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ABSTRACT

The FORCE-type centred schemes are simple and efficient and do not explicitly require the wave prop-
agation information of the system to calculate the numerical flux. However, their poor resolution for
contact discontinuities seriously affects their applications. In the present work, a simple FORCE-type cen-
tred scheme accurate for contact discontinuities is proposed and applied to calculations of compressible
Euler flows. The missing contact wave of the original FORCE centred scheme is restored with an algebraic
method and the resolution for contact discontinuities is further improved by using the boundary variation
diminishing (BVD) algorithm to minimize the density jump in the numerical diffusion term of the original
FORCE centred scheme. Numerical results of several one- and two-dimensional benchmark test problems
fully demonstrate that the proposed centred scheme is capable of capturing contact discontinuities more
sharply than the complete-wave HLLC upwind scheme. In addition, another advantage of the proposed
centred scheme is that it is free from the carbuncle phenomenon which afflicts many contact-capturing
upwind schemes (e.g. Roe and HLLC) in calculations of multidimensional flow problems involving strong

shock waves.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Numerical fluxes at cell interfaces are the building block for
solving the hyperbolic conservation laws numerically in the frame-
work of finite volume method and thus the construction of mono-
tone numerical fluxes has been a central research issue in the
field of computational fluid dynamics over the past few decades
[1]. Upwind and centred schemes are two representative numer-
ical methods to obtain the numerical flux through a cell inter-
face. Generally, the upwind schemes require to explicitly provide
the wave information propagating along the direction orthogonal
to a cell interface, which is usually achieved via the solution of
a local one-dimensional Riemann problem involving two constant
states [2]. In many cases, it is either unavailable or computation-
ally expensive to obtain the exact solution of a Riemann prob-
lem. Therefore the construction of a reliable approximate Riemann
solver is the key to a successful upwind scheme. In the past few
decades, researchers had developed a number of approximate Rie-
mann solvers that can be applied to solve different flow prob-
lems and they are usually classified as complete-wave solvers and
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incomplete-wave solvers according to their capabilities of resolv-
ing contact discontinuities and shear waves. The incomplete-wave
solvers, such as the HLL scheme [3], HLLE scheme [4] and HLL-
CPS scheme [5], omit one or both of these waves due to their high
numerical dissipation behaviours and thus they are not the appro-
priate choices in calculations of flow problems involving the shear-
dominated phenomenon, vortex, material interface, mixing layer,
etc [6]. The complete-wave solvers, such as the Roe’s scheme [7],
Osher’s scheme [8], HLLEM scheme [9] and HLLC scheme [10], are
capable of capturing the contact discontinuities and shear waves
accurately in calculations. However, the severe carbuncle instabil-
ity occurring near the multidimensional strong shock waves will
afflict them and badly affect their accurate simulations for high
Mach flow problems.

Different from the upwind schemes that heavily rely on the
eigen-structure (eigenvalues and eigenvectors) of the system to cal-
culate the numerical flux, there is no explicit requirement for the
wave propagation information in the centred schemes except the
maximum eigenvalue of the system which is required for the sta-
bility CFL condition. In the framework of the centred schemes, al-
though the initial conditions constitute a local Riemann problem,
the data is updated by integrating the controlling equations on two
sets of meshes, i.e. the primary mesh and staggered mesh, rather
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than explicitly solving the Riemann problem. In other words, al-
though the centred schemes are not completely independent of
the Riemann problem they solve it in an unconventional approach
that is radically different from the one the upwind schemes take
[1]. Therefore, for numerically solving those overly complex sys-
tems for which the solution of the Riemann problem is not easy
to obtain, the centred schemes are appropriate choices. Early rep-
resentatives of the centred schemes are the Lax-Friedrichs scheme
[11] and Nessyahu-Tadmor scheme [12] for one-dimensional cases.
In the last decades, many researchers were devoted to extending
the original Lax-Friedrichs and Nessyahu-Tadmor centred schemes
to multidimensional unstructured meshes and high-order accuracy,
e.g. see [13-16].

Recently, Toro and Billett [17] constructed a one-dimensional
first order centred (FORCE) scheme and the extension to the mul-
tidimensional hyperbolic systems of conservation laws on unstruc-
tured meshes had been proposed in [1]. Dumbser et al. [18] de-
veloped a FORCE centred scheme on unstructured meshes for solv-
ing the non-conservative hyperbolic systems and a version on the
moving unstructured meshes for both the conservative and non-
conservative hyperbolic systems was proposed by Boscheri et al.
[19]. The FORCE centred scheme is monotone and has an optimal
stability CFL restriction of unity. In addition, it can be recast into
a one-step procedure on a non-staggered mesh and has a conser-
vative form whose numerical flux just involves the left and right
states of the cell interface. Therefore the high-order accuracy of
the scheme is easily achieved through the existing reconstruction
techniques and it can also be incorporated into the finite volume
or DG finite element methods straightforwardly [20]. However, due
to no consideration of the wave structures of the system, the cen-
tred schemes, of course including the FORCE scheme, tend to be
more dissipative than the upwind schemes, especially for the con-
tact discontinuity corresponding to the linearly degenerate field. In
order to improve the capability of the centred schemes to capture
contact waves, Kurganov and Lin [21] constructed a semi-discrete
centred scheme and an upwind-biased FORCE scheme (UFORCE)
with applications to shallow-water equations was proposed by
Stecca et al. [22]. Canestrelli and Toro [20,23] proposed a FORCE-
type centred scheme with restoration of contact surfaces to solve
the conservative and non-conservative shallow water equations.

