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Abstract
A modified fifth-order WENO-Z scheme is proposed by analogy with the
non-normalized weights of the reformulated fifth-order adaptive order (AO)
WENO scheme. We show that if the original fifth-order WENO-AO scheme is
rewritten as the form of the conventional WENO combination, the resulting
non-normalized weights can be divided into three parts: a constant one term, a
local stencil smoothness measure term and a global stencil smoothness measure
term. In order to make use of the latter two terms for constructing a modi-
fied WENO-Z scheme with enhanced performance, we change the form of the
third term and introduce an adaptive scaling factor to adjust the contributions
from the second and third terms. Numerical examples show that the modified
fifth-order WENO-Z scheme has the advantage of high resolution in smooth
regions and sharp capturing of discontinuities, and it can obtain evidently better
results for shocked flows with small-scale structures compared with the recently
developed WENO-Z+ and WENO-Z+M schemes.
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1 INTRODUCTION

High order schemes capable of capturing strong discontinuities without spurious oscillations and resolving fine-scale
structures simultaneously are indispensable for the numerical simulation of complicated supersonic flows. The essen-
tially non-oscillatory (ENO)1 and weighted ENO (WENO2) schemes pioneered developments of many high order
shock-capturing schemes in the past four decades. An important advancement is the finite difference WENO-JS schemes
developed by Jiang and Shu,3 in which a smoothness indicator of stencil is defined which can achieve the optimal order
of accuracy in smooth monotone regions. The WENO-JS schemes can achieve (2r − 1)th order of accuracy based on a
convex combination of r rth-order ENO stencils for r = 2 to r = 7.4 Henrick et al.5 revealed that the fifth-order WENO-JS
scheme may lose accuracy at the first-order critical point where the first derivative of the solution vanishes but not the
second and third derivatives, and they derived necessary and sufficient conditions on the weights for fifth-order conver-
gence. By devising a mapping function for the nonlinear weights they developed the WENO-M scheme5 to retain the
optimal order of accuracy at the critical points.5 Some modified mapping functions were also proposed.6–8 Borges et al.9
developed the fifth-order WENO-Z scheme by introducing a reference global smoothness indicator to the calculation
of the nonlinear weights, which assign larger weights to discontinuous stencils, resulting in a substantial improvement
on numerical resolution of discontinuities. Further, the WENO-Z scheme9 can achieve fourth-order accuracy at the
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first-order critical points whereas the fifth-order WENO-JS scheme3 can only achieve third-order accuracy and is more
dissipative for small-scale flow structures.

Since the WENO-Z schemes have advantages in accuracy, resolution, shock-capturing, and overall efficiency,10,11

many newly developed WENO schemes adopt the WENO-Z type weights, such as WENO-NS,12 P-WENO,13 MR-WENO,14

adaptively central-upwind WENO schemes,15,16 WENO-MS,17 to name a few. It has been recognized that the key to high
resolution is to let the nonlinear weights approach the ideal weights in smooth regions as quickly as possible so that the
scheme can approach the underlying linear scheme better.9 More recently, by adding a new term to the non-normalized
weights of the original WENO-Z scheme, Acker et al.18 developed the fifth-order WENO-Z+ scheme. This new term is
used to increase the weights of less smooth substencils which are always smaller than the corresponding ideal weights.
The WENO-Z+ scheme can attain better resolution in smooth regions of the solution for some benchmark problems
while having the same numerical stability of the original WENO-Z scheme, however, it achieves little improvement over
the original WENO-Z scheme for complex problems having multi-scale structures. Later, Luo and Wu19 proposed the
WENO-Z+M scheme (M means modified). With a modified form for the new term, the WENO-Z+M scheme assigns a
larger weight to the less smooth substencil, thus achieving spectral properties and accuracy superior to the WENO-Z+
scheme. However, the new term in the WENO-Z+ or WENO-Z+M scheme contains a mesh size Δx dependent factor,
which makes the scheme lose the scale-invariant property.20

Unlike the classical finite difference WENO schemes which adopt the combination of several equal-sized small sten-
cils, the central WENO (CWENO) schemes as developed by Levy et al.21,22 adopt the combination of a large central
stencil and several small stencils, in which the underlying linear weights can be any positive and symmetric numbers
with only the requirement that their sum equals one. With this combination strategy, Capdeville23 developed a fifth-order
central WENO finite volume scheme for the Euler equations on 1D non-uniform meshes, and Cravero and Semplice24

developed third-order CWENO schemes on 1D and 2D non-uniform meshes. Cravero et al.25 generalized the CWENO
reconstructions up to 9th order with the WENO-JS nonlinear weights. Using a similar combination strategy, Zhu and
Qiu26 developed a fifth-order finite difference WENO-Z-weights scheme, in which the underlying linear weights can be
any positive numbers (not necessarily symmetric) with only the requirement that their sum equals one and thus one can
reduce numerical dissipation by choosing suitable linear weights, and the combination procedure can be easily extended
to finite volume methods on unstructured grids without the plague of negative ideal weights.27,28 Balsara et al.29 general-
ized the work26 to 7th and 9th orders by recursively making the combination of a high-order (WENO) reconstruction and
a(several) low-order (WENO) reconstruction(s) and called the resulting schemes as WENO-AO (adaptive order) schemes.
The WENO-AO schemes were extended to unstructured grids.30 However, the shortcoming of the AO weighting strategy
is the larger computational cost and possible oscillations due to inappropriate choice of the linear weights.

In this article, we first connect the fifth-order WENO-AO scheme29 with the original WENO-Z scheme.9 We refor-
mulate the WENO-AO scheme29 as the conventional WENO convex combination form, and show that there are three
terms in the resulting non-normalized weights: the first two terms are similar to those in the original WENO-Z weights,
and the third term is associated with the five-point global stencil smoothness indicator and is similar to the new term
in the WENO-Z+18 or WENO-Z+M scheme.19 Then, we modify the original WENO-Z scheme by analogy with the
non-normalized WENO-AO weights. We let the scaling factor in the last two terms vary with the smoothness of the
five-point global stencil, and modify the third term to reduce computational cost and increase the weights of less smooth
substencils. The performance of the modified WENO-Z scheme (named as WENO-MZ) is demonstrated in a series of
numerical examples by comparison with the fifth-order WENO-JS, WENO-Z, WENO-Z+, WENO-Z+M and WENO-AO
schemes. The results show that the new scheme always has better resolution than the other schemes and its computational
cost is only a bit more than that of the WENO-Z+M scheme.

