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Max-Cut Problem

Consider the Max Cut problem on an undirected graph G = (V, E) with

non-negative weights wij for each edge in E (and wij = 0 if (i, j) 6∈ E), which

is the problem of partitioning the nodes of V into two sets S and V \ S so that

w(S) :=
∑

i∈S, j∈V \S
wij

is maximized. A problem of this type arises from many network planning, circuit

design, and scheduling applications.
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Quadratic Optimization Formulation

This problem can be formulated by assigning each node a binary variable xj :

z∗ = Maximize w(x) :=
1
4

∑

i,j

wij(1− xixj) = xT Wx

(MC)

Subject to x2
i = 1, i = 1, ..., n.
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The Coin-Toss Method

Let each node be selected to one side, or xi be 1, independently with probability

.5.

E[w(x)] ≥ 0.5 · z∗.
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Semi-definite relaxation

zSDP := minimize W •X

s.t. Ij •X = 1, j = 1, ..., n,

X º 0.

(1)

The dual is

zSDP = maximize eT y

s.t. W º D(y).
(2)
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Randomized Rounding of Goemans and Williamson

Let V = (v1, . . . , vn) ∈ Rn×n, i.e., vj is the jth column of V , such that

X∗ = V T V .

Generate a random vector u ∈ N(0, I):

x̂ = sign(V T u),

sign(xj) =





1 if xj ≥ 0

−1 otherwise.
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Approximation analysis

Then, one can prove from Sheppard (1900):

E[x̂ix̂j ] =
2
π

arcsin(X̄ij), i, j = 1, 2, . . . , n.
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Figure 1: Illustration of the product σ( vT
i u
‖vi‖ ) · σ( vT

j u

‖vj‖ ) on the 2-dimensional unit

circle, where u is uniformly generated along the circle.
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Analyses

Lemma 1 For x ∈ [−1, 1)

1− (2/π) · arcsin(x)
1− x

≥ .878.
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Final Results

Theorem 1 We have

E(x̂T Wx̂) ≥ .878zSDP ≥ .878z∗,

so that

z∗ ≥ .878zSDP .
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Generalized Max-Cut

z∗ := Maximize xT Qx

(GMC)

Subject to x2
j{= or ≤}1, ∀j,

where Q is positive semidefinite.
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Generalized Max-Cut SDP Relaxation

zSDP := Maximize Q •X

s.t. Ij •X{= or ≤}1, ∀j,
X º 0.
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Generalized Max-Cut Appriximation Result

Homework 13:

Lemma 2 Let X º 0 and d(X) ≤ 1. Then arcsin[X] º X .

Theorem 2 (Nesterov (1998)) We have

E(x̂T Qx̂) ≥ 2
π

zSDP ≥ 2
π

z∗.
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Ad Hoc Wireless Sensor Network Localization

• Input m known points (anchors) ak ∈ R2, k = 1, ..., m, and n unknown

points (sensors or targets) xj ∈ R2, j = 1, ..., n. For some pair of two

points, we have a Euclidean distance measure d̂kj between ak and xj , or

distance measure d̂ij between xi and xj .

• Output Position estimation for all unknown points, and confidence measures

on reliability of each position estimation.

• Objective Robust, fast and accurate.
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Figure 2: 50-Sensor Network with Radio Range .3
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Related Work

• FCC requires wireless carriers to provide far more precise location

information, within 50 to 100 meters in most cases, of a wireless 911 caller by

December 31, 2005.

• A great deal of research has been done on the topic of position estimation in

ad-hoc networks, see Hightower and Boriello (2001) and Ganesan et al.

(2002); Beacon grid: e.g., Bulusu and Heidemann (2000) and Howard et al.

(2001); Distance measurement: e.g., Doherty et al. (2001), Niculescu and

Nath (2001), Savarese et al. (2002), Savvides et al. (2001, 2002), Shang et

al. (2003), Eren et al. (2004).

• Metric embeddings and Distance geometry problems: Johnson and

Lindenstrauss (1984), Bourgain (1985), Barvinok (1995), Moré and Wu

(1997), Alfakih et al. (1999), Laurent (2001), etc.
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Euclidean Distance Geometry Model

‖xi − xj‖2 = d2
ij , ∀ (i, j) ∈ Nx, i < j,

‖ak − xj‖2 = d2
kj , ∀ (k, j) ∈ Na,

‖xi − xj‖2 ≥ R2
ij , ∀(i, j) 6∈ Nx, i < j,

‖ak − xj‖2 ≥ R2
kj , ∀(k, j) 6∈ Na.

d2
ij (d2

kj ) connects xi to xj (ak to xj ) with an edge whose length is dij (dkj ).