In the present work, a contact-capturing FORCE-type centred
scheme with applications to compressible Euler flows is proposed.
The missing contact wave of the original FORCE scheme is restored
with an algebraic method and the boundary variation diminishing
(BVD) algorithm [24] is used to further improve the resolution of
the proposed scheme for contact discontinuities. Compared with
the complete-wave HLLC upwind scheme, the proposed scheme
has higher resolution for contact discontinuities and better robust-
ness against the shock anomalies. In addition, numerical results
also confirm that the proposed scheme has better contact captur-
ing ability than the robust TV flux splitting scheme in [25]. The
paper is organised as follows. Section 2 gives some preliminaries.
In Section 3, the construction of a contact-capturing FORCE-type
centred scheme is described in detail. Section 4 presents the nu-
merical results of several benchmark test problems to demonstrate
the accuracy and robustness of the proposed scheme. A brief con-
clusion is given in Section 5.

2. Background
Consider the two-dimensional inviscid Euler equations

9U  9F(U)  9G(U) _

8t+ Ix + 3y 0, (21)
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where the vector of conserved variables U, the fluxes in both di-
rections F(U) and G(U) are given by

PO ,(2)u pv
_ | pu _| pu+p _ puv
U= o | F(U)= o | GU)= o124 p (2.2)
E u(E+p) v(E + p)

Here p is the density, u and v are velocity components in the x-
and y-directions, p is the pressure and E is the total energy. System
(2.1) is closed through the following equation of state

1

— 2.2
p_(y_1)[5_§p(u +v)], (23)
where y is the specific heat ratio.
2.1. Finite volume method
The integral form of system (2.1) can be written as
i/ Udsz+7§ [(F,G) - n]dl =0, (2.4)
dt Jo 90

where 02 is the boundary of the control volume €2, n denotes the
outward unit vector normal to the line element dl.

We discretize system (2.4) with the finite volume method over
a 2D domain covered by structured quadrilateral cells. The semi-
discrete equations over a specific control volume €2; ; can be writ-
ten as

du; 1 &
s = F.G), -ni]Al,
dt |Qi,j| g[( )k k] k

(2.5)

where U; ; is the cell-average of U on €; j and |; ;| is the volume
of ©; ;, Al denotes the length of the cell interface I, and ny is the
outward unit vector normal to I,. Using the rotational invariance
property of two-dimensional Euler equations, the numerical flux

(F, G),, - n;, through the cell interface I, can be written as
(F.G) - my = T, 'F(T, UL, T, Ug). (2.6)

where T, and lel denote the rotation matrices.

2.2. FORCE scheme

The conservative form of the numerical flux of the first order
centred (FORCE) scheme [1] can be expressed as

—FORCE 1 1 1 Ax
Fiiipj= 5 |:F(Ui+l/2.j) + E(F(UL) +F(Ug)) — ZE(UR - UL)]7
2.7)
with
1 1/(2At
Ui12,j= E(UL +Ug) — 5 <M)[F(UR) —-FU)] (2.8)

The FORCE flux given by (2.7) can be rewritten as the arithmetic
average of the Lax-Wendroff flux and the Lax-Friedrichs flux

—FORCE 1 /=w —LF

Fiipj= 3 (Fi+1/2,j + Fm/z,j)» (2.9)
where

—LW

Fii12i =FUit1y2,5) (2.10)
and

—LF 1 1/ Ax

Fiipj= j[F(UL) +F(Up)] - 5 <2At> (Ug = U)). (2.11)
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3. A FORCE-type flux accurate for contact discontinuities

The FORCE flux given by (2.7) is monotone and has a optimal
stability CFL restriction of unity. However, the resolution for con-
tact discontinuities is extremely unsatisfactory due to its inherent
dissipation behaviour. On the other hand, thanks to the inherent
numerical dissipation, the FORCE flux is very robust in calculations
of flow problems involving strong shock waves. In what follows, we
propose a simple strategy to restore the missing contact discon-
tinuity of the FORCE flux while preserving its robustness against
shock anomalies.

3.1. FORCE-BVD scheme

The FORCE flux given by (2.7) consists of two parts, i.e. the
Lax-Wendroff flux capable of capturing the isolated stationary con-
tact discontinuity exactly and the dissipative Lax-Friedrichs flux.
Thus the reduction of numerical dissipation inherent in the Lax-
Friedrichs flux can greatly improve the resolution of the FORCE
centred scheme for contact discontinuities. The Lax-Friedrichs flux
given by (2.11) can be rewritten as

—LF 1
Fii12j = 5[F(U) + FUR)] + D12, (3.1)

with

1/ Ax
D> = 2(2At)

where the first term on the right hand side of (3.1) is the central
difference term and D;,, corresponds to a numerical dissipation
term.

