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Linear Programming (LP) I

(LP) minimize clx

subjectto Ax =b, x > 0.
(LD) maximize by
subjectto ATy +s=c, s> 0.

Invented by George Dantzig in 1947, the simplex method remains one of the two
best solvers for LP.
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Methodological Philosophy I

The primal Simplex Algorithm maintains the primal feasibility and complementary
slackness conditions while working toward dual feasibility. By contrast, the Dual
Simplex Algorithm maintains dual feasibility and complementary slackness while
working toward primal feasibility. In a sense, it is the primal Simplex Algorithm
applied to the dual problem, but carried out in the format of the primal problem.
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The (Dual) Simplex Method I: Test optimality I

Given a dual basic feasible yp satisfying

T
Apys =cp, Anys <cn.

Let , the primal basic solution be

ABZIZB = b.
Thenif xp > 0, thatis, b € Cone(Ap), yp is optimal for the dual and x 5 is
optimal for the primal.

If not, we move to an adjacent basic feasible solution, that is, exactly one index of
B is replaced. This solution represents a neighboring extreme point of the
feasible region.
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The (Dual) Simplex Method II: Find direction to go I

Consider the transformed dual problem using 7y’ = A}gy:

(LD') maximize xLy/
subjectto  (A5'A)Ty <c.
Note that /' = cp is a basic feasible solution to LD’
Then, let
y' (o) =cp — ae;, a >0
where 7 is the 1th variable in 1/ whose coefficient is negative.

Choose « big enough such that /(<) hit the boundary of the feasible region.
Then we have a new basic feasible 3/ () for LD  or y = (A5") 75/ (a*) for

LD. The new basic feasible solution is adjacent to the old one.
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The (Dual) Simplex Method lll: Pivot procedure I

The algorithm works with pivot steps like those of the Primal Simplex Algorithm

but uses different criteria for pivot selection and termination.

Once the problem is put into the canonical form, the method checks whether it is
time to terminate. This will be the case if either of the following conditions is met
by the current system:

1. b > 0:
2. b, <0and A,; > Oforallj € {1,...,n}.

In the first case, the current basic solution is primal feasible. In the second case,

the infeasibility of the primal is revealed.
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The (Dual) Simplex Method IV: Outgoing and Entering Variables I

Let ©,, 0 € B be the outgoing variable.

If neither of these conditions obtains, we have b, < () and Aoj < () for some .

One of these negative numbers a,-; will be chosen as the pivot element.
Let ©,, 0 € I3 be the outgoing variable.

Under the rules of the algorithm, it is necessary to maintain the dual feasibility
(nonnegativity of the coefficients in the objective function row). This is
accomplished by chosing the pivot column e according to the minimum ratio rule

7“

: A, <0
Aog J < }

e € argmin;cny{—=—

Then, x. is the entering variable.
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Uniqueness I

Homework 6: At an optimal basic solution 1) if the reduced cost of every nonbasic
variable is positive, then the optimal primal solution is unique; 2) if every primal
basic variable is positive, then the optimal dual solution is unique.
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Resolving Cycling in the Simplex Algorithm I

In a system of rank m, a (basic) solution that uses fewer than 1m columns to
represent the right-hand side vector is said to be degenerate. Otherwise, it is

called nondegenerate.

A basic feasible solution will be nondegenerate if and only if its 1 basic variables

are positive.
Why is degeneracy a problem?

The Simplex Algorithm can cycle when a degenerate basic feasible solution crops

up in the course of executing the algorithm.
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Cycling Example I

min —2r; — 3xo + r3 + 12x4

s.t. —2r1 — Y929 + r3 + 924 Hx5 =0
%xl + To — %333 — 214 +xg =0
T1, T2, T3, T4,  Ts, re =0

Initially, the basic variables are { x5, 2 } and it is in the canonical form. The pivot
sequence shown in the table below leads back to the original system after 6
pivots.

Pivot number 1 2 3 4 5 6

Basicvar.out || xg | 5 | o | 1 | T4 | T3

Basic var. in To | 1 | Ty | T3 | Tg | T5
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Methods for Resolving Cycling I

There are several methods for resolving degeneracy in linear programming.

Among these are:
1. Perturbation of the right-hand side.
2. Lexicographic ordering.

3. Application of Bland’s pivot selection rule.

11
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Bland’s Rule '

It is a double least-index rule consisting of the following two parts:

(i) Among all candidates for the entering column (i.e., those with ; < 0),

choose the one with the smallest index, say s.

(i) Among all rows 2 for which the minimum ratio test results in a tie, choose the

row 7 for which the corresponding basic variable has the smallest index, 7,-.

Theorem 1 Under Bland’s pivot selection rule, the Simplex Algorithm cannot

cycle.

