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Potential Function

Let Ω be a bounded polytope inRm represented by n (> m) linear inequalities

Ω = {y ∈ Rm : c−AT y ≥ 0},
where A ∈ Rm×n and c ∈ Rn are given and A has rank m. Denote the

interior of Ω by

intΩ = {y ∈ Rm : c−AT y > 0}.

d(y) =
n∏

j=1

(cj − aT
j y), y ∈ Ω,

where a.j is the jth column of A.

B(y) := log d(y) =
n∑

j=1

log(cj − aT
.jy) =

n∑

j=1

log sj , (1)

−B(y) is the classical logarithmic barrier function.
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Analytic Center

The interior point, denoted by ya and sa = c−AT ya, in Ω that maximizes the

potential function is called the analytic center of Ω, i.e.,

B(ya) = max
y∈Ω

B(y).

(ya, sa) is uniquely defined, since the potential function is strictly concave in a

bounded convex intΩ.
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Analytic Center Condition

Setting∇B(y, Ω) = 0 and letting xa = D(sa)−1e, the analytic center

(ya, sa) together with xa satisfy the following optimality conditions:

D(x)s = e

Ax = 0

−AT y − s = −c.

(2)

Note that adding or deleting a redundant inequality changes the location of the

analytic center.
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Examples

Consider Ω = {y ∈ R : −y ≤ 0, y ≤ 1}, which is interval [0, 1]. The analytic

center is ya = 1/2 with xa = (2, 2)T .

Consider

Ω′ = {y ∈ R :

n times︷ ︸︸ ︷
−y ≤ 0, · · · ,−y ≤ 0, y ≤ 1},

which is, again, interval [0, 1] but “−y ≤ 0” is copied n times. The analytic

center for this system is ya = n/(n + 1) with

xa = ((n + 1)/n, · · · , (n + 1)/n, (n + 1))T .
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Analytic Center for SDP

Let Ω be a bounded convex set inRm represented by n (> m) a matrix

inequality, i.e.,

Ω = {y ∈ Rm : C −
m∑

i

yiAi º 0, }.

Let S = C −∑m
i yiAi and

B(y) := log det(S)) = log det(C −
m∑

i

yiAi). (3)

The interior point, denoted by ya and Sa = C −∑m
i ya

i Ai, in Ω that

maximizes the potential function is called the analytic center of Ω, i.e.,

B(ya) = max
y∈Ω

B(y).
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Analytic Center Condition for SDP

Setting∇B(y, Ω) = 0 and letting Xa = (Sa)−1, the analytic center (ya, Sa)
together with Xa satisfy the following optimality conditions:

XS = I

AX = 0

−AT y − S = −C.

(4)
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Potential Functions for LP

For x ∈ intFp and (y, s) ∈ intFd it is defined by

ψn+ρ(x, s) := (n + ρ) log(x • s)−
n∑

j=1

log(xjsj), (5)

where ρ ≥ 0.

ψn+ρ(x, s) = (n + ρ) log(cT x− bT y)−
n∑

j=1

log xj −
n∑

j=1

log sj

= Pn+ρ(x, bT y)−
n∑

j=1

log sj

= Bn+ρ(y, cT x)−
n∑

j=1

log xj .
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Potential and Duality Gap

ψn+ρ(x, s) = ρ log(xT s) + ψn(x, s) ≥ ρ log(xT s) + n log n,

then, for ρ > 0, ψn+ρ(x, s) → −∞ implies that xT s → 0.

More precisely, we have

xT s ≤ exp(
ψn+ρ(x, s)− n log n

ρ
).

A potential reduction algorithm generates sequences {xk, yk, sk} ∈ intF such

that

ψn+
√

n(xk+1, yk+1, sk+1) ≤ ψn+
√

n(xk, yk, sk)− .05

for k = 0, 1, 2, .... This indicates that the level sets shrink at least a constant

rate independently of m or n.
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Potential Functions for SDP

For any X ∈ intFp and (y, S) ∈ intFd,

Pn+ρ(X, z) := (n + ρ) log(C •X − z)− log det(X), z ≤ z∗;

Bn+ρ(y, z) := (n + ρ) log(z − bT y)− log det(S), z ≥ z∗,

where ρ ≥ 0 and z∗ designates the optimal objective value.

