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Separating hyperplane theorem

The most important theorem about the convex set is the following separating

hyperplane theorem (Figure 1).

Theorem 1 (Separating hyperplane theorem) Let C be a convex set and let b be

a point exterior to the closure of C . Then there is a vector y such that

y • b > sup
x∈C

y • x.



Yinyu Ye, Stanford Lecture Note #03 3

Geometric interpretation of the Theorem

The geometric interpretation of the theorem is that, given a convex set C and a

point b outside of C , there exists a hyperplane strictly seperating b and C .
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C

-ab

Figure 1: Illustration of the separating hyperplane theorem; an exterior point b is

separated by a hyperplane from a convex set C .



Yinyu Ye, Stanford Lecture Note #03 5

System of Linear Inequalities

Solve for x ∈ Rn from:

a1x ≤ b1

a2x ≤ b2

· · · · ·
amx ≤ bm

⇒ Ax ≤ b
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Figure 2: System of Linear Inequalities
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Farkas Lemma

The following results are Farkas’ lemma and its variants.

Theorem 2 (Farkas’ lemma) Let A ∈ Rm×n and b ∈ Rm. Then, the system

{x : Ax = b, x ≥ 0} has a feasible solution x if and only if that AT y ≤ 0 and

bT y > 0 has no feasible solution.

Geometrically, Farkas’ lemma means that if a vector b ∈ Rm does not belong to

the cone generated by a.1, ..., a.n, then there is a hyperplane separating b from

cone(a.1, ..., a.n).
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Alternative Systems

Ax = b, x ≥ 0.

AT y ≤ 0, bT y = 1(> 0)

A vector y, with AT y ≤ 0 and bT y = 1, is called a infeasibility certificate for the

system {x : Ax = b, x ≥ 0}.
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System of Linear Matrix Inequalities

Find X ∈Mn such that

Ai •X = bi, i = 1, ..., m, X º 0,

where

A •B =
∑

i,j

aijbij = traceAT B,

and X º 0 means that X is positive semi-definite.
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Alternative Systems for SDP?

Ai •X = bi, i = 1, ..., m, X º 0.

m∑

i

yiAi ¹ 0, bT y = 1
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SDP Example where Farkars’ lemma failed

A1 =


 1 0

0 0


 , A2 =


 0 1

1 0




and

b =


 0

2


 .
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Farkas Lemma for SDP

Theorem 3 (Farkas’ lemma in SDP) Let Ai ∈Mn, i = 1, ..., m, have rank m

(i.e.,
∑m

i yiAi = 0 implies y = 0) and b ∈ Rm. Then, there exists a

symmetric matrix X Â 0 with

Ai •X = bi, i = 1, ..., m,

if and only if
∑m

i yiAi ¹ 0 and
∑m

i yiAi 6= 0 and bT y ≥ 0 has no feasible

solution.

Note the difference between the LP and SDP.
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Alternative Systems for SDP

Ai •X = bi, i = 1, ..., m, X Â 0.

m∑

i

yiAi ¹ 0,
m∑

i

yiAi 6= 0, bT y ≥ 0
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Linear Programming (LP)

The standard form linear programming problem is given below, which we will use

throughout this book:

(LP ) minimize c • x

subject to ai • x = bi, i = 1, ..., m, x ≥ 0,

where c, ai ∈ Rn.

With every (LP), another linear program, called the dual (LD), is the following

problem:

(LD) maximize b • y

subject to
∑n

i yiai + s = c, s ≥ 0,

where y ∈ Rm and s ∈ Rn, called dual slack variable.
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LP in Compact Form

The standard form linear programming problem is given below, which we will use

throughout this book:

(LP ) minimize cT x

subject to Ax = b, x ≥ 0.

(LD) maximize bT y

subject to AT y + s = c, s ≥ 0.
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Rules to construct the dual

obj. coef. vector right-hand-side

right-hand-side obj. coef. vector

A AT

Max model Min model

xj ≥ 0 jth constraint≥
xj ≤ 0 jth constraint≤
xj free jth constraint =

ith constraint≤ yi ≥ 0

ith constraint≥ yi ≤ 0

ith constraint = yi free
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LP Duality Theories

Theorem 4 (Weak duality theorem) Let Fp and Fd be non-empty. Then,

cT x ≥ bT y where x ∈ Fp, (y, s) ∈ Fd.

cT x− bT y = cT x− (Ax)T y = xT (c−AT y) = xT s ≥ 0.

This theorem shows that a feasible solution to either problem yields a bound on

the value of the other problem. We call cT x− bT y the duality gap.