The remainder of this article proceeds as follows. In Section 2, we give a brief review of the fifth-order WENO-JS,
WENO-Z and WENO-AO schemes relevant to this study. In Section 3, the WENO-AO scheme is rewritten as a WENO-Z
like scheme, and based on the compositional terms of the non-normalized weights, the modified WENO-Z scheme is
proposed. In Section 4 numerical results of one- and two-dimensional (1D and 2D) benchmark problems are presented
to show the performance of the present WENO-MZ scheme. Concluding remarks are given in Section 5.

2 REVIEW OF THE FIFTH- ORDER WENO SCHEMES

Consider the one-dimensional scalar hyperbolic conservation law

ut(x, t) + f (u(x, t))x = 0, (1)
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where u is the sought solution, and f is the flux function. The computational domain x ∈ [a, b] is divided into N
non-overlapping cells Ii = [xi−1∕2, xi+1∕2] with the cell center xi =

(
xi−1∕2 + xi+1∕2

)
∕2. Without loss of generality, we shall

use only uniform cells, and the cell size is Δx = xi+1∕2 − xi−1∕2. Using a conservative finite difference scheme, the
semi-discretized form of Equation (1) can be written as

dui

dt
= − 1

Δx

(
̂f i+1∕2 − ̂f i−1∕2

)
∶= L(u), (2)

where the numerical flux ̂f i+1∕2 = ̂f
+
i+1∕2 + ̂f

−
i+1∕2, and ̂f

+
i+1∕2 and ̂f

−
i+1∕2 denote the numerical fluxes for the split positive

and negative fluxes f + and f −, which satisfy f = f + + f −. In this work, the semi-discrete system of ordinary differential
equations (2) is solved by using the third-order strong stability-preserving Runge–Kutta method31:

⎧
⎪
⎨
⎪
⎩

u(1) = un + ΔtL(un),
u(2) = 3

4
un + 1

4

(
u(1) + ΔtL(u(1))

)
,

un+1 = 1
3

un + 2
3

(
u(2) + ΔtL(u(2))

)
.

(3)

Hereafter, we restrict our attention to the reconstruction of the numerical flux ̂f i+1∕2. Due to the symmetry, only the
positive flux ̂f

+
i+1∕2 is described and the superscript “+” on the positive fluxes is omitted for brevity.

2.1 WENO-JS and WENO-Z schemes

The fifth-order WENO flux is reconstructed on a five-point global stencil S5 = {xi−2, xi−1, xi, xi+1, xi+2} by the weighted aver-
age of the three third-order numerical fluxes, ̂f

k
i+1∕2, reconstructed on the three substencils, Sk = {xi−2+k, xi−1+k, xi+k}, k =

0, 1, 2:

̂f
0
i+1∕2 =

1
3

fi−2 −
7
6

fi−1 +
11
6

fi,

̂f
1
i+1∕2 = −

1
6

fi−1 +
5
6

fi +
1
3

fi+1,

̂f
2
i+1∕2 =

1
3

fi +
5
6

fi+1 −
1
6

fi+2.

(4)

Through the convex combination of the low order numerical fluxes, ̂f
k
i+1∕2, k = 0, 1, 2, one can build a fifth-order WENO

numerical flux as the following:

̂f i+1∕2 =
2∑

k=0
𝜔k ̂f

k
i+1∕2, (5)

where 𝜔k is the nonlinear weights. For calculating these weights, the local smoothness indicators of substencil 𝛽k are
determined using the formula given by Jiang and Shu3

𝛽k =
2∑

l=1
∫

xi+1∕2

xi−1∕2

Δx2l−1
(

dlPk(x)
dxl

)2

dx, k = 0, 1, 2, (6)

where Pk(x) are the reconstruction polynomials on the substencils. The detailed local smoothness indicators are
given by3

⎧
⎪
⎨
⎪
⎩

𝛽0 = 1
4
(fi−2 − 4fi−1 + 3fi)2 + 13

12
(fi−2 − 2fi−1 + fi)2,

𝛽1 = 1
4
(fi−1 − fi+1)2 + 13

12
(fi−1 − 2fi + fi+1)2,

𝛽2 = 1
4
(3fi − 4fi+1 + fi+2)2 + 13

12
(fi − 2fi+1 + fi+2)2.

(7)
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1634 WANG et al.

With Equation (7), the nonlinear weights for the 5th-order WENO-JS3 and WENO-Z9 schemes are given by

𝜔k =
𝛼k

∑2
l=0𝛼l

, 𝛼k =
𝛾k

(𝛽k + 𝜖)2
, (WENO-JS),

𝜔k =
𝛼k

∑2
l=0𝛼l

, 𝛼k = 𝛾k

(
1 +

(
𝜏5

𝛽k + 𝜖

)q)
, (WENO-Z).

(8)

Here, the ideal weights are {𝛾0, 𝛾1, 𝛾2} =
{

1
10
,

6
10
,

3
10

}
, and we take 𝜖 = 10−6 for the WENO-JS scheme and 𝜖 = 10−40 for

the WENO-Z scheme to avoid division by zero. For the WENO-Z scheme, the reference global smoothness indicator
𝜏5 = |𝛽0 − 𝛽2| ∼ (Δx5), and the power q takes 1 or 2 (q = 1 gives less dissipation near discontinuities than q = 2, but
q = 2 can keep the optimal order of accuracy at the first-order critical points).

2.2 WENO-AO scheme

From the previous WENO reconstruction process, it can be seen that by increasing the number of substencils and grid
points per substencil, higher order WENO schemes can be obtained, and in general, higher order schemes have smaller
numerical dissipation. However, increasing the number of grid points in substencils increases the probability containing
discontinuities. Although higher order WENO scheme can automatically adjust the weights of substencils, they may have
poor numerical performance when computing complex problems. In addition, when the WENO-JS class methods are
extended to unstructured grids, there will be the issue of negative ideal weights. In contrast, the WENO-AO schemes26,29

use another strategy to combine the reconstruction polynomials and are free of the issue. The process is as follows:

1. Select a set of substencils and corresponding linear weights {dk}, as well as the global stencil and corresponding linear
weight dh. The weight value can be any positive number as long as the sum of all the linear weights is equal to 1. This
is different from the ideal weights of the WENO-JS class methods.

