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Abstract—We consider the identifiability issue of maximum-
likelihood based activity detection in massive MIMO-based grant-
free random access. An intriguing observation by Chen et al. [1]
indicates that the identifiability undergoes a phase transition for
commonly-used random user signatures as L2, N and K tend to
infinity with fixed ratios, where L, N and K denote the user
signature length, the total number of users, and the number
of active users, respectively. In this letter, we provide a precise
analytical characterization of the phase transition based on a
spectral universality conjecture. Numerical results demonstrate
excellent agreement between our theoretical predictions and the
empirical phase transitions.

Index Terms—Random access, activity detection, phase transi-
tion, Kronecker model, spectral universality, statistical dimension.

I. INTRODUCTION

Massive machine-type communications (mMTC) involve a
large number of sporadically active devices [2]–[5]. In this
letter, we focus on the uplink transmission of mMTC and study
the activity detection problem where the base station (BS),
equipped with a large number of antennas, aims to identify the
active devices among a bulk of potential users.

Assuming independently and identically distributed (IID) fast
fading channel coefficients, the received signals at different
antennas of the BS can be viewed as independent samples
drawn from a common zero-mean Gaussian distribution, whose
covariance matrix depends on the unknown activity pattern and
the user signatures. Under such an assumption, the sample
covariance matrix is a sufficient statistic for the activity pattern
[6, Theorem 1]. For this reason, the maximum likelihood
estimator (MLE) is also referred to as the covariance-based
approach [6]–[8] in the literature of grant-free random access.

The large sample limit of the MLE provides important insight
for its performance under massive MIMO. (Here the large
sample limit corresponds to the infinite-antenna limit). It is
well-known that the MLE converges (in probability) to the true
parameters, provided that certain regularity conditions hold [9].
Among these conditions, the main requirement is that the model
must be identifiable, namely, the map from the parameters
to the distribution is “injective”. For the non-negative MLE
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formulation considered in [7], the identifiability of the model
eventually reduces to the injectivity of a linear map under non-
negativity constraint [1], which can be verified numerically
using linear programming (LP) [1]. This problem has also been
studied in the array signal processing literature [10], [11].

Intriguingly, Chen et al. [1] observed that the identifiability
event undergoes a phase transition for commonly-used random
user signatures, as L2, N and K tend to infinity with fixed ra-
tios, where L, N and K denote the signature length, the number
of total users, and the number of active users, respectively. Note
that the linear map involved in the identifiablity event depends
on the user signatures through a complicated column-wise Kro-
necker product (Khatri–Rao product) structure, which poses a
significant challenge for rigorous analysis of the phase transition
phenomenon. In this letter, inspired by [12, Section 4.2] and
the recent spectral universality principle established in [13],
we introduce a surrogate model (coined “semi-random” model)
for the Khatri-Rao product model, which faithfully captures
the structure of the linear map and becomes mathematically
tractable. Using tools developed in [14], we provide a precise
analytical characterization of the phase transition phenomenon
for the semi-random model. Numerical results suggest that our
theoretical predictions accurately describe the empirical phase
transitions for various random user signatures.

II. PROBLEM DESCRIPTION

Consider an uplink transmission from a pool of N single-
antenna users to an M -antenna BS. Assume that only K of
the N users are active. Each user is uniquely determined by the
signature sn ∈ RL, 1 ≤ n ≤ N . Let un ∈ {0, 1} be an indicator
variable for the activity of user n, namely, un = 1 if user n
is active, and un = 0 otherwise. We model a Rayleigh fading
channel experienced by the mth antenna as hn,m = βngn,m for
user n, where gn,m ∼ N (0, 1) and βn represents the large-scale
fading component. The received signal at the mth antenna is

ym = Sdiag(γ
1
2 )hm +wm, m = 1, . . . ,M, (1)

where S = [s1, · · · , sN ] ∈ RL×N is the signature matrix,
hm = [h1,m, · · · , hN,m]T ∈ RN with hm ∼ N (0, I),
diag(γ

1
2 ) is a diagonal matrix whose diagonal elements are

the entry-wise square root of γ = [γ1, · · · , γN ]T ∈ RN+ with
γn = (unβn)2, and wm ∼ N (0, σ2I).