From this we have important results in the following.
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Theorem 5 (Strong duality theorem) Let primal feasible region Fp and dual

feasible region Fd be non-empty. Then, x∗ is optimal for (LP) if and only if the

following conditions hold:

i) x∗ ∈ Fp;

ii) there is (y∗, s∗) ∈ Fd;

iii) cT x∗ = bT y∗.

Given Fp and Fd being non-empty, we like to prove that there is x∗ ∈ Fp and

(y∗, s∗) ∈ Fd such that cT x∗ ≤ bT y∗, or to prove that

Ax = b, AT y ≤ c, cT x− bT y ≤ 0, x ≥ 0

is feasible.
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Proof of Strong Duality Theorem

Suppose not, from Farkas’ lemma, we must have an infeasibility certificate

(x′, τ, y′) such that

Ax′ − bτ = 0, AT y′ − cτ ≤ 0, (x′, τ) ≥ 0

and

bT y′ − cT x′ = 1

If τ > 0, then we have

0 ≥ (−y′)T (Ax′ − bτ) + x′T (AT y′ − cτ) = τ(bT y′ − cT x′) = τ

which is a contradiction.

If τ = 0, then the weak duality theorem also leads to a contradiction.



Yinyu Ye, Stanford Lecture Note #03 20

Theorem 6 (LP duality theorem) If (LP) and (LD) both have feasible solutions

then both problems have optimal solutions and the optimal objective values of the

objective functions are equal.

If one of (LP) or (LD) has no feasible solution, then the other is either unbounded

or has no feasible solution. If one of (LP) or (LD) is unbounded then the other has

no feasible solution.

The above theorems show that if a pair of feasible solutions can be found to the

primal and dual problems with an equal objective value, then these are optimal for

both. The converse is also true; there is no “gap.”
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Optimality Conditions





(x, y, s) ∈ (Rn
+,Rm,Rn

+) :

cT x− bT y = 0

Ax = b

−AT y − s = −c





,

which is a system of linear inequalities and equations. Now it is easy to verify

whether or not a pair (x, y, s) is optimal.
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For feasible x and (y, s), xT s = xT (c−AT y) = cT x− bT y is called the

complementarity gap.

If xT s = 0, then we say x and s are complementary to each other.

Since both x and s are nonnegative, xT s = 0 implies that xjsj = 0 for all

j = 1, . . . , n.

Xs = 0

Ax = b

−AT y − s = −c.

This system has total 2n + m unknowns and 2n + m equations including n

nonlinear equations.
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Theorem 7 (Strict complementarity theorem) If (LP) and (LD) both have feasible

solutions then both problems have a pair of strictly complementary solutions

x∗ ≥ 0 and s∗ ≥ 0 meaning

X∗s∗ = 0 and x∗ + s∗ > 0.

Moreover, the supports

P ∗ = {j : x∗j > 0} and Z∗ = {j : s∗j > 0}

are invariant for all pairs of strictly complementary solutions.

Given (LP) or (LD), the pair of P ∗ and Z∗ is called the (strict) complementarity

partition. {x : AP∗xP∗ = b, xP∗ ≥ 0, xZ∗ = 0} is called the primal optimal

face, and {y : cZ∗ −AT
Z∗y ≥ 0, cP∗ −AT

P∗y = 0} is called the dual

optimal face.
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An Example

Consider the primal problem:

minimize x1 +x2 +1.5 · x3

subject to x1 + x3 = 1

x2 + x3 = 1

x1, x2, x3 ≥ 0;
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The dual problem is

maximize y1 +y2

subject to y1 +s1 = 1

y2 +s2 = 1

y1 +y2 +s3 = 1.5

s ≥ 0.

P ∗ = {3} and Z∗ = {1, 2}
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Face and Extreme Point

Let P be a polyhedron inRn, F is a face of P if and only if there is a vector c for

which F is the set of points attaining max {cT x : x ∈ P} provided this

maximum is finite.

A polyhedron has only finite many faces; each face is a nonempty polyhedron.

A vector x ∈ P is an extreme point or a vertex of P if x is not a convex

combination of more than one distinct points.
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Basic Feasible Solution

In the LP standard form, select m linearly independent columns, denoted by the

index set B, from A.

ABxB = b

for the m-vector xB . By setting the variables, xN , of x corresponding to the

remaining columns of A equal to zero, we obtain a solution x such that

Ax = b.

Then, x is said to be a (primal) basic solution to (LP) with respect to the basis

AB . The components of xB are called basic variables.

