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Abstract

An adaptive mesh method is presented for numerical simulation of shock-induced combustion. The method is com-
posed of two independent ingredients: a flow solver and a mesh redistribution algorithm. The flow solver is a finite-volume
based second-order upwind TVD scheme, together with a lower–upper symmetric Gauss–Seidel relaxation scheme for solv-
ing the multispecies Navier–Stokes equations with finite rate chemistry. The adaptive mesh is determined by a grid gen-
eration method based on solving Poisson equations, with the monitor function carefully designed to resolve both sharp
fronts and the induction zone between them. Numerically it is found that the resolution of the induction zone is particu-
larly critical to the combustion problems, and an under-resolved numerical method may cause excessive energy release and
spurious runaway reactions. The monitor function proposed in this paper, which is based on the relative rate of change of
mass fraction, covered this issue satisfactorily. Numerical simulations of supersonic flows past an axisymmetric projectile
in a premixed hydrogen/oxygen (or air) mixture are carried out. The results show that the spurious runaway chemical reac-
tions appearing on coarse grids can be eliminated by using adaptive meshes without invoking any ad hoc treatment for
reaction rates. The adaptive mesh approach is more effective than the fixed mesh one in obtaining grid-independent results.
Finally, discrepancies between the numerical and benchmark experimental results and difficulties in simulating the deto-
nation waves are delineated which appeal for further investigation.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Shock-induced combustion is the self-ignited combustion phenomenon of a premixed gas induced by a
shock wave propagating in the gas mixture. There have been extensive experimental and theoretical studied
on this phenomenon since 1960s, see, e.g. [1,2]. In the past two decades, it has regained widespread interest
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in aerospace science mainly being a promising combustion mechanism for hypersonic propulsion devices such
as pulse detonation engine, oblique detonation wave engine, and ram accelerator [3].

The flowfield of the shock-induced combustion is characterized by the coupling and interactions among the
shock wave, combustion front, and combustion instability, which result in various and distinctive flow and
wave structures according to the chemical and fluid dynamic conditions. These complicated phenomena pose
challenges for numerical simulations. One difficulty is how to capture the coupling and separation between
shock and combustion fronts. In reality, when the flight velocity of a projectile in a premixed combustible
gas is less than the Chapman–Jouguet (C–J) detonation speed of the gas mixture (referred to as subdetonative
speed), the bow shock and the combustion front are separated by a region called induction zone; when the
flight velocity is greater than the C–J detonation speed (referred to as superdetonative speed), the bow shock
and the combustion front partially merge to form coupled detonative wave structure [1]. The induction zone is
a region of nearly constant pressure, temperature and density, yet many reactions with different reaction rates
are in progress, giving rise to a release of energy, which may trigger a temperature-sensitive explosion. If the
numerical scheme is not accurate enough or the grid size is not sufficiently fine to capture the fastest process,
errors in the computed quantities can cause the release of chemical energy much sooner than it should be
released due to the extreme temperature sensitivity of reaction rates, resulting in so-called spurious runway
chemical reactions [4]. Standard shock-capturing schemes will lead to nonphysical one-grid-cell per time step
spurious detonation velocities when the chemical reactions introduce time scales that are significantly shorter
than the flow time scales [5]. Some empirical approaches such as limiting energy release rate or Damköhler
number were taken to cure this problem [4,6,7]. However, ad hoc modifications to well defined reaction rates
might spoil the underlying physics. Another difficulty that plagues numerical simulations of shock-induced
combustion is false combustion instabilities due to the use of inappropriate reaction mechanisms or numerical
schemes.