Specifically, the excessive numerical dissipation due to the den-
sity jump |pg — por| in Dy, causes the failure of the FORCE scheme
to capture contact discontinuities [5]. In the present work, we pro-
pose a simple strategy to minimize the density jump |pg — p;| and
thus to reduce the contribution of the dissipation term Dy, to the
numerical flux. Following ideas proposed in [24,26,27], we use the
THINC (Tangent of Hyperbola for INterface Capturing) reconstruc-
tion [28] to obtain the density values

=)}

(3.3)

PR — PL
(pu)g — (pu)L
(pV)r — (PV)1

Er —E;

(3.2)

Pi(X) = Prmin + % [1 + 0 tanh (5( X=Xy

Xit172 — Xi—172

where Py = min(pi_1, Piy1), Ap = |pip1 — pic1l, O =sgnloiq -
pi_1) and B is a parameter to control the jump thickness. A larger
B will give a solution with less dissipation while a smaller one
tends to produce a solution with more dissipation. The value of 8
ranging from 1.2 to 2.0 is capable of giving a satisfactory solution
and it is taken as 1.6 in the present work.

The unknown &; is the position of the jump center, which is cal-
culated from the constraint condition, p; = A f;?fl‘/; 0;(x)dx. For
convenience, we give explicitly the formula to calculate the recon-
structed density values on the left and right sides of the cell inter-
face [24],

A h A
Pi(Xi212) = Pmin + S [1 +6 LB,

0i(Xi_12) = Pmin + 52 (1 +0A),

where

(3.4)

_ B—cosh(B)

_ Pi — Pmin +g_ __10-20
Sinh(B) B_exp[eﬂ(27 1)] & =107,

Ap+e
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Having finished the THINC reconstruction procedure (3.4) in
each cell, we can obtain the density values pLT/R (subscript ‘T’
stands for the THINC reconstruction) on both sides of each cell in-
terface. On the other hand, we can use the polynomial reconstruc-
tion to obtain the density values ,of/R (subscript ‘P’ stands for the
polynomial reconstruction) on both sides of each cell interface. In
the present work, the MUSCL reconstruction procedure [29] is im-
plemented to obtain the density values pf/R.

In order to further improve the resolution of the proposed
scheme for contact discontinuities, the BVD algorithm [24,27] is
implemented to minimize the density jump |pg — p| across the
cell interface

lor = pul = min(log — o 1. |og = PLI. 1oz = L1, 1ok = PLD-
(3.6)
The final density values o,z on both sides of the cell interface

in Dy, can be determined by (3.6) and the numerical dissipation
term Dy, can now be rewritten as

PR — PL
D, = _1 Ax PRUR — PLUL
2= 73\ 2At PRVR — PLVL
(5 + 3or@E+v3)) — (3B + 3o} +v]))

(3.7)

To summarize, the numerical flux of the FORCE-type centred
scheme with Boundary Variation Diminishing (named as FORCE-
BVD) is obtained by the following four steps:

1. Calculate the density values pE/R on both sides of the cell inter-
face with the MUSCL scheme or other higher-order polynomial
reconstruction methods, e.g. WENO reconstruction;

2. Calculate the density values p{/R with the THINC reconstruction
given by (3.4) to restore the discontinuous density field;

3. Determine the final density values p; g with the BVD algorithm
(3.6) to minimize the density jump in the numerical dissipation
term Dy, and thus to resolve the contact discontinuities more
sharply;

4. The final numerical flux of the proposed FORCE-BVD centred
scheme is obtained through (2.8)-(2.10), (3.1) and (3.7).

In the present work, the multidimensional computation is con-
ducted by the operator splitting method and the THINC recon-
struction is carried out in a dimension-by-dimension fashion. Thus
the one-dimensional building block presented above can be used
straightforwardly in each coordinate direction in multidimensional
computation. As an algebraic method, the THINC reconstruction
does not involve any geometric reconstruction in multidimensional
implementation, but is able to give numerical solutions with suffi-
cient accuracy [28].

Unlike the complete-wave HLLC upwind scheme which restores
the contact discontinuities by modifying the wave structures of the
incomplete-wave HLL scheme but fails to preserve its robustness
against the shock anomalies in calculations of multidimensional
strong shock waves [5], the proposed FORCE-BVD centred scheme
restores the contact discontinuities by using an algebraic method
and thus is capable of preserving the shock stability of the original
FORCE centred scheme. In what follows, the shock stability analysis
of the FORCE-BVD scheme is conducted to demonstrate its robust-
ness.

