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a b s t r a c t

This article uses the artificial compressibility-based high-order finite difference method
to simulate the two-phase Kelvin–Helmholtz (KH) instability problem. The equations
are based on the mass-conserving Allen–Cahn equation coupled with the incompressible
Navier–Stokes equations. One of the advantages of the artificial compressibility approach
is that many high-order numerical schemes based on hyperbolic conservation law can
be applied. A fifth-order weighted essentially non-oscillatory (WENO) scheme is used
for discretizing the convective terms while a standard central finite difference scheme
is used for the viscous and surface tension terms. The system of equations is then solved
using the Beam-Warming approximate factorization technique. For validation, the effects
of both single- and double-mode sinusoidal perturbations on the Kelvin–Helmholtz
instability dynamics are analyzed. When there is a single-mode sinusoidal perturbation,
the interface roll-up at the center of the domain. Additionally, the role of the surface
tension parameter in the instability’s dynamics is investigated. The development of
Kelvin–Helmholtz instability is shown to be sensitive to the surface tension value. The
analysis of grid convergence is also performed to capture the interface dynamics at
varying resolutions. The comparison of the computed results is in good agreement with
those from the literature. It is observed that the proposed technique effectively resolves
the dynamics of the chaotically distorted interfaces of the Kelvin–Helmholtz instability
in two-phase flow.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

When there is a substantial velocity/density difference between two immiscible fluids, a phenomenon known as the
elvin–Helmholtz (KH) instability arises. Because of the gravity and surface tension, the interface for which the lighter
luid is on top of the heavier fluid remains stable. However, the KH instability arises when the destabilizing effects of
he shear surpass the stabilizing effects of the gravity or surface tension. The KH instabilities may be seen in a variety
f different natural settings. In the lower atmosphere, billowing clouds are a well-known manifestation of KH instability.
elvin [1] and Helmholtz [2] are credited for conducting the initial work on this instability. Different techniques, including
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analytical [3], experimental [4], and numerical [5–8], have been used to analyze the linear and nonlinear stabilities of the
KH instability.

Funada and Joseph [9] used the viscous potential flow analysis to investigate the Kelvin–Helmholtz instability in a
hannel. They performed an analysis of the planar interface without taking into account heat and mass transport. Funada
nd Joseph [10] tested the validity of the theory of viscous potential flow by comparing the fully viscous flow theory for
stationary cylindrical liquid with the capillary instability criterion suggested by the theory of viscous potential flow.
he exact normal mode solution of the linearized Navier–Stokes equations is found in the fully viscous flow theory.
ith varying Reynolds numbers, they determined the instability growth rates. The linear Kelvin–Helmholtz instability
f the interface between two viscous and incompressible fluids was investigated by applying the Viscous Correction of
he Viscous Potential Flow (VCVPF) theory developed by Joseph and Wang [11] when the phases are enclosed between two
orizontal cylindrical surfaces coaxial with the interface and mass and heat transfer across the interface are present [12].
Shadloo and Yildiz [13] used the smoothed particle hydrodynamics method to explore numerically the dynamics of the

wo-phase incompressible KH instability. They have shown that the Richardson number is the key factor in determining
ow fast the KH instability develops. By using the lattice Boltzmann multi-phase model, Zhang et al. [14] examined the
mpact of surface tension on the dynamics of the interface between two immiscible fluids. When the surface tension is
igh, formation of many pinch-offs at the interface and tiny droplets are observed. Atmakidis and Kenig [15] examined
he unstable wavy structures (viscous fingering and roll-ups etc.) of the interface using the Level Set and Volume of Fluid
pproaches. The disappearance of the finger-like shape was noted as a result of larger surface tension. Shin et al. [16]
nalyzed the long-time behavior of the KH instability using the vortex sheet model. They have studied the rolling of the
nterface by varying the density ratio. When the KH instability is simulated over a long period of time using an adaptive
ortex approach, Sohn et al. [17] found that the internal roll-up is distorted and the KH instability finally develops into
disordered structure and a secondary instability is formed. Using the front tracking method, Tauber et al. [18] found