There are numerous studies utilizing adaptive mesh refinement or mesh redistribution methods for provid-
ing required spatial resolution in local regions so as to reduce total computational cost (see e.g. [8–14]), but the
issue of resolving the induction zone in shock-induced combustion is pervasive in most calculations except few
ones where a wavelet adaptive multilevel method [15], or multi-resolution schemes with adaptive grids [16]
were used to resolve the induction zone in one-dimensional detonation problems. Recently, the adaptive mesh
refinement method was implemented for high-resolution computation of two-dimensional detonation wave
structures [17]. The moving mesh method [18] was also utilized to solve the reactive Euler equations and its
efficiency was demonstrated for resolving thin structures of the detonation flows. Nevertheless, even if the
induction zone was already known crucial in determining the detonation structures [15,19], it was not inten-
tionally resolved in these adaptive mesh simulations.

In this paper, we develop an adaptive mesh redistribution method that is able to resolve shock and combus-
tion waves as well as the induction zone. Adaptive mesh method of this type keeps a simple mesh structure and
invariable number of grid points, and has the advantage of separating the mesh redistribution algorithm from
the flow solver. For the sake of robustness, we choose a standard second-order upwind total variation dimin-
ishing (TVD) scheme of Harten–Yee type [20,21] for the flow solution. The chemical source terms are treated by
a pointwise implicit approach instead of splitting approaches, which is in line with the lower–upper symmetric
Gauss–Seidel relaxation scheme as implemented in [22]. Once the flow field is updated at a given time level, the
grid may be redistributed using an iteration procedure [23,24]. The conventional Poisson grid equation of
Thompson et al. [25] is used for mesh redistribution, with its control functions determined from equidistribu-
tion of the monitor function along each grid direction in a way similar to [26]. We made slight yet critical mod-
ification to the control functions given in [26] for robustness. The peculiarity of the present monitor function is
the relative rate of change of mass fractions, which will be shown to be effective for resolving the induction zone.
Numerical simulations are compared with Lehr’s experiments [1]. Grid convergence and computational effects
for two representative hydrogen/oxygen combustion mechanisms are also demonstrated.

This paper is organized as follows. The governing equations and reaction mechanisms are given in Section
2. The flow solution method is listed in Section 3, and the adaptive mesh redistribution algorithm is described
in Section 4. Numerical simulations of the steady-state flows corresponding to flow conditions in Lehr’s exper-
iments are given in Section 5 and discrepancies between simulations and experiments are delineated. Conclu-
sions are presented in Section 6.
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2. Governing equations

The governing equations for the chemically reacting viscous flows are the compressible Navier–Stokes
equations with chemical source terms for a mixture composed of N gas species, which are expressed in the
following form:
oQ
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oy
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The equations describe two-dimensional plane flow if m = 0 and axisymmetric flow if m = 1. u and v are veloc-
ity components, p is the pressure, T is the temperature, E is the total energy per unit mass, qk is the density of
species k, with total density q ¼

PN
k¼1qk, ck = qk/q is the mass fraction, _xk is the mass production rate of spe-

cies k due to chemical reactions, hk is the specific enthalpy, Dk is the mass diffusivity of species k in the mixture
defined as
Dk ¼ ð1� X kÞ
X
j 6¼k

X j

Dkj
;

,

where Dkj is the binary diffusivity, Xk is the mole fraction, and l and k are dynamic viscosity and thermal con-
ductivity of the gas mixture, respectively. The diffusive transport coefficients, l and k, are determined using
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Wilke’s semi-empirical formula with lk and kk of each species found from NASA thermodynamic data [27].
For high speed flow simulations, mass diffusion is greatly simplified by neglecting pressure diffusion and ther-
mal diffusion, and assuming the binary diffusivity Dkj to be equal between all components [28]. Its value is
obtained by assuming a constant Schmidt number Sc = l/(qDkj) = 0.5, see [27].