If a basic solution x ≥ 0, then x is called a basic feasible solution.

If one or more components in xB has value zero, the basic feasible solution x is

said to be (primal) degenerate.



Yinyu Ye, Stanford Lecture Note #03 28

Dual Basic Feasible Solution

A dual vector y satisfying

AT
By = cB

is said to be the corresponding dual basic solution.

If the dual basic solution is also feasible, that is

s = c−AT y ≥ 0,

then x is called an optimal basic solution and AB an optimal basis.

If one or more components in sN has value zero, the basic feasible solution y is

said to be (dual) degenerate.
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Geometry vs Algebraic

Theorem 8 Consider the polyhedron in the standard LP form. Then, a basic

feasible solution and an extreme point are equivalent; the formal is algebraic and

the latter is geometric. Moreover, two neighboring extreme points are represented

by two basic solutions whose bases differ by exactly one column.
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LP Geometry depicted in two variable space
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Theorem 9 (LP fundamental theorem) Given (LP) and (LD) where A has full row

rank m,

i) if there is a feasible solution, there is a basic feasible solution;

ii) if there is an optimal solution, there is an optimal basic solution.
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The above theorem reduces the task of solving a linear program to that searching

over basic feasible solutions. By expanding upon this result, the simplex method,

a finite search procedure, is derived. The simplex method is to proceed from one

basic feasible solution (an extreme point of the feasible region) to an adjacent

one, in such a way as to continuously decrease the value of the objective function

until a basic minimizer is reached. In contrast, interior-point algorithms will move

in the interior of the feasible region and reduce the value of the objective function,

hoping to by-pass many extreme points on the boundary of the region.



Yinyu Ye, Stanford Lecture Note #03 33

Semidefinite Programming (SDP)

The standard form semidefinite programming problem is given below, which we

will use throughout this book:

(SDP ) inf C •X

subject to Ai •X = bi, i = 1, 2, ...,m, X º 0,

where C, Ai ∈Mn.

The dual problem to (SDP) can be written as:

(SDD) sup b • y

subject to
∑m

i yiAi + S = C, S º 0,

where y ∈ Rm and S ∈Mn.
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SDP in Compact Form

(SDP ) inf CT X

subject to AX = b, X º 0.

The dual problem to (SDP) can be written as:

(SDD) sup bT y

subject to AT y + S = C, S º 0.
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Duality Theorems for SDP

Theorem 10 ( Weak duality theorem in SDP) Let Fp and Fd, the feasible sets

for the primal and dual, be non-empty. Then,

C •X ≥ bT y where X ∈ Fp, (y, S) ∈ Fd.

The weak duality theorem is identical to that of (LP) and (LD).

Corollary 1 (Strong duality theorem in SDP) Let Fp and Fd be non-empty and

at least one of them has an interior. Then, X is optimal for (PS) if and only if the

following conditions hold:

i) X ∈ Fp;

ii) there is (y, S) ∈ Fd;

iii) C •X = bT y or X • S = 0.
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SDP Example with a Duality Gap

C =




0 1 0

1 0 0

0 0 0


 , A1 =




0 0 0

0 1 0

0 0 0


 , A2 =




0 −1 0

−1 0 0

0 0 2




and

b =


 0

10


 .
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Optimality Conditions for SDP

C •X − bT y = 0

AX = b

−AT y − S = −C

X, S º 0

, (1)

XS = 0

AX = b

−AT y − S = −C

X, S º 0

(2)



Yinyu Ye, Stanford Lecture Note #03 38

Production Problem I

max pT x s.t. Ax ≤ r, x ≥ 0

where

• p: profit margin vector

• A: resources consumption rate matrix

• r: available resource vector

• x: production level decision vector
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Production Problem II: Liquidation Pricing

• y: the fair price vector

• AT y ≥ p: competitiveness

• y ≥ 0: positivity

• min rT y: minimize the total liquidation cost
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Primal :

maximize x1 +2x2

subject to x1 ≤ 1

x2 ≤ 1

x1 +x2 ≤ 1.5

x1, x2 ≥ 0.

Dual :

minimize y1 +y2 +1.5y3

subject to y1 +y3 ≥ 1

y2 +y3 ≥ 2

y1, y2, y3 ≥ 0.
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Optimal Value Function I

For fixed matrix A and right-hand-side vector b, the optimal value is a function of

objective coefficient vector c:

fc(c) = minimize cT x

subject to Ax = b,

x ≥ 0.

