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a b s t r a c t 

The FORCE-type centred schemes are simple and efficient and do not explicitly require the wave prop- 

agation information of the system to calculate the numerical flux. However, their poor resolution for 

contact discontinuities seriously affects their applications. In the present work, a simple FORCE-type cen- 

tred scheme accurate for contact discontinuities is proposed and applied to calculations of compressible 

Euler flows. The missing contact wave of the original FORCE centred scheme is restored with an algebraic 

method and the resolution for contact discontinuities is further improved by using the boundary variation 

diminishing (BVD) algorithm to minimize the density jump in the numerical diffusion term of the original 

FORCE centred scheme. Numerical results of several one- and two-dimensional benchmark test problems 

fully demonstrate that the proposed centred scheme is capable of capturing contact discontinuities more 

sharply than the complete-wave HLLC upwind scheme. In addition, another advantage of the proposed 

centred scheme is that it is free from the carbuncle phenomenon which afflicts many contact-capturing 

upwind schemes (e.g. Roe and HLLC) in calculations of multidimensional flow problems involving strong 

shock waves. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Numerical fluxes at cell interfaces are the building block for 

olving the hyperbolic conservation laws numerically in the frame- 

ork of finite volume method and thus the construction of mono- 

one numerical fluxes has been a central research issue in the 

eld of computational fluid dynamics over the past few decades 

1] . Upwind and centred schemes are two representative numer- 

cal methods to obtain the numerical flux through a cell inter- 

ace. Generally, the upwind schemes require to explicitly provide 

he wave information propagating along the direction orthogonal 

o a cell interface, which is usually achieved via the solution of 

 local one-dimensional Riemann problem involving two constant 

tates [2] . In many cases, it is either unavailable or computation- 

lly expensive to obtain the exact solution of a Riemann prob- 

em. Therefore the construction of a reliable approximate Riemann 

olver is the key to a successful upwind scheme. In the past few 

ecades, researchers had developed a number of approximate Rie- 

ann solvers that can be applied to solve different flow prob- 

ems and they are usually classified as complete-wave solvers and 
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ncomplete-wave solvers according to their capabilities of resolv- 

ng contact discontinuities and shear waves. The incomplete-wave 

olvers, such as the HLL scheme [3] , HLLE scheme [4] and HLL- 

PS scheme [5] , omit one or both of these waves due to their high

umerical dissipation behaviours and thus they are not the appro- 

riate choices in calculations of flow problems involving the shear- 

ominated phenomenon, vortex, material interface, mixing layer, 

tc [6] . The complete-wave solvers, such as the Roe’s scheme [7] , 

sher’s scheme [8] , HLLEM scheme [9] and HLLC scheme [10] , are 

apable of capturing the contact discontinuities and shear waves 

ccurately in calculations. However, the severe carbuncle instabil- 

ty occurring near the multidimensional strong shock waves will 

fflict them and badly affect their accurate simulations for high 

ach flow problems. 

Different from the upwind schemes that heavily rely on the 

igen-structure (eigenvalues and eigenvectors) of the system to cal- 

ulate the numerical flux, there is no explicit requirement for the 

ave propagation information in the centred schemes except the 

aximum eigenvalue of the system which is required for the sta- 

ility CFL condition. In the framework of the centred schemes, al- 

hough the initial conditions constitute a local Riemann problem, 

he data is updated by integrating the controlling equations on two 

ets of meshes, i.e. the primary mesh and staggered mesh, rather 

https://doi.org/10.1016/j.compfluid.2021.105021
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2021.105021&domain=pdf
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han explicitly solving the Riemann problem. In other words, al- 

hough the centred schemes are not completely independent of 

he Riemann problem they solve it in an unconventional approach 

hat is radically different from the one the upwind schemes take 

1] . Therefore, for numerically solving those overly complex sys- 

ems for which the solution of the Riemann problem is not easy 

o obtain, the centred schemes are appropriate choices. Early rep- 

esentatives of the centred schemes are the Lax-Friedrichs scheme 

11] and Nessyahu-Tadmor scheme [12] for one-dimensional cases. 

n the last decades, many researchers were devoted to extending 

he original Lax-Friedrichs and Nessyahu-Tadmor centred schemes 

o multidimensional unstructured meshes and high-order accuracy, 

.g. see [13–16] . 

Recently, Toro and Billett [17] constructed a one-dimensional 

rst order centred (FORCE) scheme and the extension to the mul- 

idimensional hyperbolic systems of conservation laws on unstruc- 

ured meshes had been proposed in [1] . Dumbser et al. [18] de- 

eloped a FORCE centred scheme on unstructured meshes for solv- 

ng the non-conservative hyperbolic systems and a version on the 

oving unstructured meshes for both the conservative and non- 

onservative hyperbolic systems was proposed by Boscheri et al. 

19] . The FORCE centred scheme is monotone and has an optimal 

tability CFL restriction of unity. In addition, it can be recast into 

 one-step procedure on a non-staggered mesh and has a conser- 

ative form whose numerical flux just involves the left and right 

tates of the cell interface. Therefore the high-order accuracy of 

he scheme is easily achieved through the existing reconstruction 

echniques and it can also be incorporated into the finite volume 

r DG finite element methods straightforwardly [20] . However, due 

o no consideration of the wave structures of the system, the cen- 

red schemes, of course including the FORCE scheme, tend to be 

ore dissipative than the upwind schemes, especially for the con- 

act discontinuity corresponding to the linearly degenerate field. In 

rder to improve the capability of the centred schemes to capture 

ontact waves, Kurganov and Lin [21] constructed a semi-discrete 

entred scheme and an upwind-biased FORCE scheme (UFORCE) 

ith applications to shallow-water equations was proposed by 

tecca et al. [22] . Canestrelli and Toro [20,23] proposed a FORCE- 

ype centred scheme with restoration of contact surfaces to solve 

he conservative and non-conservative shallow water equations. 