It is assumed that all species are thermally perfect, in thermal equilibrium and have the same temperature.
The equation of state is that for a mixture of thermally perfect gases
p ¼
XN

k¼1

qk

Mk
RuT ; ð16Þ
where Mk is the molecular weight of species k and Ru is the universal gas constant. The total energy per unit
volume qE is used for implicit evaluation of temperature T by the Newton iteration method through the ther-
modynamic relationship qe = qh � p, i.e.
qE � 1
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where Cpk
is the specific heat at constant pressure, and h0

k is the heat of formation at reference temperature T0.
The specific heats are expressed as functions of temperature in polynomial fit
Cpk

Ru

¼ a1k þ a2kT þ a3kT 2 þ a4kT 3 þ a5kT 4; ð18Þ
where the coefficients aik can be obtained from thermodynamic data file of the chemical kinetics package
(CHEMKIN [29]) or from NASA thermochemical polynomial data [30], which are often valid in certain tem-
perature ranges. The appropriate speed of sound for the thermally perfect gas mixture model is the frozen
speed of sound
a2 ¼
XN

k¼1

ckpqk
þ ðc� 1ÞðH � u2Þ
with H ¼ hþ 1
2
u2, pqk

¼ ðc� 1Þð1
2
u2 � hkÞ þ cRuT=Mk, and c = Cp/(Cp � R), where c can be calculated from the

frozen specific heat Cp ¼
PN

k¼1ckCpk
and mixture gas constant R ¼ Ru

PN
k¼1ck=Mk.

In realistic combustion, the general formula for a reaction mechanism with I elementary reactions is
expressed as
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The mass production rate for each species is
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where the forward and backward reaction rate constants for the ith reaction, kf i and kbi , are given in Arrhenius
formula (omitting the subscripts f, b for clarity)
ki ¼ AiT Bi expð�Ci=T Þ: ð21Þ

Two reaction mechanisms for H2–air mixture combustion are used and their simulation effects will be com-
pared. One is Evans and Schxnayder’s 12-species 25-step reaction scheme [31], another is Jachimowski’s 13-
species 33-step reaction scheme [32]. The first 16 and 19 reactions in Refs. [31,32], respectively, are used for
H2/O2 mixture combustion.
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3. Flow solution method

The governing equations for chemically reacting flows are often stiff. There are usually two kinds of
approach to solve stiff systems: the splitting approach which decouples fluid dynamics from chemical kinetics,
and the non-splitting one which solves the fully coupled equations simultaneously. In the present study we use
the latter approach as implemented in [22]. The governing equations (1) are integrated over a quadrilateral
mesh cell
Z

X

oQ

ot
dXþ

I
oX
ðf � nÞ dS ¼

Z
X
ðHþHv þ SÞ dX; ð22Þ
where f = (E � Ev)i + (F � Fv)j. By virtue of divergence theorem, we can obtain the semi-discretized finite vol-
ume formulation for a rectangular mesh cell
X
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where uppercase I, J denote the center of a mesh volume X, and lowercase i, j denote the cell faces,
Êi ¼ ðEiþ FjÞ � ðnSÞi; Êv;i ¼ ðEviþ FvjÞ � ðnSÞi. By applying backward time difference, linearization of all flux
derivative terms and chemical source terms at n + 1 time level with respect to n level, and first-order upwind
scheme for resulting terms containing inviscid flux Jacobians, we obtain the fully discretized incremental form:
X
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DQ = Qn+1 � Qn, P = oS/oQ is the Jacobian matrix of chemical source vector which is N · N in size as sim-
plified in [22], A± and B± are split Jacobian matrices of inviscid fluxes, where we have used the approximate
flux Jacobian splitting A� ¼ 1

2
ðA� kAIÞ, with A ¼ oÊ=oQ being the inviscid flux Jacobian and kA its maximum
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Eq. (24) is iteratively solved by the LU-SGS scheme
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In the evaluation of RHSn, the diffusive terms are approximated by the conventional central difference [33],
and the inviscid numerical flux vector are approximated by the second-order upwind TVD scheme due to Har-
ten–Yee [20,21]
~̂
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2
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where Ri+1 is a matrix whose column vectors are the right eigenvectors of A evaluated at some symmetric aver-
age of QI and QI+1, denoted as Qi+1 [34]. The element /l

iþ1 of the dissipation vector Ui+1 for Harten–Yee
scheme is
/l
iþ1 ¼ rðkl
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The entropy function is given by
wðzÞ ¼
jzj; jzjP �;
z2þ�2