ψn+ρ(X, S) := (n + ρ) log(X • S)− log(det(X) · det(S))

= (n + ρ) log(C •X − bT y)− log det(X)− log det(S)

= Pn+ρ(X, bT y)− log det(S)

= Bn+ρ(S, C •X)− log det(X),
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Potential and Duality Gap

ψn(X, S) ≥ n log n.

ψn+ρ(X, S) = ρ log(X • S) + ψn(X, S) ≥ ρ log(X • S) + n log n.

Then, for ρ > 0, ψn+ρ(X, S) → −∞ implies that X • S → 0. More

precisely, we have

X • S ≤ exp(
ψn+ρ(X, S)− n log n

ρ
).
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Central Path for LP

The central path can be expressed as

C =
{

(x, y, s) ∈ intF : Xs =
x • s

n
e
}

in the primal-dual form. We also see

C = {(x, y, s) ∈ intF : ψn(x, s) = n log n} .
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Central Path for SDP

The central path can be expressed as

C =
{

(X, y, S) ∈ intF : XS =
X • S

n
I

}

in the primal-dual form. We also see

C = {(X, y, S) ∈ intF : ψn(X, S) = n log n} .
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Derive Central Pth from Primal

(P ) minimize c • x− µ
∑n

j=1 log xj

s.t. Ax = b, x ≥ 0.

(P ) minimize C • S − µ log det(X)

s.t. AX = b, X º 0.
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Derive Central Path from Dual

(D) maximize bT y + µ
∑n

j=1 log sj

s.t. AT y + s = c, s ≥ 0.

(D) maximize bT y + µ log det(S)

s.t. AT y + S = C, S º 0.
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The Geometric Intepretation

Let ya(z) be the analytic center of:

Ω(z) = {y ∈ Rm : c−AT y ≥ 0, bT y ≥ z},

where z < z∗. Then

{ya(z) : z∗ < z < ∞}
is dual side of the central path for LP.

Let ya(z) be the analytic center of:

Ω(z) = {y ∈ Rm : C −AT y º 0, bT y ≥ z},

where z < z∗. Then

{ya(z) : z∗ < z < ∞}
is dual side of the central path for SDP.
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Central Path Property

Theorem 1 The central path points (x(µ), y(µ), s(µ)) and

(X(µ), y(µ), S(µ)) exist, and are bounded and unique.
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ya

The objective hyperplanes

Figure 1: The central path of y(z) in a dual feasible region.
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More Properties for LP

Theorem 2 Let (x(µ), y(µ), s(µ)) be on the central path.

i) The central path point (x(µ), s(µ)) is bounded for 0 < µ ≤ µ0 and any

given 0 < µ0 < ∞.

ii) For 0 < µ′ < µ,

cT x(µ′) < cT x(µ) and bT y(µ′) > bT y(µ),

if x(µ′) 6= x(µ) and y(µ′) 6= y(µ).

iii) (x(µ), s(µ)) converges to an optimal solution pair for (LP) and (LD).

Moreover, the limit point x(0)P∗ is the analytic center on the primal optimal

face, and the limit point s(0)Z∗ is the analytic center on the dual optimal face,

where (P ∗, Z∗) is the strictly complementarity partition of the index set

{1, 2, ..., n}.
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More Properties for SDP

Corollary 1 Let (X(µ), y(µ), S(µ)) be on the central path.

i) the central path point (X(µ), S(µ)) is bounded where 0 < µ ≤ µ0 for any

given 0 < µ0 < ∞.

ii) For 0 < µ′ < µ,

C •X(µ′) < C •X(µ) and bT y(µ′) > bT y(µ),

if X(µ′) 6= X(µ) and y(µ′) 6= y(µ).

iii) (X(µ), S(µ)) converges to an optimal solution pair for (SDP) and (SDD),

and the rank of the limit of X(µ) is maximal among all optimal solutions of

(SDP) and the rank of the limit S(µ) is maximal among all optimal solutions

of (SDD).
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Important Lemmas

Homework 7:

Lemma 1 If d ∈ Rn such that ‖d‖∞ < 1 then

eT d ≥
n∑

i=1

log(1 + di) ≥ eT d− ‖d‖2
2(1− ‖d‖∞)

.