In the present work, a contact-capturing FORCE-type centred 

cheme with applications to compressible Euler flows is proposed. 

he missing contact wave of the original FORCE scheme is restored 

ith an algebraic method and the boundary variation diminishing 

BVD) algorithm [24] is used to further improve the resolution of 

he proposed scheme for contact discontinuities. Compared with 

he complete-wave HLLC upwind scheme, the proposed scheme 

as higher resolution for contact discontinuities and better robust- 

ess against the shock anomalies. In addition, numerical results 

lso confirm that the proposed scheme has better contact captur- 

ng ability than the robust TV flux splitting scheme in [25] . The 

aper is organised as follows. Section 2 gives some preliminaries. 

n Section 3 , the construction of a contact-capturing FORCE-type 

entred scheme is described in detail. Section 4 presents the nu- 

erical results of several benchmark test problems to demonstrate 

he accuracy and robustness of the proposed scheme. A brief con- 

lusion is given in Section 5 . 

. Background 

Consider the two-dimensional inviscid Euler equations 

∂U 

∂t 
+ 

∂ F (U ) 

∂x 
+ 

∂ G (U ) 

∂y 
= 0 , (2.1) 
2 
here the vector of conserved variables U , the fluxes in both di- 

ections F (U ) and G (U ) are given by 

 = 

⎡ 

⎢ ⎣ 

ρ
ρu 

ρv 
E 

⎤ 

⎥ ⎦ 

, F (U ) = 

⎡ 

⎢ ⎣ 

ρu 

ρu 

2 + p 
ρu v 

u (E + p) 

⎤ 

⎥ ⎦ 

, G (U ) = 

⎡ 

⎢ ⎣ 

ρv 
ρu v 

ρv 2 + p 
v (E + p) 

⎤ 

⎥ ⎦ 

. (2.2) 

ere ρ is the density, u and v are velocity components in the x - 

nd y -directions, p is the pressure and E is the total energy. System 

2.1) is closed through the following equation of state 

p = (γ − 1) 
[ 

E − 1 

2 

ρ
(
u 

2 + v 2 
)] 

, (2.3) 

here γ is the specific heat ratio. 

.1. Finite volume method 

The integral form of system (2.1) can be written as 

d 

dt 

∫ 
�

U d� + 

∮ 
∂�

[ ( F , G ) · n ] dl = 0 , (2.4) 

here ∂� is the boundary of the control volume �, n denotes the 

utward unit vector normal to the line element dl. 

We discretize system (2.4) with the finite volume method over 

 2D domain covered by structured quadrilateral cells. The semi- 

iscrete equations over a specific control volume �i, j can be writ- 

en as 

dU i, j 

dt 
= − 1 

| �i, j | 
4 ∑ 

k =1 

[ ( F , G ) k · n k ] �l k , (2.5) 

here U i, j is the cell-average of U on �i, j and | �i, j | is the volume 

f �i, j , �l k denotes the length of the cell interface I k and n k is the

utward unit vector normal to I k . Using the rotational invariance 

roperty of two-dimensional Euler equations, the numerical flux 

F , G ) k · n k through the cell interface I k can be written as 

F , G ) k · n k = T 

−1 
k 

F (T k U L , T k U R ) , (2.6)

here T k and T −1 
k 

denote the rotation matrices. 

.2. FORCE scheme 

The conservative form of the numerical flux of the first order 

entred (FORCE) scheme [1] can be expressed as 

 

FORCE 

i +1 / 2 , j = 

1 

2 

[
F (U i +1 / 2 , j ) + 

1 

2 

(F (U L ) + F (U R )) − 1 

4 

�x 

�t 
(U R − U L ) 

]
, 

(2.7) 

ith 

 i +1 / 2 , j = 

1 

2 

(U L + U R ) − 1 

2 

(
2�t 

�x 

)
[ F (U R ) − F (U L ) ] . (2.8) 

The FORCE flux given by (2.7) can be rewritten as the arithmetic 

verage of the Lax-Wendroff flux and the Lax-Friedrichs flux 

 

FORCE 

i +1 / 2 , j = 

1 

2 

(
F 

LW 

i +1 / 2 , j + F 
LF 

i +1 / 2 , j 

)
, (2.9) 

here 

 

LW 

i +1 / 2 , j = F (U i +1 / 2 , j ) (2.10) 

nd 

 

LF 

i +1 / 2 , j = 

1 

[ F (U L ) + F (U R ) ] − 1 

(
�x 

)
(U R − U L ) . (2.11) 
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C

f

. A FORCE-type flux accurate for contact discontinuities 

The FORCE flux given by (2.7) is monotone and has a optimal 

tability CFL restriction of unity. However, the resolution for con- 

act discontinuities is extremely unsatisfactory due to its inherent 

issipation behaviour. On the other hand, thanks to the inherent 

umerical dissipation, the FORCE flux is very robust in calculations 

f flow problems involving strong shock waves. In what follows, we 

ropose a simple strategy to restore the missing contact discon- 

inuity of the FORCE flux while preserving its robustness against 

hock anomalies. 