2�
; jzj < �;

(
ð32Þ
where � is an empirical coefficient. The limiter function used is
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4. Adaptive mesh redistribution

The present adaptive mesh redistribution method follows from an earlier one by Tang and Tang [23], which
is of grid-location type and has the advantage of decoupling the mesh redistribution from the flow evolution.
A continuous conservative interpolation procedure is used for transferring flow variables from previous to
next grid in the iteration process. However, it did not allow grid anisotropy. To achieve grid anisotropy,
we use the conventional Poisson grid generation equation due to Thompson et al. [25] to generate and redis-
tribute a structured quadrilateral mesh
r2n ¼ g22

g
P ;

r2g ¼ g11

g
Q;

ð34Þ
where g11 ¼ x2
n þ y2

n; g22 ¼ x2
g þ y2

g, and P and Q are called control functions which determine the grid point
distribution. For finite difference solution, the above system is inverted into the computational domain by
interchanging its dependent and independent variables so as to solve for x, y on the computational domain:
g22ðrnn þ P rnÞ þ g11ðrgg þ QrgÞ � 2g12rng ¼ 0; ð35Þ

where r = (x,y), g12 = rn Æ rg. The determination of P and Q depends on whether they are for initial grid gen-
eration or for grid redistribution. In the first case when the initial grid is to be generated, the distribution of
grid points on the boundary is given. From the boundary grid points, the control functions P along n-line
boundaries, and Q along g-line boundaries are determined from projection analysis
P ¼ � rn � rnn

jrnj2
;

Q ¼ � rg � rgg

jrgj2
;

ð36Þ
and are further modified to take into account the orthogonality on boundaries and the curvature effect [25].
The interior P(n,g) and Q(n,g) are subsequently obtained through one-directional interpolation in the
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computational domain. We denote the initial control functions as P0 and Q0, which will play an anchoring role
in subsequent grid adaptation.

In the second case when the grid is to be redistributed, the control functions P and Q are in principle
obtained from so-called monitor functions x1 and x2 in n and g curvilinear coordinate direction, respectively.
The monitor functions indicate solution errors in some sense [35]. It is very important to choose an appropri-
ate monitor function, otherwise the adaptive effect cannot be realized no matter how good a moving mesh
algorithm is. Several strategies for designing monitor functions have been proposed e.g. [36,37]. According
to Anderson’s analysis [26], the equidistribution of the monitor function xi along a coordinate line ni is equiv-
alent to setting control functions as
P ¼ 1

x1

ox1

on
;

Q ¼ 1

x2

ox2

og
:

ð37Þ
However, we have found that using (37) alone would lead to severely twisted grids near the body surface,
resulting in breakdown of a viscous flow computation. To increase robustness, we let (P,Q) be weighted aver-
ages between (37) and initial ones
ðP ;QÞT ¼ aðP ;QÞT þ ð1� aÞðP 0;Q0Þ
T
; ð38Þ
where a = (min(j, jc) � 1)/(jc � 1), and jc is a prescribed index in the direction normal to the wall corresponding
roughly to the outer edge of the boundary layer. The grid generation system (35) is solved using Gauss–Seidel
iteration. After each iteration, the flow variables Q are transferred from the previous grid Gp to the next grid
Gp+1 by a monotonic conservative interpolation procedure [23]. This enables calculation of the monitor func-
tions, hence the control functions for the next iteration. The boundary grid points are also redistributed
according to the tangential displacement of the neighboring interior grid points when necessary. In order
to maintain a smooth mesh for the viscous flow computation, boundary grid points on the body surface
are not redistributed.