Does the system has a localization or realization of all xj ’s? Is the localization

unique? Is the localization reliable or trustworthy? Is the system partially

localizable?
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Euclidean Distance Geometry Model

Consider a simpler Euclidean Distance Geometry Model:

‖xi − xj‖2 = d2
ij , ∀ (i, j) ∈ Nx, i < j,

‖ak − xj‖2 = d2
kj , ∀ (k, j) ∈ Na.
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Convex Optimization Method

‖xi − xj‖2 ≤ d2
ij , ∀ (i, j) ∈ Nx, i < j,

‖ak − xj‖2 ≤ d2
kj , ∀ (k, j) ∈ Na.

Doherty et al. (2001)
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Global and Nonlinear Least Errors Method

min
∑

i,j∈Nx
|‖xi − xj‖2 − d2

ij)|+
∑

k,j∈Na
|‖ak − xj‖2 − d2

kj)|

min
∑

i,j∈Nx
(‖xi − xj‖2 − d2

ij)
2 +

∑
k,j∈Na

(‖ak − xj‖2 − d2
kj)

2
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Matrix Representation

Let X = [x1 x2 ... xn] be the 2× n matrix that needs to be determined. Then

‖xi−xj‖2 = (ei−ej)T XT X(ei−ej) and ‖ak−xj‖2 = (ak;−ej)T [I X]T [I X](ak;−ej),

where ei is the vector of all zero except 1 at the ith position.

(ei − ej)T Y (ei − ej) = d2
ij , ∀ i, j ∈ Nx, i < j,

(ak;−ej)T


 I X

XT Y


 (ak;−ej) = d2

kj , ∀ k, j ∈ Na,

Y = XT X.

where Y denotes the Gram matrix XT X .
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SDP Relaxation

(ei − ej)T Y (ei − ej) = d2
ij , for i, j ∈ Nx, i < j,

(ak;−ej)T


 I X

XT Y


 (ak;−ej) = d2

kj , for k, j ∈ Na,

Y º XT X.

Let

Z =


 I X

XT Y



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SDP Standard Form

(1; 0;0)(1; 0;0)T • Z = 1,

(0; 1;0)(0; 1;0)T • Z = 1,

(1; 1;0)(1; 1;0)T • Z = 2,

(0; (ei − ej))(0; (ei − ej))T • Y = d2
ij , for i, j ∈ Nx, i < j,

(ak;−ej)(ak;−ej)T • Z = d2
kj , for k, j ∈ Na,

Z º 0.

Z̄ =


 I X̄

X̄T X̄T X̄


 = (I, X̄)T (I, X̄)

is a feasible solution for the relaxation, where X̄ = [x̄1 x̄2 ... x̄n].
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The dual of the SDP relaxation

min w1 + w2 + w3 +
∑

i<j∈Nx
wijd

2
ij +

∑
k,j∈Na

wkjd
2
kj

s.t. w1(1; 0;0)(1; 0;0)T + w2(0; 1;0)(0; 1;0)T + w3(1; 1;0)(1; 1;0)T +
∑

i<j∈Nx
wij(0; (ei − ej))(0; (ei − ej))T +

∑
k,j∈Na

wkj(ak;−ej)(ak;−ej)T º 0

Since the primal is feasible, the minimal value of the dual is 0. Note that all 0 is an

minimal solution.

If an optimal dual slack matrix, call it U , has rank n, then every primal matrix

solution has rank no more than 2, that is, we have Y = XT X in Z .
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Figure 3: One sensor-Two anchors: Not localizable
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One sensor and three anchors

Find x1 ∈ R2 such that

‖ak − x1‖2 = d2
kj , for k = 1, 2, 3,

Let x̄1 be the true position of x1.



Yinyu Ye, Stanford Lecture Note #06 27

SDP Standard Form

(1; 0; 0)(1; 0; 0)T • Z = 1,

(0; 1; 0)(0; 1; 0)T • Z = 1,

(1; 1; 0)(1; 1; 0)T • Z = 2,

(ak;−1)(ak;−1)T • Z = d2
k1, for k = 1, 2, 3,

Z º 0.

Z̄ =


 I x̄1

x̄T
1 x̄T

1 x̄1


 = (I, x̄1)T (I, x̄1)

is a feasible solution for the relaxation.
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The dual slack matrix




(
w1 + w3 w3

w3 w2 + w3

) +
∑3

k=1 wk1akaT
k −∑3

k=1 wk1ak

−(
∑3

k=1 wk1ak)T w11 + w21 + w31


 º 0.