2. Reconstruct the high order polynomial ph on the global stencil and lower order polynomials {pk} on the set of
substencils. Calculate p̂h = ph −

∑
k dkpk.

3. Calculate the nonlinear weights {𝜔k} of substencils and the nonlinear weight 𝜔h of the global stencil.
4. Get the final numerical flux by the weighted combination, ̂f = 𝜔h

dh
p̂h +

∑
k 𝜔kpk.

The fifth-order WENO-AO scheme with three substencils, called WENO-AO(5,3),29 has the same global stencil S5 and
three substencils S0, S1, S2 as the fifth-order WENO-JS scheme.3 The linear weights dh, d0, d1, d2 are chosen as follows29:

dh = 𝛾H , d0 = d2 = (1 − 𝛾H)
(1 − 𝛾L)

2
, d1 = (1 − 𝛾H)𝛾L, (9)

where 𝛾H , 𝛾L ∈ [0.85, 0.95], and in this article we take 𝛾H = 𝛾L = 0.85, thus {d0, d1, d2, dh} =
{0.01125, 0.1275, 0.01125, 0.85}.

The global smoothness indicator 𝛽h = 𝛽5 for the five-point global stencil is calculated according to the formula29

similar to Equation (6) as follows

𝛽h = 𝛽5 =
(

ux +
ux3

10

)2
+ 13

3

(
ux2 +

123
455

ux4

)2
+ 781

20
(ux3)2 +

14211461
2275

(ux4)2. (10)

Here, the coefficients are given as29

ux =
1

120
(11fi−2 − 82fi−1 + 82fi+1 − 11fi+2),

ux2 =
1

56
(−3fi−2 + 40fi−1 − 74fi + 40fi+1 − 3fi+2),

ux3 =
1

12
(−fi−2 + 2fi−1 − 2fi+1 + fi+2),

ux4 =
1

24
(fi−2 − 4fi−1 + 6fi − 4fi+1 + fi+2).

(11)
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WANG et al. 1635

Like the WENO-Z schemes, a reference global smoothness indicator is defined as

𝜏 = |𝛽h − 𝛽0| + |𝛽h − 𝛽1| + |𝛽h − 𝛽2|
3

, (12)

where 𝛽0, 𝛽1 and 𝛽2 are the same as Equation (7). Then, the nonlinear weights of the WENO-AO(5,3) scheme are defined
as

𝜔k =
𝛼k

𝛼0 + 𝛼1 + 𝛼2 + 𝛼h
, k = 0, 1, 2, h, 𝛼k = dk

[
1 +

(
𝜏

𝛽k + 𝜖

)q]
, k = 0, 1, 2, h, (13)

where 𝜖 = 10−40, and the power q is usually taken as 2 to avoid numerical oscillations near discontinuities.
In the end we get the numerical flux of the WENO-AO(5,3) scheme as

̂f
AO(5,3)
i+1∕2 = 𝜔h

dh
(ph − d0p0 − d1p1 − d2p2) + 𝜔0p0 + 𝜔1p1 + 𝜔2p2, (14)

where the three low order fluxes pk, k = 0, 1, 2, are the same as Equation (4), and the high order (fifth-order) flux ph is
given by

ph =
1

60
(2fi−2 − 13fi−1 + 47fi + 27fi+1 − 3fi+2). (15)

3 MODIFIED WENO-Z SCHEME

From the review in Section 2 we can see that the WENO-AO scheme is different from the conventional WENO com-
bination and it is hard to discover their similarity. However, we have found that for some numerical examples the
WENO-AO(5,3) scheme29 exhibits a very consistent numerical performance with the WENO-Z5 scheme,9 which may
imply some potential connection between them. Hu32 first explored this connection by reformulating the WENO-Z5
scheme as a combination of a 5-points global stencil and three 3-points substencils like the WENO-AO(5,3) scheme. In
this section, we will rewrite the WENO-AO(5,3) scheme as the conventional WENO combination form and reveal the
relationship between the two schemes, and then propose a modified WENO-Z scheme based on this relationship.

Rewrite Equation (14) as

̂f
AO
i+1∕2 =

𝜔h

dh
(ph − d0p0 − d1p1 − d2p2) + 𝜔0p0 + 𝜔1p1 + 𝜔2p2. (16)

Denote the ideal weights {𝛾0, 𝛾1, 𝛾2} = {0.1, 0.6, 0.3}. Then we have

ph = 𝛾0p0 + 𝛾1p1 + 𝛾2p2. (17)

Inserting Equation (17) into Equation (16) we can get

̂f
AO
i+1∕2 =

(
𝜔h(𝛾0 − d0)

dh
+ 𝜔0

)
p0 +

(
𝜔h(𝛾1 − d1)

dh
+ 𝜔1

)
p1 +

(
𝜔h(𝛾2 − d2)

dh
+ 𝜔2

)
p2. (18)

Define the combination coefficients before the low order fluxes pk as 𝜒k:

𝜒k = 𝜔k +
𝜔h

dh
(𝛾k − dk), k = 0, 1, 2. (19)

Substituting the original WENO-AO(5,3) weights (13) into Equation (19), we obtain

𝜒k = dk

(
1 +

(
𝜏

𝛽k+𝜖

)q)

𝛼0 + 𝛼1 + 𝛼2 + 𝛼h
+

(
1 +

(
𝜏

𝛽h+𝜖

)q)

𝛼0 + 𝛼1 + 𝛼2 + 𝛼h
(𝛾k − dk), k = 0, 1, 2. (20)
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1636 WANG et al.

The denominator part in Equation (20) is not related to k, so we only need to analyze the numerator part. Use 𝜒̂k to
represent the numerator part, which is given by

𝜒̂k = 𝛾k

[
1 + dk

𝛾k

(
𝜏

𝛽k + 𝜖

)q

+
(

1 − dk

𝛾k

)(
𝜏

𝛽h + 𝜖

)q]
, k = 0, 1, 2. (21)

Comparing Equation (21) with the corresponding non-normalized weights 𝛼k in the second row of Equation (8), we find
that the weights of the reformulated WENO-AO(5,3) scheme are similar to the WENO-Z weights. Equation (21) consists
of three parts:

1. A linear part (constant 1.0). It serves as two purposes: first, it serves as a reference value for stencil smoothness
measurements; second, it serves as a condition for the scheme to achieve the optimal order of accuracy.