.1. FORCE-BVD scheme 

The FORCE flux given by (2.7) consists of two parts, i.e. the 

ax-Wendroff flux capable of capturing the isolated stationary con- 

act discontinuity exactly and the dissipative Lax-Friedrichs flux. 

hus the reduction of numerical dissipation inherent in the Lax- 

riedrichs flux can greatly improve the resolution of the FORCE 

entred scheme for contact discontinuities. The Lax-Friedrichs flux 

iven by (2.11) can be rewritten as 

 

LF 

i +1 / 2 , j = 

1 

2 

[ F (U L ) + F (U R ) ] + D 1 / 2 , (3.1) 

ith 

 1 / 2 = −1 

2 

(
�x 

2�t 

)⎡ 

⎢ ⎣ 

ρR − ρL 

(ρu ) R − (ρu ) L 
(ρv ) R − (ρv ) L 

E R − E L 

⎤ 

⎥ ⎦ 

, (3.2) 

here the first term on the right hand side of (3.1) is the central

ifference term and D 1 / 2 corresponds to a numerical dissipation 

erm. 

Specifically, the excessive numerical dissipation due to the den- 

ity jump | ρR − ρL | in D 1 / 2 causes the failure of the FORCE scheme 

o capture contact discontinuities [5] . In the present work, we pro- 

ose a simple strategy to minimize the density jump | ρR − ρL | and 

hus to reduce the contribution of the dissipation term D 1 / 2 to the 

umerical flux. Following ideas proposed in [24,26,27] , we use the 

HINC (Tangent of Hyperbola for INterface Capturing) reconstruc- 

ion [28] to obtain the density values 

i (x ) = ρmin + 

�ρ

2 

[
1 + θ tanh 

(
β

(
x − x i −1 / 2 

x i +1 / 2 − x i −1 / 2 

− ˜ x i 

))]
, 

(3.3) 

here ρmin = min (ρi −1 , ρi +1 ) , �ρ = | ρi +1 − ρi −1 | , θ = sgn (ρi +1 −
i −1 ) and β is a parameter to control the jump thickness. A larger 

will give a solution with less dissipation while a smaller one 

ends to produce a solution with more dissipation. The value of β
anging from 1.2 to 2.0 is capable of giving a satisfactory solution 

nd it is taken as 1.6 in the present work. 

The unknown ˜ x i is the position of the jump center, which is cal- 

ulated from the constraint condition, ρi = 

1 
�x 

∫ x i +1 / 2 
x i −1 / 2 

ρi (x ) dx . For 

onvenience, we give explicitly the formula to calculate the recon- 

tructed density values on the left and right sides of the cell inter- 

ace [24] , 

i (x i +1 / 2 ) = ρmin + 

�ρ
2 

[
1 + θ tanh (β)+ A 

1+ A tanh (β) 

]
, 

i (x i −1 / 2 ) = ρmin + 

�ρ
2 

(1 + θA ) , 
(3.4) 

here 

 = 

B − cosh (β) 

sinh (β) 
, B = exp 

[ 
θβ

(
2 
ρi − ρmin + ε 

�ρ + ε 
− 1 

)] 
, ε = 10 −20 . 

(3.5) 
3 
Having finished the THINC reconstruction procedure (3.4) in 

ach cell, we can obtain the density values ρT 
L/R (subscript ‘T’ 

tands for the THINC reconstruction) on both sides of each cell in- 

erface. On the other hand, we can use the polynomial reconstruc- 

ion to obtain the density values ρP 
L/R (subscript ‘P’ stands for the 

olynomial reconstruction) on both sides of each cell interface. In 

he present work, the MUSCL reconstruction procedure [29] is im- 

lemented to obtain the density values ρP 
L/R 

. 

In order to further improve the resolution of the proposed 

cheme for contact discontinuities, the BVD algorithm [24,27] is 

mplemented to minimize the density jump | ρR − ρL | across the 

ell interface 

 

ρR − ρL | = min (| ρT 
R − ρT 

L | , | ρP 
R − ρP 

L | , | ρT 
R − ρP 

L | , | ρP 
R − ρT 

L | ) . 
(3.6) 

he final density values ρL/R on both sides of the cell interface 

n D 1 / 2 can be determined by (3.6) and the numerical dissipation 

erm D 1 / 2 can now be rewritten as 

 1 / 2 = − 1 

2 

(
�x 

2�t 

)⎡ 

⎢ ⎣ 

ρR − ρL 

ρR u R − ρL u L 
ρR v R − ρL v L (

p R 
γ −1 

+ 

1 
2 
ρR (u 2 R + v 2 R ) 

)
−

(
p L 

γ −1 
+ 

1 
2 
ρL (u 2 L + v 2 L ) 

)
⎤ 

⎥ ⎦ 

. 

(3.7) 

To summarize, the numerical flux of the FORCE-type centred 

cheme with Boundary Variation Diminishing (named as FORCE- 

VD) is obtained by the following four steps: 

1. Calculate the density values ρP 
L/R 

on both sides of the cell inter- 

face with the MUSCL scheme or other higher-order polynomial 

reconstruction methods, e.g. WENO reconstruction; 

2. Calculate the density values ρT 
L/R 

with the THINC reconstruction 

given by (3.4) to restore the discontinuous density field; 

3. Determine the final density values ρL/R with the BVD algorithm 

(3.6) to minimize the density jump in the numerical dissipation 

term D 1 / 2 and thus to resolve the contact discontinuities more 

sharply; 

4. The final numerical flux of the proposed FORCE-BVD centred 

scheme is obtained through (2.8) - (2.10), (3.1) and (3.7) . 

In the present work, the multidimensional computation is con- 

ucted by the operator splitting method and the THINC recon- 

truction is carried out in a dimension-by-dimension fashion. Thus 

he one-dimensional building block presented above can be used 

traightforwardly in each coordinate direction in multidimensional 

omputation. As an algebraic method, the THINC reconstruction 

oes not involve any geometric reconstruction in multidimensional 

mplementation, but is able to give numerical solutions with suffi- 

ient accuracy [28] . 