To achieve grid adaptation near shock and combustion fronts, the following monitor function is often used
xi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b1

o�T
oni

� �2
s

; ð39Þ
with �T being the non-dimensional temperature, and b1 the adaptivity constant, see e.g. [37–39]. However, an
efficient monitor function within the induction zone is not obvious due to essentially constant density, pressure
and temperature in this region. It is believed that many reactions are occurring, giving rise to variation in com-
positions of some chemical species. We have observed large gradients in logarithmic scale of the mass fractions
of some radical species just before the combustion front. The variation of logarithmic mass fraction is equiv-
alent to the relative rate of change of mass fraction, namely,
o ln �ck

oni
¼ 1

�ck

o�ck

oni
; ð40Þ
where �ck ¼ maxðck; 10�9Þ is the tailored mass fraction. Therefore, we suggest a monitor function
xi ¼
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1þ b1
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s

; ð41Þ
where b1 and b2 are adaptivity constants. The term 1
�ck

o�ck
oni

can capture large variations of �ck even if the magnitude
of �ck is small in the induction zone. In the induction zone �ck itself may be very small in magnitude, but its
variation is critical. Thus, using a relative rate of change makes better sense than using rate of change directly.
Indeed, the monitor function (41) is found to give adequate adaption both in the induction zone and near the
shock and combustion fronts.
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A summary of the adaptive mesh redistribution algorithm is given below:

(1) Generate the initial grid using the elliptic grid generation system (35), with P0,Q0 obtained from given
boundary grid point distributions and interpolations.

(2) Advance the flow solution M steps by the LU-SGS scheme (27a).
(3) In the next time step, after the M steps with the LU-SGS scheme, do grid redistribution:

(a) Calculate the monitor function xi from (41) and do 1–2 times spatial smoothing on xi, then calculate
the control functions P,Q by the weighted averaging (38).

(b) Solve Eq. (35) by one iteration of Gauss–Seidel relaxation to get new grid Gp+1.
(c) Interpolate the flow solution Q from old grid Gp onto the new grid Gp+1 by using the conservative

interpolate procedure given in [23].
(d) The iteration procedure (a)–(c) on grid redistribution and flow solution interpolation is continued

until the grid do not change significantly from one iteration to the next.

(4) Start new time step (go to step 2).

5. Numerical examples and discussions

Two test cases of shock-induced combustion corresponding to Figs. 1 and 5 in Lehr’s benchmark experi-
ments [1] were selected to testify the present adaptive method. A spherical projectile with a diameter of 15 mm
is flying at supersonic speeds 1892 m/s (M = 3.55) and 2605 m/s (M = 6.46) in a stoichiometric H2/O2

(2H2 + O2) and H2/air (2H2 + O2+3.76N2) mixture of temperature 293 K at pressure of 186 and 320 mmHg,
respectively. Since the detonation speeds of the two mixtures are 2550 and 2055 m/s, respectively, then
M = 3.55 corresponds to the subdetonative speed and M = 6.46 corresponds to the superdetonative speed.
We will use M = 3.55 case to demonstrate the effect of mesh adaptation on elimination of spurious runway
chemical reactions, and the effect of the new monitor function, and use M = 6.46 case to compare detonation
structures. The computational domain may include either a hemisphere or a hemisphere plus a cylinder of one
diameter in length. Non-slip, adiabatic, and non-catalytic boundary conditions are used on the body surface.
All the computations are initialized from the free-stream conditions and are assumed to reach steady state
when the residual drops to 10�5.
5.1. Role of adaptive mesh and the monitor function

Fig. 1 shows the fixed and adaptive grids and corresponding temperature contours for M = 3.55 case. It can
be seen from Fig. 1b that both the shock wave and the combustion front go out of the computational domain
for the fixed grid computation. The result implies spurious runaway chemical reactions because they are con-
trary to experimental stationary shock and combustion fronts. This artifact occurs on low-resolution 652 grid
but not on 1292 and finer grids. However, adaptive mesh calculations using traditional monitor function (39)
or present one (41) show that the shock and combustion fronts are captured inside the computational domain
on 652 grid, and temperature contours for both monitors are virtually identical as shown in Fig. 1d. Further-
more, we can see from Fig. 1e that the adaptive mesh obtained with the new monitor function (41) is clustered
not only near the shock and combustion fronts, but also in the induction zone between them.