Homework 6: Show that fc(c) is a concave function in c.
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The Max-Flow problem

Given a directed graph with nodes 1, ..., n and edges A, where node 1 is called

source and node n is called the sink, and each edge (i, j) has a flow rate

capacity uij . The Max-Flow problem is to find the largest possible flow rate from

source to sink.

Let xij be the flow rate from node i to node j. Then the problem can be

formulated as

maximize xn1

subject to
∑

j:(i,j)∈A xij −
∑

j:(j,i)∈A xji − xn1 = 0, ∀i = 1,
∑

j:(i,j)∈A xij −
∑

j:(j,i)∈A xji = 0,∀i = 2, ..., n− 1,
∑

j:(i,j)∈A xij −
∑

j:(j,i)∈A xji + xn1 = 0, ∀i = n,

0 ≤ xij ≤ uij , ∀(i, j) ∈ A.
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The dual of the Max-Flow problem: Min-Cut

minimize
∑

(i,j)∈A uijzij

subject to yi − yj + zij ≥ 0, ∀(i, j) ∈ A,

−y1 + yn = 1,

zij ≥ 0, ∀(i, j) ∈ A.

This problem is called the Min-Cut problem.
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Two-Person Zero-Sum Game

Let P be the payoff matrix of a two-person, ”column” and ”row”, zero-sum game.

P =


 +3 −1 −4

−3 +1 +4




Players usually use randomized strategies in such a game. A randomized

strategy is a vector of probabilities, each associated with a particular decision.
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Nash Equilibrium

In a Nash Equilibrium, if your (column) strategy is a pure strategy (one where you

always play a single action), the expected payout for the (dominating) action that

you are playing should be greater than or equal to the expected payout for any

other action. If you are playing a randomized strategy, the expected payout for

each action included in your strategy should be the same (if one were lower, you

won’t want to ever choose that action) and these payouts should be greater than

or equal to the actions that aren’t part of your strategy.
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LP formulation of Nash Equilibrium

”Column” strategy:

max v

s.t. ve ≤ Px

eT x = 1

x ≥ 0.

”Row” strategy:

min u

s.t. ue ≥ PT y

eT y = 1

y ≥ 0.

They are dual to each other.
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Multi-Firm LP Alliance I

Consider a finite set I of firms each of whom has operations that have

representations as linear programs. Suppose the linear program representing the

operations of firm i in I entails choosing an n-column vector x ≥ 0 of activity

levels that maximize the firm’s profit

cT x

subject to the constraint that its consumption Ax of resources minorizes its

available resource vector bi, that is,

Ax ≤ bi.
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Multi-Firm LP Alliance II

An alliance is a subset of the firms. If an alliance S pools its resource vectors, the

linear program that S faces is that of choosing an n-column vector x ≥ 0 that

maximizes the profit cT x that S earns subject to its resource constraint

Ax ≤ bS =
∑

i∈S

bi.

Let V S be the resulting maximum profit of S. The grand alliance is the set I of

all firms.

V S := max cT x

s.t. Ax ≤ ∑
i∈S bi,

x ≥ 0,
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Multi-Firm LP Alliance III: Core

Core is the set of payment vector z = (z1, ..., z|I|) to each company such that

∑

i∈I

zi = V I

and ∑

i∈S

zi ≥ V S , ∀S ⊂ I.

Theorem 11 For each optimal dual price vector for the linear program of the

grand alliance, allocating each firm the value of its resource vector at those prices

yields a profit allocation vector in the core.
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Combinatorial Auction Pricing: The dual of the model

min qT y

s.t. AT p + y ≥ π,

eT p = w,

(p,y) ≥ 0,

where p represent state prices.

Homework 7: Prove the following conditions hold:

xj > 0 aT
j p + yj = πj so that aT

j p ≤ πj

0 < xj < qj yj = 0 so that aT
j p = πj

xj = 0 yj = 0 so that aT
j p ≥ πj
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Carathéodory’s theorem

The following theorem states that a polyhedral cone can be generated by a set of

basic directional vectors.

Theorem 12 Let convex polyhedral cone

C = cone(a1, ..., an) = {Ax =
∑

j

ajxj : x ≥ 0}.

and b ∈ C . Then, b ∈ cone(ai1 , ..., aim) for some linearly independent vectors

ai1 ,...,aim chosen from a1,...,an.

If Ax = b, x ≥ 0 has a feasible solution, it has a feasible solution where it has

at most m nonzero entries.