Does an optimal matrix U have rank 1 with

w1 + w2 + w3 +
3∑

k=1

wk1d
2
k1 = 0
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An optimal dual slack matrix

If we choose w•’s such that

Ū = (−x̄1; 1)(−x̄1; 1)T ,

then, Ū º 0 and Ū • X̄ = 0 so that Ū is an optimal slack matrix for the dual

and its rank is 1.
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How to select w’s

Let ∑3
k=1 wk1ak = x̄1

w11 + w21 + w31 = 1.
or

∑3
k=1 wk1(ak − x̄1) = 0

w11 + w21 + w31 = 1.

This system always has a solution if ak is not co-linear.

Then, select

 w1 + w3 w3

w3 w2 + w3


 = x̄1x̄

T
1 −

3∑

k=1

wk1akaT
k
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Other conditions?

Even if ak is co-linear, the system

∑3
k=1 wk1(ak − x̄1) = 0

w11 + w21 + w31 = 1

has a solution w• if x̄1 on the same line.

Physical interpretation: wij is a force on the edge and all forces are balanced.

The objective represents the work of the system.
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Localizable problem

A sensor network is localizable if there is a unique localization in R2 and there is

no xj ∈ Rh, j = 1, ..., n, where h > 2, such that

‖xi − xj‖2 = d2
ij , ∀ i, j ∈ Nx, i < j,

‖(ak;0)− xj‖2 = d2
kj , ∀ k, j ∈ Na.

The latter says that the problem cannot be localized in a higher dimension space

where anchor points are augmented to (ak;0) ∈ Rh, k = 1, ...,m.
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When is the problem localizable?

Theorem 3 The following statements are equivalent:

1. The sensor network is localizable;

2. The max-rank solution of the SDP relaxaion has rank 2;

3. The solution matrix has Y = XT X or Trace(Y −XT X) = 0 .
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Strongly localizable

When the dual has a solution with rank n, then the problem is strongly localizable.

If we can choose w•’s such that the dual slack matrix

Ū = (−X̄; I)V̄ (−X̄; I)T

where n-dimension matrix V̄ is positive definite, then, Ū º 0 and Ū • X̄ = 0
so that Ū is an optimal slack matrix for the dual and its rank is n.



Yinyu Ye, Stanford Lecture Note #06 35

Figure 4: Two sensor-Three anchors: Strongly Localizable
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Figure 5: Two sensor-Three anchors: Localizable but not Strongly

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5



Yinyu Ye, Stanford Lecture Note #06 37

Figure 6: Two sensor-Three anchors: Not localizable
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Figure 7: Two sensor-Three anchors: Stronly Localizable
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Proof of Theorem

If the primal feasible matrix generated from the interior-point algorithm has rank 2,

that is, Ȳ = X̄T X̄ or the trace of Ȳ = X̄T X̄ equal 0, then the feasible

solution for the original problem is unique.
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Proof continued

First, every feasible matrix has rank at least 2 since Y º XT X .

Second, since the matrix solution computed from the interior-point algorithm has

the maximal rank and it is 2, we conclude that every feasible matrix has rank

exact 2.

Suppose that the system has two rank-2 feasible matrices:

Z1 =


 I X1

XT
1 XT

1 X1


 and Z2 =


 I X2

XT
2 XT

2 X2




Consider Z = αZ1 + βZ2, where α + β = 1 and α, β > 0. Then Z is a

feasible solution and its rank must be 2.
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Z =


 I αX1 + βX2

αXT
1 + βXT

2 αXT
1 X1 + βXT

2 X2


 =


 I αX1 + βX2

αXT
1 + βXT

2 (αX1 + βX2)T (αX1 + βX2)




Thus,

0 = αXT
1 X1 + βXT

2 X2 − (αX1 + βX2)T (αX1 + βX2) =

αβ(X1 −X2)T (X1 −X2)

or

‖X1 −X2‖ = 0.
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Localize All Localizable Points

Theorem 4 If a problem (graph) contains a subproblem (subgraph) that is

localizable, then the submatrix solution corresponding to the subproblem in the

SDP solution has rank 2. That is, the SDP relaxation computes a solution that

localize all possibly localizable unknown sensor points.

Implication: Trace,

Trace(Ȳ − X̄T X̄) =
n∑

j=1

(Ȳjj − ‖x̄j‖2)

Ȳjj − ‖x̄j‖2 can be used as a measure to see whether jth sensor’s estimated

position is reliable or not. In particular, the individual diagonal entry of

Ȳ − X̄T X̄ tells whether or not the corresponding sensor is correctly localized.
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SDP Relaxation with Noisy Data

Find a symmetric matrix Z ∈ R(2+n)×(2+n) and αij and αkj such that

minimize
∑

(i,j)∈Nx
|αij |+

∑
(k,j)∈Na

|αkj |
subject to Z1:2,1:2 = I,

(0; (ei − ej))(0; (ei − ej))T • Z + αij = d2
ij , ∀ (i, j) ∈ Nx,

(ak;−ej)(ak;−ej)T • Z + αkj = d2
kj , ∀ (k, j) ∈ Na,

Z º 0.