2. A local smoothness measurement part (dk∕𝛾k)(𝜏∕(𝛽k + 𝜖))q. The coefficient dk∕𝛾k acts as a scaling factor for the
same term as in the original WENO-Z scheme. According to the choice (9), the linear weights {d0, d1, d2} =
{0.01125, 0.1275, 0.01125} are smaller than the corresponding ideal weights {𝛾0, 𝛾1, 𝛾2} = {0.1, 0.6, 0.3}, and thus this
part is smaller than the term in the original WENO-Z scheme. In smooth regions of the solution, this can make the
WENO-AO(5,3) scheme more resemble the fifth-order linear upwind scheme. However, in non-smooth regions of the
solution, this may cause numerical oscillations. This is the reason why the WENO-AO(5,3) scheme often chooses q = 2
to increase dissipation near discontinuities for numerical stability rather than q = 1.

3. An additional term associated with the five-point global stencil smoothness indicator 𝛽h and scaled by the coefficient
(1 − dk∕𝛾k). It looks like the additional correction term in the WENO-Z+18 or WENO-Z+M19 scheme. Its role is to
increase the weight of less smooth substencils and improve resolution near discontinuities.

From the above analysis, it is seen that the WENO-AO(5,3) scheme is essentially a modification to the WENO-Z
scheme. Our numerical experiment indicates that with the choice of the linear weights (9), the WENO-AO(5,3) scheme
performs better in smooth regions but worse in non-smooth regions than the WENO-Z scheme. In this article, we develop
a new variant of WENO-Z scheme by modifying the non-normalized weights (21). First, we replace the fixed scaling
factor dk∕𝛾k by an adaptive one that can quickly approach 0 in smooth regions to make the scheme close to the linear
upwind scheme, and quickly approach 1 near discontinuities to make the scheme close to the WENO-Z scheme. Second,
we change 𝜏 and 𝛽h in (21).

By replacing dk∕𝛾k with an adaptive scaling factor 𝜂 ∈ [0, 1] and 𝜏 with 𝜏5 = |𝛽0 − 𝛽2| in (21), we can define the
non-normalized weights for a modified fifth-order WENO-Z scheme as

𝛼

MZ′
k = 𝛾k

[
1 + 𝜂

(
𝜏5

𝛽k + 𝜖

)q

+ (1 − 𝜂)
(

𝜏5

𝛽h + 𝜖

)q]
, k = 0, 1, 2. (22)

After some experience, we design 𝜂 as

𝜂 =
[

|𝛽0 − 𝛽2|
max(𝛽0, 𝛽2) + 𝜖

]4

. (23)

As the computational cost for calculating 𝛽h using Equation (10) is high, we simply use 𝛽h = max0≤k≤2{𝛽k} in (22) initially.
However, our numerical experiment33 shown that this choice of 𝛽h gains little improvement in resolution over the original
WENO-Z scheme. The reason may be that the third term in (22) is a less-than-one constant for all the substencils Sk, k =
0, 1, 2.

In the following, we design a new 𝛽h for (22), which can increase the magnitude of the third term differently for differ-
ent substencils. For this goal, we make use of the local smoothness indicator ̂

𝛽1
34,35 for the substencil S1 = {xi−1, xi, xi+1}

which is based on all the derivatives of the Lagrange interpolation polynomial on S1 evaluated at the center xi of the big
stencil S5,

̂
𝛽1 =

1
4
(fi−1 − fi+1)2 + (fi−1 − 2fi + fi+1)2. (24)
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WANG et al. 1637

Using the Taylor series expansion at the point xi, 𝛽1 in Equation (7) and ̂
𝛽1 in Equation (24) can be written as

𝛽1 =
(

f ′i Δx
)2 +

(13
12

f ′′2i + 1
3

f ′i f ′′′i

)
Δx4 + (Δx6),

̂
𝛽1 =

(
f ′i Δx

)2 +
(

f ′′2i + 1
3

f ′i f ′′′i

)
Δx4 + (Δx6).

(25)

From Equation (25) we can construct a new smoothness measurement B4 as

B4 =
|||𝛽1 − ̂

𝛽1
||| =

1
12
(fi−1 − 2fi + fi+1)2, ∼ (Δx4), (26)

which is smaller than 𝛽h ∼ (Δx2) (Equation 10) in magnitude in smooth regions. Furthermore, we design a new 𝛽h = tkB4
for use in Equation (22), where tk is a substencil-dependent coefficient defined as:

t0 =
|𝛽0 − 𝛽1| + |𝛽2 − 𝛽1| + 2𝜖

|𝛽0 − 𝛽1| + 𝜖
= 1 + r, t1 ≡ 2, t2 =

|𝛽0 − 𝛽1| + |𝛽2 − 𝛽1| + 2𝜖
|𝛽2 − 𝛽1| + 𝜖

= 1 + 1
r
, where r = |𝛽2 − 𝛽1| + 𝜖

|𝛽0 − 𝛽1| + 𝜖
.

(27)
Finally, we define the non-normalized weights for the present modified WENO-Z scheme as follows,

𝛼

MZ
k = 𝛾k

[
1 + 𝜂

(
𝜏5

𝛽k + 𝜖

)q

+ (1 − 𝜂)
(

𝜏5

tkB4 + 𝜖

)q]
, k = 0, 1, 2. (28)

The ideal weights 𝛾k, reference global smoothness indicator 𝜏5 and small parameter 𝜖 = 10−40 are completely the same as
those of the original fifth-order WENO-Z scheme. We take q = 1 in Equation (28).

In smooth regions of the solution, 𝜏5 has the order of (Δx5), tkB4 has the order of (Δx4), the three coefficients tk
are close to each other (tk ≈ 2,∀k = 0, 1, 2), and 𝜂 is small, so the third term in Equation (28) almost becomes a larger
constant. This means that the first and third terms dominate 𝛼MZ

k in smooth regions so as to make the scheme approach
the fifth-order linear upwind scheme better. Near discontinuities, tk can be quite different for different substencils. For
example, if 𝛽0 is the largest (meaning that the substencil S0 is less smooth than S1 and S2), then r < 1 and thus t0 will
be less than 2 and even close to 1. Now we have t0 < t1 < t2 and this will amplify the third term in (28) for the less
smooth substencil S0, which will improve resolution near discontinuities.9,18 However, this amplification is controlled
automatically since the coefficient (1 − 𝜂) in the third term also becomes small near discontinuities as per Equation (23),
thus avoiding numerical oscillations and instability.

