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Real n-Space; Euclidean Space I

e R: real numbers

e R'": n-dimensional Euclidean space

e X >ymeansx; > y,;foryg =1,2,...n
e (: vector of all zeros; e: vector of all ones
e Inner-product of two vectors:

n
X0y = XTy = Zaijj
71=1

e Euclidean norm: ||x||2 = vVx'x,

}.

Infinity-norm: ||x||oc = max{|z1|, |x2|, ..., |Tn

o 1/p
pnorm: [, = (27l 1)
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e Column vector:

X = (x1;72;...;%n)
and row vector:
X:(x17x27 7337%)
e Transpose operation: A’
e A setof vectors ay, ..., a,, is said to be linearly dependent if there are
scalars A, ..., A,,, not all zero, such that the linear combination

i )\iai =0
1=1

e A linearly independent set of vectors that span " is a basis.
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Hyper Planes I

The most important type of convex set is a hyperplane. Hyperplanes dominate

the entire theory of optimization. Let a be a nonzero n-dimensional vector, and let

b be a real number. The set
H={zxcR":a'z =0}

is a hyperplane in R". Relating to hyperplane, positive and negative closed half
spaces are given by

H, ={z:a"2>0b}

H_={x:a'z <b}.
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System of Linear Equations I

Solve for x € R"™ from:

A X = bl
a — b

2% ’ = Ax=Db
a,x = b,

Basic solution: select m columns from A to form a square matrix A 3 such that
Apxp = b, therestof xy =0

where B is the index set of selected 1 coolumns.
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Figure 1: System of Linear Equations
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Fundamental theorem of linear equations I

Theorem 1 Let A € R™*" andb € R™. The system {x : Ax = b} has a
solution if and only if that ATy = 0 and b’y # 0 has no solution.

A vector y, with ATy = 0 and bTy =+ (), is called an infeasibility certificate for
the system.

Example Let A = (1; —1)and b = (1;1). Then,y = (1/2;1/2) is an
infeasibility certificate.
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Gaussian elimination method '

a;; A z1 | [ O
0 A’ x! b’
U C
A=1
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Matrices '

Matrix: R"™*", ithrow: a;, jthcolumn: a_;, ijth element: a;;

A denotes the submatrix of A whose rows belong to index set I, A ;
denotes the submatrix whose columns belong to index set .J, A ; denotes
the submatrix whose rows belong to index set / and columns belong to index
set .J.

All-zero matrix: 0, and identity matrix: /

Diagonal matrix: X = diag(x)

Symmetric matrix: Q = Q1

Positive Definite: Q > 0 iff x! Qx > 0, forall x # 0

Positive Semidefinite: Q > 0iff x’ Qx > 0, forall x
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Line and Convex Combination '

When x and y are two distinct points in /2" and « runs over 17,
{z:z=ax+(1—a)y}

is the line determined by x and y.

When 0 < o < 1, it is called the convex combination of x and y and it is the line

segment between x and y.
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Convex Set '

e () is said to be a convex set if for every xl, x? € () and every real number
a € [0, 1], the point ax! + (1 — a)x? € Q.

e The convex hull of a set 2 is the intersection of all convex sets containing ¢

e Intersection of convex sets is convex

11
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Proof of convex set '

e All solutions to the system of linear equations, {x : Ax = b}, form a

convex set.

e All solutions to the system of linear inequalities,
{x: Ax < b}
, form a convex set.

e All solutions to the system of linear equations and inequalities,
{x: Ax = b, x > 0}, form a convex set.

Homework 3: Prove {b : there exists x > 0 such that Ax = b} is a convex
set.

12
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Convex Cones '

e Aset C'isaconeifx € (implies ax € (' forall v > 0
e A convex cone is cone plus convex-set.

e Dual cone:
C*":={y:yex>0 foral xeC}

—(C'" is also called the polar of C'.

13
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Cone Examples I

e Example 2.1: The n-dimensional nonnegative orthant,

T ={x € R": x> 0},is aconvex cone; and it's self dual.

e Example 2.2: The set {({;x) € R™"' : t > ||x||, } is a convex cone in
R+ called the p-order cone.

e Example 2.3: The set of all positive semi-definite matrices in M", M/ |is a
convex cone, called the positive semi-definite cone; and it’s self-dual

Homework 4: Find the dual of the p-order cone.