We discuss the spurious runaway chemical reactions as shown in Fig. 1b a bit further. They are related to
excessive release of chemical energy in one grid cell in a single time step in numerical calculation of shock-def-
lagration problems [4]. If the time step chosen according to the CFL condition is not small enough to resolve
chemical reactions, or inexact discretization or insufficient spatial resolution appears near the deflagration,
then numerical errors will falsely trigger a temperature-sensitive chemical reaction earlier than it should be.
We have found that a low-order numerical scheme is more prone to produce spurious runaway reactions than
a high-order one, and that chemical kinetics used also has influence on runaway reactions. For example, cal-
culation with Jachimowski’ mechanism produce runaway reactions on 332 but not on 652 grids. In general sit-
uations when a reaction mechanism contains very fast exothermic reactions, remedies such as limiting the
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energy release rate or Damköhler number [4,6,7], or adopting infinitely fast chemistry model, have to be
invoked. However, ad hoc limiting to reaction rates should be avoided. We see the adaptive mesh computation
is an alternative approach for eliminating spurious runaway reactions with fewer grid points because it can
provide sufficient spatial resolution near deflagration fronts.

5.2. Grid convergence tests

Fig. 2 shows temperature distributions along the front stagnation line for M = 3.55 case calculated by using
successively fine grid points. One can see that the distributions converge on 1952 adaptive grids, but they do
not even on 3852 fixed grids. It seems that the adaptive mesh calculation on 1292 grid at least can give well
converged shock location. If the results on 1952 adaptive grids are thought to be equivalent to those on
3852 fixed grids, it roughly translates into half CPU time saving for the adaptive mesh calculation.

We remark that the converged position of the shock and deflagration fronts are also different for different
reaction mechanisms. The shock and deflagration fronts obtained with Evans’ mechanism are further away
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from the body and in better agreement with the experiment. However, Evans’ mechanism is prone to cause
numerical unsteady combustion on heavily adapted grids in contrast to the steady state combustion observed
in the experiment for M = 6.46 hydrogen/air case, while Jachimowski’s mechanism is not so easy. In this
regard, Jachimowski’s mechanism is more robust than Evans’. We will go back to discuss this issue in the next
subsection.

Fig. 3 shows comparison between the calculated density contours and the experimental shadowgraph image
for M = 3.55 case. The computational domain extends one sphere diameter to the cylindrical portion where
supersonic outflow boundary conditions are used on the exit plane. We see fair agreement between the calcu-
lation and the experiment in the upstream, however, the computation does not predict the more inclined com-
bustion front and the second shock wave originating from the deflected combustion front in the flank of the
afterbody as appeared in the experiment. This discrepancy may be attributed to inaccurate modeling of vis-
cous effects, ignorance of the flow transition and base flow region, or other unknown reasons. Further inves-
tigation may include base flow region and turbulence modeling, which is not perused in this paper.

5.3. M = 6.46 hydrogen/air case

The M = 6.46 case corresponds to the superdetonative speed, where the shock wave and the deflagration
front are coupled near the front stagnation line and separated as soon as the velocity component normal
to the bow shock wave is equal to the detonation velocity [1]. The exact position of the separation is very sen-
sitive to the amount of heat release, hence depends on the reaction mechanism used. Several numerical studies
have tested the appropriateness of different reaction mechanisms using this case (see [40] and references
therein). However, these earlier calculations used relatively smaller number of grid points that doomed to pre-
dict a smaller induction zone than in the experiment, and in particular, veil potential numerical combustion
instability due to excessive numerical diffusions present on coarse grids. Based on the grid convergence test
in Section 5.2, we compare the computational effects between Evan’s and Jachimowski’s mechanisms using
more than 1952 grid points.