3.2. Shock stability analysis
The domain [0, 1] x [0,1] is covered by a 25 x 25 uniform

Cartesian mesh and a steady standing shock is located on inter-
faces shared by cells in the 12th and 13th columns. The upstream
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Imaginary part

15
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Imaginary part

30

Imaginary part

Real part

(c) FORCE-BVD, max (Re(A)) = —0.1140

Fig. 1. Distribution of eigenvalues of the stability matrix S for different numerical schemes.

condition of the shock is given as
T
1 1

—)/(J/ DM + 5 (3.8)

Ug =(1.1,0,

and the downstream condition determined by the Rankine-
Hugoniot relations is

T
= h(M) 1

—1\—1
8 = (i + 1) 59
2 -1
h(M) = —7’—V+]M2 -3

where M is the Mach number and is set to 10 in the current anal-
ysis. The upstream and downstream conditions are fixed at the left
and right boundaries respectively whilst the periodic conditions
are used for the top and bottom boundaries.

The flow field evolved from the initial conditions (3.8) and
(3.9) can be written as

Uy, = U0 + 68U, (3.10)

where U9 and §Uy, denote the steady mean value and the error
respectively, m represents the global index of a cell. For the sta-
bility analysis of a steady field, the temporal evolution of errors in
the entire flow field needs to be investigated. In the present anal-
ysis, we avoid introducing any artificial perturbations into the flow
field and just study the evolution of numerical errors brought by a
specific numerical method. For it, a matrix-based stability analysis
procedure originally put forward by Dumbser et al [30] is carried
out.

After the linearization procedure, the numerical flux through an
interface shared by cells with global indices m and k can be ex-
pressed as

a\Ijmk 8‘I"mk
—= . Uy + —
au,  au,

Wi (U, U) = Wi (UY, UD) + 8U,. (3.11)
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Substituting (3.11) into (2.5), we can obtain the temporal evolution
model of the numerical error

|ka||:a‘l"mk ‘SUm + aqjmk '8Ukj|,

d@dUn) 1
2 U, au,

e |Qml

I CoQm

(3.12)
where |Q;;| denotes the area of the cell with index m and |T";;| is
the length of cell interface I',,. From (3.12), the evolutionary sys-

tem of numerical errors in the entire flow field can be expressed
as

U, U,

: =S| |
SUy SUy
where N =25 x 25 is the total number of cells and S denotes a

stability matrix that will vary depending on numerical schemes.
The solution of (3.13) is

i (3.13)

Uy U
(t) =e™ (3.14)
5Uy sUN] .,
which is bounded so long as
max (Re(1)) €0, (3.15)

where Re(A) represent the real parts of eigenvalues of S.

The dimension of the stability matrix S is 2500 and the stan-
dard algorithm in MATLAB is used to obtain its eigenvalues.
Fig. 1 shows all eigenvalues of the stability matrix S in a com-
plex plane. The complete-wave HLLC upwind scheme, which is
well known to be afflicted with the shock instability, has multi-
ple eigenvalues with positive real parts that will result in a desta-
bilized solution. The eigenvalues of the FORCE and the proposed
FORCE-BVD centred schemes, however, are always with negative
real parts that imply a stable pattern. The result of stability anal-
ysis shows the better shock stability of the FORCE-BVD centred
scheme over the HLLC upwind scheme, which is fully demon-
strated by the results of numerical experiments in Section 4 as
well.

4. Numerical results

A series of one-dimensional and two-dimensional benchmark
test problems are calculated in this section to evaluate the per-
formance of the proposed FORCE-BVD centred scheme, including
its accuracy for contact discontinuities and robustness against the
shock anomalies, and a systematic comparison with the original
FORCE scheme, the complete-wave HLLC upwind scheme and the
RTV flux splitting scheme [25] is also made. Unless otherwise spec-
ified, we use the second-order accuracy to discrete the time and
space, which is achieved by using the second-order SSP Runge-
Kutta method [31] and the second-order MUSCL scheme [29].

4.1. Isolated contact wave

The computational domain [0,1] is divided into 100 uniform
cells and the initial condition is given by

_ja401.10),
(o, Uo. po) = {(1.0, 0.1,1.0),

This is an isolated contact wave propagating at Mach 0.1. Fig. 2
shows the density distribution of the original FORCE scheme, HLLC
scheme, the RTV flux splitting scheme as well as the proposed
FORCE-BVD scheme at t = 2. It can be clearly observed that the

0<x<05,

05<x<1. (41
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Fig. 2. Distribution of density for an isolated contact wave propagating at Mach 0.1.
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Fig. 3. Density distribution of the FORCE-BVD scheme with different S.

proposed FORCE-BVD centred scheme captures the sharp jump of
the density field with the least dissipation. This test case fully
demonstrates that the proposed FORCE-BVD centred scheme is su-
perior to the original FORCE centred scheme, the RTV flux splitting
scheme and even the complete-wave HLLC upwind scheme in the
capability of capturing contact discontinuity.