Yinyu Ye, Stanford Lecture Note #03 52

Rounding to a low-rank solution for LP

1. Start at any feasible solution x0 and, without loss of generality, assume

x0 > 0, and let k = 0 and A0 = A.

2. Find any Akd = 0, d 6= 0, and let xk+1 = xk + αd where α is chosen

such as xk+1 ≥ 0 and at least one of xk+1 equals 0.

3. Eliminate the the variable(s) in xk+1 and column(s) in Ak corresponding to

xk+1
j = 0, and let the new matrix be Ak+1.

4. Return to step 2.
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The Eigenvalue Decomposition

Let X be a positive semidefinite matrix of rank r, Then, the eigenvalue

decomposition of X

X =
r∑

j=1

λjvjv
T
j ,

such that for all j,

vT
j vi = 0 ‖vj‖2 = 1, j 6= i, j = 1, ...r.
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Bound on Rank of SDP Solutions

Theorem 13 Let X∗ be an minimizer of (SDP). By solving a linear program (in

strongly polinomial time) we can compute another minimizer of (SDP) whose rank

r satisfying
r(r + 1)

2
≤ m.

Barvinok (2001), Pataki, Alfakih/Wolkowicz (1999).
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Proof of the theorem

(This proof is written by Mehdi Mohseni and myself based on our discussions in

the class.)

Consider SDP in the standard form:

z∗ := Minimize C •X

Subject to Ai •X = bi, i = 1, ...,m

X º 0.

(3)

Theorem 14 Let X∗ be a minimizer of (3). Then we can compute a minimizer of

(3) whose rank r satisfies r(r + 1)/2 ≤ m in polinomial time.
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Proof

If the rank of X∗, r, satisfies the inequality, then we need do nothing. Thus, we

assume r(r + 1)/2 > m, and let

V V T = X∗, V ∈ Rn×r.

Then consider

Minimize V T CV • U

Subject to V T AiV • U = bi, i = 1, ..., m

U º 0.

(4)

Note that V T CV , V T AiV s and U are r × r symmetric matrices and

V T CV • I = C • V V T = C •X∗ = z∗.
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Moreover, for any feasible solution of (4) one can construct a feasible solution for

(3) using

X(U) = V UV T and C •X(U) = V T CV • U. (5)

Thus, the minimal value of (4) is also z∗, and U = I is a minimizer of (4).

Now we show that any feasible solution U to (4) is a minimizer for (4); thereby

X(U) of (5) is a minimizer for (3). Consider the dual of (4)

z∗ := Maximize bT y =
∑m

i=1 biyi

Subject to V T CV º ∑m
i=1 yiV

T AiV
T .

(6)

Let y∗ be a dual maximizer. Since U = I is an interior optimizer for the primal,

the strong duality condition holds, i.e.,

I • (V T CV −
m∑

i=1

y∗i V T AiV
T ) = 0
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so that we have

V T CV −
m∑

i=1

y∗i V T AiV
T = 0.

Then, any feasible solution of (4) satisfies the strong duality condition so that it

must be also optimal.

Consider the system of homogeneous linear equations

V T AiV •W = 0, i = 1, ..., m

where W is a r × r symmetric matrices (does not need to be definite). This

system has r(r + 1)/2 real number variables and m equations. Thus, as long

as r(r + 1)/2 > m, we must be able to find a symmetric matrix W 6= 0 to

satisfy all m equations. Without loss of generality, let W be either indefinite or

negative semidefinite (if it is positive semidefinite, we take−W as W ), that is,

W has at least one negative eigenvalue, and consider

U(α) = I + αW.
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Choosing α∗ = 1/|λ̄| where λ̄ is the least eigenvalue of W , we have

U(α∗) º 0

and it has at least one 0 eigenvalue or rank(U(α∗)) < r, and

V T AiV •U(α∗) = V T AiV •(I+α∗W ) = V T AiV •I = bi, i = 1, ...,m.

That is, U(α∗) is a feasible and so it is an optimal solution for (4). Then,

X(U(α∗)) = V U(α∗)V T

is a new minimizer for (3), and rank(X(U(α∗))) < r.
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This process can be repeated till the system of homogemeous linear equations

has only all zero solution, which is necessarily given by r(r + 1)/2 ≤ m. Thus,

we must be able to find an SDP solution whose rank satisfies the inequality. The

total number of such reduction steps is bounded by n− 1 and each step uses no

more than O(m2n) arithmetic operations. Therefore, the total number of

arithmetic operations is a polynomial in m and n, i.e., in (strongly) polynomial

time given the least eigenvalue of W .