hat the interface between two sheared immiscible fluids takes on a finger-like structure at high Reynolds and low Weber
umbers. By using the vortex-sheet approach, Rangel and Sirignano [19] numerically investigated an initially perturbed
nterface and examined the impact of both surface tension and density ratio. By increasing the surface tension or density
atio, they observed, the disturbance could be slowed down. Pressure-driven displacement flow in an immiscible two-fluid
ystem was analyzed in two [20] and three [21] dimensions by Redapangu et al. using the multiphase lattice Boltzmann
echnique. They concluded that, on average, the flow is more uniform in a three-dimensional channel than in a two-
imensional channel, and that screw-type instabilities are more easily noticed in the former. Ceniceros and Roma [22]
sed the immersed boundary method to simulate the long-term development of a sheared two-phase immiscible fluid
ystem with the same density and viscosity.
The problem of interfacial dynamics in multi-phase flows is associated with several industrial applications. In recent

ears, several numerical techniques are competing for multi-phase flows. The moving interface problems, in which the
nterface acts as a discontinuity separating one fluid from the other, is also known as the moving boundary problems.
he tracking of moving interface is a challenging task both theoretically and numerically. One type of moving interface
ethod is characterized as a sharp interface, while the other types are described as a phase-field or diffuse interface
ethod. In contrast to the phase-field method, where the interface is taken with a nonzero finite thickness, the sharp

nterface method assumes that the interface has a zero thickness [22]. For multi-phase flows, the phase-field method is
etting attention more and more due to its several computational advantages over the sharp interface method such as
he interface can be updated as part of the numerical solution without any re-initialization as in the case of the level-set
ethod or complicated geometry as in the VOF method [15]. Also, it is a physically consistent approach that is based on

he minimization of the free energy functional. The governing equations for the two-phase flow are the Navier–Stokes
quations coupled with the nonlinear Cahn-Hilliard [23] or the Allen–Cahn equations.
The objective of the current study is to simulate the KH instability problem using a high-order finite difference method

hich applies the artificial compressibility method to the mass-conserving Allen–Cahn equation and the incompressible
avier–Stokes equations [24]. Unlike the projection-type methods in which the velocity field and pressure are decoupled,
he current method solves the governing equations implicitly in a coupled way by recasting the original equations into
conservative form. With the artificial compressibility approach, the dual time-stepping technique [25] is used for time
iscretization in which physical time is discretized with a second-order accurate backward formula whereas the pseudo-
ime is discretized with the forward difference formula. The spatial part is discretized using the finite difference method
hereas the convective term is discretized using the fifth-order WENO scheme [26] and viscous terms by the standard

ourth-order central difference scheme.
The main advantage of the artificial compressibility approach is the ease of using many high-order numerical

chemes developed for hyperbolic conservation laws so that the Kelvin–Helmholtz problem can be investigated with
igh resolution and without generating spurious numerical oscillations. Since the AC method is widely used in the
umerical simulation of incompressible flows in engineering, it is interesting to see if it works fine for the combined phase
ield model and the INS equations [27]. Since KH instability is often encountered in atmospheric and oceanic sciences,
eophysics, and engineering, this study may be useful in such areas of research. When compared to the fourth-order
ahn-Hilliard equation, the discretization of the Allen-Cahn equation is straightforward because only the second-order
erivative term is present. A significant drawback of the Allen–Cahn equation is that it is not mass-conservative. However,
he Lagrange multiplier has been included in our studies to circumvent the mass loss at each physical time step, allowing
or the mass-conserving simulation of the KH instability problem.
2
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Fig. 1. Schematic diagram of a two-phase flow domain.

The paper is structured as follows: In Section 2, we provide the physical assumptions and the governing equations
that the flow of two incompressible immiscible fluids. The KH instability of a two-fluid system is described in detail in
Section 3. The numerical scheme is elaborated in Section 4. The numerical experiments are carried out in Section 5. The
conclusion is given in Section 6.