We name the modified fifth-order scheme as WENO-MZ, where M stands for “modified.” As comparison, we list the
non-normalized weights 𝛼k of the WENO-Z+18 and WENO-Z+M19 schemes respectively as follows:

1. WENO-Z+: 𝛼k = 𝛾k

[
1 +

(
𝜏5+𝜖
𝛽k+𝜖

)q
+ Δx2∕3

(
𝛽k+𝜖
𝜏5+𝜖

)]
, k = 0, 1, 2;

2. WENO-Z+M: 𝛼k = 𝛾k

[
1 + (𝜉k)q + Δx2∕3 1+𝜉2

min∑2
l=0𝛾l(1+𝜉2

l )

(
1
𝜉k

)1∕2
]
, 𝜉k =

𝜏5+𝜖
𝛽k+𝜖

, 𝜉min = min0≤k≤2(𝜉k), k = 0, 1, 2.

Finally, the normalized weights for all the WENO-Z type schemes are as usual: 𝜔k = 𝛼k∕
∑2

l=0𝛼l, k = 0, 1, 2.

4 NUMERICAL RESULTS

In this section, we provide some numerical tests in 1D and 2D problems to demonstrate the performance of the proposed
WENO-MZ scheme in comparison with the 5th-order WENO-JS, WENO-AO, WENO-Z, WENO-Z+ and WENO-Z+M
schemes. For fair comparison we take the same index q = 1 for the WENO-MZ, WENO-Z, WENO-Z+ and WENO-Z+M
schemes. Since the WENO-AO scheme with q = 1 diverges in calculating the double Mach reflection problem we always
use q = 2 as per the Reference 29. And we use 𝜖 = 10−40 for all the WENO schemes except 𝜖 = 10−6 for the WENO-JS
scheme. The third-order TVD Runge–Kutta method31 is used for time stepping. CFL number is set to 0.5 for all cases. As
we find that the accuracy and resolution of the WENO-AO scheme are between the WENO-Z and WENO-Z+M schemes
while it has larger computational cost than all other schemes, we will compare the WENO-AO scheme with other schemes
only in two-dimensional examples.
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1638 WANG et al.

4.1 Accuracy test

The accuracy test is carried out for the two-dimensional vortex evolution problem for the Euler equations.27,36 The
compressible Euler equations of gas dynamics are given as

Ut + F(U)x + G(U)y = 0, (29)

where the solution vector and flux vectors are given by

U = (𝜌, 𝜌u, 𝜌v,E)T , F(U) =
(
𝜌u, 𝜌u2 + p, 𝜌uv,u(E + p)

)T
, G(U) =

(
𝜌v, 𝜌uv, 𝜌v2 + p, v(E + p)

)T
.

Here 𝜌 is the density, (u, v) is the velocity, E is the total energy, p is the pressure and the equation of state is

E =
p

𝛾 − 1
+ 1

2
𝜌(u2 + v2), 𝛾 = 1.4.

The mean flow is 𝜌 = 1, p = 1 and (u, v) = (1, 1). At the time t = 0, we add, to the mean flow, an isentropic vortex
(perturbations in u, v and the temperature T = p∕𝜌, no perturbation in the entropy S = p∕𝜌𝛾 )

(𝛿u, 𝛿v) = 𝜀

2𝜋
e0.5(1−r2)(−y, x),

𝛿T = −(𝛾 − 1)𝜀2

8𝛾𝜋2 e1−r2
,

𝛿S = 0,

(30)

with (x, y) = (x − 5, y − 5), r2 = x2 + y2 and the vortex strength 𝜀 = 5. The computational domain is taken as [0, 10] ×
[0, 10], and periodic boundary conditions are used in both directions. It is clear that the exact solution of Equation (29)
with the above initial and boundary conditions is just the passive convection of the vortex with the mean
velocity.

The 2D Euler equations are solved with the finite difference WENO schemes in the dimension-by-dimension fashion.
In each dimension the WENO reconstructions are performed in the characteristic fields. The global Lax-Friedrichs (GLF)
flux splitting with different maximum eigenvalues for different characteristic fields taken over a grid line36,37 is used if
not mentioned otherwise. The time step is calculated with the following formula:

Δt = CFL
ΔtxΔty

Δtx + Δty
, Δtx =

Δx
max
∀i,j
(|ui,j| + ci,j)

, Δty =
Δy

max
∀i,j
(|vi,j| + ci,j)

, ci,j =

√

𝛾

pi,j

𝜌i,j
.

We first compute the solutions of various schemes to t = 2.0 for the accuracy test. The accuracy results are shown in
Table 1 for uniform meshes with Nx = Ny refined in both directions. Both the L1 and L∞ errors presented are for the point
values of 𝜌,

L1 =
LxLy

NxNy

Nx∑

i=1

Ny∑

j=1

|||𝜌i,j − 𝜌exact
i,j

|||,

L∞ = max
∀i,j

|||𝜌i,j − 𝜌exact
i,j

|||.

From Table 1 we see that the errors of the WENO-JS scheme are the largest, and the errors descend in the sequence of
the WENO-Z+, WENO-Z, WENO-Z+M and WENO-MZ schemes. Notice that the WENO-Z+M and WENO-MZ results
are very close. The numerical orders of accuracy are comparable to the theoretical ones.
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WANG et al. 1639

T A B L E 1 Accuracy for the 2D Euler equations for the smooth vortex evolution problem (30), t = 2.0.