Fig. 3 shows the results of the proposed FORCE-BVD centred
scheme with different values of 8. It can be seen that steep jumps
are obtained by all the values of 8 except for 8 = 1.0. In order to
evaluate quantitatively, the thickness measurement of a disconti-
nuity proposed in [32] is introduced:

Pjump 1 Pjump

. = , 4.2
Ax max(|‘fs—f|) max(|o; — pi_11) (42)

Sthickness =

where pj,;mp = 0.4 for this test case. As shown in Table 1, the thick-
ness of discontinuity decreases with the increase of . A larger 8
gives a sharper interface but, as shown in Subsection 4.7, tends
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1.2 ——— Exact
i ——— FORCE
i ———=—— HLLC
i —+—— RTV
1 ——e—— FORCE-BVD
2 B
% B
o 0.8
[=] B
0.6 |
0.4 \
7\\\|\\\|\\|\\|\ ]
0 0.2 0.4 0.6 0.8 1
X
Fig. 4. Distribution of density for the Lax problem.
Table 1
Comparison of discontinuity thickness for different S.
B=10 B=13 B=16 B=19 B=22
Senickness | 8.8891 29914  2.1841  1.8099  1.6410

to wrinkle an interface parallel to the velocity direction [28]. It is
found that a 8 ranging from 1.2 to 2.0 is able to give a sharp but
less wrinkled interface. In this paper, we choose an ad hoc 8 =1.6
for all numerical tests.

4.2. Lax problem

The Lax problem is calculated to examine the ability of the pro-
posed FORCE-BVD centred scheme to capture the relatively strong

6
i —— Reference
5l ——— FORCE
| ——=a—— HLLC
- ——— RTV
4 - ——o—— FORCE-BVD
z |
7] i
s 3}
[a] |
2
1 =
OE L1 P PR P ]
0 0.2 0.4 0.6 0.8 1
X

(a) Entire view
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shock wave [33]. The computational domain [0,1] is divided into
100 uniform cells and the initial condition is given by

(0. s, po) — | (0:445.0.698.3.528).
Po-to-Po) =195 0,0.571),

The initial condition involves with a relatively strong right travel-
ing shock, a right traveling contact discontinuity and a left trav-
eling expansion wave. Fig. 4 shows the density distribution of the
original FORCE scheme, the HLLC scheme, the RTV flux splitting
scheme as well as the proposed FORCE-BVD centred scheme at
t =0.15. It can be clearly observed that the resolution of all four
numerical schemes for expansion wave and shock wave is almost
identical whilst the proposed FORCE-BVD centred scheme can cap-
ture the contact discontinuity with less dissipation than the other
three numerical schemes.

0<x<0.5,

05<x<1. (43)

4.3. 1D blast wave problem

The computational domain [0,1] is divided into 500 uniform
cells and the initial condition is given by

(1.0,0.0,1000), 0<x<0.1,
(0o, Uo, Po) = 1 (1.0,0.0,0.01), 0.1 <x<0.9, (4.4)
(1.0, 0.0, 100), 09 <x<1.

The reflective boundary conditions are imposed at the left and
right sides. The initial condition involves with the collision of two
strong shock waves and a complicated wave structure is formed
with the interaction of these two shock waves. Fig. 5 shows the
density distribution of four numerical schemes at t =0.038. A
zoomed plot in the region [0.5,0.64] is also given to make a more
detailed comparison. It can be clearly seen that the proposed
FORCE-BVD centred scheme performs best in this test case and
captures the discontinuities with less dissipation than the other
three schemes.

4.4. Shu-Osher problem

This test case is aimed at investigating the spectral and shock-
capturing capability of a given numerical scheme [34]. The compu-
tational domain [-5, 5] is divided into 1000 uniform cells and the

2.2

1.9

1.6

Density

0.7

0.4

0 \I\\\\I\\\\I\\\\I\\\\I\\\\I\\\\I
b5 052 054 056 058 06 062 064

X

(b) Enlargements

Fig. 5. Distribution of density for the 1D blast wave problem.



L. Hu and L. Yuan

4.8?
42t
36
z °F
9 - ———  Reference
K] B ——»—— FORCE
241 ——=s—— HLLC
- ——— RTV
B ——~—— FORCE-BVD
1.8;
I AVAV.
067\\\\I\\\\I\\\\I\\\\I\\\\I\\\\I\\\\I\\\\I\\\\I\\\\I

-5 -4 -3 -2 -1 0 1 2 3 4 5
X

(a) Entire view

Computers and Fluids 227 (2021) 105021

4.8

4.5

3.3

o
(6]
N
N
(6]
ok

(b) Enlargements

Fig. 6. Distribution of density for the Shu-Osher problem.

initial condition is given by

_1@7/7,4V35/9,31/3), -5<x< -4,
(Po, o, Po) = {(1 +02sin(5x).0.1). -4-x<5 4D

The initial condition involves with the interaction of a sine en-
tropy wave with a Mach 3 right traveling shock wave [35]. Fig. 6
shows the density distribution of four numerical schemes at t =
1.8. A zoomed plot in the region [0.5,2.5] is also given to make a
more detailed comparison. It can be clearly observed that the pro-
posed FORCE-BVD centred scheme can capture the high-frequency
waves more accurately than the original FORCE centred scheme,
the complete-wave HLLC upwind scheme and the RTV flux split-
ting scheme.