2. Allen-Cahn Navier–Stokes model for mixture of two immiscible fluids

Consider a two-dimensional domain Ω = Ω1 ∪ Ω1 ⊆ R2 filled with two different fluids having density and viscosity
ρ1, µ1, ρ2, and µ2 respectively as Fig. 1. By introducing a smooth but nearly piece-wise function φ(x, t) = ±1 to label
he two fluids e.g., φ(x, t) = +1 in one fluid and φ(x, t) = −1 in the other with φ(x, t) = 0 as the interface. In the
hase-field model, the two fluids are separated by a thin transitional layer of thickness 0 < ϵ ≪ 1 so that the interface

can be represented by φ(x, t) = tanh(x, t)/ϵ as given below:

φ(x,t) =

{
−1, Fluid 1
1, Fluid 2 ≈ tanh

(x
ϵ

)
. (2.1)

n expression for the free energy of a system with two fluids is as follows:

E =

∫
Ω

(
F (φ) +

1
2

|∇φ|
2
)
dx, (2.2)

here

F (φ) =
1

4ϵ2

(
φ2

− 1
)2

, (2.3)

s the double well potential function.
Using the variational derivative with respect to the phase-field variable, we can determine the time evolution of the

onvective Allen–Cahn equation, which is given by

φt + U·∇φ = −γ
δE
δφ

= γ
(
∆φ − F ′ (φ)

)
. (2.4)

n Eq. (2.4),
δE
δφ

denotes the variational derivative of the free energy, F ′ (φ) = φ3
−φ and γ is the elastic relaxation time. By

oupling the Allen–Cahn equation with the incompressible Navier–Stokes equations through velocity and surface tension,
he dynamics of the two fluid system is examined with the following system [28]:

ρ [Ut + (U · ∇)U] = −∇p + ∇ ·
[
ν

(
∇U+ (∇U)T

)]
+ ∇ · S (φ) , (2.5a)

∇ · U = 0, (2.5b)
φt + U·∇φ = γ

(
∆φ − F ′ (φ)

)
. (2.5c)

n system (2.5), U is the velocity-field, p is the pressure, S (φ) = −λ∇φ ⊗ ∇φ is the surface tension force, and ρ, ν are
he density and kinematic viscosity respectively. Since

∇ · S (φ) = −λ∆φ∇φ − ∇

(
λ

2
|∇φ|

2
)

. (2.6)

ombining the last term in Eq. (2.6) with the pressure term in Eq. (2.5), we obtained the modified pressure P = p+
λ
2 |∇φ|

2

y simplifying the momentum equation. We employed the same density and viscosity for both fluids in the current study
.e., ρ = ρ = ρ, ν = ν = ν.
1 2 1 2

3
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Fig. 2. Schematic diagram of a two fluid system with evolving interface.

As
∇ ·

(
∇U + (∇U)T

)
= ∆U + ∇ · (∇U)T

= ∆U + ∇ (∇ · U)

= ∆U.

U · ∇U = ∇ · (UU)

U · ∇φ = ∇ · (Uφ)

(2.7)

ow using the identities (2.6), (2.7) in the system (2.5) and taking ρ = 1 we obtain the governing model of two-phase
low of immiscible incompressible fluids in conservative form which is given by

∇·U = 0 , (2.8a)
Ut + ∇ · (UU) − ν∆U + ∇P = −λ∆φ∇φ , (2.8b)
φt + ∇ · (Uφ) − γ∆φ = γ

(
−F ′ (φ) + Lm (t)

)
, (2.8c)

d
dt

∫
Ω

φdx = 0, (2.8d)

ith the following initial conditions

U|t=0 = U0, φ|t=0 = φ0,

nd suitable boundary conditions. The Lagrange multiplier Lm (t) is responsible for the accumulation of the mass loss. We
have used the following formula for the calculation of Lagrange multiplier

Lm (t) =

∫
Ω
F ′ (φ) dx∫

Ω

(
1 − φ2

)
dx

. (2.9)

. Problem description

When two horizontally parallel fluids of different densities or velocities come into contact, the two-phase KH instability
an develop. We consider the flow of two immiscible and incompressible fluids that are constrained by two horizontal
oundaries of height H (0 < y < H) as illustrated in Fig. 2. The velocity distribution is taken in such a way that it is

opposite on both sides of the interface. The domain is composed of two regions filled with Fluid 1 and Fluid 2 separated
by a moving interface. The fluid-fluid interface is subjected to initial sinusoidal perturbations.