Unlike the complete-wave HLLC upwind scheme which restores 

he contact discontinuities by modifying the wave structures of the 

ncomplete-wave HLL scheme but fails to preserve its robustness 

gainst the shock anomalies in calculations of multidimensional 

trong shock waves [5] , the proposed FORCE-BVD centred scheme 

estores the contact discontinuities by using an algebraic method 

nd thus is capable of preserving the shock stability of the original 

ORCE centred scheme. In what follows, the shock stability analysis 

f the FORCE-BVD scheme is conducted to demonstrate its robust- 

ess. 

.2. Shock stability analysis 

The domain [0 , 1] × [0 , 1] is covered by a 25 × 25 uniform

artesian mesh and a steady standing shock is located on inter- 

aces shared by cells in the 12th and 13th columns. The upstream 
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Fig. 1. Distribution of eigenvalues of the stability matrix S for different numerical schemes. 
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ondition of the shock is given as 

 (0) = 

(
1 , 1 , 0 , 

1 

γ (γ − 1) M 

2 
+ 

1 

2 

)T 

(3.8) 

nd the downstream condition determined by the Rankine- 

ugoniot relations is 

 (1) = 

(
g(M) , 1 , 0 , 

h (M) 
γ (γ −1) M 

2 + 

1 
2 g(M) 

)T 

, 

(M) = 

(
2 

γ +1 
1 

M 

2 + 

γ −1 
γ +1 

)−1 
, 

 (M ) = 

2 γ
γ +1 

M 

2 − γ −1 
γ +1 

, 

(3.9) 

here M is the Mach number and is set to 10 in the current anal-

sis. The upstream and downstream conditions are fixed at the left 

nd right boundaries respectively whilst the periodic conditions 

re used for the top and bottom boundaries. 
4 
The flow field evolved from the initial conditions (3.8) and 

3.9) can be written as 

 m 

= U 

0 
m 

+ δU m 

, (3.10) 

here U 

0 
m 

and δU m 

denote the steady mean value and the error 

espectively, m represents the global index of a cell. For the sta- 

ility analysis of a steady field, the temporal evolution of errors in 

he entire flow field needs to be investigated. In the present anal- 

sis, we avoid introducing any artificial perturbations into the flow 

eld and just study the evolution of numerical errors brought by a 

pecific numerical method. For it, a matrix-based stability analysis 

rocedure originally put forward by Dumbser et al [30] is carried 

ut. 

After the linearization procedure, the numerical flux through an 

nterface shared by cells with global indices m and k can be ex- 

ressed as 

mk ( U m 

, U k ) = �mk (U 

0 
m 

, U 

0 
k ) + 

∂�mk 

∂ U m 

· δU m 

+ 

∂�mk 

∂ U 

· δU k . (3.11)
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Fig. 2. Distribution of density for an isolated contact wave propagating at Mach 0.1. 

Fig. 3. Density distribution of the FORCE-BVD scheme with different β . 
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ubstituting (3.11) into (2.5) , we can obtain the temporal evolution 

odel of the numerical error 

d(δU m 

) 

dt 
= − 1 

| �m 

| 
∑ 

�mk ⊂∂�m 

| �mk | 
[
∂�mk 

∂ U m 

· δU m 

+ 

∂�mk 

∂ U k 

· δU k 

]
, 

(3.12) 

here | �m 

| denotes the area of the cell with index m and | �mk | is
he length of cell interface �mk . From (3.12) , the evolutionary sys- 

em of numerical errors in the entire flow field can be expressed 

s 

d 

dt 

⎡ 

⎣ 

δU 1 

. . . 
δU N 

⎤ 

⎦ = S 

⎡ 

⎣ 

δU 1 

. . . 
δU N 

⎤ 

⎦ , (3.13) 

here N = 25 × 25 is the total number of cells and S denotes a

tability matrix that will vary depending on numerical schemes. 

he solution of (3.13) is 
 

 

δU 1 

. . . 
δU N 

⎤ 

⎦ (t) = e S t 

⎡ 

⎣ 

δU 1 

. . . 
δU N 

⎤ 

⎦ 

t=0 

(3.14) 

hich is bounded so long as 

ax ( Re (λ) ) � 0 , (3.15) 

here Re (λ) represent the real parts of eigenvalues of S . 

The dimension of the stability matrix S is 2500 and the stan- 

ard algorithm in MATLAB is used to obtain its eigenvalues. 

ig. 1 shows all eigenvalues of the stability matrix S in a com- 

lex plane. The complete-wave HLLC upwind scheme, which is 

ell known to be afflicted with the shock instability, has multi- 

le eigenvalues with positive real parts that will result in a desta- 

ilized solution. The eigenvalues of the FORCE and the proposed 

ORCE-BVD centred schemes, however, are always with negative 

eal parts that imply a stable pattern. The result of stability anal- 

sis shows the better shock stability of the FORCE-BVD centred 

cheme over the HLLC upwind scheme, which is fully demon- 

trated by the results of numerical experiments in Section 4 as 

ell. 

. Numerical results 

A series of one-dimensional and two-dimensional benchmark 

est problems are calculated in this section to evaluate the per- 

ormance of the proposed FORCE-BVD centred scheme, including 

ts accuracy for contact discontinuities and robustness against the 

hock anomalies, and a systematic comparison with the original 

ORCE scheme, the complete-wave HLLC upwind scheme and the 

TV flux splitting scheme [25] is also made. Unless otherwise spec- 

fied, we use the second-order accuracy to discrete the time and 

pace, which is achieved by using the second-order SSP Runge- 

utta method [31] and the second-order MUSCL scheme [29] . 