4.5. 2D explosion problem

The 2D explosion problem [36] which is an extension of 1D
Sod’s shock tube problem is calculated to test the capability of
the proposed FORCE-BVD scheme for capturing various types of
waves. The computational domain [—-1,1] x [-1, 1] is divided into
a 201 x 201 uniform mesh and the initial condition is given by

(1,0,0,1),

_ x2+y? <042,
(bo- Uo. Vo. Po) = {(0.125, 0,0,0.1),

x2 +y2 > 0.42. (46)
The computational final time is t = 0.25. At this time, the solution
consists of a circular shock wave traveling outwards, a circular con-
tact surface following the shock and a circular rarefaction travel-
ling towards the centre [36]. Fig. 7 shows the density distribution
along the radial line at y = 0. It can be observed that the proposed
FORCE-BVD centred scheme is able to capture all types of waves
accurately, especially for the contact discontinuity.

4.6. 2D Riemann problem

Next we consider a 2D Riemann problem which is pro-
posed and analyzed extensively in [37]. The computational domain
[0,1] x [0, 1] is divided into a 1600 x 1600 uniform Cartesian mesh

1 qee
——— Reference
—»—— FORCE
0.8 = HLLC
i = RTV
- FORCE-BVD
0.6
=y
= |
c
S |
D -
04
0.2
| L 1 L L 1 L L 1 L L 1 L 1
0 0.2 0.4 0.6 0.8 1

Fig. 7. Density distribution along the radial line for the 2D explosion problem.

and the initial condition is given by

(1.0,0.75, -0.5,1.0), x>05, y>0.5,

(0. to. vo. py) — | (2:0-075.0.5. 1.0). x <05, y>0.5,
Po. to-Vo- Po) =1 (1.0, -0.75,0.5, 1.0), x<05, y<0.5,
(3.0,-0.75,-0.5,1.0), x3>0.5, y<0.5.

(4.7)

The initial condition involves with four contact discontinuities and
four shear layers will be formed due to interactions of these con-
tact discontinuities. Although the flow problem considered here is
inviscid, the viscosity inherent in the numerical scheme is capable
of triggering the shear instability, i.e. the Kelvin-Helmholtz insta-
bility. Since the capability of capturing contact discontinuities as
well as the shear waves is critical to resolve the small-scale vorti-
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Fig. 8. Density contours of the 2D Riemann problem.

cal structures created by the Kelvin-Helmholtz instability [38], the
2D Riemann problem is a very suitable numerical example to ver-
ify the accuracy of a given numerical scheme. Fig. 8 shows the den-
sity contours of four numerical schemes at t = 0.8. It can be clearly
observed that the proposed FORCE-BVD centred scheme can not
only resolve the shear layers more accurately but also capture the
visible vortical structures caused by the Kelvin-Helmholtz instabil-
ity whilst the original FORCE centred scheme, the complete-wave
HLLC upwind scheme and the RTV flux splitting scheme obtain so-
lutions with more dissipation.

4.7. 2D interface only problem

The two-dimensional interface only problem proposed in [39] is
calculated to compare the ability of different numerical schemes to

capture contact surfaces. The computational domain [0, 1] x [0, 1]
is divided into a 100 x 100 uniform Cartesian mesh and the initial
condition is given by

(2,1,1,1),
(1.1,1,1),

V(x=02)2 + (y—0.2)2 < 0.01,
V(x—02)2+ (y—-0.2)2 > 0.01.
(4.8)

(0, Uo, Vo, Po) = {

The corresponding exact solution at t = 0.3 is as follows

(2,1,1,1),
(1,1,1,1),

V(x=0.5)2+ (y - 0.5)2 < 0.01,
V(x=05)2 4+ (y—0.5)2 > 0.01.
(4.9)

(o, to, Vo, po) = {
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Fig. 9. Surface plots of the density for the 2D interface only problem.
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Fig. 11. Density contours of the Rayleigh-Taylor instability problem.

Fig. 9 shows the exact solution and four numerical solutions at
t =0.3. It can be clearly observed that the proposed FORCE-BVD
centred scheme resolves the contact surface more sharply than the
original FORCE centred scheme, the HLLC upwind scheme and the
RTV flux splitting scheme. Fig. 10 shows the results of the FORCE-
BVD scheme with larger values of 8. A larger 8 gives a sharper
interface but tends to wrinkle an interface parallel to the velocity
direction. It is found that a moderate 8 ranging from 1.2 to 2.0 is
able to give a satisfactory solution.