4. Artificial compressibility method

This section is devoted to the analysis of the artificial compressibility method. Satisfying the incompressibility con-
straint poses the greatest challenge in solving the incompressible Navier–Stokes equation. In this method, the continuity
4
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equation is modified by adding the pseudo-time derivative of pressure. The dual time-stepping approach is then used to
march both in pseudo and physical times together. In this method, we add the artificial compressibility terms to each
equation in system (2.8) such as

Pτ + β (∇·U) = 0 , (4.1a)
Uτ + Ut + ∇ · (UU) − ν∆U + ∇P = −λ∆φ∇φ , (4.1b)
φτ + φt + ∇ · (Uφ) − γ∆φ = γ

(
−F ′ (φ) + Lm (t)

)
. (4.1c)

n component form the system (4.1) can be expressed as

Pτ + β
(
ux + vy

)
= 0, (4.2a)

uτ + ut +
(
u2

+ P
)
x + (uv)y − ν

(
uxx + uyy

)
= −λφx

(
φxx + φyy

)
, (4.2b)

vτ + vt + (uv)x +
(
v2

+ P
)
y − ν

(
vxx + vyy

)
= −λφy

(
φxx + φyy

)
, (4.2c)

φτ + φt + (uφ)x + (vφ)y − γ
(
φxx + φyy

)
= γ

(
−F ′ (φ) + Lm (t)

)
. (4.2d)

n matrix form the system (4.2) can be written as

Qτ + ImQt + (C − Cv)x + (V − Vv)y = R, (4.3)

ith

Q =

⎡⎢⎣P
u
v

φ

⎤⎥⎦ , C =

⎡⎢⎣ βu
u2

+ P
uv
uφ

⎤⎥⎦ , V =

⎡⎢⎣ βv

uv
v2

+ P
vφ

⎤⎥⎦ , Im =

⎡⎢⎣0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎦ ,

nd

Cv =

⎡⎢⎣ 0
νux
νvx
γφx

⎤⎥⎦ , Vv =

⎡⎢⎣ 0
νuy
νvy
γφy

⎤⎥⎦ , R =

⎡⎢⎢⎣
0

−λφx
(
φxx + φyy

)
−λφy

(
φxx + φyy

)
γ

(
−F ′ (φ) + Lm (t)

)
⎤⎥⎥⎦ .

n Eq. (4.3), Q stands for the solution vector, u and v are Cartesian velocity components, P is the modified pressure, φ is
he phase variable, ν is the viscosity constant, β is the artificial compressibility constant, τ is the pseudo-time, and t is
the physical time. Matrix Im is a special case of the identity matrix. The nonlinear component in the phase field equation
and the capillary effect, contribute R.

The equations have taken on a hyperbolic type result of the inclusion of artificial compressibility terms. Using
hyperbolic theory, we can find the eigenvalues and eigenvectors of the convective fluxes. To do this, we start by
determining the Jacobian matrices A and B from the flux vectors given by

A=
∂C
∂Q

=

⎡⎢⎣0 β 0 0
1 2u 0 0
0 v u 0
0 φ 0 u

⎤⎥⎦ , B=
∂V
∂Q

=

⎡⎢⎣0 0 β 0
0 v u 0
1 0 2v 0
0 0 φ v

⎤⎥⎦ .

imilar to this, the Jacobian matrices Av and Bv of the viscous flux vectors Cv and Vv are provided by

Av =
∂Cv

∂Q
= diag(0, ν, ν, γ )∂x, and Bv =

∂Vv

∂Q
= diag(0, ν, ν, γ )∂y. (4.4)

5. Numerical discretization

This section is devoted to the discretization of the governing equations.

5.1. Spatial discretization

In this section, Eq. (4.3) is discretized in spatial coordinates. A high-order finite difference scheme for hyperbolic
conservation laws is used for the discretization of the inviscid flux derivatives. The uniform meshes are employed in each
direction. As the model is nonlinear and stiff, therefore an effective discretization of the convective and source terms is a
major challenge. Therefore, we used a variant [29] of the weighted essentially non-oscillatory (WENO) scheme [26] for the
discretization of the convective terms to circumvent the difficulty posed by the stiffness of the interface. The conventional
2nd-order central finite difference schemes are used to discretize the diffusion and surface tension terms (see Ref. [28]
for details).
5
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Let the mesh size in the x−direction is h and denote xj = jh. We will approximate the convective flux C at xj using the
WENO fifth-order scheme as