Activity detection refers to the detection of the index set
of the nonzero components in γ. Following [7], we consider
a MLE framework, where γ is treated as a deterministic yet
unknown parameter. Given γ, the received signals {ym}Mm=1 at
all antennas are IID, following a common Gaussian distribution
Pr(y;γ) := N (0,Σγ), where Σγ = Sdiag(γ)ST + σ2I .
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In this letter, we focus on the identifiability issue of the MLE.
Let γ◦ ∈ RN+ be the true parameter which satisfies ‖γ◦‖0 = K.
For computational tractability, we consider a constrained MLE
formulation that takes into account the non-negativity of the
parameter γ, but not its sparsity, i.e.,

max
γ∈RN

+

∏
m

Pr (ym;γ) . (2)

Since the likelihood function Pr(y;γ) is a Gaussian distri-
bution function with covariance Σγ = Sdiag(γ)ST + σ2I , the
identifiablity (at the ground truth γ◦) reduces to the following
covariance identifiablity [1]:

@γ ∈ RN+ \ {γ◦} =⇒ Sdiag(γ◦)ST = Sdiag(γ)ST . (3)

This can be equivalently written as follows [1]

N (A) ∩ C = {0}, (4)

with
A := [s1⊗s1, · · · , sN⊗sN ] ∈ RL

2×N ,

C := {x ∈ RN | xI≥0N−K},
(5)

whereN (A) is the null space ofA, ⊗ is the Kronecker product,
and I is the index set for the zero entries of γ. The cone C is
the set of feasible directions at γ◦. Let d := L2−L

2 . Specifically,

N (A) =

{
x ∈ RN

(
A1

A2

)
x = 0

}
, (6)

in which A1 := S�S, A2 := [s1⊗̃s1, · · · , sN ⊗̃sN ] ∈ Rd×N .
Here � is the Hadamard product, sn⊗̃sn(∀n) denotes a d-
dimensional vector which contains the lower-triangular elements
of the matrix snsTn (excluding the diagonal). We refer to [11,
Definition 5] for a similar representation.

Our goal is to provide a precise phase transition characteriza-
tion (in terms of the parameters L,K,N ) for (4) with randomly
generated S.

III. SEMI-RANDOM MODEL: PHASE TRANSITION ANALYSIS

In this section, we introduce a semi-random model1, which
serves as a mathematically tractable model to analyze the phase
transition. In Section IV, we will show that the analytical
phase transition for the semi-random model accurately describes
empirical results for many commonly-used signature matrices.

A. Semi-Random Model

To motivate the introduction of the semi-random model,
consider a Rademacher model where the elements of S are
taken from {±1}. In this case, we have A1 := S�S = 1L×N ,
where 1L×N denotes an L × N all-ones matrix; see (6).
The null-space of A in (6) is the same as the null-space of
[11×N ;A2]; where A2 is defined in (6). Motivated by this
observation, and inspired by [12, Section 4.2] and the recent
work of [15]–[17], we introduce the following semi-random
matrix surrogate for [11×N ;A2]:

Asemi-random :=

(
11×N
ARI

)
, (7)

1It is different from the semi-random matrix model in [15].

where ARI ∈ Rd×N is a right rotationally-invariant matrix that
has the same spectrum as A2. Here, the spectrum refers to the
limiting singular value distribution of the matrix. Note that the
feasibility problem in (4) is only concerned with the null space.

Universality Conjecture: In what follows, we shall focus on
the semi-random model in our analysis. Our goal is to establish
the precise phase transition condition for (4) using the semi-
random model as a surrogate:

N (Asemi-random) ∩ C = {0}. (8)

B. Phase Transition Analysis

Our analysis is based on the following proposition.

Proposition 1. [14, Theorem I]: Let V ∈ RN×N be a Haar
distributed random orthogonal matrix. Let D,K be two closed
convex cones in RN . The following holds for any η ∈ (0, 1):

1

N
(δ(D) + δ(K)) ≤ 1− ξη

1√
N
⇒ Pr{D ∩ V K 6= {0}} ≤ η

1

N
(δ(D) + δ(K)) ≥ 1 + ξη

1√
N
⇒ Pr{D ∩ V K = {0}} ≤ η,

(9)
where ξη :=

√
8 log(4/η), and δ(D) (similarly for δ(K))

denotes the statistical dimension of D:

δ(D) := E
[
‖ΠD(g)‖2

]
, where g ∼ N (0, I). (10)

Here, ΠD denotes the projection onto the cone D.