4.8. Rayleigh-Taylor instability problem

Initially, two fluids with different densities are separated by
y =0.5 and the Rayleigh-Taylor instability will develop when an

10

acceleration is directed from the heavier fluid to the lighter one
[27,40]. The computational domain [0, 0.25] x [0, 1] is partitioned
into a 120 x 480 uniform mesh and the initial condition is given
by

(0. o, 1 ) = (2,0, -0.025a9 cos(8mx), 1+ 2y), 0<y<0.5,
Po.to-Vo. Po) =1 (1 0, _0.025a0 cos(87x),1.5+y), 05<y<1,
(4.10)

where ag = /¥ po/po is the sound speed and the specific heat ra-
tio ¥ = 5/3 in this case. Reflective conditions are used at the left
and right boundaries. We assign (p,u,v,p) = (1,0,0,2.5) on the
top boundary and (p,u,v,p) =(2,0,0,1) on the bottom bound-
ary. The gravitational effect is also considered by adding a source
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Fig. 12. Density contours of the random numerical noise problem.

term S = (0,0, p, pv)T into the right-hand side of the system (2.1).
Fig. 11 shows the density contours of four numerical schemes at
t = 1.95. It can be clearly observed that the proposed FORCE-BVD
centred scheme is capable of resolving the sharper material inter-
faces and capturing more vortical structures on the interfaces as
compared to the original FORCE centred scheme, the HLLC upwind
scheme and the RTV flux splitting scheme, indicating that it is less
dissipative than the other three numerical schemes.

4.9. Random numerical noise problem

Riemann solvers that can capture contact discontinuities accu-
rately usually suffer from the shock anomalies, such as the most
common carbuncle phenomenon, in solving multidimensional flow
problems involving strong shock waves. The proposed FORCE-BVD
scheme restores the contact waves by using an algebraic method
and does not modify the wave structures of the original FORCE
scheme. Therefore, it preserves the shock stability of the original
FORCE scheme very well. A Mach 10 planar normal shock problem
is calculated here to demonstrate the robustness of the proposed
FORCE-BVD scheme.

The Mach 10 normal shock is initially located at x =5 and trav-
els from left to right along a duct that covers a domain [0, 1200] x
[0, 20]. The initial condition is given by

(14,0,0,1),

( - )= X > D5,
Po.Uo.Vo. Po) =\ (g 8 95 0,116.5),

X<5. (4.11)

In the planar normal shock instability problem proposed by Quirk
[41], the instability is triggered by the small disturbance of the y-
directional grid centerline. Here we leave the gridline undisturbed
but introduce the following random numerical noises into the pre-
shock state of the initial flow field:

(0. Uo. Vo. Po)ij = (1.4,0,0.1) + (Bi1. Ba. Bs. Ba);; - 107°, (4.12)

where Bi(k=1,2,3,4) are random numbers between —0.5 and
0.5.

Fig. 12 shows the density contours of four numerical schemes
at t = 100. It can be clearly observed that the complete-wave HLLC
upwind scheme suffers from the visible shock instability whilst
the original FORCE centred scheme, the RTV flux splitting scheme
and the proposed FORCE-BVD centred scheme obtain a stable so-
lution without any non-physical behavior. The maximal deviation
of y-velocity shown in Fig. 13 also demonstrates the robustness of
the proposed FORCE-BVD scheme. The maximal y-velocity of the
HLLC scheme grows rapidly from the initial order of 10~6 to or-
der of 109 whilst it stays at the initial order of 10-6 if we choose

1
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Fig. 13. The maximal deviation of y-velocity for the random numerical noise prob-
lem.

the FORCE-BVD flux. It is worth noting that although the origi-
nal FORCE scheme and the RTV flux splitting scheme give a clean
shock front without any oscillation, their corresponding maximal
y-velocity has risen to the order of 103 and 103, respectively.

4.10. Sedov blast wave problem

The Sedov blast wave problem involving high pressure ratio
and strong shock waves is considered here to examine the robust-
ness of the proposed FORCE-BVD scheme. The computational do-
main [0, 2.4] x [0, 2.4] is divided into a 480 x 480 uniform mesh
and the initial condition of the entire flow field is given by
(o, Ug, Vo, po) = (1.0, 0.0, 0.0, 10~10) except that the pressure
value at the center of the domain is 3.5-10°. Reflective condi-
tions are imposed at all four boundaries. Fig. 14 shows the density
contours of four numerical schemes at t =0.1. It can be clearly
observed that the complete-wave HLLC upwind scheme exhibits
four visible carbuncles at places where the shock front is aligned
with the grid-line whilst the original FORCE centred scheme, the
RTV flux splitting scheme and the proposed FORCE-BVD centred
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Fig. 14. Density contours of the Sedov blast wave problem.

scheme are all capable of obtaining a stable shock front without
any oscillation.

4.11. Shock diffraction problem

The supersonic corner flow problem, which involves the diffrac-
tion of a Mach 5.09 normal shock over a 90° corner, is studied here
to examine the robustness of the proposed scheme. The compu-
tational domain [0, 1] x [0, 1] is partitioned into a 400 x 400 uni-
form mesh and the location of the corner is (x,y) = (0.05, 0.625).
The pre-shock condition on the right side of the shock is given
by (pg. Ug, Vg, Po) = (1.4,0,0, 1). The post shock condition is im-
posed at the inlet boundary whilst the outlet boundary is set
to zero gradient for all primitive variables. The boundary condi-
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tion at the top changes with time to consider the shock’s mo-
tion. The zero gradient condition for all primitive variables is
used at the bottom boundary and the left boundary below the
corner adopts the reflective condition. Fig. 15 shows the den-
sity contours of four numerical schemes at t = 0.1561. It can be
clearly observed that the visible oscillations appearing on the
top of the normal shock badly contaminate the solution of the
HLLC scheme whilst all of the original FORCE scheme, the RTV
flux splitting scheme and the proposed FORCE-BVD scheme ob-
tain a stable shock configuration without any oscillation. It is
worth noting that the normal shock captured by the RTV scheme
slightly contaminates the upper boundary layer. However, the so-
lution calculated by the proposed FORCE-BVD scheme does not
encounter it.
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Fig. 15. Density contours of the shock diffraction problem.