Cx =

Ĉj+ 1
2

− Ĉj− 1
2

h
(5.1)

here Ĉj+ 1
2
and Ĉj− 1

2
are the numerical fluxes. The Lax–Friedrichs split fluxes in the sth characteristic field are given by:

f s±k =
f sk ± αsW s

k

2
, k = j − 2, . . . , j + 3, (5.2)

ith

f sk = Ls
j+ 1

2
· Ck, W s

k = Ls
j+ 1

2
· Qk,

where Ls
j+ 1

2
is the sth left eigenvector, and αs is the maximum magnitude of the sth eigenvalue of Jacobian matrix Ak+ 1

2

ver the range of (k = j − 2, . . . , j + 2) for the local flux splitting. The positive part of the WENO numerical flux f̂ s+
j+ 1

2
is

f̂ s+
j+ 1

2
= ω+

0

(
2
6
f s+j−2 −

7
6
f s+j−1 +

11
6

f s+j

)
+ ω+

1

(
−

1
6
f s+j−1 +

5
6
f s+j +

2
6
f s+j+1

)
+ω+

2

(
2
6
f s+j +

5
6
f s+j+1 −

1
6
f s+j+2

)
, (5.3)

here

ω+

k =
α+

k

α+

0 + α+

1 + α+

2
, k = 0, 1, 2

α+

0 =
1
10

(
ε + S+

0

)−2
, α+

1 =
6
10

(
ε + S+

1

)−2
, α+

2 =
3
10

(
ε + S+

2

)−2
, ε = 10−6

and

S+

0 =
13
12

(
f s+j−2 − 2f s+j−1 + f s+j

)2
+

1
4

(
f s+j−2 − 4f s+j−1 + 3f s+j

)2
S+

1 =
13
12

(
f s+j−1 − 2f s+j + f s+j+1

)2
+

1
4

(
f s+j−1 − f s+j+1

)2
S+

2 =
13
12

(
f s+j − 2f s+j+1 + f s+j+2

)2
+

1
4

(
3f s+j − 4f s+j+1 + f s+j+2

)2
.

n a similar manner the numerical flux f̂ s−
j+ 1

2
for the negative part is

f̂ s−
j+ 1

2
= ω−

0

(
−

1
6
f s−j−1 +

5
6
f s−j +

2
6
f s−j+1

)
+ ω−

1

(
2
6
f s−j +

5
6
f s−j+1 −

1
6
f s−j+2

)
+ω−

2

(
11
6

f s−j+1 −
7
6
f s−j+2 +

2
6
ss−j+3

)
, (5.4)

here

ω−

k =
α−

k

α−

0 + α−

1 + α−

2
, k = 0, 1, 2

α−

0 =
3
10

(
ε + S−

0

)−2
, α−

1 =
6
10

(
ε + S−

1

)−2
, α−

2 =
1
10

(
ε + S−

2

)−2
, ε = 10−6

and

S−

0 =
13
12

(
f s−j−1 − 2f s−j + f s−j+1

)2
+

1
4

(
f s−j−1 − 4f s−j + 3f s−j+1

)2
S−

1 =
13
12

(
f s−j − 2f s−j+1 + f s−j+2

)2
+

1
4

(
f s−j − f s−j+2

)2
S−

2 =
13 (

f s−j+1 − 2f s−j+2 + f s−j+3

)2
+

1 (
3f s−j+1 − 4f s−j+2 + f s−j+3

)2
.

12 4
6
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The obtained numerical fluxes are transformed back to the physical space by

Ĉj+ 1
2

=

4∑
s=1

f̂ s
j+ 1

2
Rs
j+ 1

2
=

4∑
s=1

(
f̂ s+
j+ 1

2
+ f̂ s−

j+ 1
2

)
Rs
j+ 1

2
. (5.5)

here Rs
j+ 1

2
represent the sth right eigenvector of the Jacobian matrix Aj+ 1

2
.