WENO-JS WENO-Z WENO-Z+ WENO-Z+M WENO-MZ

Mesh L1 Order L1 Order L1 Order L1 Order L1 Order

20 1.95E−3 – 5.15E−4 – 6.03E−4 – 3.93E−4 – 4.12E−4 –

40 1.57E−4 3.63 4.05E−5 3.67 4.70E−5 3.68 3.15E−5 3.64 3.60E−5 3.52

80 7.24E−6 4.44 3.28E−6 3.63 6.07E−6 2.95 2.78E−6 3.50 2.01E−6 4.16

160 2.55E−7 4.83 8.08E−8 5.34 1.75E−7 5.12 6.36E−8 5.45 7.76E−8 4.69

320 9.67E−9 4.72 2.81E−9 4.85 5.24E−9 5.06 2.74E−9 4.54 2.69E−9 4.85

Mesh L∞ Order L∞ Order L∞ Order L∞ Order L∞ Order

20 5.46E−3 – 1.53E−3 – 1.58E−3 – 1.24E−3 – 1.09E−3 –

40 4.99E−4 3.45 1.03E−4 3.89 1.61E−4 3.29 8.67E−5 3.84 9.57E−5 3.51

80 2.86E−5 4.12 1.39E−5 2.89 2.00E−5 3.01 1.00E−5 3.12 1.00E−5 3.26

160 8.67E−7 5.04 3.89E−7 5.16 7.42E−7 4.75 3.14E−7 4.99 3.61E−7 4.79

320 3.16E−8 4.78 8.80E−9 5.47 1.86E−8 5.32 9.84E−9 5.00 8.53E−9 5.40

F I G U R E 1 Density profiles at y = 5 and two instants for the 2D vortex evolution, Nx = Ny = 80. (A) t = 50 (B) t = 100. [Colour figure
can be viewed at wileyonlinelibrary.com]

We then fix the mesh at Nx = Ny = 80 and compute the long-time evolution of the vortex. Figure 1 shows the result
comparison among the different schemes at t = 50 and 100. We show the line cut through the center of the vortex for the
density 𝜌. It is easy to see the present WENO-MZ result is better than the WENO-Z+M result.

4.2 Linear advection equation

Second, we consider a non-smooth solution of the linear advection equation:

ut + ux = 0, −1 ≤ x ≤ 1, t > 0. (31)
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1640 WANG et al.

The initial condition as given by Jiang and Shu3 contains a Gaussian, a square-wave, a triangle and a semi-ellipse wave
with periodical boundary conditions

u(x, 0) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

1
6
[G(x, 𝛽, z − 𝛿) + 4G(x, 𝛽, z) + G(x, 𝛽, z + 𝛿)], x ∈ [−0.8,−0.6],

1, x ∈ [−0.4,−0.2],
1 − |10(x − 0.1)|, x ∈ [0, 0.2],
1
6
[F(x, 𝛼, a − 𝛿) + 4F(x, 𝛼, a) + F(x, 𝛼, a + 𝛿)], x ∈ [0.4, 0.6],

0, elsewhere,

(32)

where G(x, 𝛽, z) = e−𝛽(x−z)2
,F(x, 𝛼, a) =

√
max(1 − 𝛼2(x − a)2, 0), z = −0.7, 𝛿 = 0.005, 𝛽 = log 2∕36𝛿2

, a = 0.5, 𝛼 = 10.
Figure 2 shows comparison of the numerical results at the final time t = 6. We can see that the results by the present

WENO-MZ, WENO-Z, WENO-Z+, and WENO-Z+M schemes are nearly same and are all better than the WENO-JS result.

F I G U R E 2 Results of the multi-wave problem (32) at t = 6 with N = 200 mesh cells. (A) Gauss wave zone; (B) square wave zone; (C)
triangle wave zone; (D) semi-ellipse wave zone. [Colour figure can be viewed at wileyonlinelibrary.com]
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WANG et al. 1641

4.3 One-dimensional Euler equations

Consider the one-dimensional Euler equations

Ut + F(U)x = 0 (33)

with

U = (𝜌, 𝜌u,E)T , F(U) =
(
𝜌u, 𝜌u2 + p,u(E + p)

)T
.

Here, 𝜌,u, p and E are the density, velocity, pressure and total energy respectively, and the ideal gas equation of state is
given by

p = (𝛾 − 1)
(

E − 1
2
𝜌u2

)
, with 𝛾 = 1.4.

4.3.1 Lax problem

The first example is the Lax problem with the initial conditions38

(𝜌,u, p) =

{
(0.445, 0.698, 3.528), 0 ≤ x ≤ 0.5,
(0.500, 0.000, 0.571), 0.5 < x ≤ 1.

The computational domain is x ∈ [0, 1] with zero gradient boundary conditions applied on two ends and the final time
is t = 0.13. The exact solution is computed by the exact Riemann solver.39 Figure 3 shows the computed density profiles.
For the shock wave and contact discontinuity, the WENO-MZ, WENO-Z+M and WENO-Z schemes have comparable

F I G U R E 3 Density profiles with different schemes for the Lax problem at t = 0.13 with N = 200. [Colour figure can be viewed at
wileyonlinelibrary.com]
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1642 WANG et al.

F I G U R E 4 Numerical results of the Sod problem with N = 200 and the zoom-in view at t = 0.2. [Colour figure can be viewed at
wileyonlinelibrary.com]

resolution which is higher than the WENO-Z+ schemes. All the WENO-Z types schemes have higher resolution than the
WENO-JS scheme.

4.3.2 Sod problem

The Sod’s shock-tube test problem40 is described with the initial conditions

(𝜌,u, p) =

{
(1, 0, 1), 0 ≤ x ≤ 0.5,
(0.125, 0, 0.1), 0.5 < x ≤ 1.

The computational domain is x ∈ [0, 1] with zero gradient boundary conditions applied on two ends and the final time
is t = 0.2. The solution contains a right moving shock wave, a right traveling contact wave and a left sonic rarefaction
wave. The numerical results computed by five various schemes are shown in Figure 4. We can see that the results by the
WENO-MZ and WENO-Z+M schemes are the best, followed by the WENO-Z, WENO-Z+, and WENO-JS schemes.

4.3.3 Shock-entropy wave interaction problem

This problem describes a one dimensional moving shock interaction with a perturbed density field.41 The initial
conditions are

(𝜌,u, p) =
⎧
⎪
⎨
⎪
⎩

(
27
7
,

4
√

35
9
,

31
3

)
, −5 ≤ x < −4,

(1 + 𝜖 sin(𝜅x), 0, 1), −4 ≤ x ≤ 5.
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WANG et al. 1643

F I G U R E 5 Density profiles for the shock-entropy wave interaction with N = 400 and the zoomed view at t = 1.8. [Colour figure can be
viewed at wileyonlinelibrary.com]

Here, 𝜖 = 0.2 and 𝜅 = 5 are the amplitude and wave number of the entropy wave respectively. The computation domain is
[−5, 5]with zero gradient boundary conditions applied on two ends and the final time is t = 1.8. When the shock interacts
with the sinusoidal density perturbation, short wavelength high amplitude density waves are produced behind the shock.
These waves are followed by a sequence of long wavelength low amplitude waves which steepen over time into N-shape
waves. The reference solution is computed by the fifth-order WENO-JS5 scheme with N = 4000. The numerical results
calculated by different schemes on a 400 points grid are shown in Figure 5. We see that the present WENO-Z scheme
is slightly better than the WENO-Z+M, WENO-WENO-Z+ and WENO-Z schemes in the resolution of short wavelength
large amplitude waves, and is much better than the WENO-JS scheme.