12
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Parametric Linear Programming Problem I

The objective coefficient vector becomes ¢ + A\g or the right-hand-side vector of
the form b + Ad where the parameter A belongs to an interval.

Denote this problem by LP(\):

LP(A\) minimize (c+ A\g)Tx
subjectto Ax = b + Ad,
x > 0.

13
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Geometrical Observations '

1. We know that for the function ¢’ x, the vector ¢ denotes the direction of
steepest ascent, so that —c denotes the direction of steepest descent. Thus,
parameterizing the cost function according to the rule ¢ + A\g changes the
gradient, the normal direction of the objective hyperplane.

2. If b is replaced by b + Ad, as A varying the point b + \d moves away from
b in the direction d (depending on the sign of \). This raises the question of

whether or not the point b + A\d lies in the cone generated by A 5 or even

A?
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Getting Started I

Let us consider A around 0.

A key question in these parametric problems is: how much can the parameter A

be changed before the current optimal basic solution of LP(0) is lost?

Theorem 2 The optmal basis of LP(0) remains optimal for LP(\) if and only if

Az'(b+Ad) >0 and (c+Ag) — AT(AZ) '(c+ Ag)s > 0.

This will establish an interval on A in which the optmal basis of LP(0) remains

optimal.

15
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Sensitivity Analysis: Right-Hand-Side I

The problem before us is to find (foreach 2 = 1, ..., m) the range of values of

the scalar A for which the basis A 5 remains optimal for the new RHS b + \e;,
where e; is the vector of all zero except 1 in the 2th position.

A p remains optimal if
AZ'(b+ Xe;) =b+A(A5'e;) > 0.

Then the new optimal objective value is changed from the old one by A - v/

where y* is the optimal dual solution of LP(0):

cpAg (b+Xe;) = (y*) (b+Xei) = (y*) ' b+A(y*) e = (y*) ' b+Ay;.

16
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Sensitivity Analysis: Cost Coefficient I

The problem before us is to find (foreach 7 = 1, ..., n) the range of values of

the scalar A for which the basis A g remains optimal for the new RHS ¢ + )\ej,
where €; is the vector of all zero except 1 in the jth position.

A p remains optimal if

—XMef AL >0 itje B
(e+re))n—AR(AF) (etre )p = { 1Y N AN =0 1S

*

Then the new optimal objective value is changed from the old one by A - T

where x* is the optimal primal solution of LP(0):

(c+ )\ej)gAglb = (c+ )\ej)gxf3

_ T x _ T x T .« T _ % *
= (c+ Aej) x" =cpxp +Ae; X" =cpXp+ A2,

ry+Ae; >0 otherwise

17
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Geometry of linear programming I

maximize x1 +2x9
subjectto <1
To <1
r1 +xo < 1.5
1, To >0
B(0O O 0 1 1 |23
3]0 01 1 —1] 35
210 1 0 1 0 1
110 0 -1 1| 3

18
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L P Geometry depicted in two variable space

If the direction of b is
contained by the norm
cone of a point, then the
point is optimal.

anorm direction
cone
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Wyndor Example I

max 30xr1 +950x9
subject to T +x3
219 +x4

3r1 +2x9 +5

12
18

20
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r1 X9 T3 T4 x5 1

-30 -50 0 0 0 0
1 0 1 0 0 4
0 2 0 1 0 12
3 2 0 0 1 18

21
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ry X2 T3 T4 Ty 1
0 0 0 15 10 | 360
0 0 1 1/3  -1/3 2
0 1 0 1/2 0 6
1 0 o -13 1/3 2

22
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How Good is the Simplex Method I

Very good on average, but the worse case ...7?

When the simplex method is used to solve a linear program the number of
iterations to solve the problem starting from a basic feasible solution is typically a

small multiple of m, e.g., between 2m and 3m.

At one time researchers believed—and attempted to prove—that the simplex
algorithm (or some variant thereof) always requires a number of iterations that is
bounded by a polynomial expression in the problem size.
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Klee and Minty Example I

max Tn

Consider

subjectto x1 > 0

$1§1
ZEjZGZEj_l ]: NN
r;<l—ex;—1 7=2,...,n

where 0 < € < 1/2. This presentation of the problem emphasizes the idea (see
the figures below) that the feasible region of the problem is a perturbation of the

n-cube.

24
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In the case of n = 2 and € = 1/4, the feasible region of the linear program

above looks like
L2
A

Y
8
—_
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For the case where n = 3, the feasible region of the problem above looks like
L3
A

l

l To

| A

L
/s

/

L1

Y
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The formulation above does not immediately reveal the standard form

representation of the problem. Instead, we consider a different one, namely

max Z 10”_jxj
j=1
1—1
subjectto 2) 107 Ja; +a; <1001 i=1,....n
71=1
€ j > 0 j — 1, .