Homework 8:

Lemma 2 Let X ∈Mn and ‖X‖∞ < 1. Then,

tr(X) ≥ log det(I + X) ≥ tr(X)− ‖X‖2
2(1− ‖X‖∞)

.
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intFp = {x : Ax = b, x > 0} 6= ∅

intFd = {(y, s) : s = c−AT y > 0} 6= ∅.

Let z∗ denote the optimal value and

F = Fp ×Fd.

Here, we are interested in finding an ε-approximate solution for the LP problem:

cT x− z∗ ≤ ε and z∗ − bT y ≤ ε.

For simplicity, we assume that a central path pair (x0, y0, s0) with

µ0 = (x0)T s0/n is known. We will use it as our initial point throughout this

chapter.
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Primal-Dual (Symmetric) Algorithm for LP

Once we have a pair (x, y, s) ∈ intF with µ = xT s/n, we can generate a

new iterate x+ and (y+, s+) by solving for dx, dy and ds from the system of

linear equations:

Sdx + Xds = r := γµe−Xs,

Adx = 0,

−AT dy − ds = 0.

(6)

Let d := (dx, dy, ds). To show the dependence of d on the current pair (x, s)
and the parameter γ, we write d = d(x, s, γ). Note that

dT
x ds = −dT

x AT dy = 0 here.
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dx′ + ds′ = r′ := (XS)−1/2(γµe−Xs),

A′dx′ = 0,

−(A′)T dy − ds′ = 0.

where

D = X1/2X−1/2, A′ = AD, dx′ = D−1dx, ds′ = Dds.

−A′(A′)T dy = A′r′.
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If γ = 0, it steps toward the optimal solution characterized by the optimality

condition; if γ = 1, it steps toward the central path point (x(µ), y(µ), s(µ))
characterized by the analytic center condition; if 0 < γ < 1, it steps toward a

central path point with a smaller complementarity gap. In the algorithm presented

in this section, we choose γ = n/(n + ρ) < 1. Each iterate reduces the

primal-dual potential function by at least a constant δ.
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Lemma 3 Let the direction d = (dx, dy, ds) be generated by equation (6) with

γ = n/(n + ρ), and let

θ =
α
√

min(Xs)
‖(XS)−1/2( xT s

(n+ρ)e−Xs)‖ , (7)

where α is a positive constant less than 1. Let

x+ = x + θdx, y+ = y + θdy, and s+ = s + θds.

Then, we have (x+, y+, s+) ∈ intF and

ψn+ρ(x+, s+)− ψn+ρ(x, s)

≤ −α
√

min(Xs)‖(XS)−1/2(e− (n + ρ)
xT s

Xs)‖+
α2

2(1− α)
.
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Let v = Xs. Then, we can prove the following lemma Homework 9:

Lemma 4 Let v ∈ Rn be a positive vector and ρ ≥ √
n. Then,

√
min(v)‖V −1/2(e− (n + ρ)

eT v
v)‖ ≥

√
3/4 .

Combining these two lemmas we have

ψn+ρ(x+, s+)− ψn+ρ(x, s)

≤ −α
√

3/4 +
α2

2(1− α)
= −δ

for a constant δ.
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Description of Algorithm

Given (x0, y0, s0) ∈ intF . Set ρ ≥ √
n and k := 0.

While (sk)T xk ≥ ε do

1. Set (x, s) = (xk, sk) and γ = n/(n + ρ) and compute (dx, dy, ds) from

(6).

2. Let xk+1 = xk + ᾱdx, yk+1 = yk + ᾱdy , and sk+1 = sk + ᾱds where

ᾱ = arg min
α≥0

ψn+ρ(xk + αdx, sk + αds).

3. Let k := k + 1 and return to Step 1.
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Theorem 3 Let ρ = O(
√

n). Then, the Algorithm terminates in at most

O(
√

n log((x0)T s0/ε)) iterations with

cT xk − bT yk ≤ ε.
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Primal-Dual (Symmetric) Algorithm for SDP

Once we have a pair (X, y, S) ∈ intF with µ = S •X/n, we can apply the

primal-dual Newton method to generate a new iterate X+ and (y+, S+) as

follows: Solve for dX , dy and dS from the system of linear equations:

D−1dXD−1 + dS = R := γµX−1 − S,

AdX = 0,

−AT dy − dS = 0,

(8)

where

D = X .5(X .5SX .5)−.5X .5.