.1. Isolated contact wave 

The computational domain [0,1] is divided into 100 uniform 

ells and the initial condition is given by 

ρ0 , u 0 , p 0 ) = 

{
(1 . 4 , 0 . 1 , 1 . 0) , 0 � x � 0 . 5 , 

(1 . 0 , 0 . 1 , 1 . 0) , 0 . 5 < x � 1 . 
(4.1) 

his is an isolated contact wave propagating at Mach 0.1. Fig. 2 

hows the density distribution of the original FORCE scheme, HLLC 

cheme, the RTV flux splitting scheme as well as the proposed 

ORCE-BVD scheme at t = 2 . It can be clearly observed that the 
5 
roposed FORCE-BVD centred scheme captures the sharp jump of 

he density field with the least dissipation. This test case fully 

emonstrates that the proposed FORCE-BVD centred scheme is su- 

erior to the original FORCE centred scheme, the RTV flux splitting 

cheme and even the complete-wave HLLC upwind scheme in the 

apability of capturing contact discontinuity. 

Fig. 3 shows the results of the proposed FORCE-BVD centred 

cheme with different values of β . It can be seen that steep jumps 

re obtained by all the values of β except for β = 1 . 0 . In order to

valuate quantitatively, the thickness measurement of a disconti- 

uity proposed in [32] is introduced: 

thickness = 

ρ jump 

�x 
· 1 

max 
(∣∣ δρ

δx 

∣∣) = 

ρ jump 

max (| ρi − ρi −1 | ) , (4.2) 

here ρ jump = 0 . 4 for this test case. As shown in Table 1 , the thick-

ess of discontinuity decreases with the increase of β . A larger β
ives a sharper interface but, as shown in Subsection 4.7 , tends 
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Fig. 4. Distribution of density for the Lax problem. 

Table 1 

Comparison of discontinuity thickness for different β . 

β = 1 . 0 β = 1 . 3 β = 1 . 6 β = 1 . 9 β = 2 . 2 

δthickness 8.8891 2.9914 2.1841 1.8099 1.6410 
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o wrinkle an interface parallel to the velocity direction [28] . It is 

ound that a β ranging from 1.2 to 2.0 is able to give a sharp but

ess wrinkled interface. In this paper, we choose an ad hoc β = 1 . 6

or all numerical tests. 

.2. Lax problem 

The Lax problem is calculated to examine the ability of the pro- 

osed FORCE-BVD centred scheme to capture the relatively strong 
Fig. 5. Distribution of density for 

6 
hock wave [33] . The computational domain [0,1] is divided into 

00 uniform cells and the initial condition is given by 

ρ0 , u 0 , p 0 ) = 

{
(0 . 445 , 0 . 698 , 3 . 528) , 0 � x � 0 . 5 , 

(0 . 5 , 0 , 0 . 571) , 0 . 5 < x � 1 . 
(4.3) 

he initial condition involves with a relatively strong right travel- 

ng shock, a right traveling contact discontinuity and a left trav- 

ling expansion wave. Fig. 4 shows the density distribution of the 

riginal FORCE scheme, the HLLC scheme, the RTV flux splitting 

cheme as well as the proposed FORCE-BVD centred scheme at 

 = 0 . 15 . It can be clearly observed that the resolution of all four

umerical schemes for expansion wave and shock wave is almost 

dentical whilst the proposed FORCE-BVD centred scheme can cap- 

ure the contact discontinuity with less dissipation than the other 

hree numerical schemes. 

.3. 1D blast wave problem 

The computational domain [0,1] is divided into 500 uniform 

ells and the initial condition is given by 

ρ0 , u 0 , p 0 ) = 

{ 

(1 . 0 , 0 . 0 , 10 0 0) , 0 � x � 0 . 1 , 

(1 . 0 , 0 . 0 , 0 . 01) , 0 . 1 < x � 0 . 9 , 

(1 . 0 , 0 . 0 , 100) , 0 . 9 < x � 1 . 

(4.4) 

he reflective boundary conditions are imposed at the left and 

ight sides. The initial condition involves with the collision of two 

trong shock waves and a complicated wave structure is formed 

ith the interaction of these two shock waves. Fig. 5 shows the 

ensity distribution of four numerical schemes at t = 0 . 038 . A 

oomed plot in the region [0.5,0.64] is also given to make a more 

etailed comparison. It can be clearly seen that the proposed 

ORCE-BVD centred scheme performs best in this test case and 

aptures the discontinuities with less dissipation than the other 

hree schemes. 

.4. Shu-Osher problem 

This test case is aimed at investigating the spectral and shock- 

apturing capability of a given numerical scheme [34] . The compu- 

ational domain [ −5 , 5] is divided into 10 0 0 uniform cells and the
the 1D blast wave problem. 
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Fig. 6. Distribution of density for the Shu-Osher problem. 
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Fig. 7. Density distribution along the radial line for the 2D explosion problem. 
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nitial condition is given by 

ρ0 , u 0 , p 0 ) = 

{
(27 / 7 , 4 

√ 

35 / 9 , 31 / 3) , −5 � x � −4 , 

(1 + 0 . 2 sin (5 x ) , 0 , 1) , −4 < x � 5 . 
(4.5) 

he initial condition involves with the interaction of a sine en- 

ropy wave with a Mach 3 right traveling shock wave [35] . Fig. 6

hows the density distribution of four numerical schemes at t = 

 . 8 . A zoomed plot in the region [0.5,2.5] is also given to make a

ore detailed comparison. It can be clearly observed that the pro- 

osed FORCE-BVD centred scheme can capture the high-frequency 

aves more accurately than the original FORCE centred scheme, 

he complete-wave HLLC upwind scheme and the RTV flux split- 

ing scheme. 