The problem above?® also be used is easily cast as a linear program in standard
form. Unfortunately, it is less apparent how to exhibit the relationship between its
feasible region and a perturbation of the unit cube.

21t should be noted that there is no need to express this problem in terms of powers of 10. Using

any constant C' > 1 would yield the same effect (an exponential number of pivot steps).
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Example I

+ 105132
+ T2
+ 205132

+ 3

+£E3

VANVA

<

28

1
100
10,000

In this case, we have three constraints and three variables (along with their

nonnegativity constraints). After adding slack variables, we get a problem in

standard form. The system has 1 = 3 equations and . = 6 nonnegative

variables. In tableau form, the problem is



Yinyu Ye, Stanford Lecture Note #04

—Z X1 T2 T3 T4 Ty Tg 1
1 100 10 1 0 0 0 0
1 0 0 1 0 0 1
0 0 1 0 100

o O O
N
o
—h

200 20 1 0 0 1 10,000

The bullets below the tableau indicate the columns that are basic.

29
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—Z X1 X I3 T4 L5  Te 1
1 o 10 1 —-100 O 0 -100
0 1 0 0 1 0 0 1
0 0 1 0 —20 1 0 80
0 O 20 1 200 O 1 ] 9,800
[ [ [
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—Z X1 X2 T3 T4 L5 Lg 1
1 0 0 1 100 -10 O —900
T2 0 1 0 0 1 0 0 1
0 0 1 0 -20 1 0 80
0 0 0 1 200 -20 1 | 8,200
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—Z 1 Ty T3 T4 T5 @ Te 1
1 —-100 O 1 0O -10 0 | —-1,000
0 1 0 0 1 0 0 1
0 20 1 0 0 1 0 100
0O | 200 O 1 0O -20 1 8,000
[ [ [

32
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—Z 1 Ty T3 T4 T5 @ Te 1
1 100 O 0 0 10 -1 | -9,000
0 1 0 0 1 0 0 1
0 20 1 0 0 1 0 100
0O | 200 O 1 0 -20 1 8,000
[ [ [

33
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—Z X1 Ty I3 T4 Ty  Tg 1
1 0 0 0 -—-100 10 -1 | -9,100
0 1 0 0 1 0 0 1
0 0 1 0 —20 1 0 80
0 0 0 1 200 -20 1 8,200
[ [ [

34
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—Z X1 X9 I3 T4 L5  Te 1
1 0O -10 O 100 0 -1 | —9,900
0 1 0 0 1 0 0 1
0 0 1 0 —20 1 0 80
0 0 20 1 =200 O 1 9,800
[ [ [
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—Z T1 Ty T3 T4 Ty Tg 1
1 -100 -10 0 0 0 -1 | —10,000
0 1 0 0 1 0 0 1
0 20 1 0 0 1 0 100
0 200 20 1 0 0 1 10,000
[ [ [

36
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(w1, 2,23, T4, T5,36) = (0,0,10%,1,10%,0)
is optimal and that the objective function value is 10, 000.

Along the way, we made 23 —1=7 pivot steps. The objective function made a
strict increase with each change of basis.

Remark. The instance of the linear program (1) in which n = 3 leads to 23 — 1

pivot steps when the greedy rule is used to select the pivot column. The general

problem of the class (1) takes 2" — 1 pivot steps. To get an idea of how bad this
can be, consider the case where n = 50. Now 2°° — 1 ~ 10'°. In a year with

365 days, there are approximately 3 x 107 seconds. If a computer were running
continuously and performing ' iterations of the Simplex Algorithm per second, it
would take approximately

101° 1 < 108
— ears
37 % 108 3T y

to solve the problem using the Simplex Algorithm with the greedy pivot selection

rule.
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An interesting connection I

Consider the eight vectors v* = (v, v}, v§) where k =0,1,...,7 and

. 1 if x; is basic in tableau k

0O otherwise

Looking at the eight tableaus TY, T', ..., T", we see that
Y =(0,0,0)  v*=(0,1,1)
vt =(1,0,0)  v®=(1,1,1)
v =(1,1,0) 0% =(1,0,1)

v? =(0,1,0) v’ =(0,0,1)

Now suppose we regard these vectors as the coordinates of the vertices of the
3-cube [ 0, 1].
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The figure above illustrates the fact that the sequence of vectors Ik corresponds
to a path on the edges of the 3-cube. The path visits each vertex of the cube once
and only once. Such a path is said to be Hamiltonian.

There is an amusing recreational literature that connects Hamiltonian path with
certain puzzles. See Martin Gardner, “Mathematical games, the curious
properties of the Gray code and how it can be used to solve puzzles,” Scientific
American 227 (August 1972) pp. 106-109. See also, S.N. Afriat, The Ring of
Linked Rings, London: Duckworth, 1982.