Note that dS • dX = 0.
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Primal-Dual Scaling

dX′ + dS′ = R′,

A′dX′ = 0,

−A′T dy − dS′ = 0,

(9)

where

dX′ = D−.5dXD−.5, dS′ = D.5dSD.5, R′ = D.5(γµX−1 − S)D.5,

and

A′ =




A′1
A′2
...

A′m




:=




D.5A1D
.5

D.5A2D
.5

...

D.5AmD.5




.
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Again, we have dS′ • dX′ = 0, and

dy = (A′A′T )−1A′R′, dS′ = −A′T dy, and dX′ = R′ − dS′ .

Or, we have

dS = −AT dy and dX = D(R− dS)D.
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The Bound on Potential Reduction

V 1/2 = D−.5XD−.5 = D.5SD.5 ∈ intMn
+.

Then, we can verify that S •X = I • V .
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Lemma 5 Let the direction dX , dy and dS be generated by equation (8) with

γ = n/(n + ρ), and let

θ =
α

‖V −1/2‖∞‖ I•V
n+ρV −1/2 − V 1/2‖ , (10)

where α is a positive constant less than 1. Let

X+ = X + θdX , y+ = y + θdy, and S+ = S + θdS .

Then, we have (X+, y+, S+) ∈ intF and

ψ(X+, S+)− ψ(X, S)

≤ −α
‖V −1/2 − n+ρ

I•V V 1/2‖
‖V −1/2‖∞

+
α2

2(1− α)
.
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A Technical Lemma and the Convergence

Homework 10:

Lemma 6 Let V ∈ intMn
+ and ρ ≥ √

n. Then,

‖V −1/2 − n+ρ
I•V V 1/2‖

‖V −1/2‖∞
≥

√
3/4.

From the two lemmas we have

ψ(X+, S+)− ψ(X, S)

≤ −α
√

3/4 +
α2

2(1− α)
= −δ

for a constant δ.
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Description of Algorithm

Given (X0, y0, S0) ∈ intF . Set ρ =
√

n and k := 0.

While Sk •Xk ≥ ε do

1. Set (X, S) = (Xk, Sk) and γ = n/(n + ρ) and compute (dX , dy, dS)
from (8).

2. Let Xk+1 = Xk + ᾱdX , yk+1 = yk + ᾱdy , and Sk+1 = Sk + ᾱdS ,

where

ᾱ = arg min
α≥0

ψ(Xk + αdX , Sk + αdS).

3. Let k := k + 1 and return to Step 1.
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Complexity of the Algorithm

Corollary 2 Let ρ =
√

n. Then, the Algorithm terminates in at most

O(
√

n log(C •X0 − bT y0)/ε) iterations with

C •Xk − bT yk ≤ ε.
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Dual Scaling Algorithm for SDP

An open question is how to exploit the sparsity structure by polynomial

interior-point algorithms so that they can also solve large-scale problems in

practice.

1. The computational cost of each iteration in the dual algorithm is less that the

cost the primal-dual iterations.

2. In most combinatorial applications, we need only a lower bound for the

optimal objective value of (SDP).

3. For large scale problems, S tends to be very sparse and structured since it is

the linear combination of C and the Ai’s. This sparsity allows considerable

savings in both memory and computation time.
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Dual Algorithm

φn+ρ(X,S) = ρ ln(X • S)− ln det X − ln det S.

Let z̄ = C •X for some feasible X and consider the dual potential function

ψ(y, z̄) = ρ ln(z̄ − bT y)− ln det S.

Its gradient is

∇ψ(y, z̄) = − ρ

z̄ − bT y
b +A(S−1). (11)
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Overestimator of Potential

For any given y and S = C −AT (y) such that S Â 0 and

‖(Sk)−.5
(AT (y − yk)

)
(Sk)−.5‖ < 1,

ψ(y, z̄k)− ψ(yk, z̄k)

= ρ ln(z̄k − bT y)− ρ ln(z̄k − bT yk)− ln det((Sk)−.5S(Sk)−.5)

≤ ρ ln(z̄k − bT y)− ρ ln(z̄k − bT yk) + trace((Sk)−.5S(Sk)−.5 − I)

+
‖(Sk)−.5(AT (y−yk))(Sk)−.5‖

2(1−‖(Sk)−.5(AT (y−yk))(Sk)−.5‖∞)

= ρ ln(z̄k − bT y)− ρ ln(z̄k − bT yk) +A((Sk)−1)T (y − yk)

+
‖(Sk)−.5(AT (y−yk))(Sk)−.5‖

2(1−‖(Sk)−.5(AT (y−yk))(Sk)−.5‖∞)

≤ ∇ψ(yk, z̄k)T (y − yk) +
‖(Sk)−.5(AT (y−yk))(Sk)−.5‖

2(1−‖(Sk)−.5(AT (y−yk))(Sk)−.5‖∞)
.