.5. 2D explosion problem 

The 2D explosion problem [36] which is an extension of 1D 

od’s shock tube problem is calculated to test the capability of 

he proposed FORCE-BVD scheme for capturing various types of 

aves. The computational domain [ −1 , 1] × [ −1 , 1] is divided into

 201 × 201 uniform mesh and the initial condition is given by 

ρ0 , u 0 , v 0 , p 0 ) = 

{
(1 , 0 , 0 , 1) , x 2 + y 2 < 0 . 4 

2 , 

(0 . 125 , 0 , 0 , 0 . 1) , x 2 + y 2 � 0 . 4 

2 . 
(4.6) 

he computational final time is t = 0 . 25 . At this time, the solution

onsists of a circular shock wave traveling outwards, a circular con- 

act surface following the shock and a circular rarefaction travel- 

ing towards the centre [36] . Fig. 7 shows the density distribution 

long the radial line at y = 0 . It can be observed that the proposed

ORCE-BVD centred scheme is able to capture all types of waves 

ccurately, especially for the contact discontinuity. 

.6. 2D Riemann problem 

Next we consider a 2D Riemann problem which is pro- 

osed and analyzed extensively in [37] . The computational domain 

0 , 1] × [0 , 1] is divided into a 1600 × 1600 uniform Cartesian mesh
7 
nd the initial condition is given by 

ρ0 , u 0 , v 0 , p 0 ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

(1 . 0 , 0 . 75 , −0 . 5 , 1 . 0) , x � 0 . 5 , y � 0 . 5 , 

(2 . 0 , 0 . 75 , 0 . 5 , 1 . 0) , x < 0 . 5 , y � 0 . 5 , 

(1 . 0 , −0 . 75 , 0 . 5 , 1 . 0) , x < 0 . 5 , y < 0 . 5 , 

(3 . 0 , −0 . 75 , −0 . 5 , 1 . 0) , x � 0 . 5 , y < 0 . 5 . 

(4.7) 

he initial condition involves with four contact discontinuities and 

our shear layers will be formed due to interactions of these con- 

act discontinuities. Although the flow problem considered here is 

nviscid, the viscosity inherent in the numerical scheme is capable 

f triggering the shear instability, i.e. the Kelvin-Helmholtz insta- 

ility. Since the capability of capturing contact discontinuities as 

ell as the shear waves is critical to resolve the small-scale vorti- 
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Fig. 8. Density contours of the 2D Riemann problem. 
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al structures created by the Kelvin-Helmholtz instability [38] , the 

D Riemann problem is a very suitable numerical example to ver- 

fy the accuracy of a given numerical scheme. Fig. 8 shows the den- 

ity contours of four numerical schemes at t = 0 . 8 . It can be clearly

bserved that the proposed FORCE-BVD centred scheme can not 

nly resolve the shear layers more accurately but also capture the 

isible vortical structures caused by the Kelvin-Helmholtz instabil- 

ty whilst the original FORCE centred scheme, the complete-wave 

LLC upwind scheme and the RTV flux splitting scheme obtain so- 

utions with more dissipation. 

.7. 2D interface only problem 

The two-dimensional interface only problem proposed in [39] is 

alculated to compare the ability of different numerical schemes to 
8 
apture contact surfaces. The computational domain [0 , 1] × [0 , 1] 

s divided into a 100 × 100 uniform Cartesian mesh and the initial 

ondition is given by 

ρ0 , u 0 , v 0 , p 0 ) = 

{
(2 , 1 , 1 , 1) , 

√ 

(x − 0 . 2) 2 + (y − 0 . 2) 2 < 0 . 01 , 

(1 , 1 , 1 , 1) , 
√ 

(x − 0 . 2) 2 + (y − 0 . 2) 2 � 0 . 01 . 

(4.8) 

he corresponding exact solution at t = 0 . 3 is as follows 

ρ0 , u 0 , v 0 , p 0 ) = 

{
(2 , 1 , 1 , 1) , 

√ 

(x − 0 . 5) 2 + (y − 0 . 5) 2 < 0 . 01 , 

(1 , 1 , 1 , 1) , 
√ 

(x − 0 . 5) 2 + (y − 0 . 5) 2 � 0 . 01 . 

(4.9) 
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Fig. 9. Surface plots of the density for the 2D interface only problem. 

9 
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Fig. 10. Surface plots of the density calculated by the FORCE-BVD scheme with different β . 

Fig. 11. Density contours of the Rayleigh-Taylor instability problem. 
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ig. 9 shows the exact solution and four numerical solutions at 

 = 0 . 3 . It can be clearly observed that the proposed FORCE-BVD

entred scheme resolves the contact surface more sharply than the 

riginal FORCE centred scheme, the HLLC upwind scheme and the 

TV flux splitting scheme. Fig. 10 shows the results of the FORCE- 

VD scheme with larger values of β . A larger β gives a sharper 

nterface but tends to wrinkle an interface parallel to the velocity 

irection. It is found that a moderate β ranging from 1.2 to 2.0 is 

ble to give a satisfactory solution. 