4.3.4 Two interacting blast waves

This problem describes a two-blast-wave interaction problem.42 The initial conditions are

(𝜌,u, p) =
⎧
⎪
⎨
⎪
⎩

(1, 0, 1000), 0 ≤ x < 0.1,
(1, 0, 0.01), 0.1 ≤ x < 0.9,
(1, 0,100), 0.9 ≤ x ≤ 1.

with the reflective condition applied at both boundaries. The final time is t = 0.038 and the grid point number used is 400.
The numerical results are shown in Figure 6. The reference solution is computed by the WENO-JS scheme with N = 4000
grid points. We see that the WENO-MZ scheme has higher resolution than the WENO-Z+M, WENO-Z+, WENO-Z, and
WENO-JS schemes. This is particularly evident in the zoomed region.

4.4 Two-dimensional Euler and Navier–Stokes equations

In the following, we test our scheme in four inviscid and one viscous 2D examples. We add numerical comparison with
the fifth-order WENO-AO(5,3) scheme.29
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1644 WANG et al.

F I G U R E 6 Density profiles of the two interacting blast wave problem with N = 400 and the zoom-in view at t = 0.038. [Colour figure
can be viewed at wileyonlinelibrary.com]

4.4.1 2-D Riemann problem for gas dynamics

The initial conditions43 are four constant states in four quadrants divided by lines x = 0.8 and y = 0.8 on the square
[0, 1] × [0, 1]:

(𝜌,u, v, p) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(1.5, 0.0, 0.0, 1.5), 0.8 ≤ x ≤ 1.0, 0.8 ≤ y ≤ 1.0,
(0.5323, 1.206, 0.0, 0.3), 0.0 ≤ x < 0.8, 0.8 ≤ y ≤ 1.0,
(0.138, 1.206, 1.206, 0.029), 0.0 ≤ x < 0.8, 0.0 ≤ y < 0.8,
(0.5323, 1.206, 0.0, 0.3), 0.8 ≤ x ≤ 1.0, 0.0 ≤ y < 0.8.

The boundary conditions are zero gradient boundary conditions.
Figure 7 shows the density contours with grid cells Nx × Ny = 400 × 400 at t = 0.8. It can be seen that the resolution

of the vortical structures formed along the two slip lines from low to high is: WENO-JS < WENO-Z ≤ WENO-Z+ <

WENO-Z+M ≤ WENO-AO(5,3) < WENO-MZ. In particular, the present WENO-MZ result has the highest resolution.
Since the WENO-JS result is most diffusive and the WENO-Z result is similar to the WENO-Z+ one, to save space, we
will not show the WENO-JS and WENO-Z results in the following 2D examples. Instead, we add comparison with the
WENO-AO scheme (14).

Table 2 shows the timing results of the six compared WENO schemes for calculating the 2D Riemann problem. We see
that the present WENO-MZ scheme has 9.1% extra computational cost relative to the WENO-Z scheme, the WENO-Z+M
scheme has 6.1% extra cost, and the WENO-AO scheme has 20% extra cost.

4.4.2 A Mach 3 wind tunnel with a step

This problem is set up with a Mach 3 flow in a wind tunnel with a forward-facing step.42 The wind tunnel is 1 length
unit wide and 3 length units long. The step is 0.2 length units high and is located 0.6 length units from the left-hand
end of the tunnel. An inflow boundary condition is applied at the left end of the computational domain and an outflow

 10970363, 2024, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/fld.5314 by <

Shibboleth>
-m

em
ber@

am
ss.ac.cn, W

iley O
nline L

ibrary on [03/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com


WANG et al. 1645

F I G U R E 7 Density contours of two-dimensional Riemann problem at t = 0.8 with 400 × 400 grid cells. 40 equally spaced contours
from 0.14 to 1.7. (A) WENO-JS; (B) WENO-Z; (C) WENO-Z+; (D) WENO-Z+M; (E) WENO-AO; (F) WENO-MZ. [Colour figure can be
viewed at wileyonlinelibrary.com]
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T A B L E 2 CPU times in seconds taken by different schemes for simulating the 2D Riemann problem.

WENO-JS WENO-Z WENO-Z+ WENO-Z+M WENO-MZ WENO-AO

1193 1194 1212 1267 1303 1433

F I G U R E 8 Density contours for the forward-facing step problem at t = 4 with 480 × 160 grid cells as in Reference 19. 90 equally spaced
contours from 0.2568 to 6.607. (A)WENO-Z+; (B) WENO-Z+M; (C) WENO-AO; (D) WENO-MZ. [Colour figure can be viewed at
wileyonlinelibrary.com]

boundary condition is applied at the right end. Along the walls of the tunnel we apply reflective boundary conditions. The
initial condition is a 𝛾 = 1.4 gamma-law gas with 𝜌 = 1.4,u = 3.0, v = 0.0, p = 1.0. Since the corner of the step is a singular
point, we use the entropy correction technique42,44 to cure the numerical boundary layer problem due to the singularity
at the corner. Figure 8 shows comparison of computed density contours by the four schemes. Both the WENO-MZ and
WENO-Z+M schemes have better resolution of the rolling vortices along the slip line issuing from the Mach stem than
the WENO-AO and WENO-Z+ schemes. By careful comparison, the present WENO-MZ scheme is slightly better than
the WENO-Z+M scheme.

4.4.3 Double Mach reflection problem

This problem is widely used to test the performance of shock-capturing methods.42 The computational domain is [0, 4] ×
[0, 1]. Initially a right-moving Mach 10 shock wave is imposed and the shock front makes an angle of 60◦ with the x axis
at x0 = 1∕6. The part from x = 0 to x = 1∕6 along the bottom boundary is assigned the exact post-shock states and the
region x ∈ [1∕6, 4] is a reflecting wall. The left boundary is assigned the initial post-shock states. For the right boundary
at x = 4, normal gradients of all variables are set to zero. The top boundary is set to describe the exact motion of the Mach
10 shock.16,42 The initial pre-shock and post-shock conditions are defined by

(𝜌,u, v, p) =
⎧
⎪
⎨
⎪
⎩

(
8, 8.25 cos

(
𝜋

6

)
,−8.25 sin

(
𝜋

6

)
, 116.5

)
, x < x0 + y√

3
,

(1.4, 0.0, 0.0, 1.0), x ≥ x0 + y√
3
.