Figs. 4a–f compare the density contours for a hemisphere domain calculated with both reaction mecha-
nisms on fixed and adaptive grids, respectively. It is seen that the combustion front computed with Evans’
mechanism separates from the shock wave earlier and the induction zone is larger than computed with Jachio-
mowski’s mechanism, which indicates the former mechanism is better in matching numerical results with the
experimental one. One can also see that the density contours on 1952 adaptive grid (Figs. 4c and d) are com-
parable to or better than those on 3852 fixed grid (Figs. 4a and b). The adaptive 3852 grid (Fig. 4e) provides
little improvement over 1952 adaptive grid because the adaptive extent is limited by numerical combustion



Fig. 3. Comparison of calculated density contours with experimentally obtained shock position (s), combustion front (h) and
shadowgraph [1] for M = 3.55 H2/O2 flow. The adaptive mesh has 5132 grid points. Evans’ reaction mechanism is used.
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instabilities occurring on highly adaptive grids for Evans’ mechanism. Nevertheless, it provides evident
improvement for Jachiomowski’s mechanism as the mesh adaptivity enhances the solution resolution without
causing combustion instabilities (Fig. 4f).

Figs. 5a and b show comparisons of calculated density contours in the domain with the cylindrical after-
body on 5132 adaptive grids. We can see the shock and combustion fronts for two mechanisms are comparable
to the experimental positions. However, the calculated induction zone is smaller in the upstream and wider in
the downstream than in the experiment. Again, the induction zone computed with Evans’ mechanism is larger
than with Jachiomowski’s mechanism, showing the former is in better agreement with the experiment in the
upstream region.

At this point, we discuss difficulties encountered in the numerical computations of this particular case. In
obtaining the adaptive grid results, we found that each grid redistribution must be followed by a long, fixed-
grid computation to obtain nearly convergent flowfield; otherwise, consecutive adaptive computation would
lead to unrealistic, extensive combustion instabilities which subsequently result in dramatic grid redistribu-
tions to make computation not convergent to steady state. In our computation, only 1–2 times mesh adapta-
tions are allowed, further adaptations would again cause unrealistic combustion instabilities.

To find out whether the nonsmoothness of adaptive meshes or the fine mesh size itself is responsible for
numerical combustion instability, calculations were conducted on 7692 and 10252 fixed grid. We found both
mechanisms can converge to steady state on 7692 grid and predicted qualitatively the same result as the exper-
imental, but there are unrealistic combustion instabilities on 10252 grid. To our relief, calculations on 10252

grid can converge to steady state for a chemically frozen flow. It is thus believed that the numerical combus-
tion instability is caused by very fine mesh size. Thus, the case of M = 6.46 presents a particular difficulty asso-
ciated with numerical simulation of detonation waves by using detailed chemistry: when a high resolution
mesh is desirable for eliminating runaway reactions, an excessive fine mesh might lead to false unstable
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combustion. We are not sure if it is caused by some subtle interactions of chemical reactions with numerical
errors. The efficiency of an adaptive mesh method will then be limited by such interactions. We present this
dilemma to call for others’ attention.

6. Conclusions

We have developed an adaptive mesh redistribution method for numerical simulation of shock-induced
combustion. We demonstrate the efficiency of the adaptive method in eliminating spurious runway chemical
reactions and obtaining grid-independent results. One of the main contributors to the high resolution of the
adaptive grid method is the monitor function (41) which is based on the relative rate of change of ck’s. The
choice of the monitor function is found extremely important for the shock-induced combustion problems
due to large ratios of many variables involved. The proposed monitor function (41) can resolve the induction
zone between the shock wave and combustion front. Our numerical results on moderately fine grids are in fair
agreement with classic experiments. Nevertheless, simulations of M = 3.55 case do not reproduce experimen-
tally observed deflection of the combustion front and the secondary shock in the flank of the projectile. Fur-
thermore, false combustion instabilities occur with very fine mesh or consecutive mesh adaptation for
M = 6.46 case. These two unsolved problems appeal for further investigation.
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