.2. Time discretization

Consider Eq. (4.3) that contains pseudo-time and the physical time derivative term, therefore both terms well be
iscretized using different formulas. Using 1st-order forward difference formula for the pseudo-time derivative term and
econd-order three points formula for the physical time derivative term in Eq. (4.3), we have

∆Qn+1,m

∆τ
+ Im

−3Qn+1,m+1
+ 4Qn

− Qn−1

2∆t
+

[
(C − Cv)x + (V − Vv)y

]n+1,m+1
= Rn+1,m. (5.6)

The superscripts n,m signify the level of physical time and pseudo-time respectively in Eq. (5.6), where ∆Qn+1,m
=

Qn+1,m+1
−Qn+1,m. Here, ∆τ and ∆t represent the pseudo and physical time steps, respectively and R is the residual terms

containing the surface tension terms and phase field source terms as in Eq. (4.3). The pseudo-time is used to marched
until the divergence free velocity is attained. The nonlinear terms C,V at the pseudo-time m + 1 are linearized using
Taylor series expansion as given below

Cm+1
≈ C(Qm) +

(
∂C
∂Q

)m

(Qm+1
− Qm) (5.7)

= Cm
+ Am∆Qm.

nd

Vm+1
≈ V(Qm) +

(
∂V
∂Q

)m

(Qm+1
− Qm) (5.8)

= Vm
+ Bm∆Qm.

Using Eqs. (5.7) and (5.8) in Eq. (5.6) and omitting the superscript n+1, we have the following linear system of equations[
I + 1.5

∆τ

∆t
Im + ∆τ

(
(A − Av)x + (B − Bv)y

)]m

∆Qm

= −∆τ
(
(C − Cv)x + (V − Vv)y − R

)m
−

∆τ

∆t
Im

(
1.5Qm

− 2Qn
+ 0.5Qn−1)

= Rm. (5.9)

t is possible to diagonalize A = XΛAX−1, and B = YΛBY−1 due to the hyperbolic nature of Eq. (4.3), where X and Y are
matrices of the corresponding eigenvectors respectively. Further, the matrices A, and B can be partitioned into positive
and negative parts based on the sign of the eigenvalues, when first-order upwind scheme is used.[

I + 1.5
∆τ

∆t
Im + ∆τ

(
δ−

x A+
+ δ+

x A−
− δxAv

)
+ ∆τ

(
δ−

y B+
+ δ+

y B−
− δyBv

)]m

∆Qm
= Rm. (5.10)

enoting H =
(
1 + 1.5∆τ

∆t

)
I, µm = max(µ, γ ) and making use of the denationalization which save time we replace Im

by I and diag(0, µ, µ, γ ) by max(µ, γ )I in the LHS of Eq. (5.10), we obtain the following equation[
H + ∆τ

(
δ−

x XΛ+

AX−1
+ δ+

x XΛ−

AX−1
− µmIδ2x

)
+ ∆τ

(
δ−

y YΛ+

BY
−1

+ δ+

y YΛ−

BY
−1

− µmIδ2y
)]m

∆Qm
= Rm. (5.11)

ow adding the cross derivative term to the LHS, we have the following approximate factorization form[
H + ∆τ

(
δ−

x XΛ+

AX−1
+ δ+

x XΛ−

AX−1
− µmIδ2x

)]
H−1

×[
H + ∆τ

(
δ−

y YΛ+

BY
−1

+ δ+

y YΛ−

BY
−1

− µmIδ2y
)]

∆Qm

= Rm . (5.12)

he linear system (5.12) is solved for ∆Qm
= Qm+1

−Qm using the Alternating Direction Implicit (ADI) technique in each
irection, yielding a solution to a tri-diagonal system of the form

aj∆Uj−1 + bj∆Uj + cj∆Uj+1 = rj, j = 1, . . . , jmax − 1.
7
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Fig. 3. Temporal evolution of the phase-field perturbed sinusoidaly at (a) t = 0 (b) t = 0.5 (c) t = 0.8 (d) t = 1 (e) t = 1.2 (f) t = 1.3 for case (i)
hen ν = 0.0001 and γ = 0.0001.

. Results and discussions

In this section, multiple numerical experiments are presented to demonstrate the dynamics of the two-phase KH
nstability. For each example, parameter values are provided. For each problem, we provide both the velocity-field and
hase-field variable in the domain Ω = [0, 1] × [0, 1]. The compressibility parameter β = 200 and the thickness of the
nterface ϵ = 0.02 are used to enable pseudo-time marching, respectively, at a maximum number of sub-iterations of
00. The mesh size is chosen comparable to the thickness of the interface to capture the interface’s dynamics effectively.
our examples are simulated for the validation of the method given in the subsection below.