To apply Proposition 1 to analyze (8), we first rewrite (8) as

N (ARI) ∩ D = {0}, (11)

where ARI is a right rotationally-invariant matrix (see (7)) and

D := C ∩ {x | 1Tx = 0} = {x | 1Tx = 0,xI ≥ 0N−K}.
(12)

The following theorem is a direct consequence of Proposition
1, together with explicit calculations of the asymptotic of δ(D).
Its proof can be found in the appendix.

Theorem 1. Denote r := rank(ARI). As N,K, r → ∞ with
fixed ratios r/N → α ∈ (0, 1) and K/N → ε ∈ (0, 1), there
exists a function δ∗(ε) such that

α > δ∗(ε)⇒ Pr {N (Asemi-random) ∩ C = {0}} → 1,

α < δ∗(ε)⇒ Pr {N (Asemi-random) ∩ C 6= {0}} → 1,
(13)

where

δ∗(ε) := 1− (1− ε)Φ (µ∗(ε)) , ∀ε ∈ (0, 1), (14)

with µ∗(ε) being the unique solution to the equation of µ in
(0,∞):

(1− ε) · (µ (1− Φ(µ))− φ(µ)) + εµ = 0. (15)

Here, φ(·) and Φ(·) denote the PDF and CDF of the standard
normal distribution.

Theorem 1 provides a precise characterization of the phase
transition condition for the identifiability of the MLE, under a
semi-random model. We see that the phase transition boundary
is determined by two factors: (i) the statistical dimension of D
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(a) Gaussian
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(b) Rademacher
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(c) Doubly sub-sampled Hadamard

Fig. 1: Empirical phase transition of the identifiability of MLE under various signature matrices. d := L2−L
2 where L is length of

user signatures. K is the number of active users and N is the number of total users.

(parameterized by ε) and (ii) the rank of ARI. We remark that
the discussions can be extended to the complex-valued cases.
Details are omitted due to space limitation.

C. Behavior of the Statistical Dimension in the Sparse Limit
We analyze the behavior of the statistical dimension δ∗(ε) as

ε → 0. This provides a quantitative estimate of the sparsity-
undersampling tradeoff of the MLE in the sparse limit.

Proposition 2. Let δ∗(ε) be defined as in (14). We have

δ∗(ε) ∼ 2ε log (1/ε) , ε→ 0. (16)

Proof: Recall that µ∗(ε) ∈ (0,∞) is defined as the unique
solution to (15), namely,

1− Φ (µ∗(ε))−
φ (µ∗(ε))

µ∗(ε)
= − ε

1− ε
, ∀ε ∈ (0, 1). (17)

Denote G(µ) := 1−Φ(µ)− φ(µ)
µ . It is straightforward to verify

that G(µ) is a monotonically increasing function on µ ∈ (0,∞).
Further, limµ→∞G(µ) = 0 and limµ→0G(µ) = −∞. There-
fore, µ∗(ε) → ∞ as ε → 0. Towards providing a quantitative
estimate of µ∗(µ), we first note that

lim
ε→0

1− Φ (µ∗(ε))

ε · µ2
∗(ε)

(a)
= lim

ε→0

1− Φ (µ∗(ε))

−(1− ε) ·G (µ2
∗(ε)) · µ2

∗(ε)
(b)
= 1,

(18)

where step (a) is from (17), step (b) is due to Φ(−µ) = 1−Φ(µ)
and the following elementary fact:

lim
µ→∞

1− Φ(µ)

G(µ) · µ2

t=−µ
=⇒ lim

t→−∞

Φ(t)(
Φ(t) + φ(t)

t

)
· t2

= −1.

Taking the logarithm of (17) and dividing both sides by µ2
∗(ε)

leads to (∀ε ∈ (0, 1))

log φ(µ∗(ε))

µ2
∗(ε)

=
log (µ∗(ε))

µ2
∗(ε)

+
log
(

1− Φ (µ∗(ε)) + ε
1−ε

)
µ2
∗(ε)

.