4.12. Effect of the order of accuracy

It should be noted that the use of BVD algorithm resembles the
use of high order schemes, i.e. one wants to reduce the jump term
in the numerical flux so that the numerical dissipation is reduced.
The above numerical experiments show that the proposed FORCE-
BVD scheme has higher contact resolution than the other numeri-
cal schemes when using the second-order MUSCL reconstruction.
In order to evaluate the proposed scheme comprehensively, we
discuss the effect of the order of accuracy in this subsection and
the fifth-order variant of the weighted essentially non-oscillatory
method [42], i.e. WENOS5, is considered here.

13

We first consider the isolated contact wave problem described
in Subsection 4.1. For this simple 1D Riemann problem, the pro-
posed FORCE-BVD scheme combined with the second-order MUSCL
reconstruction, as shown in Table 2, gives a steeper jump than the
other three solvers combined with the fifth-order WENO recon-
struction. In order to avoid the effect of temporal discretization
on numerical results, the third-order Runge-Kutta scheme [31] is
adopted in this subsection.

Next, the problem of two-dimensional turbulent flow driven by
the Kelvin-Helmholtz instability is calculated to compare the per-
formance of different numerical schemes. The computational do-
main [-0.5,0.5] x [-0.5,0.5] is divided into a 500 x 500 uniform
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Fig. 16. Density contour plots at time t = 2 for the Kelvin-Helmholtz instability problem.

Table 2
Comparison of discontinuity thickness for the isolated contact wave problem.

WENO5+FORCE ~ WENO5+HLLC ~ WENO5+RTV ~ MUSCL2+FORCE-BVD

Sthickness  5.2343 3.4080 3.4057 2.1841

mesh and the initial condition is given by Periodic boundary conditions are used in both directions. Due to
the Kelvin-Helmholtz instability, small vortexes at the sharp den-
. sity interface will be generated and become bigger through a vor-
(o, Ug, Vo, po) = {(% 6250 (3.101.SII12(27TX)2, é.S), vl< ggg tex merging mechanism [43]. These vortexes evolve freely and
(1,0.5,0.01sin(27x), 2.5), Iyl > 0.25. interact with each other to form a two-dimensional turbulence

(4.13) regime [43].

14
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Table 3
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Total CPU time (in hours) of different schemes for the Kelvin-Helmholtz instability problem.

Scheme WENO5+FORCE

WENO5+HLLC

WENO5+RTV ~ MUSCL2+FORCE-BVD

CPU time  5.0117 6.1209

6.8357 3.6853

As shown in Fig. 16, the FORCE centred scheme combined with
the fifth-order WENO reconstruction produces a more dissipative
result which yields less filamentation processes while the pro-
posed FORCE-BVD scheme combined with the second-order MUSCL
reconstruction gives a solution that is comparable to solutions
calculated from the HLLC and RTV schemes combined with the
fifth-order WENO reconstruction. The total CPU time (on an Intel
Core 15-5200U with 2.20GHz processor) for calculating this Kelvin-
Helmholtz instability problem at time t =2 is shown in Table 3
from which it can be concluded that the proposed FORCE-BVD
scheme is more computationally efficient than the other three
schemes.

5. Conclusions

In this work, a FORCE-type centred scheme accurate for contact
discontinuities is proposed and it has been applied to the calcula-
tion of compressible Euler flows. Using a jump-like THINC function
to reconstruct the density values on both sides of the cell inter-
face, the missing contact discontinuity of the original FORCE cen-
tred scheme is restored. The resolution of the proposed scheme
for contact discontinuities is further improved by using the BVD
(Boundary Variation Diminishing) algorithm to minimize the den-
sity difference in the numerical dissipation term of the FORCE cen-
tred scheme. Numerical results of a series of 1D and 2D test prob-
lems fully demonstrate that the proposed scheme can capture the
contact discontinuities more sharply than the complete-wave HLLC
upwind scheme. In addition, as the contact is restored with an al-
gebraic method, the proposed scheme preserves the shock stability
of the original FORCE scheme very well. In calculations of multi-
dimensional flow problems involving strong shock waves, the pro-
posed FORCE-BVD scheme can effectively suppress the shock insta-
bilities which usually afflict the contact-capturing upwind schemes
(such as Roe and HLLC). The proposed scheme is simple and easy
to implement and can be easily extended to higher order accuracy
by combining with the existing polynomial reconstruction meth-
ods (e.g. MUSCL and WENO). Future work will focus on the appli-
cations of the proposed centred scheme to other conservative and
non-conservative systems.
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