.1. Dynamics of single mode sinusoidal perturbation

This example shows the dynamics of a sinusoidal perturbation between two fluids with a single mode. The grid points
n the x− and y−axes are 513 each. The time step is set to 0.001, and the other parameters are fixed as follows:
ase (i)

λ = 0.0001, ν = 0.0001, 0.001 and γ = 0.0001, 0.001.

he initial velocity-field and phase-field variable are given by

u0 (x, y) = tanh
[

(y − 0.5 − 0.01 sin (2πx))
√
2ϵ

]
, v0 (x, y) = 0, φ0(x, y) = u0 (x, y) .

ase (ii)

λ = 0.0001, ν = 0.001, and γ = 0.001.

he initial velocity-field and phase-field variable are given by

u0 (x, y) = 0, v0 (x, y) = 0, φ0(x, y) = tanh
[

(y − 0.5 − 0.01 sin (2πx))
√
2ϵ

]
.

Fig. 3 shows the dynamics of the interface’s temporal evolution at different times. The initial perturbation grows gradually
and there is a rolling up of the interface at the center of the domain. This rolling up of the interface gets a spiral shape
at a later time as shown in Fig. 3. The vorticity evolution is given in Fig. 4. The top and bottom fluid flow in opposite
8
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Fig. 4. Single mode vorticity dynamics at time (a) t = 0 (b) t = 0.5 (c) t = 0.8 (d) t = 1 (e) t = 1.2 (f) t = 1.3 for case (i) when ν = 0.0001 and
= 0.0001.

irections and the vorticity moves to the center of the domain. Fig. 5 depicts the dynamics of the flow field with the
volving interface. The dynamics of the interface and vorticity profile is qualitatively comparable with the results given
n Ref. [8]. It is observed from Fig. 6 that rolling of the interface is slow when the viscosity is increased. Fig. 7 shows
he vector plot of dynamic of the interface for case (ii) when the velocity is zero. A slight variation in the velocity is
bserved near the interface. We need to do several experiments to determine a rule of thumb for selecting the artificial
ompressibility factor β , which determines the convergence rate and stability of the artificial compressibility approach.
s such, the literature provided a variety of methods for determining the optimal β . See, for instance, the works cited in
efs. [30–34]. In particular, Ref. [34] provided a precise lower bound of β to prevent viscous effects from coupling the
seudo-pressure waves, and a reasonable upper bound for the approximation factorization errors not to screw up the
ccuracy of the computations. In most cases, however, it is not possible to predict in advance which option will out to be
he best. Convergence rates vary when β is varied; optimal rates are achieved at β = 150 and 200. The convergence for
everal values of β is shown in Fig. 8. If the optimal CFL number is selected for each value of β in the range of 50–250,
t is clear that these choices do not significantly alter the convergence rate. Hence, we can save a lot of time fine-tuning
. In most cases, a β value of 200 is acceptable.

.2. Grid convergence study

For numerical convergence of the scheme with respect to grid size, we computed with different grid points. We take
ne sample initial condition of a single mode sinusoidal perturbation and perform the simulation using 65 × 65, 129 ×

29, 257 × 257, and 513 × 513 grid points. Fig. 9 shows the dynamics of the interface obtained using 65 × 65 (red),
29 × 129 (blue), 257 × 257 (pink), and 513 × 513 (green). It is clear that the results of grid refinement have converged
or 129 × 129 and above grids by considering solution at 513 × 513 grids as a true solution (green line) in Fig. 9.

.3. Dynamics of double mode sinusoidal perturbation

In this example, we have taken a double mode sinusoidal perturbation at the interface. The domain and parameter
alues are same as in the previous problem. The dynamics of the interface and vorticity profiles are given in Figs. 10 and
1 respectively. Instead of one rolling-up of the interface as in previous problem, now two rolled vortices of the interface
ormed and it takes the spiral shape. Fig. 12 shows the dynamic of the velocity-field around the moving interface.
9
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w

Fig. 5. Vector plot of the single mode sinusoidal perturbation at (a) t = 0 (b) t = 0.5 (c) t = 0.8(d) t = 1(e) t = 1.2 (f) t = 1.3 for case (i) when
ν = 0.0001 and γ = 0.0001.