Sending ε→ 0 and noting that φ(·) is the PDF function of the
standard normal distribution, we obtain

log
(

1− Φ (µ∗(ε)) + ε
1−ε

)
µ2
∗(ε)

→ −1

2
, ε→ 0. (19)

Using (18), we have

log
(

1− Φ (µ∗(ε)) + ε
1−ε

)
µ2
∗(ε)

∼
log
(
ε · µ2

∗(ε)
)

µ2
∗(ε)

, ε→ 0. (20)

Combining (19) and (20) yields µ2
∗(ε) ∼ 2 log ε−1(ε → 0).

Using (18), we have 1−Φ (µ∗(ε)) ∼ 2ε log ε−1; thus[c.f. (14)]

δ∗(ε) := 1− (1− ε)Φ (µ∗(ε)) ∼ 2ε log ε−1, ε→ 0.

The behavior of δ∗(ε) in the sparse limit ε → 0 agrees
with existing results on `1 minimization reconstruction for
compressed sensing problems [18].

IV. SIMULATION RESULTS

This section provides numerical examples to validate the
theoretical results in Theorem 1. In our experiments, we used
the LP approach in [1] to certify the feasibility problem in (4).
We conducted experiments under the following models of S:
• Gaussian: the entries of S are IID standard Gaussian;
• Rademacher: the entries of S are IID and take {+1,−1}

with equal probability;
• Doubly sub-sampled Hadamard: S is a sub-sampled

Hadamard matrix. Specially, the signature matrix is gen-
erated by randomly sub-sampling L rows and N columns
from a Nfull ×Nfull Hadamard matrix.

We set N = 5000 in all experiments (Nfull = 16384 for the
doubly sub-sampled Hadamard case). The heatmap represents
the empirical probability of the event (4) calculated by 100
independent realizations.

Fig. 1 displays the empirical phase transition for (4) together
with its theoretical predictions in Theorem 1. The theoretical
curves displayed in Fig. 1 set the values of α in the following
way. Note that α is the limit of αN := r/N as the problem
sizes tend to infinity, where r denotes the rank of A2; see
(6) for the definition of A2. For the Gaussian model and the
Rademacher matrix, the matrices have full rank (i.e., r = d)
with high probability (for the former case, with probability
one). Hence, we set α = d/N for these two cases. For the
doubly sub-sampled Hadamard model, however, the matrix A2

is rank deficient. Our numerical results suggest that αN := r/N
converges and we set α to this limit. Fig. 1 shows that the
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theoretical results based on the semi-random model accurately
describe the actual locations of the empirical phase transition for
all three models. Asymptotically, the Gaussian and Rademacher
signatures outperform the Hadamard signatures.

V. CONCLUSION

The phase transition analysis in this letter is based on a
mathematically tractable semi-random model, which consists
of an all-ones row and a rotationally-invariant random matrix.
Numerical results suggest that theoretical predictions derived
based on the semi-random model accurately describe the phase
transition for the actual models with a complicated column-wise
Kronecker product structure. Nevertheless, the validity of our
analysis relies on the correctness of the universality conjecture.
To this end, the recent spectral universality work [13] shed light
on a possible fully rigorous proof.

APPENDIX A
PROOF OF THEOREM 1

Note that the statistical dimension of a linear subspace is ex-
actly the subspace dimension itself. Theorem 1 is a consequence
of Proposition 1 together with the following lemma.

Lemma 1. Let D be defined as in (12). As N,K → ∞ with
K/N → ε ∈ (0, 1), we have

1

N
δ(D)→ δ∗(ε), (21)

where δ∗(ε) is defined in (14).