Project continued: Develop a Matlab code, with Sedumi or DSDP as subroutines,

to solve the localization problem. Turn in a report to summarize your

implementations and findings.
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NSDP Decomposition: a Further Relaxation

Replace

(C1) :


 I X

XT Y


 º 0;

by

(C2) :




I xi xi1 ... xid(i)

xT
i Yii Yii1 ... Yiid(i)

xT
i1

Yi1i Yi1i1 ... Yi1id(i)

... ... ... ... ...

xT
id(i)

Yid(i)i Yid(i)i1 Yid(i)id(i)




º 0, ∀i,

where (i, iik) ∈ Nx and d(i) is the degree of sensor node i.

Node-based Decomposition
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ESDP Decomposition: a Further Relaxation

Replace

(C1) :


 I X

XT Y


 º 0;

by

(C2) :




I xi xj

xT
i Yii Yij

xT
j Yji Yjj


 º 0, ∀(i, j) ∈ Nx.

Edge-Based Decomposition
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Analyses

A undirected graph is a chordal graph if every cycle of length greater than three

has a chord.

A square matrix is called to be partial symmetric if it is symmetric to the extent of

its specified entries, i.e., if the (i, j) entry of the matrix is specified, then so is the

(j, i) entry and the two are equal. A partial semi-definite matrix is a partial

symmetric matrix and every fully specified principal submatrix is positive

semi-definite.

Lemma 3 (Hogben 2001) Every partial positive semi-definite matrix with

undirected graph G has positive semi-definite completion if and only if G is

chordal.
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The Equivalence Theorem for NSDP

Theorem 5 (Wang, Zheng, Boyd and Ye [2006]) Suppose the undirected graph

of sensor nodes with edge set Nx is chordal, then SDP and NSDP relaxations

are equivalent.
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The Trace Theorem for ESDP

Homework 14:

Theorem 6 (Wang, Zheng, Boyd and Ye [2006]) Let

Z =


 I X

XT Y




be a max-rank solution of ESDP. If the diagonal entry

(Y −XT X)ī̄i = 0

then the īth column of X , xī, must be the true location of the īth sensor, and xī

is invariant over all solutions Z for ESDP.
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The Kissing Problem

• Given a unit center sphere, the maximum number of unit spheres, in d

dimensions, can touch or kiss the center sphere?

• General Solutions does not exist.

• Delsarte Method uses linear programming to provide an upper bound on the

number of spheres.

• K(1)=2, K(2)=6, K(3)= 12, K(8) = 240, K(24) = 196650.

• K(4) = 24: proved using Delsarte Method by Oleg Musin only 3 years ago.

• For other dimensions, lower bounds have been provided by constructing a

lattice structure. There also exists a bound using the Riemann zeta function,

but is non-constructive.
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The Kissing Problem as Localization

• Can be formulated as a SDP feasibility problem; but SDP solution may not

provide proper rank.

(ei − ej)T Y (ei − ej) ≥ 4, ∀i 6= j,

eT
i Y ei = 4, ∀i,

Y º 0.

• Construct a nonzero SDP objective function to reduce the rank of a solution.

min C • Y,

s.t. (ei − ej)T Y (ei − ej) ≥ 4, ∀i 6= j,

eT
i Y ei = 4, ∀i,

Y º 0.
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The Kissing Problem and Coding

Given a number of points, find the largest radius r such that

(ei − ej)T Y (ei − ej) ≥ (1 + r)2, ∀i 6= j,

eT
i Y ei = (1 + r)2, ∀i,

Y º 0,

has a rank 3 matrix solution Y .

Schoenberg’s theorem on the Gegenbauer polynomial may be used to strenghten

the above SDP formulation.
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Schoenberg’s theorem on the Gegenbauer polynomial matrix

The Gegenbauer polynomial:

G
(r)
0 (t) = 1, G

(r)
1 (t) = t, ...,

G
(r)
k (t) =

(2k + r − 4)tG(r)
k−1(t)− (k − 1)G(r)

k−2(t)
k + r − 3

.

Given symmetric matrix Y º 0 with rank r and all its diagonals equal 1.

Theorem 7 The Gegenbauer polynomial matrix, G
(r)
k [yij ], remains positive

semidefinite for k = 0, ..., where symmetric matrix G
(r)
k [yij ] has the same

dimension of Y and its corresponding component equals G
(r)
k (yij).