(12)
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Ball constrainted sub-problem

Minimize ∇ψT (yk, z̄k)(y − yk)

Subject to ‖(Sk)−.5
(AT (y − yk)

)
(Sk)−.5‖ ≤ α,

(13)

where α is a positive constant less than 1. For simplicity, in what follows we let

∆k = z̄k − bT yk.
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Optimality conditions of the sub-problem

The first order optimality conditions state that the minimum point, yk+1, of this

convex problem satisfies

Mk(yk+1 − yk) + β∇ψ(yk, z̄k) = 0 (14)

for a positive value of β, where

Mk =




A1(Sk)−1 • (Sk)−1A1 · · · A1(Sk)−1 • (Sk)−1Am

...
. . .

...

Am(Sk)−1 • (Sk)−1A1 · · · Am(Sk)−1 • (Sk)−1Am




The matrix Mk is a Gram matrix and is positive definite when Sk Â 0 and the

Ai’s are linearly independent.
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Optimizer of the sub-problem

Using the ellipsoidal constraint, the minimal solution, yk+1, of (13) is given by

yk+1 − yk =
α√

∇ψT (yk, z̄k)(Mk)−1∇ψ(yk, z̄k)
d(z̄k)y (15)

where

d(z̄k)y = −(Mk)−1∇ψ(yk, z̄k). (16)
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Generating M

Generally, Mk
ij = Ai(Sk)−1 • (Sk)−1Aj . When Ai = aia

T
i , the Gram

matrix can be rewritten in the form

Mk =




(aT
1 (Sk)−1a1)2 · · · (aT

1 (Sk)−1am)2

...
. . .

...

(aT
m(Sk)−1a1)2 · · · (aT

m(Sk)−1am)2


 (17)

and

A((Sk)−1) =




aT
1 (Sk)−1a1

...

aT
m(Sk)−1am


 .

This matrix can be computed very quickly without computing, or saving, (Sk)−1.
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Potential Reduction

∇ψT (yk, z̄k)d(z̄k)y = −‖P (z̄k)‖2 (18)

ψ(yk+1, z̄k)− ψ(yk, z̄k) ≤ −α‖P (z̄k)‖+
α2

2(1− α)
. (19)
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Primal Update

To find a feasible primal point X , we solve the least squares problem

Minimize ‖(Sk).5X(Sk).5 − ∆k

ρ I‖
Subject to A(X) = b.

(20)

The answer to (20) is a by-product of computing (16), given explicitly by

X(z̄k) =
∆k

ρ
(Sk)−1

(AT (d(z̄k)y) + Sk
)
(Sk)−1. (21)
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Primal Objective Value

C •X(z̄k) = bT yk + X(z̄k) • Sk

= bT yk + trace
(

∆k

ρ (Sk)−1
(AT (d(z̄k)y) + Sk

)
(Sk)−1Sk

)

= bT yk + ∆k

ρ trace
(
(Sk)−1AT (d(z̄k)y) + I

)

= bT yk + ∆k

ρ

(
d(z̄k)T

yA((Sk)−1) + n
)

Since the vectorsA((Sk)−1) and d(z̄k)y were previously found in calculating

the dual step direction, the cost of computing a primal objective value is the cost

of a vector dot product!
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Result for Primal

Defining

P (z̄k) =
ρ

∆k
(Sk).5X(z̄k)(Sk).5 − I, (22)

we have the following lemma:

Lemma 7 Let µk = ∆k

n = z̄k−bT yk

n , µ = X(z̄k)•Sk

n = C•X(z̄k)−bT yk

n ,

ρ ≥ n +
√

n, and α < 1. If

‖P (z̄k)‖ < min(α
√

n

n + α2
, 1− α), (23)

then the following three inequalities hold:

1. X(z̄k) Â 0;

2. ‖(Sk).5X(z̄k)(Sk).5 − µI‖ ≤ αµ;