Proof: We first prove that the following holds:

1

N
‖ΠD(g)‖2 = min

µ∈R
fN (µ; g), ∀g ∈ RN , (22a)

where ΠD(·) is defined in (10),

fN (µ; g) :=
1

N

∑
i∈I

(gi − µ)2+ +
1

N

∑
i∈Ic

(gi − µ)2, (22b)

and I := {1, . . . , N−K}, Ic := {N−K+1, . . . , N}. Towards
proving (22), we note

ΠD(g) = argmin
xI≥0N−K

1

2
‖x− g‖2 (23a)

s. t. 1Tx = 0. (23b)

We introduce a Lagrange multiplier for the equality constraint
and consider the following Lagrangian:

F (x, µ) =
1

2
‖x− g‖2 + µ1Tg. (24)

The minimum of F (x, µ) over the constraint set {x ∈ RNxI ≥
0N−K} admits the following closed-form expression:

x?i = (gi − µ)+, i ∈ I,
x?i = (gi − µ), i ∈ Ic,

(25)

where (gi − µ)+ = max(gi − µ, 0). The Lagrange multiplier
µ ∈ R is chosen such that x? satisfies the constraint 1Tx = 0:∑

i∈I
(gi − µ)+ +

∑
i∈Ic

(gi − µ) = 0. (26)

Note that the left-hand side (LHS) of (26) is a strictly decreasing
function of µ for any g ∈ RN . Further checking the limit
behaviors of it shows that (26) has a unique solution, which
we denote as µ∗ in the sequel. To summarize, we have shown
that 1

N ‖x
?‖2 := 1

N ‖ΠD(g)‖2 satisfies the following

1

N
‖ΠD(g)‖2 =

1

N

∑
i∈I

(gi − µ∗)2+ +
1

N

∑
i∈Ic

(gi − µ∗)2

= fN (µ∗; g)

= min
µ∈R

fN (µ; g),

where the last step is due to that fN (µ; g) is a strongly
convex function and its minimum is uniquely determined by
its first order optimality condition, which is given by (26). This
completes the proof of (22).

The characterization in (22) is a deterministic result and holds
for all g ∈ RN . We now consider g ∼ N (0, IN ) and prove the
almost sure convergence of 1

N ‖ΠD(g)‖2 as N,K → ∞ with
K/N → ε ∈ (0, 1). By the strong law of large numbers, the
following holds for any fixed µ ∈ R:

fN (µ; g)
a.s.−→ f(µ), (27)

where

f(µ) := (1− ε)E
[
(G− µ)2+

]
+ εE

[
(G− µ)2

]
, (28)

and G ∼ N (0, 1). It is easy to see that f(µ) is a strongly convex
function of µ and hence admits a unique minimum. By the
convexity lemma [19, Theorem 10.8], pointwise convergence of
a sequence of convex functions implies uniform convergence
over any compact set; see also [20]. The function f(µ) has
a unique minimum. Using a standard “artificial boundedness”
argument as in [21, Lemma 10], we then conclude that

min
µ∈R

fN (µ; g)
a.s.−→ min

µ∈R
f(µ). (29)

By (22) and the definition of f(·) in (28), we have

1

N
‖ΠD(g)‖2 a.s.−→ min

µ∈R
(1− ε)E

[
(G− µ)2+

]
+ εE

[
(G− µ)2

]
.

(30)
Recall that 1

N δ(D) := E
[
1
N ‖ΠD(g)‖2

]
. To translate

(30) into the convergence of δ(D)/N , we next prove
supN E

[
‖ΠD(g)‖4/N2

]
< ∞, which guarantees the uniform

integrability of 1
N ‖ΠD(g)‖2. By the polar decomposition [14],

‖g‖2 = ‖ΠD(g)‖2 + ‖ΠDo(g)‖2, where Do denotes the
polar cone of D. Hence, 1

N ‖ΠD(g)‖2 ≤ 1
N ‖g‖

2. When
g ∼ N (0, IN ), we have E[‖g‖4] = N2 + N . Hence,
E
[
‖ΠD(g)‖4/N2

]
≤ (N2+N)/N2 ≤ 2, ∀N ≥ 1. This verifies

the uniform integrability condition; hence

1

N
δ(D)→ min

µ∈R
(1− ε)E

[
(G− µ)2+

]
+ εE

[
(G− µ)2

]
. (31)

It remains to check that the solution to the right-hand side
(RHS) of (31) is the unique solution to (15). This follows
from checking the first order optimality condition for (15)
−(1 − ε)E [(G− µ)+] + µε = 0, which recovers (15) together
with E [(G− µ)+] = φ(µ) − µ(1 − Φ(µ)), ∀µ ∈ R. It is
straightforward to show that the unique solution is positive. This
completes the proof.
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