.8. Rayleigh-Taylor instability problem 

Initially, two fluids with different densities are separated by 

 = 0 . 5 and the Rayleigh-Taylor instability will develop when an 
10 
cceleration is directed from the heavier fluid to the lighter one 

27,40] . The computational domain [0 , 0 . 25] × [0 , 1] is partitioned

nto a 120 × 480 uniform mesh and the initial condition is given 

y 

ρ0 , u 0 , v 0 , p 0 ) = 

{
(2 , 0 , −0 . 025 a 0 cos (8 πx ) , 1 + 2 y ) , 0 � y � 0 . 5 , 

(1 , 0 , −0 . 025 a 0 cos (8 πx ) , 1 . 5 + y ) , 0 . 5 < y � 1 , 

(4.10) 

here a 0 = 

√ 

γ p 0 /ρ0 is the sound speed and the specific heat ra- 

io γ = 5 / 3 in this case. Reflective conditions are used at the left

nd right boundaries. We assign (ρ, u, v , p) = (1 , 0 , 0 , 2 . 5) on the

op boundary and (ρ, u, v , p) = (2 , 0 , 0 , 1) on the bottom bound-

ry. The gravitational effect is also considered by adding a source 
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Fig. 12. Density contours of the random numerical noise problem. 
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Fig. 13. The maximal deviation of y -velocity for the random numerical noise prob- 

lem. 
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erm S = (0 , 0 , ρ, ρv ) T into the right-hand side of the system (2.1) .

ig. 11 shows the density contours of four numerical schemes at 

 = 1 . 95 . It can be clearly observed that the proposed FORCE-BVD

entred scheme is capable of resolving the sharper material inter- 

aces and capturing more vortical structures on the interfaces as 

ompared to the original FORCE centred scheme, the HLLC upwind 

cheme and the RTV flux splitting scheme, indicating that it is less 

issipative than the other three numerical schemes. 

.9. Random numerical noise problem 

Riemann solvers that can capture contact discontinuities accu- 

ately usually suffer from the shock anomalies, such as the most 

ommon carbuncle phenomenon, in solving multidimensional flow 

roblems involving strong shock waves. The proposed FORCE-BVD 

cheme restores the contact waves by using an algebraic method 

nd does not modify the wave structures of the original FORCE 

cheme. Therefore, it preserves the shock stability of the original 

ORCE scheme very well. A Mach 10 planar normal shock problem 

s calculated here to demonstrate the robustness of the proposed 

ORCE-BVD scheme. 

The Mach 10 normal shock is initially located at x = 5 and trav- 

ls from left to right along a duct that covers a domain [0 , 1200] ×
0 , 20] . The initial condition is given by 

ρ0 , u 0 , v 0 , p 0 ) = 

{
(1 . 4 , 0 , 0 , 1) , x > 5 , 

(8 , 8 . 25 , 0 , 116 . 5) , x � 5 , 
(4.11) 

n the planar normal shock instability problem proposed by Quirk 

41] , the instability is triggered by the small disturbance of the y - 

irectional grid centerline. Here we leave the gridline undisturbed 

ut introduce the following random numerical noises into the pre- 

hock state of the initial flow field: 

ρ0 , u 0 , v 0 , p 0 ) i, j = (1 . 4 , 0 , 0 , 1) + ( β1 , β2 , β3 , β4 ) i, j · 10 

−6 , (4.12)

here βk (k = 1 , 2 , 3 , 4) are random numbers between −0 . 5 and

.5. 

Fig. 12 shows the density contours of four numerical schemes 

t t = 100 . It can be clearly observed that the complete-wave HLLC 

pwind scheme suffers from the visible shock instability whilst 

he original FORCE centred scheme, the RTV flux splitting scheme 

nd the proposed FORCE-BVD centred scheme obtain a stable so- 

ution without any non-physical behavior. The maximal deviation 

f y -velocity shown in Fig. 13 also demonstrates the robustness of 

he proposed FORCE-BVD scheme. The maximal y -velocity of the 

LLC scheme grows rapidly from the initial order of 10 −6 to or- 

er of 10 0 whilst it stays at the initial order of 10 −6 if we choose
11 
he FORCE-BVD flux. It is worth noting that although the origi- 

al FORCE scheme and the RTV flux splitting scheme give a clean 

hock front without any oscillation, their corresponding maximal 

 -velocity has risen to the order of 10 −3 and 10 −5 , respectively. 

.10. Sedov blast wave problem 

The Sedov blast wave problem involving high pressure ratio 

nd strong shock waves is considered here to examine the robust- 

ess of the proposed FORCE-BVD scheme. The computational do- 

ain [0 , 2 . 4] × [0 , 2 . 4] is divided into a 480 × 480 uniform mesh

nd the initial condition of the entire flow field is given by 

ρ0 , u 0 , v 0 , p 0 ) = (1 . 0 , 0 . 0 , 0 . 0 , 10 −10 ) except that the pressure

alue at the center of the domain is 3 . 5 · 10 5 . Reflective condi-

ions are imposed at all four boundaries. Fig. 14 shows the density 

ontours of four numerical schemes at t = 0 . 1 . It can be clearly

bserved that the complete-wave HLLC upwind scheme exhibits 

our visible carbuncles at places where the shock front is aligned 

ith the grid-line whilst the original FORCE centred scheme, the 

TV flux splitting scheme and the proposed FORCE-BVD centred 
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Fig. 14. Density contours of the Sedov blast wave problem. 
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cheme are all capable of obtaining a stable shock front without 

ny oscillation. 