3. µ ≤ (1− .5α/
√

n)µk.
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Theorem 4 Either

ψ(Xk, Sk+1) ≤ ψ(Xk, Sk)− δ

or

ψ(Xk+1, Sk) ≤ ψ(Xk, Sk)− δ,

where δ > 1/20.
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Description of Algorithm

DUAL ALGORITHM. Given an upper bound z̄0 and a dual point (y0, S0) such

that S0 = C −AT y0 Â 0, set k = 0, ρ > n +
√

n, α ∈ (0, 1), and do the

following:

while z̄k − bT yk ≥ ε do

begin

1. ComputeA((Sk)−1) and the Gram matrix Mk (17) using Algorithm M or

M’.

2. Solve (16) for the dual step direction d(z̄k)y .

3. Calculate ‖P (z̄k)‖ using (18).

4. If (23) is true, then Xk+1 = X(z̄k), z̄k+1 = C •Xk+1, and

(yk+1, Sk+1) = (yk, Sk);

else yk+1 = yk + α
‖P (z̄k)‖d(z̄k+1)y , Sk+1 = C −AT (yk+1),
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Xk+1 = Xk, and z̄k+1 = z̄k.

endif

5. k := k + 1.

end
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Complexity of the Algorithm

Corollary 3 Let ρ =
√

n. Then, the Algorithm terminates in at most

O(
√

n log(C •X0 − bT y0)/ε) iterations with

C •Xk − bT yk ≤ ε.

Project: Develop simplified computation procedures of the dual scaling SDP

algorithm when each Ai is rank-one, that is, Ai = aia
T
i , for i = 1, ..., m.
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Initialization

• Combining the primal and dual into a single linear feasibility problem, then

applying LP algorithms to find a feasible point of the problem. Theoretically,

this approach can retain the currently best complexity result.

• The big M method, i.e., add one or more artificial column(s) and/or row(s)

and a huge penalty parameter M to force solutions to become feasible during

the algorithm.

• Phase I-then-Phase II method, i.e., first try to find a feasible point (and

possibly one for the dual problem), and then start to look for an optimal

solution if the problem is feasible and bounded.

• Combined Phase I-Phase II method, i.e., approach feasibility and optimality

simultaneously. To our knowledge, the “best” complexity of this approach is

O(n log(R/ε)).
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Homogeneous and Self-Dual Algorithm

• It solves the linear programming problem without any regularity assumption

concerning the existence of optimal, feasible, or interior feasible solutions,

while it retains the currently best complexity result

• It can start at any positive primal-dual pair, feasible or infeasible, near the

central ray of the positive orthant (cone), and it does not use any big M

penalty parameter or lower bound.

• Each iteration solves a system of linear equations whose dimension is almost

the same as that solved in the standard (primal-dual) interior-point algorithms.

• If the LP problem has a solution, the algorithm generates a sequence that

approaches feasibility and optimality simultaneously; if the problem is

infeasible or unbounded, the algorithm will produce an infeasibility certificate

for at least one of the primal and dual problems.
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A HSD linear program

Given any x0 = e > 0, s0 = e > 0, and y0 = 0, we formulate

(HSDP ) min (n + 1)θ

s.t. Ax −bτ +b̄θ = 0,

−AT y +cτ −c̄θ ≥ 0,

bT y −cT x +z̄θ ≥ 0,

−b̄T y +c̄T x −z̄τ = −(n + 1),

y free, x ≥ 0, τ ≥ 0, θ free,

where

b̄ = b−Ae, c̄ = c− e, z̄ = cT e + 1. (24)
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Denote by s the slack vector for the second constraint and by κ the slack scalar

for the third constraint. Denote by Fh the set of all points (y,x, τ, θ, s, κ) that

are feasible for (HSDP). Denote by F0
h the set of strictly feasible points with

(x, τ, s, κ) > 0 in Fh. Note that by combining the constraints, we can write the

last (equality) constraint as

eT x + eT s + τ + κ− (n + 1)θ = (n + 1), (25)

which serves as a normalizing constraint for (HSDP). Also note that the

constraints of (HSDP) form a skew-symmetric system, so that it is a self-dual

linear program.
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Theorem 5 Consider problems (HSDP) and (HSDD).

i) (HSDD) has the same form as (HSDP), i.e., (HSDD) is simply (HSDP) with

(y,x, τ, θ) being replaced by (y′,x′, τ ′, θ′).

