L


 U C

0 0



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Matrices

• Matrix: Rm×n, ith row: ai., jth column: a.j , ijth element: aij

• AI denotes the submatrix of A whose rows belong to index set I , AJ

denotes the submatrix whose columns belong to index set J , AIJ denotes

the submatrix whose rows belong to index set I and columns belong to index

set J .

• All-zero matrix: 0, and identity matrix: I

• Diagonal matrix: X = diag(x)

• Symmetric matrix: Q = QT

• Positive Definite: Q Â 0 iff xT Qx > 0, for all x 6= 0

• Positive Semidefinite: Q º 0 iff xT Qx ≥ 0, for all x
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Line and Convex Combination

When x and y are two distinct points in Rn and α runs over R ,

{z : z = αx + (1− α)y}

is the line determined by x and y.

When 0 ≤ α ≤ 1, it is called the convex combination of x and y and it is the line

segment between x and y.
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Convex Set

• Ω is said to be a convex set if for every x1,x2 ∈ Ω and every real number

α ∈ [0, 1], the point αx1 + (1− α)x2 ∈ Ω.

• The convex hull of a set Ω is the intersection of all convex sets containing Ω

• Intersection of convex sets is convex
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Proof of convex set

• All solutions to the system of linear equations, {x : Ax = b}, form a

convex set.

• All solutions to the system of linear inequalities,

{x : Ax ≤ b}

, form a convex set.

• All solutions to the system of linear equations and inequalities,

{x : Ax = b, x ≥ 0}, form a convex set.

Homework 3: Prove {b : there exists x ≥ 0 such that Ax = b} is a convex

set.
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Convex Cones

• A set C is a cone if x ∈ C implies αx ∈ C for all α > 0

• A convex cone is cone plus convex-set.

• Dual cone:

C∗ := {y : y • x ≥ 0 for all x ∈ C}
−C∗ is also called the polar of C .
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Cone Examples

• Example 2.1: The n-dimensional nonnegative orthant,

Rn
+ = {x ∈ Rn : x ≥ 0}, is a convex cone; and it’s self dual.

• Example 2.2: The set {(t;x) ∈ Rn+1 : t ≥ ‖x‖p} is a convex cone in

Rn+1, called the p-order cone.

• Example 2.3: The set of all positive semi-definite matrices inMn,Mn
+, is a

convex cone, called the positive semi-definite cone; and it’s self-dual

Homework 4: Find the dual of the p-order cone.
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Polyhedral Convex Cones

• A cone C is (convex) polyhedral if C can be represented by

C = {x : Ax ≤ 0}

for some matrix A.
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Polyhedral Cone Nonpolyhedral Cone

Figure 2: Polyhedral and non-polyhedral cones.

• The nonnegative orthant is a polyhedral cone but the second-order cone is

not polyhedral.
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Real Functions

• Continuous functions C

• Weierstrass theorem: a continuous function f(x) defined on a compact set

(bounded and closed) Ω ⊂ Rn has a minimizer in Ω.

• The least upper bound or supremum of f over Ω

sup{f(x) : x ∈ Ω}
and the greatest lower bound or infimum of f over Ω

inf{f(x) : x ∈ Ω}

• The gradient vector C1:

∇f(x) = {∂f/∂xi}, for i = 1, ..., n.
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Figure 3: Derivative and slope
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• The Hessian matrix C2:

∇2f(x) =
{

∂2f

∂xi∂xj

}
for i = 1, ..., n; j = 1, ..., n.

• Vector function: f = (f1; f2; ...; fm)

• The Jacobian matrix of f is

∇f(x) =




∇f1(x)

...

∇fm(x)


 .
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Convex Functions

• f convex function iff for 0 ≤ α ≤ 1,

f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y).

• The level set of convex function f

L(z) = {x : f(x) ≤ z}

is a convex set.
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Figure 4: Properties of convex function
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Proof of convex function

Consider the minimal-objective function of b for fixed A and c:

z(b) := minimize cT x

subject to Ax = b,

x ≥ 0.

Homework 5: Show that z(b) is a convex function in b for all feasible b.
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Theorems on functions

Taylor’s theorem or the mean-value theorem:

Theorem 2 Let f ∈ C1 be in a region containing the line segment [x,y]. Then

there is a α, 0 ≤ α ≤ 1, such that

f(y) = f(x) +∇f(αx + (1− α)y)(y − x).

Furthermore, if f ∈ C2 then there is a α, 0 ≤ α ≤ 1, such that

f(y) = f(x)+∇f(x)(y−x)+(1/2)(y−x)T∇2f(αx+(1−α)y)(y−x).

Theorem 3 Let f ∈ C1. Then f is convex over a convex set Ω if and only if

f(y) ≥ f(x) +∇f(x)(y − x)

for all x, y ∈ Ω.
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Theorem 4 Let f ∈ C2. Then f is convex over a convex set Ω if and only if the

Hessian matrix of f is positive semi-definite throughout Ω.



Yinyu Ye, Stanford Lecture Note #02 25

Known Inequalities

• Cauchy-Schwarz: given x,y ∈ Rn, xT y ≤ ‖x‖‖y‖.
• Arithmetic-geometric mean: given x > 0,

∑
xj

n
≥

(∏
xj

)1/n

.

• Harmonic: given x > 0,
(∑

xj

)(∑
1/xj

)
≥ n2.
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Linear least-squares problem

Given A ∈ Rm×n and c ∈ Rn,

(LS) minimize ‖AT y − c‖2
subject to y ∈ Rm.

AAT y = Ac or y = (AAT )−1Ac

with the projection:

AT y = AT (AAT )−1Ac

Projection matrix: P = AT (AAT )−1A or P = I −AT (AAT )−1A
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Figure 5: Projection of c onto a subspace
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Newton’s method and system of equations

Given f(x) : Rn →Rn, the problem is to solve n equations for n unknowns:

f(x) = 0.

Given a point xk, Newton’s Method sets

f(x) ' f(xk) +∇f(xk)(x− xk) = 0.

xk+1 = xk − (∇f(xk))−1f(xk)

or solve for direction vector dx:

∇f(xk)dx = −f(xk) and xk+1 = xk + dx.



Yinyu Ye, Stanford Lecture Note #02 29

x

f(x)

a

f(b)

f(a)

bz c
f(c)

Figure 6: Newton’s method for root finding
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The quasi Newton method

xk+1 = xk − α(∇f(xk))−1f(xk)

where scalar α ≥ 0 is called step-size. More generally

xk+1 = xk − αMkf(xk)

where Mk is an n× n symmetric matrix. In particular, if Mk = I , the method

is called the gradient method, where f is viewed as the gradient vector of a real

function.