Fig. 6. Temporal evolution of the phase-field perturbed sinusoidaly at (a) t = 0 (b) t = 0.5 (c) t = 0.8 (d) t = 1 (e) t = 1.2 (f) t = 1.3 for case (i)
hen ν = 0.001 and γ = 0.001.
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Fig. 7. Vector plot of the single mode sinusoidal perturbation at (a) t = 1.0 (b) t = 1.2 (c) t = 1.3 for case (ii).

Fig. 8. Residual plot of the single mode sinusoidal perturbation at (a) β = 50 (b) β = 150 (c) β = 200 (d) β = 250.
11
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Fig. 9. Dynamic of the interface using 65 × 65 (red), 129 × 129 (blue), 257 × 257 (pink), and 513 × 513 (green) at t = 1 (a) present results (b)
esults in [8]. The agreement is good.

Fig. 10. Phase-field dynamics with a double mode sinusoidal interface perturbation at time (a) t = 0 (b) t = 0.1 (c) t = 0.2 (d) t = 0.3 (e) t = 0.4
f) t = 0.5.

.4. Effect of the surface tension

In this subsection, we investigate the surface tension effects on the dynamic of the KH instability. The domain and
nitial condition for velocity and phase-field variable are same as in the case of double mode sinusoidal perturbation. In
irst simulation, we take the parameters value as N = N = 513, ∆t = 0.0005, λ = 0.001, γ = 0.001. In the second part
x y

12
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Fig. 11. Double mode vorticity contour dynamics at time (a) t = 0 (b) (b) t = 0.1 (c) t = 0.2 (d) t = 0.3 (e) t = 0.4 (f) t = 0.5.

Fig. 12. Vector plot simulation of the double mode sinusoidal perturbation at (a) t = 0 (b) t = 0.1 (c) t = 0.2 (d) t = 0.3 (e) t = 0.4 (f) t = 0.5.
13
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Fig. 13. Dynamics of the interface for λ = 0.001 at time (a) t = 0 (b) t = 0.1 (c) t = 0.2 (d) t = 0.3 (e) t = 0.4 (f) t = 0.5.

f simulation, we take the Nx = Ny = 257, ∆t = 0.005, λ = 0.01, γ = 0.01, where Nx,Ny denotes the number of grid
oints in x and y direction. The simulation results are given in Figs. 13 and 14 for first and second part of the simulations
espectively. It is observed that when the surface tension is increased the rolling up of the interface is slow down.

Some of the limitations of the current studies are as follows; First, the convergence is slow when the interfacial width
is small which is in fact, common to the diffusive interface method. The interfacial width cannot be arbitrarily small, but

t should be comparable to the mesh size to form a regular (not stiff) problem and is also true for other numerical methods
ike projection method, fully coupled method. Second, the numerical scheme is the traditional approximate factorization
cheme like the ADI method. In 2D, it is unconditionally stable only for linear convection equations. However, due to
onlinear effects with the addition of surface tension terms and nonlinear terms occurring in the phase-field equation,
he sub-iteration number used is as large as 100 for the residuals to reduce by two orders of magnitude in the initial stage
f simulation and 4 orders of magnitudes in most times of the simulation. The 100 iterations are not efficient. We expect
t can be reduced to a few sub-iterations if using other algebraic solvers like the GMRES method or the line Gauss–Seidel
elaxation method.

. Conclusion

The artificial compressibility approach has been implemented to study the two-phase KH instability problem. The
overning system composed of the conserved Allen–Cahn and incompressible Navier–Stokes equations was adopted for
tudying the KH instability numerically. The implicit solution to the resulting linear system of equations was found using
he Beam-Warming approximation factorization scheme. Different simulations for the single/double mode sinusoidal
erturbation of the interface were carried out. The grid convergence study and the effect of the surface tension on the
ynamics of the interface. The rolling up of the interface was observed to have a spiral-like shape at a later time. It was
lso noted that by increasing the value of surface tension the rolling of the interface is slowed down.
14
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Fig. 14. Dynamics of the interface for λ = 0.01 at time (a) t = 0 (b) t = 1 (c) t = 1.5 (d) t = 2 (e) t = 2.5 (f) t = 3.
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