The final time is t = 0.2. The grid of resolution used is 960 × 240 grid cells for all the schemes.
The numerical density contours obtained with different schemes are shown in Figure 9. The rolling-up vortices ema-

nating from the slip line in the zone of 2.2 ≤ x ≤ 2.8 can reflect the resolution capability of a numerical scheme. The earlier
the beginning position of the rolling-up vortices, the higher the numerical resolution is. We can see that the sequence
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WANG et al. 1647

F I G U R E 9 Density contours of double Mach problem at t = 0.2 with 960 × 240 grid cells and CFL = 0.5. 50 equally spaced contours
from 2 to 22. (A) WENO-Z+; (B) WENO-Z+M; (C) WENO-AO; (D) WENO-MZ. [Colour figure can be viewed at wileyonlinelibrary.com]
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1648 WANG et al.

of resolution from low to high is: WENO-AO < WENO-Z+ < WENO-Z+M < WENO-MZ. We note that for this example
the WENO-AO(5,3) scheme has lower resolution compared to the WENO-Z+ scheme, which is contrary to the result for
other 2D examples. Again, wee that the present WENO-MZ scheme has better resolution of the fine flow structures near
the Mach stem than the other schemes.

4.4.4 Rayleigh–Taylor instability

This problem describes the interface instability between two fluids with different densities when an acceleration is
directed from the heavy fluid to the light one, and it is often used to test the numerical dissipation of a high order scheme.45

The computational domain is [0, 0.25] × [0, 1]. The top and bottom boundaries are set up as (𝜌,u, v, p) = (1, 0, 0, 2.5) and
(𝜌,u, v, p) = (2, 0, 0, 1), respectively. Reflective boundary conditions are set for the left and right boundaries. The gravi-
tational effect is introduced by adding 𝜌 and 𝜌v to the right hand side of the y-momentum and the energy equations,
respectively. The ratio of specific heats is 𝛾 = 5∕3. The initial conditions are given by

(𝜌,u, v, p) =

{
(2, 0,−0.025

√
𝛾p∕𝜌 cos(8𝜋x), 2y + 1), if 0.0 ≤ y < 0.5,

(1, 0,−0.025
√
𝛾p∕𝜌 cos(8𝜋x), y + 1.5), if 0.5 ≤ y < 1.0.

The final simulation time is t = 1.95.
Figure 10 shows the results by the compared four schemes on the 240 × 960 resolution at t = 1.95. As in the litera-

ture, a more dissipative scheme is more likely to preserve the symmetry of the solution. A careful comparison about the
vortical structures in the spike head shows that present WENO-MZ scheme has the highest resolution, followed by the
WENO-Z+M, WENO-AO and WENO-Z+ schemes.

4.4.5 Two-dimensional viscous shock-shear layer interactions

We also apply the present scheme to numerical solution of two-dimensional Navier–Stokes equations. We consider the
shock-shear layer interaction problem, which can be used to check the resolution of a numerical scheme. The setup

(A) (B) (C) (D)

F I G U R E 10 Density contours of Rayleigh–Taylor instability (from blue = 0.85 to red = 2.25) at t = 1.95 with 240 × 960 cells. (A)
WENO-Z+; (B) WENO-Z+M; (C) WENO-AO; (D) WENO-MZ. [Colour figure can be viewed at wileyonlinelibrary.com]
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WANG et al. 1649

and detailed description of this problem can be found in References 46 and 47 noting that slip-wall conditions are
assumed at the bottom boundary to avoid any boundary-layer formation and subsequent complexities arising from the
shock/boundary layer interaction. And the governing equations with an assumed constant physical viscosity are given in
detail in Reference 48 and thus we will not repeat them here. A sixth-order central difference scheme is used to discretize
the viscous terms. The simulation is carried on a uniform 251 × 51 grid as in Reference 19 with CFL = 0.5. The final time
is t = 120. Figure 11 shows the density contours computed with four WENO schemes. Figure 12 shows the density pro-
files at y = 0 line computed with the four WENO schemes. The reference solution is computed by the WENO-Z scheme
with 1251 × 251 grid points as in Reference 19. From Figure 12 we can see that the result of the WENO-MZ scheme is

F I G U R E 11 Density contours of shock-shear layer interaction problem at t = 120, CFL = 0.5, 251 × 51 grid points. 40 equally spaced
contours from minimum to maximum. (A) WENO-Z+; (B) WENO-Z+M; (C) WENO-AO; (D) WENO-MZ. [Colour figure can be viewed at
wileyonlinelibrary.com]
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1650 WANG et al.

F I G U R E 12 Density profiles of shock-shear layer interaction problem at t = 120, CFL = 0.5, 251 × 51 grid points. [Colour figure can be
viewed at wileyonlinelibrary.com]

more close to the reference solution than the comparable WENO-Z+M scheme, while the WENO-AO and WENO-Z+
schemes are comparable and more away from the reference solution.

5 CONCLUSIONS

A modified fifth-order WENO-Z (called WENO-MZ) scheme is presented. The non-normalized nonlinear weights of this
scheme is inspired by those of the reformulated fifth-order adaptive order (AO) WENO scheme. By rewriting the original
WENO-AO scheme as the conventional WENO combination form, we found that the non-normalized weights of the
rewritten WENO-AO scheme have three terms, two of which are similar to those in the original WENO-Z scheme, and
the third term is similar to the new term in the WENO-Z+ and WENO-Z+M schemes. In our modification, the fixed
scaling factor in the non-normalized weights of the rewritten WENO-AO scheme is replaced by an adaptive one in order
to recover quickly the underlying linear scheme better in smooth regions of the solution, and the third term is altered in
order to reduce computational cost and account for substencil dependence. Numerical tests in typical 1D and 2D problems
including Euler and Navier–Stokes systems demonstrated that the present WENO-MZ scheme can achieve evidently
higher resolution compared with the fifth-order WENO-Z+ and WENO-Z+M schemes, while the computational cost per
step is only a bit more than that of the WENO-Z+M scheme.
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