ii) (HSDP) has a strictly feasible point

y = y0, x = x0 > 0, τ = 1, θ = 1, s = s0 > 0, κ = 1.

iii) (HSDP) has an optimal solution and its optimal solution set is bounded.

iv) The optimal value of (HSDP) is zero, and

(y,x, τ, θ, s, κ) ∈ Fh implies that (n + 1)θ = xT s + τκ.
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v) There is an optimal solution (y∗,x∗, τ∗, θ∗ = 0, s∗, κ∗) ∈ Fh such that

 x∗ + s∗

τ∗ + κ∗


 > 0,

which we call a strictly self-complementary solution. (Similarly, we

sometimes call an optimal solution to (HSDP) a self-complementary solution;

the strict inequalities above need not hold.)
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Homework 11:

Theorem 6 Let (y∗,x∗, τ∗, θ∗ = 0, s∗, κ∗) be a strictly self complementary

solution for (HSDP).

i) (LP) has a solution (feasible and bounded) if and only if τ∗ > 0. In this case,

x∗/τ∗ is an optimal solution for (LP) and (y∗/τ∗, s∗/τ∗) is an optimal

solution for (LD).

ii) (LP) has no solution if and only if κ∗ > 0. In this case, x∗/κ∗ or s∗/κ∗ or

both are certificates for proving infeasibility: if cT x∗ < 0 then (LD) is

infeasible; if−bT y∗ < 0 then (LP) is infeasible; and if both cT x∗ < 0 and

−bT y∗ < 0 then both (LP) and (LD) are infeasible.
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Theorem 7 i) For any µ > 0, there is a unique (y,x, τ, θ, s, κ) in F0
h , such

that 
 Xs

τκ


 = µe.

ii) Let (dy,dx, dτ , dθ,ds, dκ) be in the null space of the constraint matrix of

(HSDP) after adding surplus variables s and κ, i.e.,

Adx −bdτ +b̄dθ = 0,

−AT dy +cdτ −c̄dθ −ds = 0,

bT dy −cT dx +z̄dθ −dκ = 0,

−b̄T dy +c̄T dx −z̄dτ = 0.

(26)

(dx)T ds + dτdκ = 0.
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Central Path

We see that Theorem 7 defines an endogenous path within (HSDP):

C =



(y,x, τ, θ, s, κ) ∈ F0

h :


 Xs

τκ


 =

xT s + τκ

n + 1
e



 ,

which we may call the (self-)central path for (HSDP). Obviously, the initial interior

feasible point proposed in Theorem 5 is on the path with µ = 1.
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Solving (HSDP)

Consider solving the following system of linear equations for

(dy,dx, dτ , dθ,ds, dκ) that satisfies (26) and

 Xds + Sdx

τkdκ + κkdτ


 = γµe−


 Xs

τκ


 .
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Theorem 8 The O(
√

n log((x0)T s0/ε)) interior-point algorithm, coupled with

a termination technique described above, generates a strictly self-complementary

solution for (HSDP) in O(
√

n(log(c(A,b, c)) + log n)) iterations and

O(n3(log(c(A,b, c)) + log n)) operations, where c(A,b, c) is a positive

number depending on the data (A,b, c). If (LP) and (LD) have integer data with

bit length L, then by the construction, the data of (HSDP) remains integral and its

length is O(L). Moreover, c(A,b, c) ≤ 2L. Thus, the algorithm terminates in

O(
√

nL) iterations and O(n3L) operations.
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example

Consider the example where

A =
(
−1 0 0

)
, b = 1, and c =

(
0 1 −1

)
.

Then,

y∗ = 2, x∗ = (0, 2, 1)T , τ∗ = 0, θ∗ = 0, s∗ = (2, 0, 0)T , κ∗ = 1

could be a strictly self-complementary solution generated for (HSDP) with

cT x∗ = 1 > 0, by∗ = 2 > 0.

Thus (y∗, s∗) demonstrates the infeasibility of (LP), but x∗ doesn’t show the

infeasibility of (LD). Of course, if the algorithm generates instead

x∗ = (0, 1, 2)T , then we get demonstrated infeasibility of both.
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Homework 12: Develop the homogeneous and self-dual model for solving SDP

problems.

Project continued: Down load Sedumi and DSDP5.8, and read the user-guides.