14



Yinyu Ye, Stanford Lecture Note #02

Polyhedral Convex Cones I

e A cone (' is (convex) polyhedral if C' can be represented by
C'={x:Ax <0}

for some matrix A.

15
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4

Polyhedral Cone Nonpolyhedral Cone

Figure 2: Polyhedral and non-polyhedral cones.

e The nonnegative orthant is a polyhedral cone but the second-order cone is
not polyhedral.
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Real Functions '

e Continuous functions (

e Weierstrass theorem: a continuous function f(x) defined on a compact set

(bounded and closed) {2 C R™ has a minimizer in (2.

e The least upper bound or supremum of | over {2

sup{f(x): x € Q}

and the greatest lower bound or infimum of f over ()

inf{f(x): x € Q}

e The gradient vector C'*:

Vfx)={0f/0x;}, for 1=1,....n.

17
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f(x)
(@)

Figure 3: Derivative and slope



Yinyu Ye, Stanford Lecture Note #02

e The Hessian matrix C2:

2 f

VQf(X):{ax-(?x-} for 1=1,...,n;j=1,...,n.
0T

e Vector function: £ = (f1; fo;...; fin)
e The Jacobian matrix of f is
V f1(x)
Vi(x) =
V fm (x)

19
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Convex Functions '

e f convex function iff for 0 < o < 1,

flax+ (1 —a)y) <af(x)+ (1 -a)f(y).

e The level set of convex function f

IS a convex set.

20
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f(x)
f(a)

f(2)
f(b)

Figure 4: Properties of convex function
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Proof of convex function '

Consider the minimal-objective function of b for fixed A and c:

z(b) := minimize c¢!'x

subjectto Ax = b,
x > 0.

Homework 5: Show that z(b) is a convex function in b for all feasible b.

22
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Theorems on functions '

Taylor’s theorem or the mean-value theorem:

Theorem 2 Let f € C'' be in a region containing the line segment [x,y|. Then
thereisac, ) < o < 1, such that

fly) = f(x) + Vflax+ (1 - a)y)(y —x).

Furthermore, if | € C? then there is a o, < o < 1, such that

fy) = fx)+Vf(x)(y—x)+(1/2)(y—x)" V* f(ax+(1-a)y)(y—x).

Theorem 3 Let f € C'. Then f is convex over a convex set ) if and only if

fly) = f(x) + V(x)(y — %)

forallx, y € ().
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Theorem 4 Let f € C?. Then f is convex over a convex set () if and only if the
Hessian matrix of | is positive semi-definite throughout €.
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Known Inequalities I

e Cauchy-Schwarz: givenx,y € R", xy < [|x]|||y]-

e Arithmetic-geometric mean: given x > 0,

anj > (H xj) 1/n |

e Harmonic: given x > 0,

(50) (1)) =2

25
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Linear least-squares problem I

Given A € R™*™ andc € R",

(LS) minimize ||ATy —c||?
subjectto 'y € R™.

AATy = Ac or y = (4AT) 1 Ac

with the projection:
ATy = AT(AAT) ' Ac

Projection matrix: P = AT (AAT)"tAor P =1 AT (AAT)~1A
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Figure 5: Projection of c onto a subspace
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Newton’s method and system of equations I

Given f(x) : R" — R", the problem is to solve 1 equations for 7 unknowns:

f(x) =0.

Given a point x", Newton’s Method sets

f(x)~ f(x) + Vf(x")(x—x*) = 0.

M= — (VM) T
or solve for direction vector d

VixMd, = —f(x*) and x"1 =x* +d,.

28
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f(x)

f(a)

f(b)
f(c)

Figure 6: Newton’s method for root finding
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The quasi Newton method I

= xF — o(Vf(xF) 7L f(xF)
where scalar « > 0 is called step-size. More generally
xPTh = xF — aM* f(xF)

where M % is an n x n symmetric matrix. In particular, if M* = I, the method
is called the gradient method, where [ is viewed as the gradient vector of a real

function.
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