.11. Shock diffraction problem 

The supersonic corner flow problem, which involves the diffrac- 

ion of a Mach 5.09 normal shock over a 90 ◦ corner, is studied here

o examine the robustness of the proposed scheme. The compu- 

ational domain [0 , 1] × [0 , 1] is partitioned into a 400 × 400 uni-

orm mesh and the location of the corner is (x, y ) = (0 . 05 , 0 . 625) .

he pre-shock condition on the right side of the shock is given 

y (ρ0 , u 0 , v 0 , p 0 ) = (1 . 4 , 0 , 0 , 1) . The post shock condition is im-

osed at the inlet boundary whilst the outlet boundary is set 

o zero gradient for all primitive variables. The boundary condi- 
12 
ion at the top changes with time to consider the shock’s mo- 

ion. The zero gradient condition for all primitive variables is 

sed at the bottom boundary and the left boundary below the 

orner adopts the reflective condition. Fig. 15 shows the den- 

ity contours of four numerical schemes at t = 0 . 1561 . It can be

learly observed that the visible oscillations appearing on the 

op of the normal shock badly contaminate the solution of the 

LLC scheme whilst all of the original FORCE scheme, the RTV 

ux splitting scheme and the proposed FORCE-BVD scheme ob- 

ain a stable shock configuration without any oscillation. It is 

orth noting that the normal shock captured by the RTV scheme 

lightly contaminates the upper boundary layer. However, the so- 

ution calculated by the proposed FORCE-BVD scheme does not 

ncounter it. 
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Fig. 15. Density contours of the shock diffraction problem. 
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.12. Effect of the order of accuracy 

It should be noted that the use of BVD algorithm resembles the 

se of high order schemes, i.e. one wants to reduce the jump term 

n the numerical flux so that the numerical dissipation is reduced. 

he above numerical experiments show that the proposed FORCE- 

VD scheme has higher contact resolution than the other numeri- 

al schemes when using the second-order MUSCL reconstruction. 

n order to evaluate the proposed scheme comprehensively, we 

iscuss the effect of the order of accuracy in this subsection and 

he fifth-order variant of the weighted essentially non-oscillatory 

ethod [42] , i.e. WENO5, is considered here. 
13 
We first consider the isolated contact wave problem described 

n Subsection 4.1 . For this simple 1D Riemann problem, the pro- 

osed FORCE-BVD scheme combined with the second-order MUSCL 

econstruction, as shown in Table 2 , gives a steeper jump than the 

ther three solvers combined with the fifth-order WENO recon- 

truction. In order to avoid the effect of temporal discretization 

n numerical results, the third-order Runge-Kutta scheme [31] is 

dopted in this subsection. 

Next, the problem of two-dimensional turbulent flow driven by 

he Kelvin-Helmholtz instability is calculated to compare the per- 

ormance of different numerical schemes. The computational do- 

ain [ −0 . 5 , 0 . 5] × [ −0 . 5 , 0 . 5] is divided into a 500 × 500 uniform
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Fig. 16. Density contour plots at time t = 2 for the Kelvin-Helmholtz instability problem. 

Table 2 

Comparison of discontinuity thickness for the isolated contact wave problem. 

WENO5 + FORCE WENO5 + HLLC WENO5 + RTV MUSCL2 + FORCE-BVD 

δthickness 5.2343 3.4080 3.4057 2.1841 

m

(

P

t

s

t

i

r

esh and the initial condition is given by 

ρ0 , u 0 , v 0 , p 0 ) = 

{
(2 , −0 . 5 , 0 . 01 sin (2 πx ) , 2 . 5) , | y | � 0 . 25 , 

(1 , 0 . 5 , 0 . 01 sin (2 πx ) , 2 . 5) , | y | > 0 . 25 . 

(4.13) 
14 
eriodic boundary conditions are used in both directions. Due to 

he Kelvin-Helmholtz instability, small vortexes at the sharp den- 

ity interface will be generated and become bigger through a vor- 

ex merging mechanism [43] . These vortexes evolve freely and 

nteract with each other to form a two-dimensional turbulence 

egime [43] . 
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Table 3 

Total CPU time (in hours) of different schemes for the Kelvin-Helmholtz instability problem. 

Scheme WENO5 + FORCE WENO5 + HLLC WENO5 + RTV MUSCL2 + FORCE-BVD 

CPU time 5.0117 6.1209 6.8357 3.6853 
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As shown in Fig. 16 , the FORCE centred scheme combined with 

he fifth-order WENO reconstruction produces a more dissipative 

esult which yields less filamentation processes while the pro- 

osed FORCE-BVD scheme combined with the second-order MUSCL 

econstruction gives a solution that is comparable to solutions 

alculated from the HLLC and RTV schemes combined with the 

fth-order WENO reconstruction. The total CPU time (on an Intel 

ore i5-5200U with 2.20GHz processor) for calculating this Kelvin- 

elmholtz instability problem at time t = 2 is shown in Table 3 

rom which it can be concluded that the proposed FORCE-BVD 

cheme is more computationally efficient than the other three 

chemes. 

. Conclusions 

In this work, a FORCE-type centred scheme accurate for contact 

iscontinuities is proposed and it has been applied to the calcula- 

ion of compressible Euler flows. Using a jump-like THINC function 

o reconstruct the density values on both sides of the cell inter- 

ace, the missing contact discontinuity of the original FORCE cen- 

red scheme is restored. The resolution of the proposed scheme 

or contact discontinuities is further improved by using the BVD 

Boundary Variation Diminishing) algorithm to minimize the den- 

ity difference in the numerical dissipation term of the FORCE cen- 

red scheme. Numerical results of a series of 1D and 2D test prob- 

ems fully demonstrate that the proposed scheme can capture the 

ontact discontinuities more sharply than the complete-wave HLLC 

pwind scheme. In addition, as the contact is restored with an al- 

ebraic method, the proposed scheme preserves the shock stability 

f the original FORCE scheme very well. In calculations of multi- 

imensional flow problems involving strong shock waves, the pro- 

osed FORCE-BVD scheme can effectively suppress the shock insta- 

ilities which usually afflict the contact-capturing upwind schemes 

such as Roe and HLLC). The proposed scheme is simple and easy 

o implement and can be easily extended to higher order accuracy 

y combining with the existing polynomial reconstruction meth- 

ds (e.g. MUSCL and WENO). Future work will focus on the appli- 

ations of the proposed centred scheme to other conservative and 

on-conservative systems. 
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